BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science. 2000;290:1574-1577. [PMID: 11090355 DOI: 10.1126/science.290.5496.1574] [Cited by in Crossref: 620] [Cited by in F6Publishing: 588] [Article Influence: 28.2] [Reference Citation Analysis]
Number Citing Articles
1 Novi F, Scarselli M, Corsini GU, Maggio R. The Paired Activation of the Two Components of the Muscarinic M3 Receptor Dimer Is Required for Induction of ERK1/2 Phosphorylation. Journal of Biological Chemistry 2004;279:7476-86. [DOI: 10.1074/jbc.m306818200] [Cited by in Crossref: 33] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
2 Akbarzadeh S, Ji H, Frecklington D, Marmy-conus N, Mok Y, Bowes L, Devereux L, Linsenmeyer M, Simpson RJ, Dorow DS. Mixed Lineage Kinase 2 Interacts with Clathrin and Influences Clathrin-coated Vesicle Trafficking. Journal of Biological Chemistry 2002;277:36280-7. [DOI: 10.1074/jbc.m204626200] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
3 Laporte SA, Miller WE, Kim KM, Caron MG. beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: identification of a beta-arrestin binging site in beta 2-adaptin. J Biol Chem 2002;277:9247-54. [PMID: 11777907 DOI: 10.1074/jbc.M108490200] [Cited by in Crossref: 102] [Cited by in F6Publishing: 41] [Article Influence: 5.1] [Reference Citation Analysis]
4 Sun WY, Song Y, Hu SS, Wang QT, Wu HX, Chen JY, Wei W. Depletion of β-arrestin2 in hepatic stellate cells reduces cell proliferation via ERK pathway. J Cell Biochem. 2013;114:1153-1162. [PMID: 23192415 DOI: 10.1002/jcb.24458] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 1.7] [Reference Citation Analysis]
5 Rajagopal K, Lefkowitz RJ, Rockman HA. When 7 transmembrane receptors are not G protein-coupled receptors. J Clin Invest 2005;115:2971-4. [PMID: 16276410 DOI: 10.1172/JCI26950] [Cited by in Crossref: 76] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
6 Tohgo A, Choy EW, Gesty-palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM. The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation. Journal of Biological Chemistry 2003;278:6258-67. [DOI: 10.1074/jbc.m212231200] [Cited by in Crossref: 265] [Cited by in F6Publishing: 120] [Article Influence: 13.9] [Reference Citation Analysis]
7 Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 2006;281:9812-23. [PMID: 16439357 DOI: 10.1074/jbc.M512703200] [Cited by in Crossref: 103] [Cited by in F6Publishing: 66] [Article Influence: 6.4] [Reference Citation Analysis]
8 Slattery DM, Gerard N, Gerard C. Chemokine Receptors. Universes in Delicate Balance. Elsevier; 2002. pp. 87-98. [DOI: 10.1016/b978-044451002-0/50007-5] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
9 Gu YJ, Sun WY, Zhang S, Wu JJ, Wei W. The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacol Sin 2015;36:1277-87. [PMID: 26388156 DOI: 10.1038/aps.2015.74] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
10 Lefkowitz RJ, Rajagopal K, Whalen EJ. New roles for beta-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell. 2006;24:643-652. [PMID: 17157248 DOI: 10.1016/j.molcel.2006.11.007] [Cited by in Crossref: 225] [Cited by in F6Publishing: 224] [Article Influence: 15.0] [Reference Citation Analysis]
11 Chen Z, Dupré DJ, Le Gouill C, Rola-Pleszczynski M, Stanková J. Agonist-induced internalization of the platelet-activating factor receptor is dependent on arrestins but independent of G-protein activation. Role of the C terminus and the (D/N)PXXY motif. J Biol Chem 2002;277:7356-62. [PMID: 11729201 DOI: 10.1074/jbc.M110058200] [Cited by in Crossref: 42] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
12 Celver J, Vishnivetskiy SA, Chavkin C, Gurevich VV. Conservation of the phosphate-sensitive elements in the arrestin family of proteins. J Biol Chem 2002;277:9043-8. [PMID: 11782458 DOI: 10.1074/jbc.M107400200] [Cited by in Crossref: 103] [Cited by in F6Publishing: 66] [Article Influence: 5.2] [Reference Citation Analysis]
13 Feldman DS, Carnes CA, Abraham WT, Bristow MR. Mechanisms of disease: beta-adrenergic receptors--alterations in signal transduction and pharmacogenomics in heart failure. Nat Clin Pract Cardiovasc Med 2005;2:475-83. [PMID: 16265588 DOI: 10.1038/ncpcardio0309] [Cited by in Crossref: 89] [Cited by in F6Publishing: 74] [Article Influence: 5.2] [Reference Citation Analysis]
14 Ahmed HMS, Mohamed SG, Ibrahim WS, Rezk AM, Mahmoud AAA, Mahmoud MF, Ibrahim IAAE. Acute and chronic metabolic effects of carvedilol in high-fructose, high-fat diet-fed mice: implication of β-arrestin2 pathway. Can J Physiol Pharmacol 2021;:1-10. [PMID: 34570983 DOI: 10.1139/cjpp-2021-0299] [Reference Citation Analysis]
15 Sai J, Fan GH, Wang D, Richmond A. The C-terminal domain LLKIL motif of CXCR2 is required for ligand-mediated polarization of early signals during chemotaxis. J Cell Sci 2004;117:5489-96. [PMID: 15479720 DOI: 10.1242/jcs.01398] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
16 Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol 2009;75:113-23. [PMID: 18809670 DOI: 10.1124/mol.108.050534] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 2.9] [Reference Citation Analysis]
17 DeFea KA. Beta-arrestins as regulators of signal termination and transduction: how do they determine what to scaffold? Cell Signal 2011;23:621-9. [PMID: 20946952 DOI: 10.1016/j.cellsig.2010.10.004] [Cited by in Crossref: 107] [Cited by in F6Publishing: 100] [Article Influence: 8.9] [Reference Citation Analysis]
18 Marullo S, Coureuil M. Arrestins in host-pathogen interactions. Handb Exp Pharmacol 2014;219:361-74. [PMID: 24292839 DOI: 10.1007/978-3-642-41199-1_18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
19 Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 2006;28:923-34. [PMID: 16937364 DOI: 10.1002/bies.20458] [Cited by in Crossref: 134] [Cited by in F6Publishing: 130] [Article Influence: 8.9] [Reference Citation Analysis]
20 Leach S, Suzuki K. Adrenergic Signaling in Circadian Control of Immunity. Front Immunol 2020;11:1235. [PMID: 32714319 DOI: 10.3389/fimmu.2020.01235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
21 Wang J, Tang R, Lv M, Wang Q, Zhang X, Guo Y, Chang H, Qiao C, Xiao H, Li X, Li Y, Shen B, Zhang J. Defective anchoring of JNK1 in the cytoplasm by MKK7 in Jurkat cells is associated with resistance to Fas-mediated apoptosis. Mol Biol Cell 2011;22:117-27. [PMID: 21148294 DOI: 10.1091/mbc.E10-06-0492] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
22 Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev 2004;56:351-69. [PMID: 15317908 DOI: 10.1124/pr.56.3.2] [Cited by in Crossref: 133] [Cited by in F6Publishing: 130] [Article Influence: 7.8] [Reference Citation Analysis]
23 New L, Jiang Y, Han J. Regulation of PRAK subcellular location by p38 MAP kinases. Mol Biol Cell 2003;14:2603-16. [PMID: 12808055 DOI: 10.1091/mbc.e02-08-0538] [Cited by in Crossref: 61] [Cited by in F6Publishing: 46] [Article Influence: 3.2] [Reference Citation Analysis]
24 Willets JM, Nahorski SR, Challiss RA. Roles of phosphorylation-dependent and -independent mechanisms in the regulation of M1 muscarinic acetylcholine receptors by G protein-coupled receptor kinase 2 in hippocampal neurons. J Biol Chem 2005;280:18950-8. [PMID: 15743771 DOI: 10.1074/jbc.M412682200] [Cited by in Crossref: 29] [Cited by in F6Publishing: 18] [Article Influence: 1.7] [Reference Citation Analysis]
25 Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS. Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 2002;4:547-55. [PMID: 12105416 DOI: 10.1038/ncb821] [Cited by in Crossref: 106] [Cited by in F6Publishing: 106] [Article Influence: 5.3] [Reference Citation Analysis]
26 Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010;31:322-40. [PMID: 20451543 DOI: 10.1016/j.yfrne.2010.04.002] [Cited by in Crossref: 137] [Cited by in F6Publishing: 116] [Article Influence: 11.4] [Reference Citation Analysis]
27 Whitmarsh AJ, Kuan CY, Kennedy NJ, Kelkar N, Haydar TF, Mordes JP, Appel M, Rossini AA, Jones SN, Flavell RA, Rakic P, Davis RJ. Requirement of the JIP1 scaffold protein for stress-induced JNK activation. Genes Dev 2001;15:2421-32. [PMID: 11562351 DOI: 10.1101/gad.922801] [Cited by in Crossref: 167] [Cited by in F6Publishing: 169] [Article Influence: 8.0] [Reference Citation Analysis]
28 Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature 2002;415:206-12. [DOI: 10.1038/415206a] [Cited by in Crossref: 668] [Cited by in F6Publishing: 601] [Article Influence: 33.4] [Reference Citation Analysis]
29 Deng H, Yu F, Chen J, Zhao Y, Xiang J, Lin A. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J Biol Chem 2008;283:20754-60. [PMID: 18469002 DOI: 10.1074/jbc.M800024200] [Cited by in Crossref: 45] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
30 Kolar GR, Grote SM, Yosten GL. Targeting orphan G protein-coupled receptors for the treatment of diabetes and its complications: C-peptide and GPR146. J Intern Med 2017;281:25-40. [PMID: 27306986 DOI: 10.1111/joim.12528] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
31 Bohinc BN, Gesty-palmer D. Arrestins in Bone. The Molecular Biology of Arrestins. Elsevier; 2013. pp. 335-58. [DOI: 10.1016/b978-0-12-394440-5.00013-9] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
32 Qiu YY, Tang LQ. Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 2016;114:251-64. [PMID: 27826011 DOI: 10.1016/j.phrs.2016.11.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 74] [Article Influence: 11.7] [Reference Citation Analysis]
33 Oh DY, Kim K, Kwon HB, Seong JY. Cellular and molecular biology of orphan G protein-coupled receptors. Int Rev Cytol 2006;252:163-218. [PMID: 16984818 DOI: 10.1016/S0074-7696(06)52003-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
34 Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H. Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem 2002;277:40703-9. [PMID: 12189133 DOI: 10.1074/jbc.M202004200] [Cited by in Crossref: 68] [Cited by in F6Publishing: 28] [Article Influence: 3.4] [Reference Citation Analysis]
35 Bogoyevitch MA, Ngoei KR, Zhao TT, Yeap YY, Ng DC. c-Jun N-terminal kinase (JNK) signaling: Recent advances and challenges. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2010;1804:463-75. [DOI: 10.1016/j.bbapap.2009.11.002] [Cited by in Crossref: 198] [Cited by in F6Publishing: 200] [Article Influence: 16.5] [Reference Citation Analysis]
36 Mathurin K, Gallant MA, Germain P, Allard-Chamard H, Brisson J, Iorio-Morin C, de Brum Fernandes A, Caron MG, Laporte SA, Parent JL. An interaction between L-prostaglandin D synthase and arrestin increases PGD2 production. J Biol Chem 2011;286:2696-706. [PMID: 21112970 DOI: 10.1074/jbc.M110.178277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
37 Go YY, Bailey E, Cook DG, Coleman SJ, Macleod JN, Chen KC, Timoney PJ, Balasuriya UB. Genome-wide association study among four horse breeds identifies a common haplotype associated with in vitro CD3+ T cell susceptibility/resistance to equine arteritis virus infection. J Virol 2011;85:13174-84. [PMID: 21994447 DOI: 10.1128/JVI.06068-11] [Cited by in Crossref: 35] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
38 Baines CP, Zhang J, Wang G, Zheng Y, Xiu JX, Cardwell EM, Bolli R, Ping P. Mitochondrial PKCε and MAPK Form Signaling Modules in the Murine Heart: Enhanced Mitochondrial PKCε-MAPK Interactions and Differential MAPK Activation in PKCε-Induced Cardioprotection. Circulation Research 2002;90:390-7. [DOI: 10.1161/01.res.0000012702.90501.8d] [Cited by in Crossref: 313] [Cited by in F6Publishing: 127] [Article Influence: 15.7] [Reference Citation Analysis]
39 Gurevich VV, Gurevich EV. Overview of different mechanisms of arrestin-mediated signaling. Curr Protoc Pharmacol 2014;67:Unit 2.10.1-9. [PMID: 25446289 DOI: 10.1002/0471141755.ph0210s67] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
40 Strungs EG, Luttrell LM. Arrestin-Dependent Activation of ERK and Src Family Kinases. In: Gurevich VV, editor. Arrestins - Pharmacology and Therapeutic Potential. Berlin: Springer Berlin Heidelberg; 2014. pp. 225-57. [DOI: 10.1007/978-3-642-41199-1_12] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]
41 Hauser KF, El-Hage N, Buch S, Nath A, Tyor WR, Bruce-Keller AJ, Knapp PE. Impact of opiate-HIV-1 interactions on neurotoxic signaling. J Neuroimmune Pharmacol 2006;1:98-105. [PMID: 18040795 DOI: 10.1007/s11481-005-9000-4] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 2.4] [Reference Citation Analysis]
42 Wang W, Bian J, Sun Y, Li Z. The new fate of internalized membrane receptors: Internalized activation. Pharmacol Ther 2021;:108018. [PMID: 34626676 DOI: 10.1016/j.pharmthera.2021.108018] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Ji H, Liu N, Li J, Chen D, Luo D, Sun Q, Yin Y, Liu Y, Bu B, Chen X, Li J. Oxytocin involves in chronic stress-evoked melanoma metastasis via β-arrestin 2-mediated ERK signaling pathway. Carcinogenesis 2019;40:1395-404. [DOI: 10.1093/carcin/bgz064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
44 Alhosaini K, Azhar A, Alonazi A, Al-Zoghaibi F. GPCRs: The most promiscuous druggable receptor of the mankind. Saudi Pharm J 2021;29:539-51. [PMID: 34194261 DOI: 10.1016/j.jsps.2021.04.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Mcdonald PH, Lefkowitz RJ. βArrestins. Cellular Signalling 2001;13:683-9. [DOI: 10.1016/s0898-6568(01)00203-0] [Cited by in Crossref: 95] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
46 Coffa S, Breitman M, Spiller BW, Gurevich VV. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry. 2011;50:6951-6958. [PMID: 21732673 DOI: 10.1021/bi200745k] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 4.6] [Reference Citation Analysis]
47 Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV. Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 2008;47:1070-5. [PMID: 18161994 DOI: 10.1021/bi7021359] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 2.3] [Reference Citation Analysis]
48 Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 2008;104:1622-36. [PMID: 17996024 DOI: 10.1111/j.1471-4159.2007.05104.x] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
49 Wang Y, Tang Y, Teng L, Wu Y, Zhao X, Pei G. Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 2006;7:139-147. [PMID: 16378096 DOI: 10.1038/ni1294] [Cited by in Crossref: 174] [Cited by in F6Publishing: 171] [Article Influence: 10.2] [Reference Citation Analysis]
50 Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 2003;100:1740-4. [PMID: 12582207 DOI: 10.1073/pnas.262789099] [Cited by in Crossref: 180] [Cited by in F6Publishing: 172] [Article Influence: 9.5] [Reference Citation Analysis]
51 Song X, Gurevich EV, Gurevich VV. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J Neurochem 2007;103:1053-62. [PMID: 17680991 DOI: 10.1111/j.1471-4159.2007.04842.x] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 2.9] [Reference Citation Analysis]
52 Zhuang LN, Hu WX, Zhang ML, Xin SM, Jia WP, Zhao J, Pei G. Beta-arrestin-1 protein represses diet-induced obesity. J Biol Chem 2011;286:28396-402. [PMID: 21543334 DOI: 10.1074/jbc.M111.223206] [Cited by in Crossref: 25] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
53 Dard N, Peter M. Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Bioessays 2006;28:146-56. [PMID: 16435292 DOI: 10.1002/bies.20351] [Cited by in Crossref: 80] [Cited by in F6Publishing: 73] [Article Influence: 5.0] [Reference Citation Analysis]
54 Davidson L, Pawson AJ, Millar RP, Maudsley S. Cytoskeletal reorganization dependence of signaling by the gonadotropin-releasing hormone receptor. J Biol Chem 2004;279:1980-93. [PMID: 14559894 DOI: 10.1074/jbc.M309827200] [Cited by in Crossref: 57] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
55 Ivey ME, Osman N, Little PJ. Endothelin-1 signalling in vascular smooth muscle: pathways controlling cellular functions associated with atherosclerosis. Atherosclerosis 2008;199:237-47. [PMID: 18436225 DOI: 10.1016/j.atherosclerosis.2008.03.006] [Cited by in Crossref: 98] [Cited by in F6Publishing: 88] [Article Influence: 7.0] [Reference Citation Analysis]
56 Povsic TJ, Kohout TA, Lefkowitz RJ. Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 2003;278:51334-9. [PMID: 14534298 DOI: 10.1074/jbc.M309968200] [Cited by in Crossref: 137] [Cited by in F6Publishing: 62] [Article Influence: 7.2] [Reference Citation Analysis]
57 Makita N, Sato T, Yajima-Shoji Y, Sato J, Manaka K, Eda-Hashimoto M, Ootaki M, Matsumoto N, Nangaku M, Iiri T. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem 2016;291:22460-71. [PMID: 27601473 DOI: 10.1074/jbc.M116.733220] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Conlan LA, Martin T, Gillespie MT. The COOH-terminus of parathyroid hormone-related protein (PTHrP) interacts with β-arrestin 1B 1. FEBS Letters 2002;527:71-5. [DOI: 10.1016/s0014-5793(02)03164-2] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
59 Zhang R, He X, Liu W, Lu M, Hsieh JT, Min W. AIP1 mediates TNF-alpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J Clin Invest 2003;111:1933-43. [PMID: 12813029 DOI: 10.1172/JCI17790] [Cited by in Crossref: 3] [Cited by in F6Publishing: 57] [Article Influence: 0.2] [Reference Citation Analysis]
60 Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E, Milligan G, Patel DD, Lefkowitz RJ. Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol 2005;67:1229-36. [PMID: 15635042 DOI: 10.1124/mol.104.006270] [Cited by in Crossref: 96] [Cited by in F6Publishing: 93] [Article Influence: 5.6] [Reference Citation Analysis]
61 Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA. 2001;98:2449-2454. [PMID: 11226259 DOI: 10.1073/pnas.041604898] [Cited by in Crossref: 624] [Cited by in F6Publishing: 582] [Article Influence: 29.7] [Reference Citation Analysis]
62 Mizejewski GJ. Peptides as receptor ligand drugs and their relationship to G-coupled signal transduction. Expert Opin Investig Drugs 2001;10:1063-73. [PMID: 11772235 DOI: 10.1517/13543784.10.6.1063] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 0.6] [Reference Citation Analysis]
63 Zeke A, Lukács M, Lim WA, Reményi A. Scaffolds: interaction platforms for cellular signalling circuits. Trends Cell Biol 2009;19:364-74. [PMID: 19651513 DOI: 10.1016/j.tcb.2009.05.007] [Cited by in Crossref: 103] [Cited by in F6Publishing: 97] [Article Influence: 7.9] [Reference Citation Analysis]
64 Piketty V, Kara E, Guillou F, Reiter E, Crepieux P. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization. Reprod Biol Endocrinol 2006;4:33. [PMID: 16787538 DOI: 10.1186/1477-7827-4-33] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
65 Hayakawa T, Matsuzawa A, Noguchi T, Takeda K, Ichijo H. The ASK1–MAP kinase pathways in immune and stress responses. Microbes and Infection 2006;8:1098-107. [DOI: 10.1016/j.micinf.2005.12.001] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 4.3] [Reference Citation Analysis]
66 Tong H, Rockman HA, Koch WJ, Steenbergen C, Murphy E. G Protein-Coupled Receptor Internalization Signaling Is Required for Cardioprotection in Ischemic Preconditioning. Circulation Research 2004;94:1133-41. [DOI: 10.1161/01.res.0000126048.32383.6b] [Cited by in Crossref: 46] [Cited by in F6Publishing: 27] [Article Influence: 2.6] [Reference Citation Analysis]
67 Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structural and functional characterization of the human protein kinase ASK1. Structure 2007;15:1215-26. [PMID: 17937911 DOI: 10.1016/j.str.2007.08.011] [Cited by in Crossref: 73] [Cited by in F6Publishing: 68] [Article Influence: 4.9] [Reference Citation Analysis]
68 Gripentrog JM, Miettinen HM. Formyl peptide receptor-mediated ERK1/2 activation occurs through G(i) and is not dependent on beta-arrestin1/2. Cell Signal 2008;20:424-31. [PMID: 18060741 DOI: 10.1016/j.cellsig.2007.11.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
69 Kobayashi H, Narita Y, Nishida M, Kurose H. Beta-arrestin2 enhances beta2-adrenergic receptor-mediated nuclear translocation of ERK. Cell Signal 2005;17:1248-53. [PMID: 16038799 DOI: 10.1016/j.cellsig.2004.12.014] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 1.6] [Reference Citation Analysis]
70 Abrahamsen H, Baillie G, Ngai J, Vang T, Nika K, Ruppelt A, Mustelin T, Zaccolo M, Houslay M, Taskén K. TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling. J Immunol 2004;173:4847-58. [PMID: 15470025 DOI: 10.4049/jimmunol.173.8.4847] [Cited by in Crossref: 99] [Cited by in F6Publishing: 96] [Article Influence: 5.5] [Reference Citation Analysis]
71 Seo J, Tsakem EL, Breitman M, Gurevich VV. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem. 2011;286:27894-27901. [PMID: 21715332 DOI: 10.1074/jbc.m111.260448] [Cited by in Crossref: 54] [Cited by in F6Publishing: 40] [Article Influence: 4.9] [Reference Citation Analysis]
72 Byrd DT, Kawasaki M, Walcoff M, Hisamoto N, Matsumoto K, Jin Y. UNC-16, a JNK-Signaling Scaffold Protein, Regulates Vesicle Transport in C. elegans. Neuron 2001;32:787-800. [DOI: 10.1016/s0896-6273(01)00532-3] [Cited by in Crossref: 155] [Cited by in F6Publishing: 92] [Article Influence: 7.4] [Reference Citation Analysis]
73 Tanoue T, Nishida E. Molecular recognitions in the MAP kinase cascades. Cell Signal 2003;15:455-62. [PMID: 12639708 DOI: 10.1016/s0898-6568(02)00112-2] [Cited by in Crossref: 243] [Cited by in F6Publishing: 110] [Article Influence: 12.8] [Reference Citation Analysis]
74 Posner BI, Laporte SA. Cellular signalling: Peptide hormones and growth factors. Prog Brain Res 2010;181:1-16. [PMID: 20478429 DOI: 10.1016/S0079-6123(08)81001-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
75 Sun Y, Cheng Z, Ma L, Pei G. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. J Biol Chem. 2002;277:49212-49219. [PMID: 12370187 DOI: 10.1074/jbc.m207294200] [Cited by in Crossref: 276] [Cited by in F6Publishing: 144] [Article Influence: 13.8] [Reference Citation Analysis]
76 Jean-Charles PY, Kaur S, Shenoy SK. G Protein-Coupled Receptor Signaling Through β-Arrestin-Dependent Mechanisms. J Cardiovasc Pharmacol 2017;70:142-58. [PMID: 28328745 DOI: 10.1097/FJC.0000000000000482] [Cited by in Crossref: 69] [Cited by in F6Publishing: 26] [Article Influence: 17.3] [Reference Citation Analysis]
77 Aydin Y, Coin I. Biochemical insights into structure and function of arrestins. FEBS J 2021;288:2529-49. [DOI: 10.1111/febs.15811] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Pilecka I, Banach-orlowska M, Miaczynska M. Nuclear functions of endocytic proteins. European Journal of Cell Biology 2007;86:533-47. [DOI: 10.1016/j.ejcb.2007.04.004] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 2.4] [Reference Citation Analysis]
79 Yin C, Zhang R, Xu Y, Chen Q, Xie X. Intact MDM2 E3 ligase activity is required for the cytosolic localization and function of β-arrestin2. Mol Biol Cell 2011;22:1608-16. [PMID: 21389118 DOI: 10.1091/mbc.E10-09-0779] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
80 Lohse MJ, Hoffmann C. Arrestin interactions with G protein-coupled receptors. Handb Exp Pharmacol 2014;219:15-56. [PMID: 24292823 DOI: 10.1007/978-3-642-41199-1_2] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
81 Maudsley S, Martin B, Luttrell LM. The origins of diversity and specificity in g protein-coupled receptor signaling. J Pharmacol Exp Ther 2005;314:485-94. [PMID: 15805429 DOI: 10.1124/jpet.105.083121] [Cited by in Crossref: 138] [Cited by in F6Publishing: 137] [Article Influence: 8.1] [Reference Citation Analysis]
82 Joshi DD, Dang A, Yadav P, Qian J, Bandari PS, Chen K, Donnelly R, Castro T, Gascon P, Haider A, Rameshwar P. Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through neutral endopeptidase activity on substance P: a combined functional and proteomic study. Blood 2001;98:2697-706. [DOI: 10.1182/blood.v98.9.2697] [Cited by in Crossref: 38] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
83 Symons A, Beinke S, Ley SC. MAP kinase kinase kinases and innate immunity. Trends in Immunology 2006;27:40-8. [DOI: 10.1016/j.it.2005.11.007] [Cited by in Crossref: 99] [Cited by in F6Publishing: 90] [Article Influence: 6.2] [Reference Citation Analysis]
84 Volmat V, Camps M, Arkinstall S, Pouysségur J, Lenormand P. The nucleus, a site for signal termination by sequestration and inactivation of p42/p44 MAP kinases. Journal of Cell Science 2001;114:3433-43. [DOI: 10.1242/jcs.114.19.3433] [Cited by in Crossref: 62] [Cited by in F6Publishing: 42] [Article Influence: 3.0] [Reference Citation Analysis]
85 Folcuti C, Horescu C, Barcan E, Alexandru O, Tuta C, Vatu BI, Artene SA, Dricu A. β-arrestin 1 transfection induced cell death in high grade glioma in vitro. J Immunoassay Immunochem 2020;41:1021-32. [PMID: 32807003 DOI: 10.1080/15321819.2020.1808990] [Reference Citation Analysis]
86 Alvarez-curto E, Milligan G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochemical Pharmacology 2016;114:3-13. [DOI: 10.1016/j.bcp.2016.03.017] [Cited by in Crossref: 132] [Cited by in F6Publishing: 113] [Article Influence: 22.0] [Reference Citation Analysis]
87 Smith F, Scott JD. Signaling Complexes: Junctions on the Intracellular Information Super Highway. Current Biology 2002;12:R32-40. [DOI: 10.1016/s0960-9822(01)00646-7] [Cited by in Crossref: 93] [Cited by in F6Publishing: 36] [Article Influence: 4.7] [Reference Citation Analysis]
88 Park JY, Qu CX, Li RR, Yang F, Yu X, Tian ZM, Shen YM, Cai BY, Yun Y, Sun JP, Chung KY. Structural Mechanism of the Arrestin-3/JNK3 Interaction. Structure 2019;27:1162-1170.e3. [PMID: 31080119 DOI: 10.1016/j.str.2019.04.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
89 Lee C, Bhatt S, Shukla A, Desnoyer RW, Yadav SP, Kim M, Jang SH, Karnik SS. Site-specific cleavage of G protein-coupled receptor-engaged beta-arrestin. Influence of the AT1 receptor conformation on scissile site selection. J Biol Chem 2008;283:21612-20. [PMID: 18505723 DOI: 10.1074/jbc.M803062200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
90 Lattin JE, Greenwood KP, Daly NL, Kelly G, Zidar DA, Clark RJ, Thomas WG, Kellie S, Craik DJ, Hume DA. Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Mol Immunol. 2009;47:340-347. [PMID: 19783052 DOI: 10.1016/j.molimm.2009.09.012] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.9] [Reference Citation Analysis]
91 Wu F, Xing J, Wang S, Li M, Zheng C. Screening and identification of host factors interacting with UL14 of herpes simplex virus 1. Med Microbiol Immunol 2011;200:203-8. [PMID: 21512757 DOI: 10.1007/s00430-011-0196-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
92 Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020;12:e10865. [PMID: 32955172 DOI: 10.15252/emmm.201910865] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
93 Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639-650. [PMID: 12209124 DOI: 10.1038/nrm908] [Cited by in Crossref: 1796] [Cited by in F6Publishing: 1668] [Article Influence: 89.8] [Reference Citation Analysis]
94 Eng AG, Kelver DA, Hedrick TP, Swanson GT. Transduction of group I mGluR-mediated synaptic plasticity by β-arrestin2 signalling. Nat Commun 2016;7:13571. [PMID: 27886171 DOI: 10.1038/ncomms13571] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
95 Tso PH, Morris CJ, Yung LY, Ip NY, Wong YH. Multiple Gi Proteins Participate in Nerve Growth Factor-Induced Activation of c-Jun N-terminal Kinases in PC12 Cells. Neurochem Res 2009;34:1101-12. [DOI: 10.1007/s11064-008-9880-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
96 Bohn LM, Schmid CL. Serotonin receptor signaling and regulation via β-arrestins. Crit Rev Biochem Mol Biol 2010;45:555-66. [PMID: 20925600 DOI: 10.3109/10409238.2010.516741] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
97 Sharma D, Parameswaran N. Multifaceted role of β-arrestins in inflammation and disease. Genes Immun 2015;16:499-513. [PMID: 26378652 DOI: 10.1038/gene.2015.37] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
98 Alvarez CE. On the origins of arrestin and rhodopsin. BMC Evol Biol. 2008;8:222. [PMID: 18664266 DOI: 10.1186/1471-2148-8-222] [Cited by in Crossref: 158] [Cited by in F6Publishing: 152] [Article Influence: 11.3] [Reference Citation Analysis]
99 Xu TR, Baillie GS, Bhari N, Houslay TM, Pitt AM, Adams DR, Kolch W, Houslay MD, Milligan G. Mutations of beta-arrestin 2 that limit self-association also interfere with interactions with the beta2-adrenoceptor and the ERK1/2 MAPKs: implications for beta2-adrenoceptor signalling via the ERK1/2 MAPKs. Biochem J 2008;413:51-60. [PMID: 18435604 DOI: 10.1042/BJ20080685] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
100 Liu CH, Gong Z, Liang ZL, Liu ZX, Yang F, Sun YJ, Ma ML, Wang YJ, Ji CR, Wang MJ. Arrestin-biased GPCR agonism induces acute catecholamine secretion through TRPC3 coupling. Nat Commun. 2017;8:14335. [PMID: 28181498 DOI: 10.1038/ncomms14335] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 10.2] [Reference Citation Analysis]
101 Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL, Pierce WM, Bolli R. Formation of protein kinase C(epsilon)-Lck signaling modules confers cardioprotection. J Clin Invest 2002;109:499-507. [PMID: 11854322 DOI: 10.1172/JCI13200] [Cited by in Crossref: 1] [Cited by in F6Publishing: 45] [Article Influence: 0.1] [Reference Citation Analysis]
102 Gurevich VV, Gurevich EV. Targeting arrestin interactions with its partners for therapeutic purposes. Adv Protein Chem Struct Biol 2020;121:169-97. [PMID: 32312421 DOI: 10.1016/bs.apcsb.2019.11.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
103 Wu H, Wei W, Song L, Zhang L, Chen Y, Hu X. Paeoniflorin induced immune tolerance of mesenteric lymph node lymphocytes via enhancing beta 2-adrenergic receptor desensitization in rats with adjuvant arthritis. Int Immunopharmacol 2007;7:662-73. [PMID: 17386414 DOI: 10.1016/j.intimp.2007.01.019] [Cited by in Crossref: 67] [Cited by in F6Publishing: 65] [Article Influence: 4.5] [Reference Citation Analysis]
104 Shenoy SK, Lefkowitz RJ. Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005;2005:cm10. [PMID: 16267056 DOI: 10.1126/stke.2005/308/cm10] [Cited by in Crossref: 50] [Cited by in F6Publishing: 106] [Article Influence: 2.9] [Reference Citation Analysis]
105 Chen PW, Kroog GS. Alterations in receptor expression or agonist concentration change the pathways gastrin-releasing peptide receptor uses to regulate extracellular signal-regulated kinase. Mol Pharmacol 2004;66:1625-34. [PMID: 15361544 DOI: 10.1124/mol.104.001206] [Cited by in Crossref: 60] [Cited by in F6Publishing: 40] [Article Influence: 3.3] [Reference Citation Analysis]
106 Scott MG, Le Rouzic E, Périanin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 2002;277:37693-701. [PMID: 12167659 DOI: 10.1074/jbc.M207552200] [Cited by in Crossref: 154] [Cited by in F6Publishing: 77] [Article Influence: 7.7] [Reference Citation Analysis]
107 Perry NA, Fialkowski KP, Kaoud TS, Kaya AI, Chen AL, Taliaferro JM, Gurevich VV, Dalby KN, Iverson TM. Arrestin-3 interaction with maternal embryonic leucine-zipper kinase. Cell Signal 2019;63:109366. [PMID: 31352007 DOI: 10.1016/j.cellsig.2019.109366] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
108 Lin A, Dibling B. The true face of JNK activation in apoptosis. Aging Cell 2002;1:112-6. [PMID: 12882340 DOI: 10.1046/j.1474-9728.2002.00014.x] [Cited by in Crossref: 103] [Cited by in F6Publishing: 97] [Article Influence: 5.4] [Reference Citation Analysis]
109 Luttrell LM, Lefkowitz RJ. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science 2002;115:455-65. [DOI: 10.1242/jcs.115.3.455] [Cited by in Crossref: 319] [Cited by in F6Publishing: 203] [Article Influence: 16.0] [Reference Citation Analysis]
110 Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW. Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 2009;106:17615-22. [PMID: 19822761 DOI: 10.1073/pnas.0906541106] [Cited by in Crossref: 250] [Cited by in F6Publishing: 238] [Article Influence: 19.2] [Reference Citation Analysis]
111 Camoretti-Mercado B, Pauer SH, Yong HM, Smith DC, Deshpande DA, An SS, Liggett SB. Pleiotropic Effects of Bitter Taste Receptors on [Ca2+]i Mobilization, Hyperpolarization, and Relaxation of Human Airway Smooth Muscle Cells. PLoS One 2015;10:e0131582. [PMID: 26121686 DOI: 10.1371/journal.pone.0131582] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
112 Elorza A, Penela P, Sarnago S, Mayor F Jr. MAPK-dependent degradation of G protein-coupled receptor kinase 2. J Biol Chem 2003;278:29164-73. [PMID: 12738776 DOI: 10.1074/jbc.M304314200] [Cited by in Crossref: 64] [Cited by in F6Publishing: 33] [Article Influence: 3.4] [Reference Citation Analysis]
113 Becatti M, Fiorillo C, Barygina V, Cecchi C, Lotti T, Prignano F, Silvestro A, Nassi P, Taddei N. SIRT1 regulates MAPK pathways in vitiligo skin: insight into the molecular pathways of cell survival. J Cell Mol Med 2014;18:514-29. [PMID: 24410795 DOI: 10.1111/jcmm.12206] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
114 Defea K. Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol. 2008;153 Suppl 1:S298-S309. [PMID: 18037927 DOI: 10.1038/sj.bjp.0707508] [Cited by in Crossref: 74] [Cited by in F6Publishing: 90] [Article Influence: 4.9] [Reference Citation Analysis]
115 Patel PA, Tilley DG, Rockman HA. Physiologic and cardiac roles of beta-arrestins. J Mol Cell Cardiol. 2009;46:300-308. [PMID: 19103204 DOI: 10.1016/j.yjmcc.2008.11.015] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 2.7] [Reference Citation Analysis]
116 Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019;1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
117 Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021;12:771144. [DOI: 10.3389/fpsyt.2021.771144] [Reference Citation Analysis]
118 Kendall RT, Luttrell LM. Diversity in arrestin function. Cell Mol Life Sci. 2009;66:2953-2973. [PMID: 19597700 DOI: 10.1007/s00018-009-0088-1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
119 Reiter E, Lefkowitz RJ. GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab. 2006;17:159-165. [PMID: 16595179 DOI: 10.1016/j.tem.2006.03.008] [Cited by in Crossref: 470] [Cited by in F6Publishing: 442] [Article Influence: 29.4] [Reference Citation Analysis]
120 Baig AH, Swords FM, Noon LA, King PJ, Hunyady L, Clark AJ. Desensitization of the Y1 cell adrenocorticotropin receptor: evidence for a restricted heterologous mechanism implying a role for receptor-effector complexes. J Biol Chem 2001;276:44792-7. [PMID: 11579104 DOI: 10.1074/jbc.M108572200] [Cited by in Crossref: 24] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
121 Cotton M, Claing A. G protein-coupled receptors stimulation and the control of cell migration. Cellular Signalling 2009;21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Cited by in Crossref: 124] [Cited by in F6Publishing: 113] [Article Influence: 9.5] [Reference Citation Analysis]
122 Liu J, Lin A. Wiring the cell signaling circuitry by the NF-kappa B and JNK1 crosstalk and its applications in human diseases. Oncogene 2007;26:3267-78. [PMID: 17496921 DOI: 10.1038/sj.onc.1210417] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 3.5] [Reference Citation Analysis]
123 Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 2003;375:503-15. [PMID: 12959637 DOI: 10.1042/BJ20031076] [Cited by in Crossref: 282] [Cited by in F6Publishing: 250] [Article Influence: 15.7] [Reference Citation Analysis]
124 Chen Q, Zhuo Y, Sharma P, Perez I, Francis DJ, Chakravarthy S, Vishnivetskiy SA, Berndt S, Hanson SM, Zhan X, Brooks EK, Altenbach C, Hubbell WL, Klug CS, Iverson TM, Gurevich VV. An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins. J Mol Biol 2021;433:166790. [PMID: 33387531 DOI: 10.1016/j.jmb.2020.166790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Maggio R, Novi F, Scarselli M, Corsini GU. The impact of G-protein-coupled receptor hetero-oligomerization on function and pharmacology: Function and pharmacology of hetero-oligomers. FEBS Journal 2005;272:2939-46. [DOI: 10.1111/j.1742-4658.2005.04729.x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 60] [Article Influence: 3.7] [Reference Citation Analysis]
126 Sim JR, Kang SS, Lee D, Yun CH, Han SH. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate. Front Immunol 2018;9:55. [PMID: 29434590 DOI: 10.3389/fimmu.2018.00055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
127 Fisyunov АI. Molecular Mechanisms of G Protein-Independent Signaling Mediated by 7-Transmembrane Receptors. Neurophysiology 2012;44:255-64. [DOI: 10.1007/s11062-012-9295-8] [Cited by in Crossref: 4] [Article Influence: 0.4] [Reference Citation Analysis]
128 Turu G, Balla A, Hunyady L. The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Front Endocrinol (Lausanne) 2019;10:519. [PMID: 31447777 DOI: 10.3389/fendo.2019.00519] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
129 Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 2011;30:405-30. [PMID: 21824527 DOI: 10.1016/j.preteyeres.2011.07.002] [Cited by in Crossref: 77] [Cited by in F6Publishing: 72] [Article Influence: 7.0] [Reference Citation Analysis]
130 Gurevich VV, Gurevich EV. Extensive shape shifting underlies functional versatility of arrestins. Curr Opin Cell Biol 2014;27:1-9. [PMID: 24680424 DOI: 10.1016/j.ceb.2013.10.007] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 3.2] [Reference Citation Analysis]
131 Chen W, Hu LA, Semenov MV, Yanagawa S, Kikuchi A, Lefkowitz RJ, Miller WE. beta-Arrestin1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci U S A 2001;98:14889-94. [PMID: 11742073 DOI: 10.1073/pnas.211572798] [Cited by in Crossref: 63] [Cited by in F6Publishing: 58] [Article Influence: 3.0] [Reference Citation Analysis]
132 Min L, Galet C, Ascoli M. The association of arrestin-3 with the human lutropin/choriogonadotropin receptor depends mostly on receptor activation rather than on receptor phosphorylation. J Biol Chem 2002;277:702-10. [PMID: 11696538 DOI: 10.1074/jbc.M106082200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 17] [Article Influence: 2.2] [Reference Citation Analysis]
133 Kumar P, Lau CS, Mathur M, Wang P, DeFea KA. Differential effects of beta-arrestins on the internalization, desensitization and ERK1/2 activation downstream of protease activated receptor-2. Am J Physiol Cell Physiol. 2007;293:C346-C357. [PMID: 17442737 DOI: 10.1152/ajpcell.00010.2007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 2.3] [Reference Citation Analysis]
134 Pan L, Gurevich EV, Gurevich VV. The Nature of the Arrestin·Receptor Complex Determines the Ultimate Fate of the Internalized Receptor. Journal of Biological Chemistry 2003;278:11623-32. [DOI: 10.1074/jbc.m209532200] [Cited by in Crossref: 227] [Cited by in F6Publishing: 51] [Article Influence: 11.9] [Reference Citation Analysis]
135 Lai TW, Shyu WC, Wang YT. Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med. 2011;17:266-275. [PMID: 21310659 DOI: 10.1016/j.molmed.2010.12.008] [Cited by in Crossref: 106] [Cited by in F6Publishing: 100] [Article Influence: 9.6] [Reference Citation Analysis]
136 Whistler JL, Gerber BO, Meng EC, Baranski TJ, von Zastrow M, Bourne HR. Constitutive activation and endocytosis of the complement factor 5a receptor: evidence for multiple activated conformations of a G protein-coupled receptor. Traffic 2002;3:866-77. [PMID: 12453150 DOI: 10.1034/j.1600-0854.2002.31203.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 43] [Article Influence: 2.3] [Reference Citation Analysis]
137 Lefkowitz RJ. Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 2004;25:413-22. [PMID: 15276710 DOI: 10.1016/j.tips.2004.06.006] [Cited by in Crossref: 287] [Cited by in F6Publishing: 243] [Article Influence: 15.9] [Reference Citation Analysis]
138 Mohammad Nezhady MA, Rivera JC, Chemtob S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020;23:101643. [PMID: 33103080 DOI: 10.1016/j.isci.2020.101643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
139 Rezaei Adariani S, Buchholzer M, Akbarzadeh M, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. Structural snapshots of RAF kinase interactions. Biochem Soc Trans 2018;46:1393-406. [PMID: 30381334 DOI: 10.1042/BST20170528] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]
140 Raehal KM, Bohn LM. Mu opioid receptor regulation and opiate responsiveness. AAPS J 2005;7:E587-91. [PMID: 16353937 DOI: 10.1208/aapsj070360] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 3.2] [Reference Citation Analysis]
141 Gurevich VV, Gurevich EV, Cleghorn WM. Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol 2008;:15-37. [PMID: 18491047 DOI: 10.1007/978-3-540-72843-6_2] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 3.1] [Reference Citation Analysis]
142 Crilly SE, Ko W, Weinberg ZY, Puthenveedu MA. Conformational specificity of opioid receptors is determined by subcellular location irrespective of agonist. Elife 2021;10:e67478. [PMID: 34013886 DOI: 10.7554/eLife.67478] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
143 Speth RC, Karamyan VT. Brain angiotensin receptors and binding proteins. Naunyn Schmiedebergs Arch Pharmacol 2008;377:283-93. [PMID: 18172611 DOI: 10.1007/s00210-007-0238-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.9] [Reference Citation Analysis]
144 Karin M, Gallagher E. From JNK to Pay Dirt: Jun Kinases, their Biochemistry, Physiology and Clinical Importance. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life) 2005;57:283-95. [DOI: 10.1080/15216540500097111] [Cited by in Crossref: 308] [Cited by in F6Publishing: 292] [Article Influence: 18.1] [Reference Citation Analysis]
145 Zhang Q, Zhang G, Meng F, Tian H. Biphasic activation of apoptosis signal-regulating kinase 1-stress-activated protein kinase 1-c-Jun N-terminal protein kinase pathway is selectively mediated by Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involving oxidative stress following brain ischemia in rat hippocampus. Neurosci Lett 2003;337:51-5. [PMID: 12524169 DOI: 10.1016/s0304-3940(02)01295-8] [Cited by in Crossref: 38] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
146 Gurevich E, Benovic J, Gurevich V. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 2002;109:421-36. [DOI: 10.1016/s0306-4522(01)00511-5] [Cited by in Crossref: 84] [Cited by in F6Publishing: 58] [Article Influence: 4.2] [Reference Citation Analysis]
147 Vondriska TM, Klein JB, Ping P. Use of functional proteomics to investigate PKC epsilon-mediated cardioprotection: the signaling module hypothesis. Am J Physiol Heart Circ Physiol 2001;280:H1434-41. [PMID: 11247751 DOI: 10.1152/ajpheart.2001.280.4.H1434] [Cited by in Crossref: 40] [Cited by in F6Publishing: 7] [Article Influence: 1.9] [Reference Citation Analysis]
148 Calebiro D, Godbole A. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best Pract Res Clin Endocrinol Metab 2018;32:83-91. [PMID: 29678288 DOI: 10.1016/j.beem.2018.01.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 9.8] [Reference Citation Analysis]
149 Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV. Visual and both non-visual arrestins in their "inactive" conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 2006;281:21491-9. [PMID: 16737965 DOI: 10.1074/jbc.M603659200] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 6.1] [Reference Citation Analysis]
150 Terrillon S, Bouvier M. Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO J 2004;23:3950-61. [PMID: 15385966 DOI: 10.1038/sj.emboj.7600387] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 5.0] [Reference Citation Analysis]
151 Maudsley S, Siddiqui S, Martin B. Systems Analysis of Arrestin Pathway Functions. The Molecular Biology of Arrestins. Elsevier; 2013. pp. 431-67. [DOI: 10.1016/b978-0-12-394440-5.00017-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
152 Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B, Pei G. Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell 2004;14:303-17. [PMID: 15125834 DOI: 10.1016/s1097-2765(04)00216-3] [Cited by in Crossref: 228] [Cited by in F6Publishing: 129] [Article Influence: 12.7] [Reference Citation Analysis]
153 Zhang QG, Wang RM, Yin XH, Pan J, Xu TL, Zhang GY. Knock-down of POSH expression is neuroprotective through down-regulating activation of the MLK3-MKK4-JNK pathway following cerebral ischaemia in the rat hippocampal CA1 subfield. J Neurochem 2005;95:784-95. [PMID: 16248889 DOI: 10.1111/j.1471-4159.2005.03435.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 2.1] [Reference Citation Analysis]
154 Mello SS, Fachin AL, Junta CM, Sandrin-garcia P, Donadi EA, Passos GAS, Sakamoto-hojo ET. Delayed effects of exposure to a moderate radiation dose on transcription profiles in human primary fibroblasts. Environ Mol Mutagen 2011;52:117-29. [DOI: 10.1002/em.20591] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
155 Wen Y, He J, Xue X, Qiu J, Xu Y, Tang Z, Qian H, Qin L, Yang X. β-arrestin2 Inhibits Apoptosis and Liver Inflamation Induced by Ischemia-reperfusion in Mice via AKT and TLR4 Pathway. Archives of Medical Research 2019;50:413-22. [DOI: 10.1016/j.arcmed.2019.10.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
156 Chen W, Chen M, Barak LS. Development of small molecules targeting the Wnt pathway for the treatment of colon cancer: a high-throughput screening approach. Am J Physiol Gastrointest Liver Physiol. 2010;299:G293-G300. [PMID: 20508156 DOI: 10.1152/ajpgi.00005.2010] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 2.7] [Reference Citation Analysis]
157 Clark RB. Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel laureates in chemistry. Proc Natl Acad Sci U S A 2013;110:5274-5. [PMID: 23412332 DOI: 10.1073/pnas.1221820110] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
158 Smith WC. The role of arrestins in visual and disease processes of the eye. Prog Mol Biol Transl Sci 2013;118:243-65. [PMID: 23764057 DOI: 10.1016/B978-0-12-394440-5.00010-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
159 Ge L, Shenoy SK, Lefkowitz RJ, DeFea K. Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem. 2004;279:55419-55424. [PMID: 15489220 DOI: 10.1074/jbc.m410312200] [Cited by in Crossref: 135] [Cited by in F6Publishing: 68] [Article Influence: 7.5] [Reference Citation Analysis]
160 Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838-2849. [PMID: 15077147 DOI: 10.1038/sj.onc.1207556] [Cited by in Crossref: 1002] [Cited by in F6Publishing: 960] [Article Influence: 55.7] [Reference Citation Analysis]
161 Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ, Patel DD. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci USA. 2002;99:7478-7483. [PMID: 12032308 DOI: 10.1073/pnas.112198299] [Cited by in Crossref: 234] [Cited by in F6Publishing: 225] [Article Influence: 11.7] [Reference Citation Analysis]
162 Deng M, Chen SR, Chen H, Luo Y, Dong Y, Pan HL. Mitogen-activated protein kinase signaling mediates opioid-induced presynaptic NMDA receptor activation and analgesic tolerance. J Neurochem 2019;148:275-90. [PMID: 30444263 DOI: 10.1111/jnc.14628] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
163 Roux PP, Blenis J. MAPK Signaling in Human Diseases. In: Srivastava R, editor. Apoptosis, Cell Signaling, and Human Diseases. Totowa: Humana Press; 2007. pp. 135-49. [DOI: 10.1007/978-1-59745-199-4_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
164 Luttrell LM. Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Mol Biotechnol 2008;39:239-64. [DOI: 10.1007/s12033-008-9031-1] [Cited by in Crossref: 89] [Cited by in F6Publishing: 78] [Article Influence: 6.4] [Reference Citation Analysis]
165 Key TA, Bennett TA, Foutz TD, Gurevich VV, Sklar LA, Prossnitz ER. Regulation of formyl peptide receptor agonist affinity by reconstitution with arrestins and heterotrimeric G proteins. J Biol Chem 2001;276:49204-12. [PMID: 11598142 DOI: 10.1074/jbc.M109475200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
166 Palmer TM, Ferguson G, Watterson KR. Dissecting the regulatory mechanisms controlling inhibitory adenosine receptor signaling. Drug Dev Res 2003;58:302-14. [DOI: 10.1002/ddr.10185] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
167 Gimenez LE, Ghildyal P, Fischer KE, Hu H, Ja WW, Eaton BA, Wu Y, Austad SN, Ranjan R. Modulation of methuselah expression targeted to Drosophila insulin-producing cells extends life and enhances oxidative stress resistance. Aging Cell 2013;12:121-9. [PMID: 23121290 DOI: 10.1111/acel.12027] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.0] [Reference Citation Analysis]
168 Grimsey NL, Goodfellow CE, Scotter EL, Dowie MJ, Glass M, Graham ES. Specific detection of CB1 receptors; cannabinoid CB1 receptor antibodies are not all created equal! J Neurosci Methods 2008;171:78-86. [PMID: 18406468 DOI: 10.1016/j.jneumeth.2008.02.014] [Cited by in Crossref: 89] [Cited by in F6Publishing: 90] [Article Influence: 6.4] [Reference Citation Analysis]
169 Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs. Front Plant Sci 2018;9:469. [PMID: 29696029 DOI: 10.3389/fpls.2018.00469] [Cited by in Crossref: 75] [Cited by in F6Publishing: 53] [Article Influence: 18.8] [Reference Citation Analysis]
170 Philipp M, Fralish GB, Meloni AR, Chen W, MacInnes AW, Barak LS, Caron MG. Smoothened signaling in vertebrates is facilitated by a G protein-coupled receptor kinase. Mol Biol Cell 2008;19:5478-89. [PMID: 18815277 DOI: 10.1091/mbc.e08-05-0448] [Cited by in Crossref: 50] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
171 Mittal N, Tan M, Egbuta O, Desai N, Crawford C, Xie CW, Evans C, Walwyn W. Evidence that behavioral phenotypes of morphine in β-arr2-/- mice are due to the unmasking of JNK signaling. Neuropsychopharmacology 2012;37:1953-62. [PMID: 22491351 DOI: 10.1038/npp.2012.42] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.4] [Reference Citation Analysis]
172 Matuzany-ruban A, Avissar S, Schreiber G. Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in mononuclear leukocytes of patients with depression. Journal of Affective Disorders 2005;88:307-12. [DOI: 10.1016/j.jad.2005.08.007] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 1.4] [Reference Citation Analysis]
173 Zhang QG, Wang XT, Han D, Yin XH, Zhang GY, Xu TL. Akt inhibits MLK3/JNK3 signaling by inactivating Rac1: a protective mechanism against ischemic brain injury. J Neurochem 2006;98:1886-98. [PMID: 16831194 DOI: 10.1111/j.1471-4159.2006.04020.x] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 2.5] [Reference Citation Analysis]
174 Wyatt D, Malik R, Vesecky AC, Marchese A. Small ubiquitin-like modifier modification of arrestin-3 regulates receptor trafficking. J Biol Chem 2011;286:3884-93. [PMID: 21118812 DOI: 10.1074/jbc.M110.152116] [Cited by in Crossref: 33] [Cited by in F6Publishing: 19] [Article Influence: 2.8] [Reference Citation Analysis]
175 Zhan X, Stoy H, Kaoud TS, Perry NA, Chen Q, Perez A, Els-Heindl S, Slagis JV, Iverson TM, Beck-Sickinger AG. Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep. 2016;6:21025. [PMID: 26868142 DOI: 10.1038/srep21025] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 5.7] [Reference Citation Analysis]
176 Craige SM, Chen K, Blanton RM, Keaney JF Jr, Kant S. JNK and cardiometabolic dysfunction. Biosci Rep 2019;39:BSR20190267. [PMID: 31270248 DOI: 10.1042/BSR20190267] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
177 Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F Jr, Ribas C. Gαq signalling: the new and the old. Cell Signal 2014;26:833-48. [PMID: 24440667 DOI: 10.1016/j.cellsig.2014.01.010] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 6.6] [Reference Citation Analysis]
178 Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang X, Pierce WM, Bolli R. Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. J Clin Invest 2002;109:499-507. [DOI: 10.1172/jci0213200] [Cited by in Crossref: 101] [Article Influence: 5.1] [Reference Citation Analysis]
179 Janes ME, Chu KME, Clark AJL, King PJ. Mechanisms of Adrenocorticotropin-Induced Activation of Extracellularly Regulated Kinase 1/2 Mitogen-Activated Protein Kinase in the Human H295R Adrenal Cell Line. Endocrinology 2008;149:1898-905. [DOI: 10.1210/en.2007-0949] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
180 Kook S, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Cleavage of arrestin-3 by caspases attenuates cell death by precluding arrestin-dependent JNK activation. Cell Signal 2019;54:161-9. [PMID: 30529266 DOI: 10.1016/j.cellsig.2018.11.023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
181 Dorion S, Lambert H, Landry J. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1. J Biol Chem. 2002;277:30792-30797. [PMID: 12077134 DOI: 10.1074/jbc.m203642200] [Cited by in Crossref: 122] [Cited by in F6Publishing: 36] [Article Influence: 6.1] [Reference Citation Analysis]
182 Ryu JM, Baek YB, Shin MS, Park JH, Park SH, Lee JH, Han HJ. Sphingosine-1-phosphate-induced Flk-1 transactivation stimulates mouse embryonic stem cell proliferation through S1P1/S1P3-dependent β-arrestin/c-Src pathways. Stem Cell Research 2014;12:69-85. [DOI: 10.1016/j.scr.2013.08.013] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
183 Bruchas MR, Chavkin C. Kinase cascades and ligand-directed signaling at the kappa opioid receptor. Psychopharmacology (Berl). 2010;210:137-147. [PMID: 20401607 DOI: 10.1007/s00213-010-1806-y] [Cited by in Crossref: 185] [Cited by in F6Publishing: 180] [Article Influence: 15.4] [Reference Citation Analysis]
184 Zhang L, Loh HH, Law PY. A novel noncanonical signaling pathway for the μ-opioid receptor. Mol Pharmacol 2013;84:844-53. [PMID: 24061856 DOI: 10.1124/mol.113.088278] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
185 Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013;14:4854-84. [PMID: 23455463 DOI: 10.3390/ijms14034854] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
186 Fan XL, Zhang JS, Zhang XQ, Yue W, Ma L. Differential regulation of beta-arrestin 1 and beta-arrestin 2 gene expression in rat brain by morphine. Neuroscience 2003;117:383-9. [PMID: 12614678 DOI: 10.1016/s0306-4522(02)00930-2] [Cited by in Crossref: 47] [Cited by in F6Publishing: 28] [Article Influence: 2.5] [Reference Citation Analysis]
187 Lee MH, El-Shewy HM, Luttrell DK, Luttrell LM. Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J Biol Chem 2008;283:2088-97. [PMID: 18006496 DOI: 10.1074/jbc.M706892200] [Cited by in Crossref: 50] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
188 Nickolls SA, Waterfield A, Williams RE, Kinloch RA. Understanding the effect of different assay formats on agonist parameters: a study using the µ-opioid receptor. J Biomol Screen 2011;16:706-16. [PMID: 21550962 DOI: 10.1177/1087057111406548] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.1] [Reference Citation Analysis]
189 Jean-Charles PY, Zhang L, Wu JH, Han SO, Brian L, Freedman NJ, Shenoy SK. Ubiquitin-specific Protease 20 Regulates the Reciprocal Functions of β-Arrestin2 in Toll-like Receptor 4-promoted Nuclear Factor κB (NFκB) Activation. J Biol Chem 2016;291:7450-64. [PMID: 26839314 DOI: 10.1074/jbc.M115.687129] [Cited by in Crossref: 27] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
190 Blondel-Tepaz E, Leverve M, Sokrat B, Paradis JS, Kosic M, Saha K, Auffray C, Lima-Fernandes E, Zamborlini A, Poupon A, Gaboury L, Findlay J, Baillie GS, Enslen H, Bouvier M, Angers S, Marullo S, Scott MGH. The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis. Oncogene 2021;40:2243-57. [PMID: 33649538 DOI: 10.1038/s41388-021-01704-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
191 Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song X, Nair KS, Slepak VZ, Klug CS, Gurevich VV. Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol. 2007;368:375-387. [PMID: 17359998 DOI: 10.1016/j.jmb.2007.02.053] [Cited by in Crossref: 87] [Cited by in F6Publishing: 88] [Article Influence: 5.8] [Reference Citation Analysis]
192 Zhu X, Ma B, Babu S, Murage J, Knox BE, Craft CM. Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors. FEBS Letters 2002;524:116-22. [DOI: 10.1016/s0014-5793(02)03014-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
193 Levchenko A, Bruck J, Sternberg PW. Regulatory modules that generate biphasic signal response in biological systems. Syst Biol (Stevenage) 2004;1:139-48. [PMID: 17052124 DOI: 10.1049/sb:20045014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 1.8] [Reference Citation Analysis]
194 Fehrenbacher N, Bar-Sagi D, Philips M. Ras/MAPK signaling from endomembranes. Mol Oncol 2009;3:297-307. [PMID: 19615955 DOI: 10.1016/j.molonc.2009.06.004] [Cited by in Crossref: 101] [Cited by in F6Publishing: 98] [Article Influence: 7.8] [Reference Citation Analysis]
195 Nambi P, Aiyar N. G Protein-Coupled Receptors in Drug Discovery. ASSAY and Drug Development Technologies 2003;1:305-10. [DOI: 10.1089/15406580360545116] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 1.9] [Reference Citation Analysis]
196 Yan H, Li H, Denney J, Daniels C, Singh K, Chua B, Stuart C, Caudle Y, Hamdy R, LeSage G, Yin D. β-arrestin 2 attenuates cardiac dysfunction in polymicrobial sepsis through gp130 and p38. Biochem Biophys Rep 2016;7:130-7. [PMID: 27957549 DOI: 10.1016/j.bbrep.2016.05.021] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
197 Kenakin T, Barker EL. Biased Receptor Signaling in Drug Discovery. Pharmacol Rev 2019;71:267-315. [DOI: 10.1124/pr.118.016790] [Cited by in Crossref: 91] [Cited by in F6Publishing: 75] [Article Influence: 30.3] [Reference Citation Analysis]
198 Shukla AK, Singh G, Ghosh E. Emerging structural insights into biased GPCR signaling. Trends in Biochemical Sciences 2014;39:594-602. [DOI: 10.1016/j.tibs.2014.10.001] [Cited by in Crossref: 78] [Cited by in F6Publishing: 69] [Article Influence: 9.8] [Reference Citation Analysis]
199 Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M. Scaffold Role of a Mitogen-activated Protein Kinase Phosphatase, SKRP1, for the JNK Signaling Pathway. Journal of Biological Chemistry 2002;277:23919-26. [DOI: 10.1074/jbc.m200838200] [Cited by in Crossref: 44] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
200 Neve RL, Mcphie DL. The cell cycle as a therapeutic target for Alzheimer's disease. Pharmacology & Therapeutics 2006;111:99-113. [DOI: 10.1016/j.pharmthera.2005.09.005] [Cited by in Crossref: 67] [Cited by in F6Publishing: 71] [Article Influence: 4.2] [Reference Citation Analysis]
201 Estall JL, Koehler JA, Yusta B, Drucker DJ. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation. J Biol Chem 2005;280:22124-34. [PMID: 15817468 DOI: 10.1074/jbc.M500078200] [Cited by in Crossref: 31] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
202 Zhan X, Kook S, Kaoud TS, Dalby KN, Gurevich EV, Gurevich VV. Arrestin-3-Dependent Activation of c-Jun N-Terminal Kinases (JNKs). Curr Protoc Pharmacol 2015;68:2.12.1-2.12.26. [PMID: 25737158 DOI: 10.1002/0471141755.ph0212s68] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
203 Mukherjee S, Gurevich VV, Preninger A, Hamm HE, Bader MF, Fazleabas AT, Birnbaumer L, Hunzicker-Dunn M. Aspartic acid 564 in the third cytoplasmic loop of the luteinizing hormone/choriogonadotropin receptor is crucial for phosphorylation-independent interaction with arrestin2. J Biol Chem 2002;277:17916-27. [PMID: 11867621 DOI: 10.1074/jbc.M110479200] [Cited by in Crossref: 49] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
204 Soond SM, Terry JL, Colbert JD, Riches DW. TRUSS, a novel tumor necrosis factor receptor 1 scaffolding protein that mediates activation of the transcription factor NF-kappaB. Mol Cell Biol 2003;23:8334-44. [PMID: 14585990 DOI: 10.1128/MCB.23.22.8334-8344.2003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
205 Scimia MC, Blass BE, Koch WJ. Apelin receptor: its responsiveness to stretch mechanisms and its potential for cardiovascular therapy. Expert Review of Cardiovascular Therapy 2014;12:733-41. [DOI: 10.1586/14779072.2014.911661] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
206 Hemmilä IA, Hurskainen P. Novel detection strategies for drug discovery. Drug Discovery Today 2002;7:S150-6. [DOI: 10.1016/s1359-6446(02)02390-5] [Cited by in Crossref: 48] [Cited by in F6Publishing: 2] [Article Influence: 2.4] [Reference Citation Analysis]
207 Dumont JE, Dremier S, Pirson I, Maenhaut C. Cross signaling, cell specificity, and physiology. Am J Physiol Cell Physiol 2002;283:C2-28. [PMID: 12055068 DOI: 10.1152/ajpcell.00581.2001] [Cited by in Crossref: 51] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
208 Ghosh E, Srivastava A, Baidya M, Kumari P, Dwivedi H, Nidhi K, Ranjan R, Dogra S, Koide A, Yadav PN, Sidhu SS, Koide S, Shukla AK. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Nat Nanotechnol 2017;12:1190-8. [PMID: 28967893 DOI: 10.1038/nnano.2017.188] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
209 Philip JL, Xu X, Han M, Akhter SA, Razzaque MA. Regulation of cardiac fibroblast-mediated maladaptive ventricular remodeling by β-arrestins. PLoS One 2019;14:e0219011. [PMID: 31269046 DOI: 10.1371/journal.pone.0219011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
210 Zhang R, He X, Liu W, Lu M, Hsieh J, Min W. AIP1 mediates TNF-α–induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. J Clin Invest 2003;111:1933-43. [DOI: 10.1172/jci200317790] [Cited by in Crossref: 114] [Article Influence: 6.0] [Reference Citation Analysis]
211 Kook S, Zhan X, Kaoud TS, Dalby KN, Gurevich VV, Gurevich EV. Arrestin-3 binds c-Jun N-terminal kinase 1 (JNK1) and JNK2 and facilitates the activation of these ubiquitous JNK isoforms in cells via scaffolding. J Biol Chem. 2013;288:37332-37342. [PMID: 24257757 DOI: 10.1074/jbc.m113.510412] [Cited by in Crossref: 40] [Cited by in F6Publishing: 27] [Article Influence: 4.4] [Reference Citation Analysis]
212 Drenan RM, Doupnik CA, Jayaraman M, Buchwalter AL, Kaltenbronn KM, Huettner JE, Linder ME, Blumer KJ. R7BP augments the function of RGS7*Gbeta5 complexes by a plasma membrane-targeting mechanism. J Biol Chem 2006;281:28222-31. [PMID: 16867977 DOI: 10.1074/jbc.M604428200] [Cited by in Crossref: 59] [Cited by in F6Publishing: 45] [Article Influence: 3.7] [Reference Citation Analysis]
213 Xie DP, Li S, Li L, Chang XW, Xi TF, Yang X, Jin Z, Zeng Y. Beta-arrestin2 is involved in the increase of distal colonic contraction in diabetic rats. Regul Pept. 2013;185:29-33. [PMID: 23816471 DOI: 10.1016/j.regpep.2013.06.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
214 Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2018;247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
215 Kim I, Shu CW, Xu W, Shiau CW, Grant D, Vasile S, Cosford ND, Reed JC. Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1. J Biol Chem. 2009;284:1593-1603. [PMID: 19004820 DOI: 10.1074/jbc.M807308200] [Cited by in Crossref: 91] [Cited by in F6Publishing: 55] [Article Influence: 6.5] [Reference Citation Analysis]
216 Shoichet SA, Duprez L, Hagens O, Waetzig V, Menzel C, Herdegen T, Schweiger S, Dan B, Vamos E, Ropers HH, Kalscheuer VM. Truncation of the CNS-expressed JNK3 in a patient with a severe developmental epileptic encephalopathy. Hum Genet 2006;118:559-67. [PMID: 16249883 DOI: 10.1007/s00439-005-0084-y] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 1.7] [Reference Citation Analysis]
217 Kim G, Park E, Han J. The assembly of POSH-JNK regulates Xenopus anterior neural development. Developmental Biology 2005;286:256-69. [DOI: 10.1016/j.ydbio.2005.07.033] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 0.9] [Reference Citation Analysis]
218 Gouttenoire EA, Lupo V, Calpena E, Bartesaghi L, Schüpfer F, Médard JJ, Maurer F, Beckmann JS, Senderek J, Palau F, Espinós C, Chrast R. Sh3tc2 deficiency affects neuregulin-1/ErbB signaling. Glia 2013;61:1041-51. [PMID: 23553667 DOI: 10.1002/glia.22493] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 2.7] [Reference Citation Analysis]
219 Yun SP, Ryu JM, Jang MW, Han HJ. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E(2)-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol 2011;226:559-71. [PMID: 20717968 DOI: 10.1002/jcp.22366] [Cited by in Crossref: 42] [Cited by in F6Publishing: 39] [Article Influence: 3.8] [Reference Citation Analysis]
220 Gurevich VV, Gurevich EV. The molecular acrobatics of arrestin activation. Trends Pharmacol Sci. 2004;25:105-111. [PMID: 15102497 DOI: 10.1016/j.tips.2003.12.008] [Cited by in Crossref: 252] [Cited by in F6Publishing: 229] [Article Influence: 14.0] [Reference Citation Analysis]
221 Kursawe R, Paschke R. Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007;18:199-207. [PMID: 17524661 DOI: 10.1016/j.tem.2007.05.002] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 1.7] [Reference Citation Analysis]
222 Tian H, Wu JX, Shan FX, Zhang SN, Cheng Q, Zheng JN, Pei DS. Gamma-Aminobutyric Acid Induces Tumor Cells Apoptosis via GABABR1·β-Arrestins·JNKs Signaling Module. Cell Biochem Biophys. 2014; Sep 19. [Epub ahead of print]. [PMID: 25234615 DOI: 10.1007/s12013-014-0247-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
223 Yun Y, Ji J, Lee HH. Dissecting the structural features of β-arrestins as multifunctional proteins. Biochim Biophys Acta Proteins Proteom 2021;1869:140603. [PMID: 33421644 DOI: 10.1016/j.bbapap.2021.140603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
224 Dorn GW. GRK mythology: G-protein receptor kinases in cardiovascular disease. J Mol Med 2009;87:455-63. [DOI: 10.1007/s00109-009-0450-7] [Cited by in Crossref: 81] [Cited by in F6Publishing: 66] [Article Influence: 6.2] [Reference Citation Analysis]
225 Kushwaha K, Sharma S, Gupta J. Metabolic memory and diabetic nephropathy: Beneficial effects of natural epigenetic modifiers. Biochimie 2020;170:140-51. [DOI: 10.1016/j.biochi.2020.01.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
226 Yamauchi J, Chan JR, Shooter EM. Neurotrophin 3 activation of TrkC induces Schwann cell migration through the c-Jun N-terminal kinase pathway. Proc Natl Acad Sci U S A. 2003;100:14421-14426. [PMID: 14614136 DOI: 10.1073/pnas.2336152100] [Cited by in Crossref: 105] [Cited by in F6Publishing: 108] [Article Influence: 5.5] [Reference Citation Analysis]
227 Kraus S, Benard O, Naor Z, Seger R. C-Src is Activated by the EGF Receptor in a Pathway that Mediates JNK and ERK Activation by Gonadotropin-Releasing Hormone in COS7 Cells. Int J Mol Sci 2020;21:E8575. [PMID: 33202981 DOI: 10.3390/ijms21228575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
228 Hirakawa T, Galet C, Ascoli M. MA-10 Cells Transfected with the Human Lutropin/Choriogonadotropin Receptor (hLHR): A Novel Experimental Paradigm to Study the Functional Properties of the hLHR. Endocrinology 2002;143:1026-35. [DOI: 10.1210/endo.143.3.8702] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 2.0] [Reference Citation Analysis]
229 Zhang Z, Hao J, Zhao Z, Ben P, Fang F, Shi L, Gao Y, Liu J, Wen C, Luo L, Yin Z. beta-Arrestins facilitate ubiquitin-dependent degradation of apoptosis signal-regulating kinase 1 (ASK1) and attenuate H2O2-induced apoptosis. Cell Signal 2009;21:1195-206. [PMID: 19306926 DOI: 10.1016/j.cellsig.2009.03.010] [Cited by in Crossref: 31] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
230 Schmid CL, Bohn LM. βArrestins: Ligand-Directed Regulators of 5-HT2A Receptor Trafficking and Signaling Events. In: Guiard BP, Di Giovanni G, editors. 5-HT2A Receptors in the Central Nervous System. Cham: Springer International Publishing; 2018. pp. 31-55. [DOI: 10.1007/978-3-319-70474-6_2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
231 Suleymanova N, Crudden C, Shibano T, Worrall C, Oprea I, Tica A, Calin GA, Girnita A, Girnita L. Functional antagonism of β-arrestin isoforms balance IGF-1R expression and signalling with distinct cancer-related biological outcomes. Oncogene 2017;36:5734-44. [PMID: 28581517 DOI: 10.1038/onc.2017.179] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
232 Tilley DG, Rockman HA. Role of β-adrenergic receptor signaling and desensitization in heart failure: new concepts and prospects for treatment. Expert Review of Cardiovascular Therapy 2014;4:417-32. [DOI: 10.1586/14779072.4.3.417] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 7.0] [Reference Citation Analysis]
233 Perry NA, Kaoud TS, Ortega OO, Kaya AI, Marcus DJ, Pleinis JM, Berndt S, Chen Q, Zhan X, Dalby KN, Lopez CF, Iverson TM, Gurevich VV. Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proc Natl Acad Sci U S A 2019;116:810-5. [PMID: 30591558 DOI: 10.1073/pnas.1819230116] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
234 Smith TH, Ngwainmbi J, Hashimoto A, Dewey WL, Akbarali HI. Morphine dependence in single enteric neurons from the mouse colon requires deletion of β-arrestin2. Physiol Rep 2014;2:e12140. [PMID: 25194025 DOI: 10.14814/phy2.12140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
235 Ho JH, Stahl EL, Schmid CL, Scarry SM, Aubé J, Bohn LM. G protein signaling-biased agonism at the κ-opioid receptor is maintained in striatal neurons. Sci Signal 2018;11:eaar4309. [PMID: 30087177 DOI: 10.1126/scisignal.aar4309] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 5.8] [Reference Citation Analysis]
236 Yowell CW, Daaka Y. G Protein–Coupled Receptors Provide Survival Signals in Prostate Cancer. Clinical Prostate Cancer 2002;1:177-81. [DOI: 10.3816/cgc.2002.n.020] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
237 Christe M, Jin N, Wang X, Gould KE, Iversen PW, Yu X, Lorenz JN, Kadambi V, Zuckerman SH, Bloem LJ. Transgenic mice with cardiac-specific over-expression of MLK7 have increased mortality when exposed to chronic β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology 2004;37:705-15. [DOI: 10.1016/j.yjmcc.2004.06.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
238 Lin A, DeFea KA. β-Arrestin-kinase scaffolds: turn them on or turn them off? Wiley Interdiscip Rev Syst Biol Med 2013;5:231-41. [PMID: 23319470 DOI: 10.1002/wsbm.1203] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 1.9] [Reference Citation Analysis]
239 Kanki H, Sasaki T, Matsumura S, Yokawa S, Yukami T, Shimamura M, Sakaguchi M, Furuno T, Suzuki T, Mochizuki H. β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019;10:100. [PMID: 30718498 DOI: 10.1038/s41419-019-1375-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
240 Jiang D, Xie T, Liang J, Noble PW. β-Arrestins in the immune system. Prog Mol Biol Transl Sci 2013;118:359-93. [PMID: 23764061 DOI: 10.1016/B978-0-12-394440-5.00014-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
241 Moorman J, Zhang Y, Liu B, LeSage G, Chen Y, Stuart C, Prayther D, Yin D. HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 2-dependent apoptosis. Biochim Biophys Acta 2009;1793:1366-71. [PMID: 19477204 DOI: 10.1016/j.bbamcr.2009.05.007] [Cited by in Crossref: 24] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
242 Nakano R, Nakayama T, Sugiya H. Biological Properties of JNK3 and Its Function in Neurons, Astrocytes, Pancreatic β-Cells and Cardiovascular Cells. Cells 2020;9:E1802. [PMID: 32751228 DOI: 10.3390/cells9081802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
243 Ruiz-gómez A, Molnar C, Holguín H, Mayor F, de Celis JF. The cell biology of Smo signalling and its relationships with GPCRs. Biochimica et Biophysica Acta (BBA) - Biomembranes 2007;1768:901-12. [DOI: 10.1016/j.bbamem.2006.09.020] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 2.1] [Reference Citation Analysis]
244 Quan W, Kim J, Albert PR, Choi H, Kim K. Roles of G protein and β-arrestin in dopamine D 2 receptor-mediated ERK activation. Biochemical and Biophysical Research Communications 2008;377:705-9. [DOI: 10.1016/j.bbrc.2008.10.044] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
245 Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G, Vilardaga JP. Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc Natl Acad Sci U S A 2013;110:1530-5. [PMID: 23297229 DOI: 10.1073/pnas.1205756110] [Cited by in Crossref: 99] [Cited by in F6Publishing: 88] [Article Influence: 11.0] [Reference Citation Analysis]
246 Wang Y, Gai S, Zhang W, Huang X, Ma S, Huo Y, Wu Y, Tu H, Pin JP, Rondard P, Xu C, Liu J. The GABAB receptor mediates neuroprotection by coupling to G13. Sci Signal 2021;14:eaaz4112. [PMID: 34665640 DOI: 10.1126/scisignal.aaz4112] [Reference Citation Analysis]
247 Gurevich VV, Gurevich EV. GPCR Signaling Regulation: The Role of GRKs and Arrestins. Front Pharmacol. 2019;10:125. [PMID: 30837883 DOI: 10.3389/fphar.2019.00125] [Cited by in Crossref: 122] [Cited by in F6Publishing: 118] [Article Influence: 40.7] [Reference Citation Analysis]
248 Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. J Biol Chem. 2013;288:28535-28547. [PMID: 23960075 DOI: 10.1074/jbc.m113.508085] [Cited by in Crossref: 34] [Cited by in F6Publishing: 26] [Article Influence: 3.8] [Reference Citation Analysis]
249 Brooks HL, Ageloff S, Kwon T, Brandt W, Terris JM, Seth A, Michea L, Nielsen S, Fenton R, Knepper MA. cDNA array identification of genes regulated in rat renal medulla in response to vasopressin infusion. American Journal of Physiology-Renal Physiology 2003;284:F218-28. [DOI: 10.1152/ajprenal.00054.2002] [Cited by in Crossref: 65] [Cited by in F6Publishing: 60] [Article Influence: 3.4] [Reference Citation Analysis]
250 Schmitz T, Chew LJ. Cytokines and myelination in the central nervous system. ScientificWorldJournal 2008;8:1119-47. [PMID: 18979053 DOI: 10.1100/tsw.2008.140] [Cited by in Crossref: 87] [Cited by in F6Publishing: 80] [Article Influence: 6.2] [Reference Citation Analysis]
251 Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. Receptors and Channels 2011;9:169-94. [DOI: 10.3109/10606820308243] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
252 Sneddon WB, Yang Y, Ba J, Harinstein LM, Friedman PA. Extracellular signal-regulated kinase activation by parathyroid hormone in distal tubule cells. Am J Physiol Renal Physiol 2007;292:F1028-34. [PMID: 17107942 DOI: 10.1152/ajprenal.00288.2006] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 1.6] [Reference Citation Analysis]
253 Sorkin A, Von Zastrow M. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002;3:600-14. [PMID: 12154371 DOI: 10.1038/nrm883] [Cited by in Crossref: 629] [Cited by in F6Publishing: 609] [Article Influence: 31.5] [Reference Citation Analysis]
254 Walther C, Ferguson SS. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling. Mol Endocrinol 2015;29:814-30. [PMID: 25942107 DOI: 10.1210/me.2015-1091] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 3.7] [Reference Citation Analysis]
255 Sun D, Ma JZ, Payne TJ, Li MD. Beta-arrestins 1 and 2 are associated with nicotine dependence in European American smokers. Mol Psychiatry 2008;13:398-406. [PMID: 17579607 DOI: 10.1038/sj.mp.4002036] [Cited by in Crossref: 25] [Cited by in F6Publishing: 20] [Article Influence: 1.7] [Reference Citation Analysis]
256 Indrischek H, Prohaska SJ, Gurevich VV, Gurevich EV, Stadler PF. Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes. BMC Evol Biol 2017;17:163. [PMID: 28683816 DOI: 10.1186/s12862-017-1001-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
257 Sakauchi C, Wakatsuki H, Ichijo H, Hattori K. Pleiotropic properties of ASK1. Biochim Biophys Acta Gen Subj 2017;1861:3030-8. [PMID: 27693599 DOI: 10.1016/j.bbagen.2016.09.028] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 5.5] [Reference Citation Analysis]
258 Haeusgen W, Herdegen T, Waetzig V. The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7. European Journal of Cell Biology 2011;90:536-44. [DOI: 10.1016/j.ejcb.2010.11.008] [Cited by in Crossref: 99] [Cited by in F6Publishing: 90] [Article Influence: 9.0] [Reference Citation Analysis]
259 Gurevich VV, Gurevich EV. Analyzing the roles of multi-functional proteins in cells: The case of arrestins and GRKs. Crit Rev Biochem Mol Biol 2015;50:440-52. [PMID: 26453028 DOI: 10.3109/10409238.2015.1067185] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
260 Tomida T. Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques. J Physiol Sci 2015;65:37-49. [PMID: 25145828 DOI: 10.1007/s12576-014-0332-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
261 Kohout TA, Lin FS, Perry SJ, Conner DA, Lefkowitz RJ. beta-Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Nat Acad Sci USA. 2001;98:1601-1606. [PMID: 11171997 DOI: 10.1073/pnas.041608198] [Cited by in Crossref: 63] [Cited by in F6Publishing: 177] [Article Influence: 3.0] [Reference Citation Analysis]
262 Nieto A, Hara MR, Quereda V, Grant W, Saunders V, Xiao K, McDonald PH, Duckett DR. βarrestin-1 regulates DNA repair by acting as an E3-ubiquitin ligase adaptor for 53BP1. Cell Death Differ 2020;27:1200-13. [PMID: 31506606 DOI: 10.1038/s41418-019-0406-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
263 Krishnamurthy H, Galet C, Ascoli M. The association of arrestin-3 with the follitropin receptor depends on receptor activation and phosphorylation. Molecular and Cellular Endocrinology 2003;204:127-40. [DOI: 10.1016/s0303-7207(03)00088-1] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
264 Wagener BM, Marjon NA, Prossnitz ER. Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction. PLoS One 2016;11:e0147442. [PMID: 26788723 DOI: 10.1371/journal.pone.0147442] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
265 DeWire SM, Kim J, Whalen EJ, Ahn S, Chen M, Lefkowitz RJ. Beta-arrestin-mediated signaling regulates protein synthesis. J Biol Chem 2008;283:10611-20. [PMID: 18276584 DOI: 10.1074/jbc.M710515200] [Cited by in Crossref: 72] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
266 Gesty-Palmer D, Luttrell LM. Heptahelical terpsichory. Who calls the tune? J Recept Signal Transduct Res 2008;28:39-58. [PMID: 18437629 DOI: 10.1080/10799890801941921] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 1.4] [Reference Citation Analysis]
267 Law IK, Murphy JE, Bakirtzi K, Bunnett NW, Pothoulakis C. Neurotensin-induced proinflammatory signaling in human colonocytes is regulated by β-arrestins and endothelin-converting enzyme-1-dependent endocytosis and resensitization of neurotensin receptor 1. J Biol Chem. 2012;287:15066-15075. [PMID: 22416137 DOI: 10.1074/jbc.m111.327262] [Cited by in Crossref: 24] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
268 Miller WE, Lefkowitz RJ. Arrestins as signaling molecules involved in apoptotic pathways: a real eye opener. Sci STKE 2001;2001:pe1. [PMID: 11752639 DOI: 10.1126/stke.2001.69.pe1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 0.2] [Reference Citation Analysis]
269 Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RA, Benovic JL. Arrestin specificity for G protein-coupled receptors in human airway smooth muscle. J Biol Chem. 2001;276:32648-32656. [PMID: 11418617 DOI: 10.1074/jbc.m104143200] [Cited by in Crossref: 76] [Cited by in F6Publishing: 42] [Article Influence: 3.6] [Reference Citation Analysis]
270 Mo W, Zhang L, Yang G, Zhai J, Hu Z, Chen Y, Chen X, Hui L, Huang R, Hu G. Nuclear beta-arrestin1 functions as a scaffold for the dephosphorylation of STAT1 and moderates the antiviral activity of IFN-gamma. Mol Cell. 2008;31:695-707. [PMID: 18775329 DOI: 10.1016/j.molcel.2008.06.017] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 2.4] [Reference Citation Analysis]
271 Costa-Neto CM, Parreiras-E-Silva LT, Bouvier M. A Pluridimensional View of Biased Agonism. Mol Pharmacol 2016;90:587-95. [PMID: 27638872 DOI: 10.1124/mol.116.105940] [Cited by in Crossref: 79] [Cited by in F6Publishing: 72] [Article Influence: 13.2] [Reference Citation Analysis]
272 Mcpherson PS, Kay BK, Hussain NK. Signaling on the Endocytic Pathway: Signaling on the Endocytic Pathway. Traffic 2001;2:375-84. [DOI: 10.1034/j.1600-0854.2001.002006375.x] [Cited by in Crossref: 170] [Cited by in F6Publishing: 160] [Article Influence: 8.1] [Reference Citation Analysis]
273 Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020;211:107540. [PMID: 32201315 DOI: 10.1016/j.pharmthera.2020.107540] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
274 Kraus S, Naor Z, Seger R. Intracellular Signaling Pathways Mediated by the Gonadotropin-Releasing Hormone (GnRH) Receptor. Archives of Medical Research 2001;32:499-509. [DOI: 10.1016/s0188-4409(01)00331-9] [Cited by in Crossref: 121] [Cited by in F6Publishing: 34] [Article Influence: 5.8] [Reference Citation Analysis]
275 Keenan SM, Baldassare JJ. Molecular scaffold protein and cellular responses. Trends in Endocrinology & Metabolism 2001;12:184-6. [DOI: 10.1016/s1043-2760(01)00404-0] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
276 [DOI: 10.1101/388553] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
277 Thibonnier M, Plesnicher CL, Berrada K, Berti-mattera L. Role of the human V 1 vasopressin receptor COOH terminus in internalization and mitogenic signal transduction. American Journal of Physiology-Endocrinology and Metabolism 2001;281:E81-92. [DOI: 10.1152/ajpendo.2001.281.1.e81] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
278 Dolph PJ. Arrestin: roles in the life and death of retinal neurons. Neuroscientist 2002;8:347-55. [PMID: 12194503 DOI: 10.1177/107385840200800410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
279 Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 2011;50:3749-63. [PMID: 21466165 DOI: 10.1021/bi200175q] [Cited by in Crossref: 55] [Cited by in F6Publishing: 52] [Article Influence: 5.0] [Reference Citation Analysis]
280 Kuhar JR, Bedini A, Melief EJ, Chiu YC, Striegel HN, Chavkin C. Mu opioid receptor stimulation activates c-Jun N-terminal kinase 2 by distinct arrestin-dependent and independent mechanisms. Cell Signal 2015;27:1799-806. [PMID: 26056051 DOI: 10.1016/j.cellsig.2015.05.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
281 Matsubayashi J, Takanashi M, Oikawa K, Fujita K, Tanaka M, Xu M, De Blasi A, Bouvier M, Kinoshita M, Kuroda M, Mukai K. Expression of G protein-coupled receptor kinase 4 is associated with breast cancer tumourigenesis. J Pathol 2008;216:317-27. [PMID: 18767025 DOI: 10.1002/path.2414] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
282 Skånland SS, Wälchli S, Sandvig K. β-arrestins attenuate p38-mediated endosome to Golgi transport. Cell Microbiol 2009;11:796-807. [PMID: 19159388 DOI: 10.1111/j.1462-5822.2009.01292.x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
283 Shenoy SK, Lefkowitz RJ. Trafficking Patterns of β-Arrestin and G Protein-coupled Receptors Determined by the Kinetics of β-Arrestin Deubiquitination. Journal of Biological Chemistry 2003;278:14498-506. [DOI: 10.1074/jbc.m209626200] [Cited by in Crossref: 197] [Cited by in F6Publishing: 89] [Article Influence: 10.4] [Reference Citation Analysis]
284 Shi H, Li J, Fu D. Process of hepatic metastasis from pancreatic cancer: biology with clinical significance. J Cancer Res Clin Oncol 2016;142:1137-61. [PMID: 26250876 DOI: 10.1007/s00432-015-2024-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
285 Genabai NK, Ahmad S, Zhang Z, Jiang X, Gabaldon CA, Gangwani L. Genetic inhibition of JNK3 ameliorates spinal muscular atrophy. Hum Mol Genet 2015;24:6986-7004. [PMID: 26423457 DOI: 10.1093/hmg/ddv401] [Cited by in Crossref: 19] [Cited by in F6Publishing: 33] [Article Influence: 2.7] [Reference Citation Analysis]
286 Whitmarsh AJ, Davis RJ. Role of mitogen-activated protein kinase kinase 4 in cancer. Oncogene 2007;26:3172-84. [PMID: 17496914 DOI: 10.1038/sj.onc.1210410] [Cited by in Crossref: 102] [Cited by in F6Publishing: 106] [Article Influence: 6.8] [Reference Citation Analysis]
287 Palamidessi A, Malinverno C, Frittoli E, Corallino S, Barbieri E, Sigismund S, Beznoussenko GV, Martini E, Garre M, Ferrara I, Tripodo C, Ascione F, Cavalcanti-adam EA, Li Q, Di Fiore PP, Parazzoli D, Giavazzi F, Cerbino R, Scita G. Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat Mater 2019;18:1252-63. [DOI: 10.1038/s41563-019-0425-1] [Cited by in Crossref: 51] [Cited by in F6Publishing: 36] [Article Influence: 17.0] [Reference Citation Analysis]
288 Seachrist JL, Laporte SA, Dale LB, Babwah AV, Caron MG, Anborgh PH, Ferguson SS. Rab5 Association with the Angiotensin II Type 1A Receptor Promotes Rab5 GTP Binding and Vesicular Fusion. Journal of Biological Chemistry 2002;277:679-85. [DOI: 10.1074/jbc.m109022200] [Cited by in Crossref: 95] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
289 Zhan X, Kook S, Gurevich EV, Gurevich VV. Arrestin-dependent activation of JNK family kinases. Handb Exp Pharmacol 2014;219:259-80. [PMID: 24292834 DOI: 10.1007/978-3-642-41199-1_13] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
290 Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T. Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 2009;16:458-65. [PMID: 19289090 DOI: 10.1016/j.devcel.2009.01.002] [Cited by in Crossref: 187] [Cited by in F6Publishing: 186] [Article Influence: 14.4] [Reference Citation Analysis]
291 Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A 2003;100:11406-11. [PMID: 13679574 DOI: 10.1073/pnas.1936664100] [Cited by in Crossref: 390] [Cited by in F6Publishing: 368] [Article Influence: 20.5] [Reference Citation Analysis]
292 Jala VR, Shao WH, Haribabu B. Phosphorylation-independent beta-arrestin translocation and internalization of leukotriene B4 receptors. J Biol Chem 2005;280:4880-7. [PMID: 15561704 DOI: 10.1074/jbc.M409821200] [Cited by in Crossref: 60] [Cited by in F6Publishing: 31] [Article Influence: 3.3] [Reference Citation Analysis]
293 Kallifatidis G, Mamouni K, Lokeshwar BL. The Role of β-Arrestins in Regulating Stem Cell Phenotypes in Normal and Tumorigenic Cells. Int J Mol Sci 2020;21:E9310. [PMID: 33297302 DOI: 10.3390/ijms21239310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
294 Lin Z, Zhao Y, Song L, Mu K, Zhang M, Liu H, Li X, Zhao J, Wang C, Jia W. Deletion of β-Arrestin2 in Mice Limited Pancreatic β-Cell Expansion under Metabolic Stress through Activation of the JNK Pathway. Mol Med 2016;22:74-84. [PMID: 26954469 DOI: 10.2119/molmed.2015.00155] [Reference Citation Analysis]
295 Kim YM, Barak LS, Caron MG, Benovic JL. Regulation of arrestin-3 phosphorylation by casein kinase II. J Biol Chem 2002;277:16837-46. [PMID: 11877451 DOI: 10.1074/jbc.M201379200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
296 Piórkowska K, Żukowski K, Połtowicz K, Nowak J, Wojtysiak D, Derebecka N, Wesoły J, Ropka-Molik K. Transcriptomic Changes in Broiler Chicken Hypothalamus during Growth and Development. Int J Genomics 2018;2018:6049469. [PMID: 30406127 DOI: 10.1155/2018/6049469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
297 Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006;281:10856-64. [PMID: 16492667 DOI: 10.1074/jbc.M513380200] [Cited by in Crossref: 357] [Cited by in F6Publishing: 170] [Article Influence: 22.3] [Reference Citation Analysis]
298 Waetzig V, Herdegen T. A Single c-Jun N-terminal Kinase Isoform (JNK3-p54) Is an Effector in Both Neuronal Differentiation and Cell Death. Journal of Biological Chemistry 2003;278:567-72. [DOI: 10.1074/jbc.m207391200] [Cited by in Crossref: 59] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
299 Ge L, Ly Y, Hollenberg M, DeFea K. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 2003;278:34418-26. [PMID: 12821670 DOI: 10.1074/jbc.M300573200] [Cited by in Crossref: 159] [Cited by in F6Publishing: 72] [Article Influence: 8.4] [Reference Citation Analysis]
300 Li P, Cook JA, Gilkeson GS, Luttrell LM, Wang L, Borg KT, Halushka PV, Fan H. Increased expression of beta-arrestin 1 and 2 in murine models of rheumatoid arthritis: isoform specific regulation of inflammation. Mol Immunol. 2011;49:64-74. [PMID: 21855149 DOI: 10.1016/j.molimm.2011.07.021] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 3.5] [Reference Citation Analysis]
301 Cavalli V, Kujala P, Klumperman J, Goldstein LS. Sunday Driver links axonal transport to damage signaling. J Cell Biol 2005;168:775-87. [PMID: 15738268 DOI: 10.1083/jcb.200410136] [Cited by in Crossref: 207] [Cited by in F6Publishing: 191] [Article Influence: 12.2] [Reference Citation Analysis]
302 Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol. 2009;86:237-250. [PMID: 19498045 DOI: 10.1189/jlb.0209097] [Cited by in Crossref: 165] [Cited by in F6Publishing: 162] [Article Influence: 12.7] [Reference Citation Analysis]
303 Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, Labbé-Jullié C, Pitcher JA, Marullo S. Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol 2006;26:3432-45. [PMID: 16611986 DOI: 10.1128/MCB.26.9.3432-3445.2006] [Cited by in Crossref: 97] [Cited by in F6Publishing: 46] [Article Influence: 6.1] [Reference Citation Analysis]
304 Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 2004;13:329-340. [PMID: 14967141 DOI: 10.1016/s1097-2765(04)00028-0] [Cited by in Crossref: 193] [Cited by in F6Publishing: 92] [Article Influence: 10.7] [Reference Citation Analysis]
305 Park JG, Aziz N, Cho JY. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target. Ther Adv Med Oncol 2019;11:1758835919875574. [PMID: 31579105 DOI: 10.1177/1758835919875574] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
306 Herdegen T, Waetzig V. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene. 2001;20:2424-2437. [PMID: 11402338 DOI: 10.1038/sj.onc.1204387] [Cited by in Crossref: 136] [Cited by in F6Publishing: 142] [Article Influence: 6.5] [Reference Citation Analysis]
307 Sturchler E, Chen W, Spicer T, Hodder P, McDonald P, Duckett D. Development of an HTS-compatible assay for the discovery of ASK1 signalosome inhibitors using alphascreen technology. Assay Drug Dev Technol 2014;12:229-37. [PMID: 24831789 DOI: 10.1089/adt.2013.558] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
308 Luttrell LM. Minireview: More than just a hammer: ligand "bias" and pharmaceutical discovery. Mol Endocrinol 2014;28:281-94. [PMID: 24433041 DOI: 10.1210/me.2013-1314] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 11.3] [Reference Citation Analysis]
309 Benmerah A, Scott M, Poupon V, Marullo S. Nuclear functions for plasma membrane-associated proteins? Traffic 2003;4:503-11. [PMID: 12839493 DOI: 10.1034/j.1600-0854.2003.00102.x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 1.9] [Reference Citation Analysis]
310 Musi CA, Agrò G, Santarella F, Iervasi E, Borsello T. JNK3 as Therapeutic Target and Biomarker in Neurodegenerative and Neurodevelopmental Brain Diseases. Cells 2020;9:E2190. [PMID: 32998477 DOI: 10.3390/cells9102190] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
311 Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ. β-Arrestin-2 regulates the development of allergic asthma. J Clin Invest 2003;112:566-74. [DOI: 10.1172/jci200317265] [Cited by in Crossref: 143] [Article Influence: 7.5] [Reference Citation Analysis]
312 Fan X, Zhang J, Zhang X, Ma L. Chronic morphine treatment and withdrawal induce up-regulation of c-jun n-terminal kinase 3 gene expression in rat brain. Neuroscience 2003;122:997-1002. [DOI: 10.1016/j.neuroscience.2003.08.062] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 1.6] [Reference Citation Analysis]
313 van den Berg MC, van Gogh IJ, Smits AM, van Triest M, Dansen TB, Visscher M, Polderman PE, Vliem MJ, Rehmann H, Burgering BM. The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex. J Biol Chem 2013;288:21729-41. [PMID: 23770673 DOI: 10.1074/jbc.M113.463885] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
314 Cheng JX, Cheng T, Li WH, Liu GX, Zhu WL, Tang Y. Computational insights into the G-protein-biased activation and inactivation mechanisms of the μ opioid receptor. Acta Pharmacol Sin 2018;39:154-64. [PMID: 29188799 DOI: 10.1038/aps.2017.158] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.8] [Reference Citation Analysis]
315 Braun L, Christophe T, Boulay F. Phosphorylation of key serine residues is required for internalization of the complement 5a (C5a) anaphylatoxin receptor via a beta-arrestin, dynamin, and clathrin-dependent pathway. J Biol Chem 2003;278:4277-85. [PMID: 12464600 DOI: 10.1074/jbc.M210120200] [Cited by in Crossref: 50] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
316 Wang Q, Limbird LE. Regulation of alpha2AR trafficking and signaling by interacting proteins. Biochem Pharmacol 2007;73:1135-45. [PMID: 17229402 DOI: 10.1016/j.bcp.2006.12.024] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 1.6] [Reference Citation Analysis]
317 Satoh AK, Ready DF. Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival. Curr Biol 2005;15:1722-33. [PMID: 16213818 DOI: 10.1016/j.cub.2005.08.064] [Cited by in Crossref: 94] [Cited by in F6Publishing: 98] [Article Influence: 5.9] [Reference Citation Analysis]
318 Guo C, Whitmarsh AJ. The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 2008;283:15903-11. [PMID: 18408005 DOI: 10.1074/jbc.M710006200] [Cited by in Crossref: 37] [Cited by in F6Publishing: 17] [Article Influence: 2.6] [Reference Citation Analysis]
319 Breitwieser GE. Minireview: the intimate link between calcium sensing receptor trafficking and signaling: implications for disorders of calcium homeostasis. Mol Endocrinol 2012;26:1482-95. [PMID: 22745192 DOI: 10.1210/me.2011-1370] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 3.1] [Reference Citation Analysis]
320 Sai J, Walker G, Wikswo J, Richmond A. The IL sequence in the LLKIL motif in CXCR2 is required for full ligand-induced activation of Erk, Akt, and chemotaxis in HL60 cells. J Biol Chem 2006;281:35931-41. [PMID: 16990258 DOI: 10.1074/jbc.M605883200] [Cited by in Crossref: 41] [Cited by in F6Publishing: 24] [Article Influence: 2.6] [Reference Citation Analysis]
321 Tararuk T, Ostman N, Li W, Björkblom B, Padzik A, Zdrojewska J, Hongisto V, Herdegen T, Konopka W, Courtney MJ, Coffey ET. JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length. J Cell Biol 2006;173:265-77. [PMID: 16618812 DOI: 10.1083/jcb.200511055] [Cited by in Crossref: 129] [Cited by in F6Publishing: 139] [Article Influence: 8.1] [Reference Citation Analysis]
322 Benham AM, Braakman I. Glycoprotein folding in the endoplasmic reticulum. Crit Rev Biochem Mol Biol 2000;35:433-73. [PMID: 11202014 DOI: 10.1080/10409230091169258] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
323 Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS One 2011;6:e28723. [PMID: 22174878 DOI: 10.1371/journal.pone.0028723] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 5.2] [Reference Citation Analysis]
324 Jiang X, Kannan A, Gangwani L. ZPR1-Dependent Neurodegeneration Is Mediated by the JNK Signaling Pathway. J Exp Neurosci 2019;13:1179069519867915. [PMID: 31488953 DOI: 10.1177/1179069519867915] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
325 Goldsmith ZG, Dhanasekaran DN. G protein regulation of MAPK networks. Oncogene. 2007;26:3122-3142. [PMID: 17496911 DOI: 10.1038/sj.onc.1210407] [Cited by in Crossref: 236] [Cited by in F6Publishing: 237] [Article Influence: 15.7] [Reference Citation Analysis]
326 Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 expression selectively increases during neural differentiation. J Neurochem 2004;91:1404-16. [PMID: 15584917 DOI: 10.1111/j.1471-4159.2004.02830.x] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 4.5] [Reference Citation Analysis]
327 Cunningham CA, Knudson KM, Peng BJ, Teixeiro E, Daniels MA. The POSH/JIP-1 scaffold network regulates TCR-mediated JNK1 signals and effector function in CD8 + T cells: Leukocyte signaling. Eur J Immunol 2013;43:3361-71. [DOI: 10.1002/eji.201343635] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
328 Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 2007;282:29549-62. [PMID: 17666399 DOI: 10.1074/jbc.M700852200] [Cited by in Crossref: 104] [Cited by in F6Publishing: 60] [Article Influence: 6.9] [Reference Citation Analysis]
329 Lu J, Zheng J, Liu H, Li J, Xu Q, Chen K. Proteomics analysis of liver samples from puffer fish Takifugu rubripes exposed to excessive fluoride: An insight into molecular response to fluorosis. J Biochem Mol Toxicol 2010;24:21-8. [DOI: 10.1002/jbt.20308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
330 Zhang GY, Zhang QG. Agents targeting c-Jun N-terminal kinase pathway as potential neuroprotectants. Expert Opin Investig Drugs 2005;14:1373-83. [PMID: 16255677 DOI: 10.1517/13543784.14.11.1373] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.0] [Reference Citation Analysis]
331 Strous GJ, Schantl JA. Beta-arrestin and Mdm2, unsuspected partners in signaling from the cell surface. Sci STKE 2001;2001:pe41. [PMID: 11724970 DOI: 10.1126/stke.2001.110.pe41] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
332 Boerrigter G, Soergel DG, Violin JD, Lark MW, Burnett JC Jr. TRV120027, a novel β-arrestin biased ligand at the angiotensin II type I receptor, unloads the heart and maintains renal function when added to furosemide in experimental heart failure. Circ Heart Fail 2012;5:627-34. [PMID: 22891045 DOI: 10.1161/CIRCHEARTFAILURE.112.969220] [Cited by in Crossref: 94] [Cited by in F6Publishing: 41] [Article Influence: 9.4] [Reference Citation Analysis]
333 Li H, Hu D, Fan H, Zhang Y, LeSage GD, Caudle Y, Stuart C, Liu Z, Yin D. β-Arrestin 2 negatively regulates Toll-like receptor 4 (TLR4)-triggered inflammatory signaling via targeting p38 MAPK and interleukin 10. J Biol Chem 2014;289:23075-85. [PMID: 25012660 DOI: 10.1074/jbc.M114.591495] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
334 Burton JC, Antoniades W, Okalova J, Roos MM, Grimsey NJ. Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021;22:4183. [PMID: 33920735 DOI: 10.3390/ijms22084183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
335 Li X, MacLeod R, Dunlop AJ, Edwards HV, Advant N, Gibson LC, Devine NM, Brown KM, Adams DR, Houslay MD, Baillie GS. A scanning peptide array approach uncovers association sites within the JNK/beta arrestin signalling complex. FEBS Lett 2009;583:3310-6. [PMID: 19782076 DOI: 10.1016/j.febslet.2009.09.035] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 1.6] [Reference Citation Analysis]
336 Powell DW, Pierce WM, McLeish KR. Defining mitogen-activated protein kinase pathways with mass spectrometry-based approaches. Mass Spectrom Rev 2005;24:847-64. [PMID: 15619233 DOI: 10.1002/mas.20044] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
337 Shukla AK, Xiao K, Lefkowitz RJ. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 2011;36:457-69. [PMID: 21764321 DOI: 10.1016/j.tibs.2011.06.003] [Cited by in Crossref: 319] [Cited by in F6Publishing: 309] [Article Influence: 29.0] [Reference Citation Analysis]
338 Luttrell LM, Miller WE. Arrestins as regulators of kinases and phosphatases. Prog Mol Biol Transl Sci 2013;118:115-47. [PMID: 23764052 DOI: 10.1016/B978-0-12-394440-5.00005-X] [Cited by in Crossref: 43] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
339 Ahamed J, Haribabu B, Ali H. Cutting edge: Differential regulation of chemoattractant receptor-induced degranulation and chemokine production by receptor phosphorylation. J Immunol 2001;167:3559-63. [PMID: 11564766 DOI: 10.4049/jimmunol.167.7.3559] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 1.1] [Reference Citation Analysis]
340 Luttrell LM. Composition and function of g protein-coupled receptor signalsomes controlling mitogen-activated protein kinase activity. J Mol Neurosci 2005;26:253-64. [PMID: 16012199 DOI: 10.1385/JMN:26:2-3:253] [Cited by in Crossref: 89] [Cited by in F6Publishing: 39] [Article Influence: 5.2] [Reference Citation Analysis]
341 Bolger GB, McCahill A, Huston E, Cheung YF, McSorley T, Baillie GS, Houslay MD. The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins. J Biol Chem 2003;278:49230-8. [PMID: 14500724 DOI: 10.1074/jbc.M303772200] [Cited by in Crossref: 86] [Cited by in F6Publishing: 33] [Article Influence: 4.5] [Reference Citation Analysis]
342 Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2021;101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
343 Claing A. Regulation of G protein-coupled receptor endocytosis by ARF6 GTP-binding proteins. Biochem Cell Biol 2004;82:610-7. [DOI: 10.1139/o04-113] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.1] [Reference Citation Analysis]
344 Hao H, Li S, Tang H, Liu B, Cai Y, Shi C, Xiao X. NQDI-1, an inhibitor of ASK1 attenuates acute perinatal hypoxic-ischemic cerebral injury by modulating cell death. Mol Med Rep 2016;13:4585-92. [PMID: 27081917 DOI: 10.3892/mmr.2016.5123] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
345 Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017;449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
346 Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV. Structural basis of arrestin-3 activation and signaling. Nat Commun. 2017;8:1427. [PMID: 29127291 DOI: 10.1038/s41467-017-01218-8] [Cited by in Crossref: 45] [Cited by in F6Publishing: 46] [Article Influence: 9.0] [Reference Citation Analysis]
347 Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018;9:1336. [PMID: 30538631 DOI: 10.3389/fphar.2018.01336] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
348 Miller WE, Lefkowitz RJ. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol. 2001;13:139-145. [PMID: 11248546 DOI: 10.1016/S0955-0674(00)00190-3] [Cited by in Crossref: 251] [Cited by in F6Publishing: 73] [Article Influence: 12.0] [Reference Citation Analysis]
349 Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ. Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci U S A 2003;100:10782-7. [PMID: 12949261 DOI: 10.1073/pnas.1834556100] [Cited by in Crossref: 519] [Cited by in F6Publishing: 479] [Article Influence: 27.3] [Reference Citation Analysis]
350 Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS. G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J Biol Chem 2005;280:12774-80. [PMID: 15687500 DOI: 10.1074/jbc.M408901200] [Cited by in Crossref: 68] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
351 González-Gaitán M. Signal dispersal and transduction through the endocytic pathway. Nat Rev Mol Cell Biol 2003;4:213-24. [PMID: 12612640 DOI: 10.1038/nrm1053] [Cited by in Crossref: 108] [Cited by in F6Publishing: 102] [Article Influence: 5.7] [Reference Citation Analysis]
352 Matsuguchi T, Masuda A, Sugimoto K, Nagai Y, Yoshikai Y. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J 2003;22:4455-64. [PMID: 12941697 DOI: 10.1093/emboj/cdg438] [Cited by in Crossref: 67] [Cited by in F6Publishing: 66] [Article Influence: 3.5] [Reference Citation Analysis]
353 Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal. 2003;15:813-827. [PMID: 12834807 DOI: 10.1016/S0898-6568(03)00058-5] [Cited by in Crossref: 325] [Cited by in F6Publishing: 136] [Article Influence: 18.1] [Reference Citation Analysis]
354 Galandrin S, Oligny-Longpré G, Bonin H, Ogawa K, Galés C, Bouvier M. Conformational rearrangements and signaling cascades involved in ligand-biased mitogen-activated protein kinase signaling through the beta1-adrenergic receptor. Mol Pharmacol 2008;74:162-72. [PMID: 18403719 DOI: 10.1124/mol.107.043893] [Cited by in Crossref: 73] [Cited by in F6Publishing: 70] [Article Influence: 5.2] [Reference Citation Analysis]
355 Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 2008;60:261-310. [PMID: 18922965 DOI: 10.1124/pr.107.00106] [Cited by in Crossref: 403] [Cited by in F6Publishing: 375] [Article Influence: 31.0] [Reference Citation Analysis]
356 Benovic JL. Novel beta2-adrenergic receptor signaling pathways. J Allergy Clin Immunol 2002;110:S229-35. [PMID: 12464929 DOI: 10.1067/mai.2002.129370] [Cited by in Crossref: 52] [Cited by in F6Publishing: 48] [Article Influence: 2.7] [Reference Citation Analysis]
357 Stalheim L, Ding Y, Gullapalli A, Paing MM, Wolfe BL, Morris DR, Trejo J. Multiple independent functions of arrestins in the regulation of protease-activated receptor-2 signaling and trafficking. Mol Pharmacol 2005;67:78-87. [PMID: 15475570 DOI: 10.1124/mol.104.006072] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 4.0] [Reference Citation Analysis]
358 Jeske NA. Peripheral scaffolding and signaling pathways in inflammatory pain. Prog Mol Biol Transl Sci 2015;131:31-52. [PMID: 25744669 DOI: 10.1016/bs.pmbts.2014.11.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
359 Lefkowitz RJ, Whalen EJ. beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol. 2004;16:162-168. [PMID: 15196559 DOI: 10.1016/j.ceb.2004.01.001] [Cited by in Crossref: 226] [Cited by in F6Publishing: 209] [Article Influence: 12.6] [Reference Citation Analysis]
360 Zhuang LN, Hu WX, Xin SM, Zhao J, Pei G. Beta-arrestin-1 protein represses adipogenesis and inflammatory responses through its interaction with peroxisome proliferator-activated receptor-gamma (PPARgamma). J Biol Chem 2011;286:28403-13. [PMID: 21700709 DOI: 10.1074/jbc.M111.256099] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
361 Guo M, Wei J, Zhou Y, Qin Q. c-Jun N-terminal kinases 3 (JNK3) from orange-spotted grouper, Epinephelus coioides, inhibiting the replication of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis. Dev Comp Immunol 2016;65:169-81. [PMID: 27422159 DOI: 10.1016/j.dci.2016.06.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
362 Gesty-Palmer D, Yuan L, Martin B, Wood WH 3rd, Lee MH, Janech MG, Tsoi LC, Zheng WJ, Luttrell LM, Maudsley S. β-arrestin-selective G protein-coupled receptor agonists engender unique biological efficacy in vivo. Mol Endocrinol 2013;27:296-314. [PMID: 23315939 DOI: 10.1210/me.2012-1091] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 5.6] [Reference Citation Analysis]
363 Zhan X, Gimenez LE, Gurevich VV, Spiller BW. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J Mol Biol. 2011;406:467-478. [PMID: 21215759 DOI: 10.1016/j.jmb.2010.12.034] [Cited by in Crossref: 134] [Cited by in F6Publishing: 125] [Article Influence: 12.2] [Reference Citation Analysis]
364 Boerrigter G, Lark MW, Whalen EJ, Soergel DG, Violin JD, Burnett JC. Cardiorenal Actions of TRV120027, a Novel ß-Arrestin–Biased Ligand at the Angiotensin II Type I Receptor, in Healthy and Heart Failure Canines: A Novel Therapeutic Strategy for Acute Heart Failure. Circ Heart Fail 2011;4:770-8. [DOI: 10.1161/circheartfailure.111.962571] [Cited by in Crossref: 120] [Cited by in F6Publishing: 55] [Article Influence: 10.9] [Reference Citation Analysis]
365 Barth AS, Kääb S. MAPK= mitogen-activated protein KChIP2? Unraveling signaling pathways controlling cardiac Ito expression. Circ Res 2006;98:301-2. [PMID: 16484624 DOI: 10.1161/01.RES.0000208057.36708.48] [Reference Citation Analysis]
366 Marinissen MJ, Gutkind JS. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 2001;22:368-76. [PMID: 11431032 DOI: 10.1016/s0165-6147(00)01678-3] [Cited by in Crossref: 697] [Cited by in F6Publishing: 245] [Article Influence: 33.2] [Reference Citation Analysis]
367 Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002;12:130-8. [PMID: 11859025 DOI: 10.1016/s0962-8924(01)02239-5] [Cited by in Crossref: 158] [Cited by in F6Publishing: 43] [Article Influence: 7.9] [Reference Citation Analysis]
368 Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. Structure. 2001;9:869-880. [PMID: 11566136 DOI: 10.1016/S0969-2126(01)00644-X] [Cited by in Crossref: 273] [Cited by in F6Publishing: 153] [Article Influence: 13.0] [Reference Citation Analysis]
369 Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2020;217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
370 Luttrell DK, Luttrell LM. Signaling in time and space: G protein-coupled receptors and mitogen-activated protein kinases. Assay Drug Dev Technol 2003;1:327-38. [PMID: 15090198 DOI: 10.1089/15406580360545143] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 2.9] [Reference Citation Analysis]
371 Qu C, Park JY, Yun MW, He QT, Yang F, Kim K, Ham D, Li RR, Iverson TM, Gurevich VV, Sun JP, Chung KY. Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade. Proc Natl Acad Sci U S A 2021;118:e2026491118. [PMID: 34507982 DOI: 10.1073/pnas.2026491118] [Reference Citation Analysis]
372 Wang X, Mader MM, Toth JE, Yu X, Jin N, Campbell RM, Smallwood JK, Christe ME, Chatterjee A, Goodson T, Vlahos CJ, Matter WF, Bloem LJ. Complete Inhibition of Anisomycin and UV Radiation but Not Cytokine Induced JNK and p38 Activation by an Aryl-substituted Dihydropyrrolopyrazole Quinoline and Mixed Lineage Kinase 7 Small Interfering RNA. Journal of Biological Chemistry 2005;280:19298-305. [DOI: 10.1074/jbc.m413059200] [Cited by in Crossref: 50] [Cited by in F6Publishing: 25] [Article Influence: 2.9] [Reference Citation Analysis]
373 Wang D, Yu H, Liu X, Liu J, Song C. The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer. Sci Rep 2017;7:16985. [PMID: 29209002 DOI: 10.1038/s41598-017-17243-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
374 Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev. 2010;62:305-330. [PMID: 20427692 DOI: 10.1124/pr.109.002436] [Cited by in Crossref: 285] [Cited by in F6Publishing: 272] [Article Influence: 23.8] [Reference Citation Analysis]
375 van Zuylen WJ, Doyon P, Clément JF, Khan KA, D'Ambrosio LM, Dô F, St-Amant-Verret M, Wissanji T, Emery G, Gingras AC, Meloche S, Servant MJ. Proteomic profiling of the TRAF3 interactome network reveals a new role for the ER-to-Golgi transport compartments in innate immunity. PLoS Pathog 2012;8:e1002747. [PMID: 22792062 DOI: 10.1371/journal.ppat.1002747] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
376 Lorton D, Bellinger DL, Schaller JA, Shewmaker E, Osredkar T, Lubahn C. Altered sympathetic-to-immune cell signaling via β₂-adrenergic receptors in adjuvant arthritis. Clin Dev Immunol 2013;2013:764395. [PMID: 24194774 DOI: 10.1155/2013/764395] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
377 Johnson GL, Dohlman HG, Graves LM. MAPK kinase kinases (MKKKs) as a target class for small-molecule inhibition to modulate signaling networks and gene expression. Current Opinion in Chemical Biology 2005;9:325-31. [DOI: 10.1016/j.cbpa.2005.04.004] [Cited by in Crossref: 77] [Cited by in F6Publishing: 74] [Article Influence: 4.5] [Reference Citation Analysis]
378 Sturchler E, Feurstein D, Chen W, Mcdonald P, Duckett D. Stress-induced nuclear import of apoptosis signal-regulating kinase 1 is mediated by karyopherin α2/β1 heterodimer. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013;1833:583-92. [DOI: 10.1016/j.bbamcr.2012.10.023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
379 Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev. 2017;69:256-297. [PMID: 28626043 DOI: 10.1124/pr.116.013367] [Cited by in Crossref: 204] [Cited by in F6Publishing: 188] [Article Influence: 40.8] [Reference Citation Analysis]
380 Kelkar N, Standen CL, Davis RJ. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 2005;25:2733-43. [PMID: 15767678 DOI: 10.1128/MCB.25.7.2733-2743.2005] [Cited by in Crossref: 119] [Cited by in F6Publishing: 66] [Article Influence: 7.0] [Reference Citation Analysis]
381 Piu F, Gauthier NK, Wang F. β-arrestin 2 modulates the activity of nuclear receptor RAR β2 through activation of ERK2 kinase. Oncogene 2006;25:218-29. [DOI: 10.1038/sj.onc.1209024] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
382 Gurevich VV, Gurevich EV. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Cell Mol Life Sci 2019;76:4413-21. [DOI: 10.1007/s00018-019-03272-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
383 Chudasama NL, Marx SO, Steinberg SF. Scaffolding proteins in cardiac myocytes. Handb Exp Pharmacol 2008;:301-25. [PMID: 18491058 DOI: 10.1007/978-3-540-72843-6_13] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
384 Du JJ, Sun JC, Li N, Li XQ, Sun WY, Wei W. β-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4. Acta Pharmacol Sin 2021;42:1090-100. [PMID: 33116250 DOI: 10.1038/s41401-020-00545-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
385 Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis*. J Biol Chem 2001;276:19452-60. [PMID: 11279203 DOI: 10.1074/jbc.M101450200] [Cited by in Crossref: 307] [Cited by in F6Publishing: 120] [Article Influence: 14.6] [Reference Citation Analysis]
386 Chavkin C, Schattauer SS, Levin JR. Arrestin-mediated activation of p38 MAPK: molecular mechanisms and behavioral consequences. Handb Exp Pharmacol 2014;219:281-92. [PMID: 24292835 DOI: 10.1007/978-3-642-41199-1_14] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
387 Bébien M, Salinas S, Becamel C, Richard V, Linares L, Hipskind RA. Immediate-early gene induction by the stresses anisomycin and arsenite in human osteosarcoma cells involves MAPK cascade signaling to Elk-1, CREB and SRF. Oncogene 2003;22:1836-47. [PMID: 12660819 DOI: 10.1038/sj.onc.1206334] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 2.6] [Reference Citation Analysis]
388 Spampinato S, Di Toro R, Qasem AR. Nociceptin-induced internalization of the ORL1 receptor in human neuroblastoma cells. Neuroreport. 2001;12:3159-3163. [PMID: 11568656 DOI: 10.1097/00001756-200110080-00035] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 1.3] [Reference Citation Analysis]
389 Parveen A, Jin M, Kim SY. Bioactive phytochemicals that regulate the cellular processes involved in diabetic nephropathy. Phytomedicine 2018;39:146-59. [PMID: 29433676 DOI: 10.1016/j.phymed.2017.12.018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
390 Chen Z, Zhou R, Zhang Y, Hao D, Wang Y, Huang S, Liu N, Xia C, Yissachar N, Huang F, Chu Y, Yan D. β-arrestin 2 quenches TLR signaling to facilitate the immune evasion of EPEC. Gut Microbes 2020;11:1423-37. [PMID: 32403971 DOI: 10.1080/19490976.2020.1759490] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
391 Whitmarsh AJ, Davis RJ. Signal transduction by target-derived neurotrophins. Nat Neurosci 2001;4:963-4. [DOI: 10.1038/nn1001-963] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 0.4] [Reference Citation Analysis]
392 Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021;1867:165973. [PMID: 32949766 DOI: 10.1016/j.bbadis.2020.165973] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
393 Ren Q, Pan J, Chen Y, Shen Z, Yang Z, Kwon K, Guo Y, Wang Y, Ji F. Melatonin-Medicated Neural JNK3 Up-Regulation Promotes Ameloblastic Mineralization. Front Cell Dev Biol 2021;9:749642. [PMID: 35004671 DOI: 10.3389/fcell.2021.749642] [Reference Citation Analysis]
394 Schmidt VA, Scudder L, Devoe CE, Bernards A, Cupit LD, Bahou WF. IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood. 2003;101:3021-3028. [PMID: 12515716 DOI: 10.1182/blood-2002-09-2807] [Cited by in Crossref: 39] [Cited by in F6Publishing: 38] [Article Influence: 2.0] [Reference Citation Analysis]
395 De Pascali F, Reiter E. β-arrestins and biased signaling in gonadotropin receptors. Minerva Ginecol 2018;70:525-38. [PMID: 29999287 DOI: 10.23736/S0026-4784.18.04272-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
396 Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70:1061-1095. [PMID: 17158707 DOI: 10.1128/mmbr.00025-06] [Cited by in Crossref: 384] [Cited by in F6Publishing: 226] [Article Influence: 25.6] [Reference Citation Analysis]
397 Nishida T, Hattori K, Watanabe K. The regulatory and signaling mechanisms of the ASK family. Adv Biol Regul 2017;66:2-22. [PMID: 28669716 DOI: 10.1016/j.jbior.2017.05.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 37] [Article Influence: 7.6] [Reference Citation Analysis]
398 Jones KT, Echeverry M, Mosser VA, Gates A, Jackson DA. Agonist mediated internalization of M2 mAChR is beta-arrestin-dependent. J Mol Signal 2006;1:7. [PMID: 17224084 DOI: 10.1186/1750-2187-1-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.7] [Reference Citation Analysis]
399 Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ. The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem 2007;282:21370-81. [PMID: 17513300 DOI: 10.1074/jbc.M611483200] [Cited by in Crossref: 90] [Cited by in F6Publishing: 49] [Article Influence: 6.0] [Reference Citation Analysis]
400 Hoeppner CZ, Cheng N, Ye RD. Identification of a nuclear localization sequence in β-arrestin-1 and its functional implications. J Biol Chem 2012;287:8932-43. [PMID: 22267743 DOI: 10.1074/jbc.M111.294058] [Cited by in Crossref: 35] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
401 Yu J, Prado GN, Taylor L, Pal-ghosh R, Polgar P. Hybrid formation between the intracellular faces of the bradykinin B2 and angiotensin II AT1 receptors and signal transduction. International Immunopharmacology 2002;2:1807-22. [DOI: 10.1016/s1567-5769(02)00177-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
402 Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D, Shukla AK. Functional competence of a partially engaged GPCR-β-arrestin complex. Nat Commun 2016;7:13416. [PMID: 27827372 DOI: 10.1038/ncomms13416] [Cited by in Crossref: 92] [Cited by in F6Publishing: 86] [Article Influence: 15.3] [Reference Citation Analysis]
403 Wanka L, Behr V, Beck-Sickinger AG. Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biol Chem 2021. [PMID: 34036761 DOI: 10.1515/hsz-2021-0128] [Reference Citation Analysis]
404 Miller WE, Houtz DA, Nelson CD, Kolattukudy PE, Lefkowitz RJ. G-protein-coupled receptor (GPCR) kinase phosphorylation and beta-arrestin recruitment regulate the constitutive signaling activity of the human cytomegalovirus US28 GPCR. J Biol Chem 2003;278:21663-71. [PMID: 12668664 DOI: 10.1074/jbc.M303219200] [Cited by in Crossref: 76] [Cited by in F6Publishing: 45] [Article Influence: 4.0] [Reference Citation Analysis]
405 Luan B, Zhao J, Wu H, Duan B, Shu G, Wang X, Li D, Jia W, Kang J, Pei G. Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature 2009;457:1146-9. [PMID: 19122674 DOI: 10.1038/nature07617] [Cited by in Crossref: 163] [Cited by in F6Publishing: 154] [Article Influence: 12.5] [Reference Citation Analysis]
406 Barker PA, Hussain NK, Mcpherson PS. Retrograde signaling by the neurotrophins follows a well-worn trk. Trends in Neurosciences 2002;25:379-81. [DOI: 10.1016/s0166-2236(02)02199-9] [Cited by in Crossref: 39] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
407 Sánchez-Fernández G, Cabezudo S, García-Hoz C, Tobin AB, Mayor F Jr, Ribas C. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment. PLoS One 2013;8:e84174. [PMID: 24358341 DOI: 10.1371/journal.pone.0084174] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
408 Hoffmann E, Ashouri J, Wolter S, Doerrie A, Dittrich-Breiholz O, Schneider H, Wagner EF, Troppmair J, Mackman N, Kracht M. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem. 2008;283:12120-12128. [PMID: 18281687 DOI: 10.1074/jbc.M800583200] [Cited by in Crossref: 54] [Cited by in F6Publishing: 39] [Article Influence: 3.9] [Reference Citation Analysis]
409 Holmberg C, Katz S, Lerdrup M, Herdegen T, Jäättelä M, Aronheim A, Kallunki T. A novel specific role for I kappa B kinase complex-associated protein in cytosolic stress signaling. J Biol Chem. 2002;277:31918-31928. [PMID: 12058026 DOI: 10.1074/jbc.m200719200] [Cited by in Crossref: 85] [Cited by in F6Publishing: 46] [Article Influence: 4.3] [Reference Citation Analysis]
410 Cleghorn WM, Branch KM, Kook S, Arnette C, Bulus N, Zent R, Kaverina I, Gurevich EV, Weaver AM, Gurevich VV. Arrestins regulate cell spreading and motility via focal adhesion dynamics. Mol Biol Cell. 2015;26:622-635. [PMID: 25540425 DOI: 10.1091/mbc.e14-02-0740] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 2.4] [Reference Citation Analysis]
411 Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski T, Kim HR, Lee MH, van Gastel J, Chaturvedi M, Roy D, Pandey S, Maharana J, Guixà-González R, Luttrell LM, Chung KY, Dutta S, Selent J, Shukla AK. Conformational Sensors and Domain Swapping Reveal Structural and Functional Differences between β-Arrestin Isoforms. Cell Rep 2019;28:3287-3299.e6. [PMID: 31553900 DOI: 10.1016/j.celrep.2019.08.053] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 12.0] [Reference Citation Analysis]
412 Ferguson SS, Feldman RD. β-adrenoceptors as molecular targets in the treatment of hypertension. Can J Cardiol 2014;30:S3-8. [PMID: 24685403 DOI: 10.1016/j.cjca.2014.01.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
413 Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal 2014;26:766-76. [PMID: 24412749 DOI: 10.1016/j.cellsig.2014.01.001] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
414 McLaughlin NJ, Banerjee A, Kelher MR, Gamboni-Robertson F, Hamiel C, Sheppard FR, Moore EE, Silliman CC. Platelet-activating factor-induced clathrin-mediated endocytosis requires beta-arrestin-1 recruitment and activation of the p38 MAPK signalosome at the plasma membrane for actin bundle formation. J Immunol 2006;176:7039-50. [PMID: 16709866 DOI: 10.4049/jimmunol.176.11.7039] [Cited by in Crossref: 58] [Cited by in F6Publishing: 52] [Article Influence: 3.6] [Reference Citation Analysis]
415 Prinz E, Aviram S, Aronheim A. WDR62 mediates TNFα-dependent JNK activation via TRAF2-MLK3 axis. Mol Biol Cell 2018;29:2470-80. [PMID: 30091641 DOI: 10.1091/mbc.E17-08-0504] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
416 Ahmadzai MM, Broadbent D, Occhiuto C, Yang C, Das R, Subramanian H. Canonical and Noncanonical Signaling Roles of β-Arrestins in Inflammation and Immunity. Adv Immunol 2017;136:279-313. [PMID: 28950948 DOI: 10.1016/bs.ai.2017.05.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
417 Jiang MP, Xu C, Guo YW, Luo QJ, Li L, Liu HL, Jiang J, Chen HX, Wei XQ. β-arrestin 2 attenuates lipopolysaccharide-induced liver injury via inhibition of TLR4/NF-κB signaling pathway-mediated inflammation in mice. World J Gastroenterol 2018; 24(2): 216-225 [PMID: 29375207 DOI: 10.3748/wjg.v24.i2.216] [Cited by in CrossRef: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
418 Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends in Pharmacological Sciences 2018;39:367-86. [DOI: 10.1016/j.tips.2018.01.001] [Cited by in Crossref: 86] [Cited by in F6Publishing: 72] [Article Influence: 21.5] [Reference Citation Analysis]
419 Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ. Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 2009;17:443-58. [PMID: 19853559 DOI: 10.1016/j.devcel.2009.09.011] [Cited by in Crossref: 147] [Cited by in F6Publishing: 150] [Article Influence: 11.3] [Reference Citation Analysis]
420 Fan H, Bitto A, Zingarelli B, Luttrell LM, Borg K, Halushka PV, Cook JA. Beta-arrestin 2 negatively regulates sepsis-induced inflammation. Immunology. 2010;130:344-351. [PMID: 20465566 DOI: 10.1111/j.1365-2567.2009.03185.x] [Cited by in Crossref: 55] [Cited by in F6Publishing: 56] [Article Influence: 4.6] [Reference Citation Analysis]
421 Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther. 2006;110:465-502. [PMID: 16460808 DOI: 10.1016/j.pharmthera.2005.09.008] [Cited by in Crossref: 320] [Cited by in F6Publishing: 308] [Article Influence: 20.0] [Reference Citation Analysis]
422 Xu M, Bruchas MR, Ippolito DL, Gendron L, Chavkin C. Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase. J Neurosci 2007;27:2570-81. [PMID: 17344394 DOI: 10.1523/JNEUROSCI.3728-06.2007] [Cited by in Crossref: 71] [Cited by in F6Publishing: 45] [Article Influence: 4.7] [Reference Citation Analysis]
423 Xiao K, Shenoy SK, Nobles K, Lefkowitz RJ. Activation-dependent conformational changes in {beta}-arrestin 2. J Biol Chem. 2004;279:55744-55753. [PMID: 15501822 DOI: 10.1074/jbc.M409785200] [Cited by in Crossref: 107] [Cited by in F6Publishing: 57] [Article Influence: 5.9] [Reference Citation Analysis]
424 Charest PG, Oligny-Longpré G, Bonin H, Azzi M, Bouvier M. The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell Signal 2007;19:32-41. [PMID: 16857342 DOI: 10.1016/j.cellsig.2006.05.020] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 3.8] [Reference Citation Analysis]
425 Kim EK, Noh KT, Yoon J, Cho J, Yoon KW, Dreyfuss G, Choi E. Positive regulation of ASK1-mediated c-Jun NH2-terminal kinase signaling pathway by the WD-repeat protein Gemin5. Cell Death Differ 2007;14:1518-28. [DOI: 10.1038/sj.cdd.4402157] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
426 Monastyrskyi A, Bayle S, Quereda V, Grant W, Cameron M, Duckett D, Roush W. Discovery of 2-arylquinazoline derivatives as a new class of ASK1 inhibitors. Bioorg Med Chem Lett 2018;28:400-4. [PMID: 29277458 DOI: 10.1016/j.bmcl.2017.12.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
427 Gesty-Palmer D, Flannery P, Yuan L, Corsino L, Spurney R, Lefkowitz RJ, Luttrell LM. A beta-arrestin-biased agonist of the parathyroid hormone receptor (PTH1R) promotes bone formation independent of G protein activation. Sci Transl Med 2009;1:1ra1. [PMID: 20368153 DOI: 10.1126/scitranslmed.3000071] [Cited by in Crossref: 156] [Cited by in F6Publishing: 136] [Article Influence: 13.0] [Reference Citation Analysis]
428 Kim MO, Na SI, Lee MY, Heo JS, Han HJ. Epinephrine increases DNA synthesis via ERK1/2s through cAMP, Ca(2+)/PKC, and PI3K/Akt signaling pathways in mouse embryonic stem cells. J Cell Biochem 2008;104:1407-20. [PMID: 18275042 DOI: 10.1002/jcb.21716] [Cited by in F6Publishing: 23] [Reference Citation Analysis]
429 Gurevich VV, Gurevich EV. Arrestin-mediated signaling: Is there a controversy? World J Biol Chem 2018; 9(3): 25-35 [PMID: 30595812 DOI: 10.4331/wjbc.v9.i3.25] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
430 Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV, Gurevich VV. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem 2012;287:9028-40. [PMID: 22275358 DOI: 10.1074/jbc.M111.311803] [Cited by in Crossref: 62] [Cited by in F6Publishing: 44] [Article Influence: 6.2] [Reference Citation Analysis]
431 Li Y, Loike JD, Ember JA, Cleary PP, Lu E, Budhu S, Cao L, Silverstein SC. The bacterial peptide N-formyl-Met-Leu-Phe inhibits killing of Staphylococcus epidermidis by human neutrophils in fibrin gels. J Immunol 2002;168:816-24. [PMID: 11777977 DOI: 10.4049/jimmunol.168.2.816] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
432 Samaj J, Baluska F, Voigt B, Schlicht M, Volkmann D, Menzel D. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 2004;135:1150-61. [PMID: 15266049 DOI: 10.1104/pp.104.040683] [Cited by in Crossref: 215] [Cited by in F6Publishing: 183] [Article Influence: 11.9] [Reference Citation Analysis]
433 Rosciglione S, Thériault C, Boily MO, Paquette M, Lavoie C. Gαs regulates the post-endocytic sorting of G protein-coupled receptors. Nat Commun 2014;5:4556. [PMID: 25089012 DOI: 10.1038/ncomms5556] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
434 Luttrell LM. Regulators of GPCR Activity. In: Devi LA, editor. The G Protein-Coupled Receptors Handbook. Totowa: Humana Press; 2005. pp. 159-98. [DOI: 10.1007/978-1-59259-919-6_8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
435 Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H. Novel function of β-arrestin2 in the nucleus of mature spermatozoa. Journal of Cell Science 2006;119:3047-56. [DOI: 10.1242/jcs.03046] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 3.1] [Reference Citation Analysis]
436 Kenakin T. Collateral efficacy as a pharmacological problem applied to new drug discovery. Expert Opinion on Drug Discovery 2006;1:635-52. [DOI: 10.1517/17460441.1.7.635] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
437 Pierce KL, Luttrell LM, Lefkowitz RJ. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 2001;20:1532-9. [DOI: 10.1038/sj.onc.1204184] [Cited by in Crossref: 311] [Cited by in F6Publishing: 301] [Article Influence: 14.8] [Reference Citation Analysis]
438 Ju A, Cho YC, Kim BR, Park SG, Kim JH, Kim K, Lee J, Park BC, Cho S. Scaffold Role of DUSP22 in ASK1-MKK7-JNK Signaling Pathway. PLoS One 2016;11:e0164259. [PMID: 27711255 DOI: 10.1371/journal.pone.0164259] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
439 Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ. beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis. J Biol Chem 2001;276:42509-13. [PMID: 11533043 DOI: 10.1074/jbc.M108399200] [Cited by in Crossref: 172] [Cited by in F6Publishing: 69] [Article Influence: 8.2] [Reference Citation Analysis]
440 Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM. Recent updates on GPCR biased agonism. Pharmacol Res 2016;112:49-57. [PMID: 26836887 DOI: 10.1016/j.phrs.2016.01.031] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 9.5] [Reference Citation Analysis]
441 Gurevich VV, Gurevich EV. Structural determinants of arrestin functions. Prog Mol Biol Transl Sci 2013;118:57-92. [PMID: 23764050 DOI: 10.1016/B978-0-12-394440-5.00003-6] [Cited by in Crossref: 50] [Cited by in F6Publishing: 25] [Article Influence: 6.3] [Reference Citation Analysis]
442 Ma L, Pei G. Beta-arrestin signaling and regulation of transcription. J Cell Sci 2007;120:213-8. [PMID: 17215450 DOI: 10.1242/jcs.03338] [Cited by in Crossref: 179] [Cited by in F6Publishing: 175] [Article Influence: 11.9] [Reference Citation Analysis]
443 Nickolaychuk B, Mcnicol A, Gilchrist J, Birek C. Evidence for a role of mitogen-activated protein kinases in proliferating and differentiating odontogenic epithelia of inflammatory and developmental cysts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2002;93:720-9. [DOI: 10.1067/moe.2002.123496] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 0.6] [Reference Citation Analysis]
444 Kim K, Caron MG. Complementary roles of the DRY motif and C-terminus tail of GPCRS for G protein coupling and β-arrestin interaction. Biochemical and Biophysical Research Communications 2008;366:42-7. [DOI: 10.1016/j.bbrc.2007.11.055] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 2.4] [Reference Citation Analysis]
445 Yasuda T. MAP Kinase Cascades in Antigen Receptor Signaling and Physiology. Curr Top Microbiol Immunol 2016;393:211-31. [PMID: 26275875 DOI: 10.1007/82_2015_481] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
446 Li J, Ghio AJ, Cho SH, Brinckerhoff CE, Simon SA, Liedtke W. Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS. Environ Health Perspect 2009;117:400-9. [PMID: 19337515 DOI: 10.1289/ehp.0800311] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 2.4] [Reference Citation Analysis]
447 Bernstein D, Fajardo G, Zhao M, Urashima T, Powers J, Berry G, Kobilka BK. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol. 2005;289:H2441-H2449. [PMID: 16040722 DOI: 10.1152/ajpheart.00005.2005] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 3.5] [Reference Citation Analysis]
448 Gurevich VV, Gurevich EV. Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol. 2008;74:312-316. [PMID: 18515421 DOI: 10.1124/mol.108.049015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 2.1] [Reference Citation Analysis]
449 Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JT, Robinson CV, Pedersen SF, Kragelund BB. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. BMC Biol 2016;14:31. [PMID: 27083547 DOI: 10.1186/s12915-016-0252-7] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 5.5] [Reference Citation Analysis]
450 Bencivenga L, Liccardo D, Napolitano C, Visaggi L, Rengo G, Leosco D. β-Adrenergic Receptor Signaling and Heart Failure: From Bench to Bedside. Heart Fail Clin 2019;15:409-19. [PMID: 31079699 DOI: 10.1016/j.hfc.2019.02.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
451 Sorriento D, Gambardella J, Fiordelisi A, Iaccarino G, Illario M. GRKs and β-Arrestins: "Gatekeepers" of Mitochondrial Function in the Failing Heart. Front Pharmacol 2019;10:64. [PMID: 30809146 DOI: 10.3389/fphar.2019.00064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
452 Martini ML, Liu J, Ray C, Yu X, Huang XP, Urs A, Urs N, McCorvy JD, Caron MG, Roth BL, Jin J. Defining Structure-Functional Selectivity Relationships (SFSR) for a Class of Non-Catechol Dopamine D1 Receptor Agonists. J Med Chem 2019;62:3753-72. [PMID: 30875219 DOI: 10.1021/acs.jmedchem.9b00351] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
453 Kommaddi RP, Shenoy SK. Arrestins and protein ubiquitination. Prog Mol Biol Transl Sci 2013;118:175-204. [PMID: 23764054 DOI: 10.1016/B978-0-12-394440-5.00007-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
454 Luo QJ, Sun MX, Guo YW, Tan SW, Wu XY, Abassa KK, Lin L, Liu HL, Jiang J, Wei XQ. Sodium butyrate protects against lipopolysaccharide-induced liver injury partially via the GPR43/ β-arrestin-2/NF-κB network. Gastroenterol Rep (Oxf) 2021;9:154-65. [PMID: 34026223 DOI: 10.1093/gastro/goaa085] [Reference Citation Analysis]
455 Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem. 2007;282:20634-20646. [PMID: 17500066 DOI: 10.1074/jbc.m701391200] [Cited by in Crossref: 112] [Cited by in F6Publishing: 62] [Article Influence: 7.5] [Reference Citation Analysis]
456 Bruchas MR, Macey TA, Lowe JD, Chavkin C. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 2006;281:18081-9. [PMID: 16648139 DOI: 10.1074/jbc.M513640200] [Cited by in Crossref: 165] [Cited by in F6Publishing: 125] [Article Influence: 10.3] [Reference Citation Analysis]
457 Hegde AN. Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Progress in Neurobiology 2004;73:311-57. [DOI: 10.1016/j.pneurobio.2004.05.005] [Cited by in Crossref: 97] [Cited by in F6Publishing: 97] [Article Influence: 5.4] [Reference Citation Analysis]
458 Wei X, Gong J, Ma J, Zhang T, Li Y, Lan T, Guo P, Qi S. Targeting the Dvl-1/β-arrestin2/JNK3 interaction disrupts Wnt5a-JNK3 signaling and protects hippocampal CA1 neurons during cerebral ischemia reperfusion. Neuropharmacology 2018;135:11-21. [PMID: 29510185 DOI: 10.1016/j.neuropharm.2018.03.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
459 Potter RM, Key TA, Gurevich VV, Sklar LA, Prossnitz ER. Arrestin variants display differential binding characteristics for the phosphorylated N-formyl peptide receptor carboxyl terminus. J Biol Chem 2002;277:8970-8. [PMID: 11777932 DOI: 10.1074/jbc.M111086200] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
460 Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Biochemistry 2011;50:10520-9. [PMID: 22047447 DOI: 10.1021/bi201506g] [Cited by in Crossref: 44] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]
461 Waetzig V, Zhao Y, Herdegen T. The bright side of JNKs-Multitalented mediators in neuronal sprouting, brain development and nerve fiber regeneration. Prog Neurobiol 2006;80:84-97. [PMID: 17045385 DOI: 10.1016/j.pneurobio.2006.08.002] [Cited by in Crossref: 90] [Cited by in F6Publishing: 97] [Article Influence: 5.6] [Reference Citation Analysis]
462 Willoughby EA, Collins MK. Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem 2005;280:25651-8. [PMID: 15888437 DOI: 10.1074/jbc.M501926200] [Cited by in Crossref: 47] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
463 Luttrell LM, Maudsley S, Bohn LM. Fulfilling the Promise of "Biased" G Protein-Coupled Receptor Agonism. Mol Pharmacol 2015;88:579-88. [PMID: 26134495 DOI: 10.1124/mol.115.099630] [Cited by in Crossref: 141] [Cited by in F6Publishing: 129] [Article Influence: 20.1] [Reference Citation Analysis]
464 Zhang L, Zhao H, Qiu Y, Loh HH, Law PY. Src phosphorylation of micro-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 2009;284:1990-2000. [PMID: 19029294 DOI: 10.1074/jbc.M807971200] [Cited by in Crossref: 43] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
465 Luan B, Zhang Z, Wu Y, Kang J, Pei G. Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J. 2005;24:4237-4246. [PMID: 16308565 DOI: 10.1038/sj.emboj.7600882] [Cited by in Crossref: 57] [Cited by in F6Publishing: 54] [Article Influence: 3.4] [Reference Citation Analysis]
466 Snyder MD, Pierce SK. A mutation in Epstein-Barr virus LMP2A reveals a role for phospholipase D in B-Cell antigen receptor trafficking. Traffic 2006;7:993-1006. [PMID: 16882041 DOI: 10.1111/j.1600-0854.2006.00450.x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
467 Bellucci L, Felline A, Fanelli F. Dynamics and structural communication in the ternary complex of fully phosphorylated V2 vasopressin receptor, vasopressin, and β-arrestin 1. Biochim Biophys Acta Biomembr 2020;1862:183355. [PMID: 32413442 DOI: 10.1016/j.bbamem.2020.183355] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
468 Dong Z, Zhou L, Del Villar K, Ghanevati M, Tashjian V, Miller CA. JIP1 regulates neuronal apoptosis in response to stress. Brain Res Mol Brain Res 2005;134:282-93. [PMID: 15836924 DOI: 10.1016/j.molbrainres.2004.10.039] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 1.3] [Reference Citation Analysis]
469 Bellinger DL, Lorton D. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)? Int J Mol Sci 2018;19:E1188. [PMID: 29652832 DOI: 10.3390/ijms19041188] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 6.5] [Reference Citation Analysis]
470 Zhang LS, Wang YJ, Ju YY, Zan GY, Xu C, Hong MH, Wang YH, Chi ZQ, Liu JG. Role for engagement of β-arrestin2 by the transactivated EGFR in agonist-specific regulation of δ receptor activation of ERK1/2. Br J Pharmacol 2015;172:4847-63. [PMID: 26211551 DOI: 10.1111/bph.13254] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.7] [Reference Citation Analysis]
471 Hall RA, Lefkowitz RJ. Regulation of G Protein–Coupled Receptor Signaling by Scaffold Proteins. Circulation Research 2002;91:672-80. [DOI: 10.1161/01.res.0000037000.74258.03] [Cited by in Crossref: 171] [Cited by in F6Publishing: 66] [Article Influence: 8.6] [Reference Citation Analysis]
472 Ma X, Du J, Nakashima I, Nagase F. Menadione Biphasically Controls JNK-Linked Cell Death in Leukemia Jurkat T Cells. Antioxidants & Redox Signaling 2002;4:371-8. [DOI: 10.1089/15230860260196173] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 0.6] [Reference Citation Analysis]
473 Charles R, Namkung Y, Cotton M, Laporte SA, Claing A. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. J Biol Chem 2016;291:3967-81. [PMID: 26703465 DOI: 10.1074/jbc.M115.684357] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
474 Bao Z, Zhou S, Zhou H. Sorting Nexin 27 as a potential target in G protein‑coupled receptor recycling for cancer therapy (Review). Oncol Rep 2020;44:1779-86. [PMID: 33000258 DOI: 10.3892/or.2020.7766] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
475 Milasta S, Evans NA, Ormiston L, Wilson S, Lefkowitz RJ, Milligan G. The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J 2005;387:573-84. [PMID: 15683363 DOI: 10.1042/BJ20041745] [Cited by in Crossref: 58] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
476 Schreiber G, Avissar S. Mood disorders and their treatment: alterations in the regulation of receptor-G protein coupling. Drug Dev Res 2005;65:147-55. [DOI: 10.1002/ddr.20018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
477 Gesty-Palmer D, Luttrell LM. Refining efficacy: exploiting functional selectivity for drug discovery. Adv Pharmacol 2011;62:79-107. [PMID: 21907907 DOI: 10.1016/B978-0-12-385952-5.00009-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
478 Wu Y, Chen C, Yang Q, Jiao M, Qiu S. Endocytosis of GluN2B-containing NMDA receptors mediates NMDA-induced excitotoxicity. Mol Pain 2017;13:1744806917701921. [PMID: 28326942 DOI: 10.1177/1744806917701921] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
479 Gurevich VV, Gurevich EV. Custom-designed proteins as novel therapeutic tools? The case of arrestins. Expert Rev Mol Med 2010;12:e13. [PMID: 20412604 DOI: 10.1017/S1462399410001444] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 2.4] [Reference Citation Analysis]
480 Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM. beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem. 2002;277:9429-9436. [PMID: 11777902 DOI: 10.1074/jbc.m106457200] [Cited by in Crossref: 294] [Cited by in F6Publishing: 131] [Article Influence: 14.7] [Reference Citation Analysis]
481 Yang M, He RL, Benovic JL, Ye RD. beta-Arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Biochem J. 2009;417:287-296. [PMID: 18729826 DOI: 10.1042/BJ20081561] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 2.7] [Reference Citation Analysis]
482 Chen Z, Rola-Pleszczynski M, Stankova J. Activation of ERK1/2 by platelet-activating factor receptor is independent of receptor internalisation and G-protein activation. Cell Signal 2003;15:843-50. [PMID: 12834809 DOI: 10.1016/s0898-6568(03)00056-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 0.9] [Reference Citation Analysis]
483 Boularan C, Scott MG, Bourougaa K, Bellal M, Esteve E, Thuret A, Benmerah A, Tramier M, Coppey-Moisan M, Labbé-Jullié C, Fåhraeus R, Marullo S. beta-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc Natl Acad Sci U S A 2007;104:18061-6. [PMID: 17984062 DOI: 10.1073/pnas.0705550104] [Cited by in Crossref: 51] [Cited by in F6Publishing: 50] [Article Influence: 3.4] [Reference Citation Analysis]
484 Gurevich VV, Gurevich EV. The structural basis of the arrestin binding to GPCRs. Mol Cell Endocrinol 2019;484:34-41. [PMID: 30703488 DOI: 10.1016/j.mce.2019.01.019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
485 Lorton D, Bellinger DL. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int J Mol Sci 2015;16:5635-65. [PMID: 25768345 DOI: 10.3390/ijms16035635] [Cited by in Crossref: 81] [Cited by in F6Publishing: 77] [Article Influence: 11.6] [Reference Citation Analysis]
486 Stappenbeck TS, Gordon JI. Extranuclear sequestration of phospho-Jun N-terminal kinase and distorted villi produced by activated Rac1 in the intestinal epithelium of chimeric mice. Development 2001;128:2603-14. [DOI: 10.1242/dev.128.13.2603] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
487 Ascoli M, Fanelli F, Segaloff DL. The Lutropin/Choriogonadotropin Receptor, A 2002 Perspective. Endocrine Reviews 2002;23:141-74. [DOI: 10.1210/edrv.23.2.0462] [Cited by in Crossref: 402] [Cited by in F6Publishing: 408] [Article Influence: 67.0] [Reference Citation Analysis]
488 Szekeres M, Turu G, Orient A, Szalai B, Süpeki K, Cserzo M, Várnai P, Hunyady L. Mechanisms of angiotensin II-mediated regulation of aldosterone synthase expression in H295R human adrenocortical and rat adrenal glomerulosa cells. Mol Cell Endocrinol 2009;302:244-53. [PMID: 19418629 DOI: 10.1016/j.mce.2008.12.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 1.5] [Reference Citation Analysis]
489 Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2018;41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 14.4] [Reference Citation Analysis]
490 Hendrickx JO, van Gastel J, Leysen H, Martin B, Maudsley S. High-dimensionality Data Analysis of Pharmacological Systems Associated with Complex Diseases. Pharmacol Rev 2020;72:191-217. [PMID: 31843941 DOI: 10.1124/pr.119.017921] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
491 Kim GH, Han JK. Essential role for beta-arrestin 2 in the regulation of Xenopus convergent extension movements. EMBO J 2007;26:2513-26. [PMID: 17476309 DOI: 10.1038/sj.emboj.7601688] [Cited by in Crossref: 56] [Cited by in F6Publishing: 51] [Article Influence: 3.7] [Reference Citation Analysis]
492 Gurevich VV, Gurevich EV, Uversky VN. Arrestins: structural disorder creates rich functionality. Protein Cell 2018;9:986-1003. [PMID: 29453740 DOI: 10.1007/s13238-017-0501-8] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
493 Zama T, Aoki R, Kamimoto T, Inoue K, Ikeda Y, Hagiwara M. A Novel Dual Specificity Phosphatase SKRP1 Interacts with the MAPK Kinase MKK7 and Inactivates the JNK MAPK Pathway. Journal of Biological Chemistry 2002;277:23909-18. [DOI: 10.1074/jbc.m200837200] [Cited by in Crossref: 40] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
494 Ramjaun AR, Angers A, Legendre-guillemin V, Tong X, Mcpherson PS. Endophilin Regulates JNK Activation through Its Interaction with the Germinal Center Kinase-like Kinase. Journal of Biological Chemistry 2001;276:28913-9. [DOI: 10.1074/jbc.m103198200] [Cited by in Crossref: 40] [Cited by in F6Publishing: 11] [Article Influence: 1.9] [Reference Citation Analysis]
495 Costa-neto C, Duarte D, Lima V, Maria A, Prando É, Rodríguez D, Santos G, Souza PC, Parreiras-e-silva L. Non-canonical signalling and roles of the vasoactive peptides angiotensins and kinins. Clinical Science 2014;126:753-74. [DOI: 10.1042/cs20130414] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
496 Gurevich EV, Gurevich VV. Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol. 2006;7:236. [PMID: 17020596 DOI: 10.1186/gb-2006-7-9-236] [Cited by in Crossref: 205] [Cited by in F6Publishing: 199] [Article Influence: 13.7] [Reference Citation Analysis]
497 Sagasti A, Hisamoto N, Hyodo J, Tanaka-hino M, Matsumoto K, Bargmann CI. The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates. Cell 2001;105:221-32. [DOI: 10.1016/s0092-8674(01)00313-0] [Cited by in Crossref: 143] [Cited by in F6Publishing: 89] [Article Influence: 6.8] [Reference Citation Analysis]
498 Belcheva MM, Coscia CJ. Diversity of G protein-coupled receptor signaling pathways to ERK/MAP kinase. Neurosignals 2002;11:34-44. [PMID: 11943881 DOI: 10.1159/000057320] [Cited by in Crossref: 80] [Cited by in F6Publishing: 78] [Article Influence: 4.0] [Reference Citation Analysis]
499 Kuo F, Lu T, Fu H. Opposing effects of β-arrestin1 and β-arrestin2 on activation and degradation of Src induced by protease-activated receptor 1. Cellular Signalling 2006;18:1914-23. [DOI: 10.1016/j.cellsig.2006.02.009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.2] [Reference Citation Analysis]
500 Pfleger KD, Dromey JR, Dalrymple MB, Lim EM, Thomas WG, Eidne KA. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells. Cell Signal 2006;18:1664-70. [PMID: 16492395 DOI: 10.1016/j.cellsig.2006.01.004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 74] [Article Influence: 4.6] [Reference Citation Analysis]
501 Law P. Opioid Receptor Signal Transduction Mechanisms. In: Pasternak GW, editor. The Opiate Receptors. Totowa: Humana Press; 2011. pp. 195-238. [DOI: 10.1007/978-1-60761-993-2_9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
502 Zhang Q, Xiao K, Liu H, Song L, McGarvey JC, Sneddon WB, Bisello A, Friedman PA. Site-specific polyubiquitination differentially regulates parathyroid hormone receptor-initiated MAPK signaling and cell proliferation. J Biol Chem 2018;293:5556-71. [PMID: 29444827 DOI: 10.1074/jbc.RA118.001737] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
503 Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of β-arrestin2 in signal transduction. Life Sci 2021;275:119364. [PMID: 33741415 DOI: 10.1016/j.lfs.2021.119364] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
504 Xu Z, Kukekov NV, Greene LA. POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 2003;22:252-61. [PMID: 12514131 DOI: 10.1093/emboj/cdg021] [Cited by in Crossref: 144] [Cited by in F6Publishing: 138] [Article Influence: 7.6] [Reference Citation Analysis]
505 Tan M, Walwyn WM, Evans CJ, Xie CW. p38 MAPK and beta-arrestin 2 mediate functional interactions between endogenous micro-opioid and alpha2A-adrenergic receptors in neurons. J Biol Chem 2009;284:6270-81. [PMID: 19126537 DOI: 10.1074/jbc.M806742200] [Cited by in Crossref: 39] [Cited by in F6Publishing: 22] [Article Influence: 3.0] [Reference Citation Analysis]
506 Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019;54:69-80. [PMID: 30465827 DOI: 10.1016/j.cellsig.2018.11.004] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 14.0] [Reference Citation Analysis]
507 Gancz D, Donin N, Fishelson Z. Involvement of the c-jun N-terminal kinases JNK1 and JNK2 in complement-mediated cell death. Mol Immunol 2009;47:310-7. [PMID: 19864026 DOI: 10.1016/j.molimm.2009.09.016] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
508 Fan H, Luttrell LM, Tempel GE, Senn JJ, Halushka PV, Cook JA. Beta-arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol. 2007;44:3092-3099. [PMID: 17418896 DOI: 10.1016/j.molimm.2007.02.009] [Cited by in Crossref: 67] [Cited by in F6Publishing: 67] [Article Influence: 4.5] [Reference Citation Analysis]
509 Sturchler E, Feurstein D, Mcdonald P, Duckett D. Mechanism of Oxidative Stress-Induced ASK1-Catalyzed MKK6 Phosphorylation. Biochemistry 2010;49:4094-102. [DOI: 10.1021/bi100010j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 0.8] [Reference Citation Analysis]
510 Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol 2004;16:400-6. [PMID: 15261672 DOI: 10.1016/j.ceb.2004.06.005] [Cited by in Crossref: 398] [Cited by in F6Publishing: 384] [Article Influence: 23.4] [Reference Citation Analysis]
511 Novi F, Stanasila L, Giorgi F, Corsini GU, Cotecchia S, Maggio R. Paired activation of two components within muscarinic M3 receptor dimers is required for recruitment of beta-arrestin-1 to the plasma membrane. J Biol Chem 2005;280:19768-76. [PMID: 15769745 DOI: 10.1074/jbc.M411281200] [Cited by in Crossref: 36] [Cited by in F6Publishing: 13] [Article Influence: 2.1] [Reference Citation Analysis]
512 Cao H, Dong W, Qu X, Shen H, Xu J, Zhu L, Liu Q, Du J. Metformin Enhances the Therapy Effects of Anti-IGF-1R mAb Figitumumab to NSCLC. Sci Rep 2016;6:31072. [PMID: 27488947 DOI: 10.1038/srep31072] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
513 Kim J, Ahn S, Ren XR, Whalen EJ, Reiter E, Wei H, Lefkowitz RJ. Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. Proc Natl Acad Sci USA. 2005;102:1442-1447. [PMID: 15671181 DOI: 10.1073/pnas.0409532102] [Cited by in Crossref: 250] [Cited by in F6Publishing: 235] [Article Influence: 14.7] [Reference Citation Analysis]
514 Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol 2008;9:361-8. [PMID: 18297073 DOI: 10.1038/ni1569] [Cited by in Crossref: 839] [Cited by in F6Publishing: 830] [Article Influence: 59.9] [Reference Citation Analysis]
515 Song X, Coffa S, Fu H, Gurevich VV. How does arrestin assemble MAPKs into a signaling complex? J Biol Chem. 2009;284:685-695. [PMID: 19001375 DOI: 10.1074/jbc.m806124200] [Cited by in Crossref: 112] [Cited by in F6Publishing: 74] [Article Influence: 8.0] [Reference Citation Analysis]
516 Ren XR, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz RJ. Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA. 2005;102:1448-1453. [PMID: 15671180 DOI: 10.1073/pnas.0409534102] [Cited by in Crossref: 247] [Cited by in F6Publishing: 228] [Article Influence: 14.5] [Reference Citation Analysis]
517 Sharma D, Malik A, Lee E, Britton RA, Parameswaran N. Gene dosage-dependent negative regulatory role of β-arrestin-2 in polymicrobial infection-induced inflammation. Infect Immun 2013;81:3035-44. [PMID: 23753627 DOI: 10.1128/IAI.00653-13] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]
518 Kraus S, Benard O, Naor Z, Seger R. c-Src Is Activated by the Epidermal Growth Factor Receptor in a Pathway That Mediates JNK and ERK Activation by Gonadotropin-releasing Hormone in COS7 Cells. Journal of Biological Chemistry 2003;278:32618-30. [DOI: 10.1074/jbc.m303886200] [Cited by in Crossref: 55] [Cited by in F6Publishing: 14] [Article Influence: 2.9] [Reference Citation Analysis]
519 Yang X, Zheng J, Xiong Y, Shen H, Sun L, Huang Y, Sun C, Li Y, He J. Beta-2 adrenergic receptor mediated ERK activation is regulated by interaction with MAGI-3. FEBS Lett 2010;584:2207-12. [PMID: 20353789 DOI: 10.1016/j.febslet.2010.03.039] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 1.7] [Reference Citation Analysis]
520 Lu J, Xu Q, Zheng J, Liu H, Li J, Chen K. Comparative proteomics analysis of cardiac muscle samples from pufferfish Takifugu rubripes exposed to excessive fluoride: Initial molecular response to fluorosis. Toxicology Mechanisms and Methods 2009;19:468-75. [DOI: 10.1080/15376510903170969] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
521 Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem. 2004;279:35518-35525. [PMID: 15205453 DOI: 10.1074/jbc.m405878200] [Cited by in Crossref: 374] [Cited by in F6Publishing: 188] [Article Influence: 20.8] [Reference Citation Analysis]
522 Guo X, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu T. Emerging role of the Jun N-terminal kinase interactome in human health: The JNK interactome. Cell Biol Int 2018;42:756-68. [DOI: 10.1002/cbin.10948] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
523 Li B, Wang C, Zhou Z, Zhao J, Pei G. β-Arrestin-1 directly interacts with Gαs and regulates its function. FEBS Lett 2013;587:410-6. [PMID: 23353685 DOI: 10.1016/j.febslet.2013.01.027] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
524 Miller WE, McDonald PH, Cai SF, Field ME, Davis RJ, Lefkowitz RJ. Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3. J Biol Chem. 2001;276:27770-27777. [PMID: 11356842 DOI: 10.1074/jbc.m102264200] [Cited by in Crossref: 107] [Cited by in F6Publishing: 54] [Article Influence: 5.1] [Reference Citation Analysis]
525 Beom S, Cheong D, Torres G, Caron MG, Kim K. Comparative Studies of Molecular Mechanisms of Dopamine D2 and D3 Receptors for the Activation of Extracellular Signal-regulated Kinase. Journal of Biological Chemistry 2004;279:28304-14. [DOI: 10.1074/jbc.m403899200] [Cited by in F6Publishing: 27] [Reference Citation Analysis]
526 Engedal N, Mills IG. Endosomal signaling and oncogenesis. Methods Enzymol 2014;535:179-200. [PMID: 24377925 DOI: 10.1016/B978-0-12-397925-4.00012-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
527 Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. Prog Mol Biol Transl Sci 2018;160:47-61. [PMID: 30470292 DOI: 10.1016/bs.pmbts.2018.07.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
528 Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A 2007;104:16657-62. [PMID: 17925438 DOI: 10.1073/pnas.0707936104] [Cited by in Crossref: 423] [Cited by in F6Publishing: 400] [Article Influence: 28.2] [Reference Citation Analysis]
529 Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ. Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 2003;112:566-74. [PMID: 12925697 DOI: 10.1172/JCI17265] [Cited by in Crossref: 1] [Cited by in F6Publishing: 81] [Article Influence: 0.1] [Reference Citation Analysis]
530 Gurevich VV, Gurevich EV. Arrestin mutations: Some cause diseases, others promise cure. Prog Mol Biol Transl Sci 2019;161:29-45. [PMID: 30711028 DOI: 10.1016/bs.pmbts.2018.09.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
531 Carroll RC, Beattie EC, von Zastrow M, Malenka RC. Role of ampa receptor endocytosis in synaptic plasticity. Nat Rev Neurosci 2001;2:315-24. [DOI: 10.1038/35072500] [Cited by in Crossref: 286] [Cited by in F6Publishing: 312] [Article Influence: 13.6] [Reference Citation Analysis]
532 Huet E, Boulay F, Barral S, Rabiet MJ. The role of beta-arrestins in the formyl peptide receptor-like 1 internalization and signaling. Cell Signal 2007;19:1939-48. [PMID: 17594911 DOI: 10.1016/j.cellsig.2007.05.006] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 1.9] [Reference Citation Analysis]
533 Calebiro D, Nikolaev VO, Persani L, Lohse MJ. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 2010;31:221-8. [PMID: 20303186 DOI: 10.1016/j.tips.2010.02.002] [Cited by in Crossref: 181] [Cited by in F6Publishing: 176] [Article Influence: 15.1] [Reference Citation Analysis]
534 Zhang Y, Yang W, Chen L, Shi Y, Li G, Zhou N. Development of a novel DnaE intein-based assay for quantitative analysis of G-protein-coupled receptor internalization. Anal Biochem 2011;417:65-72. [PMID: 21726524 DOI: 10.1016/j.ab.2011.06.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 0.8] [Reference Citation Analysis]
535 Giubilaro J, Schuetz DA, Stepniewski TM, Namkung Y, Khoury E, Lara-Márquez M, Campbell S, Beautrait A, Armando S, Radresa O, Duchaine J, Lamarche-Vane N, Claing A, Selent J, Bouvier M, Marinier A, Laporte SA. Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nat Commun 2021;12:4688. [PMID: 34344896 DOI: 10.1038/s41467-021-24968-y] [Reference Citation Analysis]
536 Yang TT, Xiong Q, Graef IA, Crabtree GR, Chow CW. Recruitment of the extracellular signal-regulated kinase/ribosomal S6 kinase signaling pathway to the NFATc4 transcription activation complex. Mol Cell Biol 2005;25:907-20. [PMID: 15657420 DOI: 10.1128/MCB.25.3.907-920.2005] [Cited by in Crossref: 42] [Cited by in F6Publishing: 20] [Article Influence: 2.5] [Reference Citation Analysis]
537 Kook S, Gurevich VV, Gurevich EV. Arrestins in apoptosis. Handb Exp Pharmacol 2014;219:309-39. [PMID: 24292837 DOI: 10.1007/978-3-642-41199-1_16] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
538 Dewire SM, Violin JD, Rockman H. Biased Ligands for Better Cardiovascular Drugs: Dissecting G-Protein-Coupled Receptor Pharmacology. Circ Res 2011;109:205-16. [DOI: 10.1161/circresaha.110.231308] [Cited by in Crossref: 97] [Cited by in F6Publishing: 57] [Article Influence: 8.8] [Reference Citation Analysis]
539 Wen Q, Li Y, Han Z, Liu H, Zhang S, Chen Y, He J, Du X, Fu Y, Zhang L, Zhang Z, Huang Y, Zhou X, Zhou C, Hu S, Ma L. β-Arrestin 2 Regulates Inflammatory Responses against Mycobacterium tuberculosis Infection through ERK1/2 Signaling. J Immunol 2021;206:2623-37. [PMID: 34001657 DOI: 10.4049/jimmunol.2001346] [Reference Citation Analysis]
540 Pierce KL, Lefkowitz RJ. Classical and new roles of beta-arrestins in the regulation of G-protein-coupled receptors. Nat Rev Neurosci. 2001;2:727-733. [PMID: 11584310 DOI: 10.1038/35094577] [Cited by in Crossref: 326] [Cited by in F6Publishing: 307] [Article Influence: 15.5] [Reference Citation Analysis]
541 Björkblom B, Ostman N, Hongisto V, Komarovski V, Filén JJ, Nyman TA, Kallunki T, Courtney MJ, Coffey ET. Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci 2005;25:6350-61. [PMID: 16000625 DOI: 10.1523/JNEUROSCI.1517-05.2005] [Cited by in Crossref: 124] [Cited by in F6Publishing: 75] [Article Influence: 7.8] [Reference Citation Analysis]
542 Hoffert JD, Pisitkun T, Saeed F, Song JH, Chou CL, Knepper MA. Dynamics of the G protein-coupled vasopressin V2 receptor signaling network revealed by quantitative phosphoproteomics. Mol Cell Proteomics 2012;11:M111.014613. [PMID: 22108457 DOI: 10.1074/mcp.M111.014613] [Cited by in Crossref: 62] [Cited by in F6Publishing: 41] [Article Influence: 5.6] [Reference Citation Analysis]
543 Resnick L, Fennell M. Targeting JNK3 for the treatment of neurodegenerative disorders. Drug Discov Today. 2004;9:932-939. [PMID: 15501728 DOI: 10.1016/S1359-6446(04)03251-9] [Cited by in Crossref: 82] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
544 Shenoy SK, Lefkowitz RJ. Receptor-specific Ubiquitination of β-Arrestin Directs Assembly and Targeting of Seven-transmembrane Receptor Signalosomes. Journal of Biological Chemistry 2005;280:15315-24. [DOI: 10.1074/jbc.m412418200] [Cited by in Crossref: 122] [Cited by in F6Publishing: 64] [Article Influence: 7.2] [Reference Citation Analysis]
545 Fan H. β-Arrestins 1 and 2 are critical regulators of inflammation. Innate Immun 2014;20:451-60. [PMID: 24029143 DOI: 10.1177/1753425913501098] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
546 Lefkowitz RJ. Arrestins Come of Age. The Molecular Biology of Arrestins. Elsevier; 2013. pp. 3-18. [DOI: 10.1016/b978-0-12-394440-5.00001-2] [Cited by in Crossref: 38] [Cited by in F6Publishing: 28] [Article Influence: 4.2] [Reference Citation Analysis]
547 Kim YM, Benovic JL. Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking. J Biol Chem. 2002;277:30760-30768. [PMID: 12070169 DOI: 10.1074/jbc.m204528200] [Cited by in Crossref: 131] [Cited by in F6Publishing: 69] [Article Influence: 6.6] [Reference Citation Analysis]
548 Crilly SE, Puthenveedu MA. Compartmentalized GPCR Signaling from Intracellular Membranes. J Membr Biol 2021;254:259-71. [PMID: 33231722 DOI: 10.1007/s00232-020-00158-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
549 Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012;24:1899-908. [PMID: 22664341 DOI: 10.1016/j.cellsig.2012.05.012] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 2.5] [Reference Citation Analysis]
550 Martini ML, Ray C, Yu X, Liu J, Pogorelov VM, Wetsel WC, Huang XP, McCorvy JD, Caron MG, Jin J. Designing Functionally Selective Noncatechol Dopamine D1 Receptor Agonists with Potent In Vivo Antiparkinsonian Activity. ACS Chem Neurosci 2019;10:4160-82. [PMID: 31387346 DOI: 10.1021/acschemneuro.9b00410] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
551 Sun J, Lin X. Beta-arrestin 2 is required for lysophosphatidic acid-induced NF-kappaB activation. Proc Natl Acad Sci U S A. 2008;105:17085-17090. [PMID: 18952848 DOI: 10.1073/pnas.0802701105] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 3.7] [Reference Citation Analysis]
552 Paasche JD, Attramadal T, Sandberg C, Johansen HK, Attramadal H. Mechanisms of Endothelin Receptor Subtype-specific Targeting to Distinct Intracellular Trafficking Pathways. Journal of Biological Chemistry 2001;276:34041-50. [DOI: 10.1074/jbc.m103243200] [Cited by in Crossref: 44] [Cited by in F6Publishing: 18] [Article Influence: 2.1] [Reference Citation Analysis]
553 Kohout TA, Lin F, Perry SJ, Conner DA, Lefkowitz RJ. -Arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proceedings of the National Academy of Sciences 2001;98:1601-6. [DOI: 10.1073/pnas.98.4.1601] [Cited by in Crossref: 26] [Cited by in F6Publishing: 13] [Article Influence: 1.2] [Reference Citation Analysis]
554 Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, Mcelroy SL, Alexander M, Shaw SH, Kelsoe JR. Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 2003;8:546-57. [DOI: 10.1038/sj.mp.4001268] [Cited by in Crossref: 84] [Cited by in F6Publishing: 66] [Article Influence: 4.4] [Reference Citation Analysis]
555 Barr AJ, Marjoram R, Xu J, Snyderman R. Phospholipase C-β2 interacts with mitogen-activated protein kinase kinase 3. Biochemical and Biophysical Research Communications 2002;293:647-52. [DOI: 10.1016/s0006-291x(02)00259-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
556 Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Neuropharmacology 2017;121:20-9. [PMID: 28419873 DOI: 10.1016/j.neuropharm.2017.04.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.6] [Reference Citation Analysis]
557 Parameswaran N, Enyindah-Asonye G, Bagheri N, Shah NB, Gupta N. Spatial coupling of JNK activation to the B cell antigen receptor by tyrosine-phosphorylated ezrin. J Immunol 2013;190:2017-26. [PMID: 23338238 DOI: 10.4049/jimmunol.1201292] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
558 van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2021;223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
559 Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G. Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem. 2003;278:6363-6370. [PMID: 12488444 DOI: 10.1074/jbc.M210350200] [Cited by in Crossref: 108] [Cited by in F6Publishing: 54] [Article Influence: 5.4] [Reference Citation Analysis]
560 Podkowa M, Zhao X, Chow CW, Coffey ET, Davis RJ, Attisano L. Microtubule stabilization by bone morphogenetic protein receptor-mediated scaffolding of c-Jun N-terminal kinase promotes dendrite formation. Mol Cell Biol 2010;30:2241-50. [PMID: 20176805 DOI: 10.1128/MCB.01166-09] [Cited by in Crossref: 49] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
561 Laroche G, Rochdi MD, Laporte SA, Parent J. Involvement of Actin in Agonist-induced Endocytosis of the G Protein-coupled Receptor for Thromboxane A2. Journal of Biological Chemistry 2005;280:23215-24. [DOI: 10.1074/jbc.m414071200] [Cited by in Crossref: 28] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
562 Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV. Silent scaffolds: inhibition OF c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant. J Biol Chem. 2012;287:19653-19664. [PMID: 22523077 DOI: 10.1074/jbc.m112.358192] [Cited by in Crossref: 67] [Cited by in F6Publishing: 49] [Article Influence: 6.7] [Reference Citation Analysis]
563 Piper M, Salih S, Weinl C, Holt CE, Harris WA. Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci 2005;8:179-86. [PMID: 15643427 DOI: 10.1038/nn1380] [Cited by in Crossref: 119] [Cited by in F6Publishing: 126] [Article Influence: 7.0] [Reference Citation Analysis]
564 Gurevich VV, Gurevich EV. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Int J Mol Sci 2017;18:E2519. [PMID: 29186792 DOI: 10.3390/ijms18122519] [Cited by in Crossref: 41] [Cited by in F6Publishing: 29] [Article Influence: 8.2] [Reference Citation Analysis]
565 Willoughby EA, Perkins GR, Collins MK, Whitmarsh AJ. The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem 2003;278:10731-6. [PMID: 12524447 DOI: 10.1074/jbc.M207324200] [Cited by in Crossref: 73] [Cited by in F6Publishing: 34] [Article Influence: 3.8] [Reference Citation Analysis]
566 Zakrzewicz A, Krasteva G, Wilhelm J, Dietrich H, Wilker S, Padberg W, Wygrecka M, Grau V. Reduced expression of arrestin beta 2 by graft monocytes during acute rejection of rat kidneys. Immunobiology 2011;216:854-61. [PMID: 21193245 DOI: 10.1016/j.imbio.2010.11.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
567 Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 2011;63:1001-19. [PMID: 21873412 DOI: 10.1124/pr.111.004598] [Cited by in Crossref: 175] [Cited by in F6Publishing: 162] [Article Influence: 15.9] [Reference Citation Analysis]
568 Nizamutdinova IT, Kim YM, Lee JH, Chang KC, Kim HJ. MKP-7, a negative regulator of JNK, regulates VCAM-1 expression through IRF-1. Cellular Signalling 2012;24:866-72. [DOI: 10.1016/j.cellsig.2011.12.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
569 Zhao M, Wimmer A, Trieu K, Discipio RG, Schraufstatter IU. Arrestin regulates MAPK activation and prevents NADPH oxidase-dependent death of cells expressing CXCR2. J Biol Chem 2004;279:49259-67. [PMID: 15364949 DOI: 10.1074/jbc.M405118200] [Cited by in Crossref: 52] [Cited by in F6Publishing: 30] [Article Influence: 2.9] [Reference Citation Analysis]
570 Molteni R, Crespo CL, Feigelson S, Moser C, Fabbri M, Grabovsky V, Krombach F, Laudanna C, Alon R, Pardi R. Beta-arrestin 2 is required for the induction and strengthening of integrin-mediated leukocyte adhesion during CXCR2-driven extravasation. Blood 2009;114:1073-82. [PMID: 19429870 DOI: 10.1182/blood-2008-10-183699] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 1.5] [Reference Citation Analysis]
571 Ahn S, Wei H, Garrison TR, Lefkowitz RJ. Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J Biol Chem 2004;279:7807-11. [PMID: 14711824 DOI: 10.1074/jbc.C300443200] [Cited by in Crossref: 133] [Cited by in F6Publishing: 77] [Article Influence: 7.4] [Reference Citation Analysis]
572 Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O'Bryan JP. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 2003;278:47038-45. [PMID: 12970366 DOI: 10.1074/jbc.M303895200] [Cited by in Crossref: 54] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
573 Wood JR, Strauss JF 3rd. Multiple signal transduction pathways regulate ovarian steroidogenesis. Rev Endocr Metab Disord 2002;3:33-46. [PMID: 11883103 DOI: 10.1023/a:1012748718150] [Cited by in Crossref: 71] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
574 Klein MT, Vinson PN, Niswender CM. Approaches for probing allosteric interactions at 7 transmembrane spanning receptors. Prog Mol Biol Transl Sci 2013;115:1-59. [PMID: 23415091 DOI: 10.1016/B978-0-12-394587-7.00001-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
575 Rusnak L, Fu H. Regulation of ASK1 signaling by scaffold and adaptor proteins. Advances in Biological Regulation 2017;66:23-30. [DOI: 10.1016/j.jbior.2017.10.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
576 Hanyaloglu AC. Advances in Membrane Trafficking and Endosomal Signaling of G Protein-Coupled Receptors. Int Rev Cell Mol Biol 2018;339:93-131. [PMID: 29776606 DOI: 10.1016/bs.ircmb.2018.03.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
577 Zhang H, Sturchler E, Zhu J, Nieto A, Cistrone PA, Xie J, He L, Yea K, Jones T, Turn R, Di Stefano PS, Griffin PR, Dawson PE, McDonald PH, Lerner RA. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects. Nat Commun 2015;6:8918. [PMID: 26621478 DOI: 10.1038/ncomms9918] [Cited by in Crossref: 85] [Cited by in F6Publishing: 70] [Article Influence: 12.1] [Reference Citation Analysis]
578 Goel R, Phillips-Mason PJ, Raben DM, Baldassare JJ. alpha-Thrombin induces rapid and sustained Akt phosphorylation by beta-arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. J Biol Chem 2002;277:18640-8. [PMID: 11901145 DOI: 10.1074/jbc.M108995200] [Cited by in Crossref: 71] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
579 Lee NY, Blobe GC. The interaction of endoglin with beta-arrestin2 regulates transforming growth factor-beta-mediated ERK activation and migration in endothelial cells. J Biol Chem. 2007;282:21507-21517. [PMID: 17540773 DOI: 10.1074/jbc.m700176200] [Cited by in Crossref: 66] [Cited by in F6Publishing: 41] [Article Influence: 4.4] [Reference Citation Analysis]
580 Sayers N, Hanyaloglu AC. Intracellular Follicle-Stimulating Hormone Receptor Trafficking and Signaling. Front Endocrinol (Lausanne) 2018;9:653. [PMID: 30450081 DOI: 10.3389/fendo.2018.00653] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
581 Avissar S, Schreiber G. The involvement of G proteins and regulators of receptor-G protein coupling in the pathophysiology, diagnosis and treatment of mood disorders. Clin Chim Acta 2006;366:37-47. [PMID: 16337166 DOI: 10.1016/j.cca.2005.11.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 1.1] [Reference Citation Analysis]
582 Schreiber G, Avissar S. Regulators of G-protein-coupled receptor-G-protein coupling: antidepressants mechanism of action. Expert Rev Neurother 2007;7:75-84. [PMID: 17187499 DOI: 10.1586/14737175.7.1.75] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 1.3] [Reference Citation Analysis]
583 Bologna Z, Teoh JP, Bayoumi AS, Tang Y, Kim IM. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol Ther (Seoul) 2017;25:12-25. [PMID: 28035079 DOI: 10.4062/biomolther.2016.165] [Cited by in Crossref: 62] [Cited by in F6Publishing: 55] [Article Influence: 12.4] [Reference Citation Analysis]
584 Robins MT, Chiang T, Berry JN, Ko MJ, Ha JE, van Rijn RM. Behavioral Characterization of β-Arrestin 1 Knockout Mice in Anxiety-Like and Alcohol Behaviors. Front Behav Neurosci 2018;12:54. [PMID: 29615880 DOI: 10.3389/fnbeh.2018.00054] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
585 Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017;25:26-43. [PMID: 28035080 DOI: 10.4062/biomolther.2016.186] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 5.2] [Reference Citation Analysis]
586 Luttrell LM, Wang J, Plouffe B. Manifold roles of beta-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal. 2018;11:eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Cited by in Crossref: 108] [Cited by in F6Publishing: 89] [Article Influence: 27.0] [Reference Citation Analysis]
587 Li H, Stolz DB, Romero G. Characterization of Endocytic Vesicles Using Magnetic Microbeads Coated with Signalling Ligands: Magnetic Isolation of Endosomes. Traffic 2005;6:324-34. [DOI: 10.1111/j.1600-0854.2005.00274.x] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 1.8] [Reference Citation Analysis]
588 Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021;11:218. [PMID: 33557162 DOI: 10.3390/biom11020218] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
589 Yang G, Cynader MS. Palmitoyl acyltransferase zD17 mediates neuronal responses in acute ischemic brain injury by regulating JNK activation in a signaling module. J Neurosci 2011;31:11980-91. [PMID: 21849558 DOI: 10.1523/JNEUROSCI.2510-11.2011] [Cited by in Crossref: 26] [Cited by in F6Publishing: 11] [Article Influence: 2.4] [Reference Citation Analysis]
590 Revankar CM, Vines CM, Cimino DF, Prossnitz ER. Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem 2004;279:24578-84. [PMID: 15051714 DOI: 10.1074/jbc.M402121200] [Cited by in Crossref: 94] [Cited by in F6Publishing: 51] [Article Influence: 5.2] [Reference Citation Analysis]
591 Rubin JB. Chemokine signaling in cancer: one hump or two? Semin Cancer Biol. 2009;19:116-122. [PMID: 18992347 DOI: 10.1016/j.semcancer.2008.10.001] [Cited by in Crossref: 56] [Cited by in F6Publishing: 54] [Article Influence: 4.0] [Reference Citation Analysis]
592 Cong M, Perry SJ, Hu LA, Hanson PI, Claing A, Lefkowitz RJ. Binding of the beta2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. J Biol Chem 2001;276:45145-52. [PMID: 11577089 DOI: 10.1074/jbc.M106087200] [Cited by in Crossref: 109] [Cited by in F6Publishing: 39] [Article Influence: 5.2] [Reference Citation Analysis]
593 Watterson KR, Johnston E, Chalmers C, Pronin A, Cook SJ, Benovic JL, Palmer TM. Dual regulation of EDG1/S1P(1) receptor phosphorylation and internalization by protein kinase C and G-protein-coupled receptor kinase 2. J Biol Chem 2002;277:5767-77. [PMID: 11741892 DOI: 10.1074/jbc.M110647200] [Cited by in Crossref: 61] [Cited by in F6Publishing: 28] [Article Influence: 2.9] [Reference Citation Analysis]
594 Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, Shukla AK. Core engagement with β-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell 2017;28:1003-10. [PMID: 28228552 DOI: 10.1091/mbc.E16-12-0818] [Cited by in Crossref: 49] [Cited by in F6Publishing: 40] [Article Influence: 9.8] [Reference Citation Analysis]