1
|
Chi S, Rong L, Zhang M, Li Y, Zhou Y, Li X, Zhang X, Luo Z, Li S, Cao G, Tang ST. Biliary atresia: Rotavirus amplification of lipopolysaccharide/toll-like receptor 4 by mediating MMP7 upregulation through NF-κB. Pediatr Res 2025:10.1038/s41390-025-04128-4. [PMID: 40415071 DOI: 10.1038/s41390-025-04128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Matrix metalloproteinase-7 (MMP7), which is expressed primarily by biliary epithelial cells (BECs), has been shown to promote biliary atresia (BA). However, the mechanism by which elevated MMP7 expression is induced in BA remains unclear. METHODS Mouse extrahepatic BECs were used to investigate MMP7 overexpression induced by rhesus rotavirus (RRV) and lipopolysaccharide (LPS). The cellular localization of TLR4 and related proteins in the liver specimens from model mice was analyzed by immunohistochemistry. In vivo experiments were performed in BA models with TLR4 inhibition or antibiotic treatment and their corresponding control groups. RESULTS RRV infection alone is insufficient to induce MMP7 expression in mouse extrahepatic BECs, whereas sequential RRV infection and low-dose LPS treatment could cause robust MMP7 overexpression. RRV disrupted BEC endotoxin tolerance via HMGB1-mediated TLR4 upregulation, which subsequently promoted NF-κB and MMP7 overexpression. BECs from experimental BA model mice presented significantly increased TLR4 expression and NF-κB activation. In vivo, treatment with TLR4 antibodies, inhibitors, or antibiotics reduced MMP7 production, alleviated disease severity, and improved survival rates in BA models. CONCLUSION RRV infection disrupts BEC tolerance to low-dose LPS, triggering TLR4/NF-κB-mediated MMP7 overexpression and hepatobiliary inflammation, advancing our understanding of the role of LPS/TLR4 signaling in BA pathogenesis. IMPACT STATEMENT Rhesus rotavirus infection induces the upregulation of TLR4 expression in BECs, disrupting their tolerance to physiological levels of LPS and resulting in robust activation of the NF-κB pathway and subsequent abundant expression of MMP7. In vivo inhibition of TLR4 or a reduction in LPS levels alleviates symptoms in newborn mice injected with RRV. This study underscores the crucial role of LPS/TLR4 pathway activation in the pathogenesis of biliary atresia, which may be a key potential therapeutic target.
Collapse
Affiliation(s)
- Shuiqing Chi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liying Rong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxin Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibin Luo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Tao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Cai Y, Zhang H, Cui LM, Chen Q, Xie FJ. The effect of lidocaine against sepsis-induced acute lung injury in a mouse model through the JAK2/STAT3 pathway. PLoS One 2025; 20:e0322653. [PMID: 40338919 PMCID: PMC12061136 DOI: 10.1371/journal.pone.0322653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/25/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of lidocaine on sepsis-induced acute lung injury and its underlying mechanisms. METHODS Thirty C57BL/6 mice were divided into three groups: SHAM, CLP, and LD. The sepsis-induced acute lung injury model was established using cecal ligation and puncture (CLP) surgery, while SHAM mice underwent a sham operation without ligation or puncture. Mice in the LD group were administered lidocaine (10 mg/kg) intravenously through the tail vein. The SHAM and CLP groups were treated with an equal volume of 0.9% sterile saline solution. All mice were sacrificed 24 hours after surgery, and lung tissue and blood samples were collected for subsequent analysis. The wet/dry weight ratio (W/D ratio) was measured to evaluate lung edema. Lung injury and apoptosis were assessed using HE staining and TUNEL assay. The concentrations of inflammatory cytokines IL-6, TNF-α, and HMGB1 were measured by ELISA. The expression of JAK2, STAT3, p-STAT3, Bcl-2, HMGB1, and Bax was analyzed by western blot. RESULTS The W/D ratio in the CLP group was significantly higher than the SHAM group, indicating increased lung edema. Pathological examination revealed obvious lung injury, and apoptosis was evident in the CLP group. The expression of HMGB1, IL-6, and TNF-α in lung tissue increased by 24 hours after CLP surgery. Additionally, the levels of JAK2, STAT3, p-STAT3, HMGB1, and Bax were significantly increased, while Bcl-2 expression was reduced. However, lidocaine administration reversed these changes. CONCLUSION Intravenous lidocaine effectively alleviated acute lung injury in septic mice. The anti-inflammatory effects of lidocaine may be attributed to its suppression of the JAK2/STAT3 signaling pathway and its anti-apoptotic effects.
Collapse
Affiliation(s)
- Ying Cai
- Department of Critical Care Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| | - Hong Zhang
- Department of Critical Care Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| | - Lun-Meng Cui
- Department of Critical Care Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| | - Qian Chen
- Department of Critical Care Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| | - Feng-Jie Xie
- Department of Critical Care Medicine, Hongqi Hospital affiliated to Mudanjiang Medical University, Mudanjiang City, Heilongjiang Province, China
| |
Collapse
|
3
|
Wang N, Liu J, Wu R, Chen F, Zhang R, Yu C, Zeh H, Xiao X, Wang H, Billiar TR, Zeng L, Jiang J, Tang D, Kang R. A neuroimmune pathway drives bacterial infection. SCIENCE ADVANCES 2025; 11:eadr2226. [PMID: 40315317 PMCID: PMC12047438 DOI: 10.1126/sciadv.adr2226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Pathogen-induced septic death presents a substantial public health challenge, with its neuroimmune mechanisms largely unexplored. Our study investigates neurotransmitter modulation of ACOD1 expression, a regulator of immunometabolism activated by bacterial lipopolysaccharide (LPS). Screening neurotransmitters identifies dopamine as a potent inhibitor of LPS-induced ACOD1 expression in innate immune cells. Mechanistically, DRD2 forms a complex with TLR4, initiating MAPK3-dependent CREB1 phosphorylation and subsequent ACOD1 transcription. Conversely, dopamine disrupts TLR4-MYD88 interaction via DRD2 without affecting the formation of the LPS-induced TLR4-MD2-CD14 complex. Enhanced ACOD1 expression induces CD274/PD-L1 production independently of itaconate, precipitating inflammation-associated immunosuppression in sepsis. Delayed administration of pramipexole, a dopamine agonist, mitigates lethality in bacterial sepsis mouse models. Conversely, the dopamine antagonist aripiprazole exacerbates sepsis mortality. Dysregulation of the dopamine-ACOD1 axis correlates with sepsis severity in patients, indicating a potential therapeutic target for modulating this neuroimmune pathway.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathophysiology, School of Xiangya Basic Medical Science, Central South University, Changsha, Hunan 410083, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410083, China
| | - Jiao Liu
- DAMP Laboratory, Department of Critical Care Medicine, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruoxi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xianzhong Xiao
- Department of Pathophysiology, School of Xiangya Basic Medical Science, Central South University, Changsha, Hunan 410083, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, Hunan 410083, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
4
|
Tsukiyama N, Tanaka Y, Yamane H, Tanimine N, Kuroda S, Tahara H, Ohira M, Ide K, Kobayashi T, Ohdan H. Impacts of high mobility group box protein 1 gene polymorphisms on morbidity and mortality after living donor liver transplantation. Transpl Immunol 2025; 90:102225. [PMID: 40157616 DOI: 10.1016/j.trim.2025.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
We investigated the effect of single-nucleotide polymorphisms (SNPs) in the high mobility group box 1 (HMGB1) gene on morbidity and mortality after liver transplantation (LT). Among 120 LT recipients and their living donors, the genotypes of HMGB1, and the SNPs rs2249825, rs1045411, rs1412125, and rs1360485 were determined. There were no significant associations between these four SNPs and the incidence of rejection or mortality. However, the incidence of early allograft dysfunction (EAD) (n = 43), which presents as functional insufficiency within 1 week of LT, was significantly higher in recipients with the GC + CC allele of rs2249825 (n = 17/34) than in those with the GG allele (n = 26/86) (p = 0.044). Although the impact of donor HMGB1 SNPs on the incidence of EAD was not statistically significant, recipients with the GC + CC allele of rs2249825 who received liver grafts from donors with the same genotype had the highest incidence of EAD (p = 0.052). In contrast, the donor TC + CC allele of rs1412125 was an independent risk factor for the development of sepsis (n = 33) in LT recipient (OR = 3.05, 95 % CI = 1.18-7.87, p = 0.021). Thus, the SNPs of the HMGB1 gene in either recipients or donors were not associated with mortality but influenced the incidence of EAD and sepsis, likely being a predictive biomarker for the risk of serious complications after LT.
Collapse
Affiliation(s)
- Naofumi Tsukiyama
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Hiroaki Yamane
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| |
Collapse
|
5
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and cell specific HMGB1 secretion and subepithelial infiltrate formation in adenovirus keratitis. PLoS Pathog 2025; 21:e1013184. [PMID: 40367285 PMCID: PMC12101768 DOI: 10.1371/journal.ppat.1013184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/23/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Mohammad Mirazul Islam
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rahul Kumar
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emanuel Garcia
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Rama R. Gullapali
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Department of Ophthalmology and Visual Sciences, University of Ophthalmology and Visual Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jaya Rajaiya
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
6
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 2: implementation strategies. FRONTIERS IN TRANSPLANTATION 2025; 4:1575703. [PMID: 40343200 PMCID: PMC12060191 DOI: 10.3389/frtra.2025.1575703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 2 of a bipartite review commences with the delineation of a conceptual model outlining the fundamental role of injury-induced regulated cell death (RCD) in the release of DAMPs that drive innate immune responses involved in early inflammation-related allograft dysfunction and alloimmune-mediated allograft rejection. In relation to this topic, the focus is on the divergent role of donor and recipient dendritic cells (DCs), which become immunogenic in the presence of DAMPs to regulate alloimmunity, but in the absence of DAMPs acquire tolerogenic properties to promote allotolerance. With respect to this scenario, proposals are then made for leveraging RCD and DAMPs as biomarkers during normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) of transplant organs from DCD donors, a strategy poised to significantly enhance current policies for assessing donor organ quality. The focus is then on the ambitious goal to target RCD and DAMPs therapeutically during NRP and NMP, aiming to profoundly suppress subsequently early allograft inflammation and alloimmunity in the recipient. This strategic approach seeks to prevent the activation of intragraft innate immune cells including DCs during donor organ reperfusion in the recipient, which is driven by ischemia/reperfusion injury-induced DAMPs. In this context, available inhibitors of various types of RCD, as well as scavengers and inhibitors of DAMPs are highlighted for their promising therapeutic potential in NRP and NMP settings, building on their proven efficacy in other experimental disease models. If successful, this kind of therapeutic intervention should also be considered for application to organs from DBD donors. Finally, drawing on current global insights into the critical role of RCD and DAMPs in driving innate inflammatory and (allo)immune responses, targeting their inhibition and/or prevention during normothermic perfusion of transplant organs from DCD donors - and potentially DBD donors - holds the transformative potential to not only alleviate transplant dysfunction and suppress allograft rejection but also foster allograft tolerance.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
7
|
Xia Y, Chen K, Wang Y, Jiang Q, Du Y, Luo D, Li X, Li S. Importance of Selenoprotein O in Regulating Hmgb1: A New Direction for Modulating ROS-Dependent NETs Formation to Aggravate the Progression of Acute Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9382-9397. [PMID: 40189811 DOI: 10.1021/acs.jafc.5c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Selenoproteins (Sels) are a class of essential biomolecules that play critical roles in cellular homeostasis. SelO was identified as the preferential source of selenium in the liver, implying its potential as a key regulatory factor in hepatic pathophysiology. Bioinformatics analysis of data from GEO data sets revealed marked downregulation of SelO in liver injury. However, its function and regulatory mechanisms in the liver remain unclear. To address this, we investigated the effect of SelO ablation on acute liver inflammation, focusing on its association with inflammation and neutrophil extracellular traps (NETs) formation. Wild-type (WT) and SelO-knockout mice were used to establish a lipopolysaccharide (LPS) exposure model and a coculture model (AML12 cells and neutrophils) in vitro. Our findings revealed that LPS stimulation significantly reduced SelO expression in the WT mouse liver. SelO deletion promoted the expression of Hmgb1 and marker cytokines for chemokines, NETs generation, pyroptosis and inflammation, and induced an imbalance in redox homeostasis. Immunofluorescence, SYTOX staining, and scanning electron microscopy confirmed that SelO silencing promoted reactive oxygen species (ROS)-dependent NETs formation. Moreover, the coculture model demonstrated that excessive NETs formation exacerbated SelO-ablation-induced hepatic inflammation. Importantly, we confirmed the significant involvement of the Hmgb1/ROS axis in the development of acute liver inflammation in the absence of SelO. Our results demonstrated that SelO ablation promoted neutrophil recruitment and enhanced ROS-dependent NETs formation by increasing Hmgb1 expression levels, thereby aggravating LPS-induced pyroptosis and inflammation. This study not only uncovered the crucial biological functions of SelO, but also shed light on its regulatory implications in the inflammatory process.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Animal Science College, Hebei North University, Zhangjiakou 075000, China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi 445000, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Wang H, Ayala A, Aziz M, Billiar TR, Deutschman CS, Jeyaseelan S, Tang D, Wang P. Value of animal sepsis research in navigating the translational labyrinth. Front Immunol 2025; 16:1593342. [PMID: 40303397 PMCID: PMC12037402 DOI: 10.3389/fimmu.2025.1593342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Affiliation(s)
- Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Alfred Ayala
- Division of Surgical Research, Brown University Health-Rhode Island Hospital, Providence, RI, United States
- Department of Surgery, the Warren Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Monowar Aziz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Clifford S. Deutschman
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Samithamby Jeyaseelan
- Department of Pathobiological Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Ping Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
9
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
10
|
Zu Z, Zhang C, Shi J, Chen K, Tang H, Hu K, Liu E, Ji C, Feng R, Shi X, Zhai W. Single-cell analysis reveals that GFAP + dedifferentiated Schwann cells promote tumor progress in PNI-positive distal cholangiocarcinoma via lactate/HMGB1 axis. Cell Death Dis 2025; 16:215. [PMID: 40148311 PMCID: PMC11950304 DOI: 10.1038/s41419-025-07543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Distal cholangiocarcinoma (dCCA) is a highly lethal malignancy that accounts for approximately 40% of patients with primary cholangiocarcinoma. Remarkable cellular heterogeneity and perineural invasion (PNI) are two typical features of dCCA. Deciphering the complex interplay between neoplastic and neural cells is crucial for understanding the mechanisms propelling PNI-positive dCCA progression. Herein, we conduct single-cell RNA sequencing on 24,715 cells from two pairs of PNI-positive dCCA tumors and adjacent tissues, identifying eight unique cell types. Malignant cells exhibit significant inter- and intra-tumor heterogeneity. We delineate the compositional and functional phenotypes of five Schwann cell (SC) subsets in PNI-positive dCCA. Moreover, our analyses reveal two potential cell subtypes critical to forming PNI: NEAT1+ malignant cells characterized by hypoxic propensity and GFAP+ dedifferentiated SCs featuring hypermetabolism. Further bioinformatics uncover extensive cellular interactions between these two subpopulations. Functional experiments confirm that lactate in the hypoxic tumor microenvironment can induce GFAP-dedifferentiation in SCs, which promotes cancer cell invasion and progression through upregulating HMGB1. Taken together, our findings offer a thorough characterization of the transcriptional profile in PNI-positive dCCA and unveil potential therapeutic targets for dCCA PNI.
Collapse
Affiliation(s)
- Ziyang Zu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongwei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou Engineering Laboratory of Organ Transplantation Technique and Application, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kaizhao Hu
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China
| | - Enchi Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengyang Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaojing Shi
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Shokr MM, Eladawy RM. HMGB1: Different secretion pathways with pivotal role in epilepsy and major depressive disorder. Neuroscience 2025; 570:55-67. [PMID: 39970982 DOI: 10.1016/j.neuroscience.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/10/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
High-mobility group box 1 (HMGB1) protein is a highly prevalent protein that, once it is translocated to an extracellular site, can contribute to the pathogenesis of autoimmune and inflammatory responses, including epilepsy and depression. The conditions needed for release are associated with the production of multiple isoforms, and this translocation may occur in response to both immune cell activation and cell death. HMGB1 has been shown to interact with different mediators, including exportin 1, notch receptors, mitogen-activated protein kinase, STAT, tumor protein 53, and inflammasomes. Furthermore, as a crucial inflammatory mediator, HMGB1 has demonstrated upregulated expression and a higher percentage of translocation from the nucleus to the cytoplasm, acting on downstream receptors such as toll-like receptor 4 and receptor for advanced glycation end products, thereby activating interleukin-1 beta and nuclear factor kappa-B, intensifying inflammatory responses. In this review, we aim to discuss the different molecular interactions for the secretion of HMGB1 along with its pivotal role in epilepsy and major depressive disorder.
Collapse
Affiliation(s)
- Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt.
| | - Reem M Eladawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University - Arish Branch, 45511 Arish, Egypt
| |
Collapse
|
12
|
Kwak MS, Han M, Lee YJ, Choi S, Kim J, Park IH, Shin JS. ROS anchor PAMPs-mediated extracellular HMGB1 self-association and its dimerization enhances pro-inflammatory signaling. Redox Biol 2025; 80:103521. [PMID: 39908862 PMCID: PMC11847140 DOI: 10.1016/j.redox.2025.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Many cellular proteins form homo- or hetero-oligomeric complexes through dimerization, and ligand oligomerization is crucial for inducing receptor oligomerization. Intermolecular disulfide bond formation is critical for protein oligomerization that regulates biological functions. HMGB1 is a nuclear protein that acts as a DAMP when secreted. HMGB1 is redox-sensitive, contains three cysteines: Cys23, Cys45, and Cys106, and its function varies depending on the redox state of the extracellular space. However, the homo-dimerization of extracellular HMGB1 and its immunological significance have not been identified. In this study, we investigated the immunological significance of Cys106-mediated HMGB1 homo-dimerization. In the extracellular environment, LPS and LTA induced HMGB1 self-association leading to H2O2 anchoring Cys106-Cys106-mediated HMGB1 intermolecular disulfide bond formation. Despite treatment with H2O2, LPS, or LTA, HMGB1 dimerization was blocked in presence of Cys106 residue mutation, the ROS scavenger NAC, and the thiol-reducing agent DTT. Inflammatory stimulation induced the secretion of monomeric HMGB1 but not dimeric HMGB1. HMGB1 dimerization was promoted by PAMPs and H2O2 in the extracellular environment. Compared to monomeric HMGB1, Cys106-Cys106-linked dimeric HMGB1 significantly enhanced intracellular NF-κB signaling and cytokine production through increased direct binding affinity for TLR2 and TLR4 and effective HMGB1-mediated delivery of PAMPs to their receptors. Therefore, we have demonstrated that dimeric HMGB1 enhances its effect on pro-inflammatory signaling.
Collapse
Affiliation(s)
- Man Sup Kwak
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Myeonggil Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yong Joon Lee
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Seoyeon Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jeonghwa Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - In Ho Park
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea; Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, South Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, South Korea; Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
13
|
Su E, Song X, Wei L, Xue J, Cheng X, Xie S, Jiang H, Liu M. Endothelial GSDMD underlies LPS-induced systemic vascular injury and lethality. JCI Insight 2025; 10:e182398. [PMID: 39927458 PMCID: PMC11948583 DOI: 10.1172/jci.insight.182398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025] Open
Abstract
Endothelial injury destroys endothelial barrier integrity, triggering organ dysfunction and ultimately resulting in sepsis-related death. Considerable attention has been focused on identifying effective targets for inhibiting damage to endothelial cells to treat endotoxemia-induced septic shock. Global gasdermin D (Gsdmd) deletion reportedly prevents death caused by endotoxemia. However, the role of endothelial GSDMD in endothelial injury and lethality in lipopolysaccharide-induced (LPS-induced) endotoxemia and the underlying regulatory mechanisms are unknown. Here, we show that LPS increases endothelial GSDMD level in aortas and lung microvessels. We demonstrated that endothelial Gsdmd deficiency, but not myeloid cell Gsdmd deletion, protects against endothelial injury and death in mice with endotoxemia or sepsis. In vivo experiments suggested that hepatocyte GSDMD mediated the release of high-mobility group box 1, which subsequently binds to the receptor for advanced glycation end products in endothelial cells to cause systemic vascular injury, ultimately resulting in acute lung injury and lethality in shock driven by endotoxemia or sepsis. Additionally, inhibiting endothelial GSDMD activation via a polypeptide inhibitor alleviated endothelial damage and improved survival in a mouse model of endotoxemia or sepsis. These data suggest that endothelial GSDMD is a viable pharmaceutical target for treating endotoxemia and endotoxemia-induced sepsis.
Collapse
Affiliation(s)
- Enyong Su
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyue Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lili Wei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai, China
| | - Junqiang Xue
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xuelin Cheng
- Department of Health Management Center, Zhongshan Hospital, and
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyao Xie
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ming Liu
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Health Management Center, Zhongshan Hospital, and
- Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Shirey KA, Joseph J, Coughlan L, Nijhuis H, Varley AW, Blanco JCG, Vogel SN. An adenoviral vector encoding an inflammation-inducible antagonist, HMGB1 Box A, as a novel therapeutic approach to inflammatory diseases. mBio 2025; 16:e0338724. [PMID: 39699172 PMCID: PMC11796352 DOI: 10.1128/mbio.03387-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Influenza, as well as other respiratory viruses, can trigger local and systemic inflammation resulting in an overall "cytokine storm" that produces serious outcomes such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). We hypothesized that gene therapy platforms could be useful in these cases if the production of an anti-inflammatory protein reflects the intensity and duration of the inflammatory condition. The recombinant protein would be produced and released only in the presence of the inciting stimulus, avoiding immunosuppression or other unwanted side effects that may occur when treating infectious diseases with anti-inflammatory drugs. To test this hypothesis, we developed AdV.C3-Tat/HIV-Box A, an inflammation-inducible cassette that remains innocuous in the absence of inflammation but releases HMGB1 Box A, an antagonist of high mobility group box 1 (HMGB1), in response to inflammatory stimuli such as lipopolysaccharide (LPS) or influenza virus infection. We report here that this novel inflammation-inducible HMGB1 Box A construct in a non-replicative adenovirus (AdV) vector mitigates lung and systemic inflammation therapeutically in response to influenza infection. We anticipate that this strategy will apply to the treatment of multiple diseases in which HMGB1-mediated signaling is a central driver of inflammation.IMPORTANCEMany inflammatory diseases are mediated by the action of a host-derived protein, HMGB1, on Toll-like receptor 4 (TLR4) to elicit an inflammatory response. We have engineered a non-replicative AdV vector that produces HMGB1 Box A, an antagonist of HMGB1-induced inflammation, under the control of an endogenous complement component C3 (C3) promoter sequence, that is inducible by LPS and influenza in vitro and ex vivo in macrophages (Mϕ) and protects mice and cotton rats therapeutically against infection with mouse-adapted and human non-adapted influenza strains, respectively, in vivo. We anticipate that this novel strategy will apply to the treatment of multiple infectious and non-infectious diseases in which HMGB1-mediated TLR4 signaling is a central driver of inflammation.
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - John Joseph
- Sigmovir Biosystems Inc., Rockville, Maryland, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Haye Nijhuis
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands
| | | | | | - Stefanie N. Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Chen Z, Ruan F, Wu D, Yu X, Jiang Y, Bao W, Wen H, Hu J, Bi H, Chen L, Le K. Quercetin alleviates neonatal hypoxic-ischaemic brain injury by rebalancing microglial M1/M2 polarization through silent information regulator 1/ high mobility group box-1 signalling. Inflammopharmacology 2025; 33:865-883. [PMID: 39565473 DOI: 10.1007/s10787-024-01599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/02/2024] [Indexed: 11/21/2024]
Abstract
Neonatal hypoxic-ischaemic encephalopathy (HIE) remains one of the major causes of neonatal death and long-term neurological disability. Due to its complex pathogenesis, there are still many challenges in its treatment. In our previous studies, we found that quercetin can alleviate neurological dysfunction after hypoxic-ischaemic brain injury (HIBI) in neonatal mice. As demonstrated through in vitro experiments, quercetin can inhibit the activation of the TLR4/MyD88/NF-κB signalling pathway and the inflammatory response in the microglial cell line BV2 after oxygen-glucose deprivation. However, the in-depth mechanism still needs to be further elucidated. In the present study, 7 day-old neonatal ICR mice or BV2 cells were treated with quercetin with or without the SIRT1 inhibitor EX527 via neurobehavioural, histopathological and molecular methods. In vivo experiments have shown that quercetin can significantly improve the performance of HI mice in behavioural tests, such as the Morris water maze, rotarod test and pole climbing test, and reduce HI insult-induced structural brain damage, cell apoptosis and hippocampal neuron loss. Quercetin also inhibited the immunofluorescence intensity of the microglial M1 marker CD16 + 32 and significantly downregulated the expression of the M1-related proteins iNOS, IL-1β and TNF-α. Moreover, quercetin increased the immunofluorescence intensity of the microglial M2 marker CD206 and significantly increased the expression of the M2-related proteins Arg-1 and IL-10. In addition, quercetin limits the nucleocytoplasmic translocation and release of microglial HMGB1 and further suppresses the activation of the downstream TLR4/MyD88/NF-κB signalling pathway. The above effects of quercetin are partially weakened by pretreatment with EX527. Similar results were found in in vitro experiments, and the mechanism further revealed that the rebalancing effect of quercetin on microglial polarization is achieved through the SIRT1-mediated reduction in HMGB1 acetylation levels. This study provides new and complementary insights into the neuroprotective effects of quercetin and a new direction for the treatment of neonatal HIE.
Collapse
Affiliation(s)
- Zhaoyan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Fei Ruan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Di Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoping Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Yaqing Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Wei Bao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Haicheng Wen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Jing Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Haidi Bi
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Children's Hospital, No.122 Yangming Road, Nanchang, 330006, Jiangxi Province, China
| | - Kai Le
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17 Yongwaizheng Street, Nanchang, 330006, Jiangxi Province, China.
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hong Kong S.A.R., Hong Kong, China.
| |
Collapse
|
16
|
Ding X, Jin S, Tian W, Zhang Y, Xu L, Zhang T, Chen Z, Niu F, Li Q. ROLE OF CASPASE-1/CASPASE-11-HMGB1-RAGE/TLR4 SIGNALING IN THE EXACERBATION OF EXTRAPULMONARY SEPSIS-INDUCED LUNG INJURY BY MECHANICAL VENTILATION. Shock 2025; 63:299-311. [PMID: 39228020 DOI: 10.1097/shk.0000000000002471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
ABSTRACT Background: Mechanical ventilation (MV) is a clinically important measure for respiratory support in critically ill patients. Although moderate tidal volume MV does not cause lung injury, it can further exacerbate lung injury in a pathological state such as sepsis. This pathological process is known as the "two-hit" theory, whereby an initial lung injury (e.g., infection, trauma, or sepsis) triggers an inflammatory response that activates immune cells, presenting the lung tissue in a fragile state and rendering it more susceptible to subsequent injury. The second hit occurs when MV is applied to lung tissue in a fragile state, and it is noteworthy that this MV is harmless to healthy lung tissue, further aggravating preexisting lung injury through unknown mechanisms. This interaction between initial injury and subsequent MV develops a malignant cycle significantly exacerbating lung injury and severely hampering patient prognosis. The two-hit theory is critical to understanding the complicated mechanisms of ventilator-associated lung injury and facilitates the subsequent development of targeted therapeutic strategies. Methods and Results: The cecum ligation and perforation mice model was used to mimic clinical sepsis patients. After 12 h, the mice were mechanically ventilated for 2 to 6 h. MV by itself did not lead to HMGB1 release, but significantly strengthened HMGB1 in plasma and cytoplasm of lung tissue in septic mice. Plasma and lung tissue activation of cytokines and chemokines, mitogen-activated protein kinase signaling pathway, neutrophil recruitment, and acute lung injury were progressively decreased in LysM HMGB1 -/- (Hmgb1 deletion in myeloid cells) and iHMGB1 -/- mice (inducible HMGB1 -/- mouse strain where the Hmgb1 gene was globally deleted after tamoxifen treatment). Compared with C57BL/6 mice, although EC-HMGB1 -/- (Hmgb1 deletion in endothelial cells) mice did not have lower levels of inflammation, neutrophil recruitment and lung injury were reduced. Compared with LysM HMGB1 -/- mice, EC-HMGB1 -/- mice had higher levels of inflammation but significantly lower neutrophil recruitment and lung injury. Overall, iHMGB1 -/- mice had the lowest levels of all the above indicators. The level of inflammation, neutrophil recruitment, and the degree of lung injury were decreased in RAGE -/- mice, and even the above indices were further decreased in TLR4/RAGE -/- mice. Levels of inflammation and neutrophil recruitment were decreased in caspase-11 -/- and caspase-1/11 -/- mice, but there was no statistical difference between these two gene knockout mice. Conclusions: These data show for the first time that the caspase-1/caspase-11-HMGB1-TLR4/RAGE signaling pathway plays a key role in mice model of sepsis-induced lung injury exacerbated by MV. Different species of HMGB1 knockout mice have different lung-protective mechanisms in the two-hit model, and location is the key to function. Specifically, LysM HMGB1 -/- mice due to the deletion of HMGB1 in myeloid cells resulted in a pulmonary-protective mechanism that was associated with a downregulation of the inflammatory response. EC-HMGB1 -/- mice are deficient in HMGB1 owing to endothelial cells, resulting in a distinct pulmonary-protective mechanism independent of the inflammatory response and more relevant to the improvement of alveolar-capillary permeability. iHMGB1 -/- mice, which are systemically HMGB1-deficient, share both of these lung-protective mechanisms.
Collapse
Affiliation(s)
| | | | - Weitian Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Tong Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Fangfang Niu
- Department of Anesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
17
|
Krishna AA, Abhirami BL, Kumaran A. Pain in rheumatoid arthritis: Emerging role of high mobility group box 1 protein-HMGB1. Life Sci 2025; 362:123361. [PMID: 39761742 DOI: 10.1016/j.lfs.2024.123361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease where pain, driven by both inflammatory and non-inflammatory processes, is a major concern for patients. This pain can persist even after joint inflammation subsides. High mobility group box-1 (HMGB1) is a non-histone-DNA binding protein located in the nucleus that plays a key role in processes such as DNA transcription, recombination, and replication. HMGB1 can be released into the extracellular space through both passive and active mechanisms. Extracellular HMGB1 contributes to synovial inflammation, bone degradation, and the production of cytokines in RA by binding to toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE). It also forms complexes with molecules like lipopolysaccharide (LPS) and IL-1β, amplifying inflammatory responses. Due to its central role in these processes, HMGB1 is considered a promising therapeutic target in RA. It also acts as a nociceptive molecule in mediating pain in diseases such as diabetes and bone cancer. In this review, we explore how HMGB1 contributes to chronic pain in RA, supported by both in vitro and in vivo models. We begin by providing an overview of the mechanisms of pain in RA, the structure of HMGB1, its release mechanisms, and the therapeutic potential of targeting HMGB1 in RA. Following this, we highlight its role in peripheral and central pain sensitization through direct activation of the TLR4/MAPK/NF-κB pathway, as well as indirectly through downstream mediators, underscoring its potential as a target for managing RA pain.
Collapse
Affiliation(s)
- Anithakumari Aswathy Krishna
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Beena Levakumar Abhirami
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alaganandam Kumaran
- Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Pei X, Ma S, Hong L, Zuo Z, Xu G, Chen C, Shen Y, Liu D, Li C, Li D. Molecular insights of T-2 toxin exposure-induced neurotoxicity and the neuroprotective effect of dimethyl fumarate. Food Chem Toxicol 2025; 196:115166. [PMID: 39617286 DOI: 10.1016/j.fct.2024.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
T-2 toxin, a potent environmental pollutant, has been proved to stimulate neuroinflammation, while the connection between T-2 toxin and pyroptosis remain elusive. Dimethyl fumarate (DMF), recently identified as a neuroprotectant and pyroptosis inhibitor, has potential therapeutic applications that are underexplored. Based on present study in vitro and vivo, we demonstrated that T-2 toxin induced the activation of NLRP3-Caspase-1 inflammasome in hippocampal neurons. In addition to proinflammatory mediator overexpression, gasdermin D (GSDMD)-dependently pyroptosis in the mouse hippocampal neuron cell line (HT22) treated by T-2 toxin was determined in our study. Moreover, the palliative effect of knockdown sequence of high mobility group B1 protein (HMGB1) provided more details for T-2 toxin-initiated pyroptosis. Importantly, we confirmed that DMF, as a novel inhibitor of GSDMD, could alleviate pyroptosis induced by T-2 toxin in an GSDMD targeting manner. In summary, our studies exposed the evidence that T-2 toxin could induce NLRP3 inflammasome activation and hippocampal neuronal pyroptosis. More notably, DMF was turn out to be a critical executioner for attenuating GSDMD-mediated pyroptosis. Our data found a new function of DMF and suggested a novel therapy strategy against mycotoxin-triggered neuronal inflammation, which leads to varieties of neurological diseases.
Collapse
Affiliation(s)
- Xingyao Pei
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Shuhui Ma
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Open Fund of Key Laboratory of Smart Breeding (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
19
|
Matsushige T, Inoue H, Hoshide M, Kohno F, Kobayashi H, Ichihara K, Ichiyama T, Hasegawa S. Serial cerebrospinal fluid concentrations of high mobility group box 1 in bacterial meningitis: a retrospective cohort study. BMC Infect Dis 2025; 25:107. [PMID: 39849347 PMCID: PMC11756128 DOI: 10.1186/s12879-025-10476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Bacterial meningitis (BM) is a life-threatening central nervous system infection with potential for severe neurological sequelae. High mobility group box 1 (HMGB1) is known as a late inflammatory mediator associated with lethal pathology. This study aims to investigate the serial cerebrospinal fluid (CSF) concentrations of HMGB1 in children with BM and its relationship to neurological prognosis. METHODS This retrospective cohort study included children with BM, aseptic meningitis (AM), and controls. CSF samples were collected serially from patients with BM and once from those with AM and controls. HMGB1 and interleukin-6 (IL-6) concentrations were measured using ELISA and bead-based multiplex assays, respectively. Statistical analyses included Mann-Whitney U tests, Kruskal-Wallis tests, and three-way ANOVA to evaluate differences among groups and over time. RESULTS HMGB1 levels in the CSF of children with BM were significantly higher than in those with AM and controls (p < 0.001). Inflammatory cytokine IL-6 levels decreased after treatment; however, HMGB1 levels remained elevated in half of the BM patients. Notably, a patient with neurological sequelae exhibited a delayed elevation of HMGB1 until the latest time points. Three-way ANOVA revealed significant differences in the time course of IL-6 and HMGB1 among individuals (p = 0.018). CONCLUSIONS Elevated CSF HMGB1 levels persist in some children with BM even after treatment, particularly in those with poor neurological outcomes. These findings suggest that delayed elevation of HMGB1 may contribute to severe inflammation and poor prognosis in BM. Further research into HMGB1 as a potential therapeutic target in BM is warranted.
Collapse
Affiliation(s)
- Takeshi Matsushige
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Hirofumi Inoue
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Madoka Hoshide
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumitaka Kohno
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hikaru Kobayashi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kiyoshi Ichihara
- Department of Clinical Laboratory Sciences, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takashi Ichiyama
- Division of Pediatrics, Tsudumigaura Medical Center for Children With Disabilities, 752-4 Kume, Shunan, Yamaguchi, 745-0801, Japan
| | - Shunji Hasegawa
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
20
|
Cheng J, Tian X, Wu C, Wang J, Liu H, Cheng S, Sun H. MiR- 146b-5p inhibits Candida albicans-induced inflammatory response through targeting HMGB1 in mouse primary peritoneal macrophages. Heliyon 2025; 11:e41464. [PMID: 39844980 PMCID: PMC11751530 DOI: 10.1016/j.heliyon.2024.e41464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Background Candida albicans (C. albicans) is one of the most common pathogens associated with deep fungal infection, which represents a serious threat to human health. Although high mobility group box 1 (HMGB1) plays a key role in C. albicans infection, its mechanism is unclear. We aimed to explore the regulation of small-molecule non-coding RNA (miRNA) for HMGB1 in C. albicans infection. Methods Mouse primary peritoneal macrophages (MPMs) were isolated successfully. The optimum conditions for C. albicans infection were selected by Western blot and ELISA. The miRNA differential expression profiles of C. albicans infection were screened and verified by 6 miRNA gene chips and qRT-PCR. The direct regulation of the target gene HMGB1 by mmu-miR-146b-5p was confirmed through a dual-luciferase assay. The levels of mmu-miR-146b-5p, HMGB1, inflammatory mediators, p-IKK, IKK, p-IκBα, IκBα and NF-κB p65 were tested by qRT-PCR, Western blot, and ELISA. The nuclear and cytoplasm translocation of HMGB1 and NF-κB p65 were detected by Western blot and laser confocal microscopy. After siHMGB1 transfection, the expression levels of HMGB1, inflammatory mediators, p-IKK, IKK, p-IκBα, IκBα and NF-κB p65 were assessed using Western blot, qRT-PCR and ELISA. Results In our study, MPMs were successfully extracted and infected with C. albicans at optimum conditions of 1.5 × 107 CFU/mL for 36 h. Through miRNA gene chips analysis, 40 differential genes were screened. mmu-miR-146b-5p could directly and negatively regulate the expression and translocation of HMGB1, inhibit the expression of inflammatory mediators, and might participate in the NF-κB signaling pathway in a HMGB1-dependent manner under C. albicans infection. Conclusion mmu-miR-146b-5p may play an anti-inflammatory role in treating C. albicans infection and provide a novel target for it.
Collapse
Affiliation(s)
- Jing Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Health Care, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Xiaoxing Tian
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Chuanxin Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huiling Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sha Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Zhu L, Zheng Q, Liu X, Ding H, Ma M, Bao J, Cai Y, Cao C. HMGB1 lactylation drives neutrophil extracellular trap formation in lactate-induced acute kidney injury. Front Immunol 2025; 15:1475543. [PMID: 39850900 PMCID: PMC11754054 DOI: 10.3389/fimmu.2024.1475543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Rationale Acute kidney injury (AKI) is a clinical syndrome associated with a multitude of conditions. Although renal replacement therapy (RRT) remains the cornerstone of treatment for advanced AKI, its implementation can potentially pose risks and may not be readily accessible across all healthcare settings and regions. Elevated lactate levels are implicated in sepsis-induced AKI; however, it remains unclear whether increased lactate directly induces AKI or elucidates the underlying mechanisms. Methods For human, the measurement of lactate in arterial blood gas is performed using the direct determination of L-lactate through an electrode oxidation method by a blood gas analyzer. For mice, enzyme-linked immunosorbent assay (ELISA) kits were employed to quantify the concentrations of lactate and AKI biomarkers in blood and cell supernatant. The mouse model of AKI was performed with a single intraperitoneal (i.p.) administration of lactate (30 mg/kg) and low-dose LPS (2 mg/kg) for 24 h. Proteomic analysis was conducted to identify lactylated proteins in kidney tissues. Techniques such as, immunoprecipitation, western blotting and immunofluorescence were used to evaluate the levels of HMGB1 lactylation, neutrophil extracellular traps (NETs)and to assess related molecular signaling pathways. Main results Our findings indicate that lactate serves as an independent predictor of AKI in patients with acute decompensated heart failure (ADHF). We observed that co-administration of lactate with low-dose lipopolysaccharide (LPS) resulted in lactate overproduction, which subsequently elevated serum levels of creatinine (Cre) and blood urea nitrogen (BUN). Furthermore, the combined application of lactate and low-dose LPS was shown to provoke HMGB1 lactylation within renal tissues. Notably, pretreatment with HMGB1 small interfering RNA (siRNA) effectively diminished lactate-mediated HMGB1 lactylation and alleviated the severity of AKI. Additionally, lactate accumulation was found to enhance the expression levels of NETs in the bloodstream, with circulating NETs levels positively correlating with HMGB1 lactylation. Importantly, pre-administration of HMGB1 inhibitors (glycyrrhizin) or lactate dehydrogenase A (LDH-A) inhibitors (oxamate) reversed the upregulation of NETs induced by lactate and low-dose LPS in both the blood and polymorphonuclear neutrophils (PMNs) cell supernatant, thereby ameliorating AKI associated with lactate accumulation. Conclusions These findings illuminate the role of lactate-mediated HMGB1 lactylation in inducing AKI in mice through the activation of the HMGB1-NETs signaling pathway.
Collapse
Affiliation(s)
- Li Zhu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Zheng
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaodong Liu
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- The Second People’s Hospital of Lianyungang, Affiliated to Kangda College of Nanjing Medical University, Lianyungang, Jiangsu, China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Bao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yawen Cai
- Department of Nephrology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Saha A, Islam MM, Kumar R, Ismail AM, Garcia E, Gullapali RR, Chodosh J, Rajaiya J. Virus and Cell Specific HMGB1 Secretion and Subepithelial Infiltrate Formation in Adenovirus Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631509. [PMID: 39829903 PMCID: PMC11741304 DOI: 10.1101/2025.01.07.631509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A highly contagious infection caused by human adenovirus species D (HAdV-D), epidemic keratoconjunctivitis (EKC) results in corneal subepithelial infiltration (SEI) by leukocytes, the hallmark of the infection. To date, the pathogenesis of corneal SEI formation in EKC is unresolved. HMGB1 (high-mobility group box 1 protein) is an alarmin expressed in response to infection and a marker of sepsis. Earlier studies using a different adenovirus species, HAdV-C, showed retention of HMGB1 in the infected cell nucleus by adenovirus protein VII, enabling immune evasion. Here, using HAdV-D we show cell-specific HMGB1 secretion by infected cells, and provide an HAdV-D specific mechanism for SEI formation in EKC. HMGB1 was secreted only upon infection of human corneal epithelial cells, not from other cell types, and only upon infection by HAdV-D types associated with EKC. Acetylated HMGB1 translocation from the nucleus to the cytoplasm, then to the extracellular milieu, was tightly controlled by CRM1 and LAMP1, respectively. Primary stromal cells when stimulated by rHMGB1 expressed proinflammatory chemokines. In a novel 3D culture system in tune with the architecture of the cornea, HMGB1 released by infected corneal epithelial cells induced leukocytic infiltrates either directly and/or indirectly via stimulated stromal cells, which together explains SEI formation in EKC.
Collapse
|
23
|
Kim H, Kim BJ, Koh S, Cho HJ, Jin X, Kim BG, Choi JY. High mobility group box 1 in the central nervous system: regeneration hidden beneath inflammation. Neural Regen Res 2025; 20:107-115. [PMID: 38767480 PMCID: PMC11246138 DOI: 10.4103/nrr.nrr-d-23-01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 03/04/2024] [Indexed: 05/22/2024] Open
Abstract
High-mobility group box 1 was first discovered in the calf thymus as a DNA-binding nuclear protein and has been widely studied in diverse fields, including neurology and neuroscience. High-mobility group box 1 in the extracellular space functions as a pro-inflammatory damage-associated molecular pattern, which has been proven to play an important role in a wide variety of central nervous system disorders such as ischemic stroke, Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple sclerosis, epilepsy, and traumatic brain injury. Several drugs that inhibit high-mobility group box 1 as a damage-associated molecular pattern, such as glycyrrhizin, ethyl pyruvate, and neutralizing anti-high-mobility group box 1 antibodies, are commonly used to target high-mobility group box 1 activity in central nervous system disorders. Although it is commonly known for its detrimental inflammatory effect, high-mobility group box 1 has also been shown to have beneficial pro-regenerative roles in central nervous system disorders. In this narrative review, we provide a brief summary of the history of high-mobility group box 1 research and its characterization as a damage-associated molecular pattern, its downstream receptors, and intracellular signaling pathways, how high-mobility group box 1 exerts the repair-favoring roles in general and in the central nervous system, and clues on how to differentiate the pro-regenerative from the pro-inflammatory role. Research targeting high-mobility group box 1 in the central nervous system may benefit from differentiating between the two functions rather than overall suppression of high-mobility group box 1.
Collapse
Affiliation(s)
- Hanki Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Bum Jun Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Seungyon Koh
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyo Jin Cho
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Xuelian Jin
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Geriatrics, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu Province, China
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jun Young Choi
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
24
|
Shirey KA, Romerio A, Shaik MM, Leake DS, Palmer C, Skupinska N, Paton J, Pirianov G, Blanco JCG, Vogel SN, Peri F. Preclinical development of the TLR4 antagonist FP12 as a drug lead targeting the HMGB1/MD-2/TLR4 axis in lethal influenza infection. Innate Immun 2025; 31:17534259241313201. [PMID: 40033742 PMCID: PMC11877469 DOI: 10.1177/17534259241313201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Acute Lung Injuries (ALI) are a severe consequence of influenza-induced cytokine storm that can cause respiratory failure and death. It has been demonstrated that Toll-like Receptor 4 (TLR4) is involved in cytokine storm and that TLR4-/- mice are protected against ALI. Therefore, TLR4 is a prime target for protection against ALI. FP12 is a known TLR4 antagonist that reduces TLR4-dependent immune activation and it is a promising lead compound for the treatment of innate immunity related pathologies. OBJECTIVES We present here the preclinical development of FP12 as an anti-inflammatory lead compound acting on influenza-induced ALI. METHODS In vitro: We pre-treated THP-1 cells with FP12 (10 μM) for 0.5 h, then exposed to LPS (100 ng/ml) for 0 to 16 h. In some experiments, cells were simultaneously incubated with FP12 and LPS, or FP12 was added 30 min after LPS. Cytokine levels were measured by Western blot and ELISA assays. In vivo: WT C57BL/6J mice were infected with mouse-adapted influenza virus (PR8). Two days after infection, mice received either vehicle, FP7 (200 µg/mouse), or FP12 (200 µg/mouse) once daily (Day 2 to Day 6). Mice were monitored daily for survival for 14 days. Data were collected through histological staining, qRT-PCR, and ELISA assay. RESULTS FP12 treatment inhibited both LPS- and HMGB1-induced TLR4 intracellular pathways (MyD88 and TRIF) leading to significantly reduced levels of a variety of proinflammatory cytokines including Type I interferon (IFN-β), highlighting its effectiveness in controlling proinflammatory protein production and reducing inflammation. FP12 protected mice therapeutically from influenza virus-induced lethality and reduced both cytokine gene expression and High Mobility Group Box 1 (HMGB1) levels in the lungs as well as ALI. CONCLUSION FP12 can antagonize TLR4 activation in vitro and protects mice from severe influenza infection, most likely by reducing the TLR4-dependent cytokine storm mediated by danger-associated molecular patterns (DAMPs).
Collapse
Affiliation(s)
- Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Mohammed Monsoor Shaik
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - David S Leake
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading, Berkshire, UK
| | - Charys Palmer
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Jules Paton
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Grisha Pirianov
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
25
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Shen P, Zhang L, Jiang X, Yu B, Zhang J. Targeting HMGB1 and Its Interaction with Receptors: Challenges and Future Directions. J Med Chem 2024; 67:21671-21694. [PMID: 39648929 DOI: 10.1021/acs.jmedchem.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
High mobility group box 1 (HMGB1) is a nonhistone chromatin protein predominantly located in the nucleus. However, under pathological conditions, HMGB1 can translocate from the nucleus to the cytoplasm and subsequently be released into the extracellular space through both active secretion and passive release mechanisms. The distinct cellular locations of HMGB1 facilitate its interaction with various endogenous and exogenous factors, allowing it to perform diverse functions across a range of diseases. This Perspective provides a comprehensive overview of the structure, release mechanisms, and multifaceted roles of HMGB1 in disease contexts. Furthermore, it introduces the development of both small molecule and macromolecule inhibitors targeting HMGB1 and its interaction with receptors. A detailed analysis of the predicted pockets is also presented, aiming to establish a foundation for the future design and development of HMGB1 inhibitors.
Collapse
Affiliation(s)
- Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Libang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xuewa Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
27
|
Rashid N, Hu Z, Jacob A, Wang P. Extracellular Cold-Inducible RNA-Binding Protein and Hemorrhagic Shock: Mechanisms and Therapeutics. Biomedicines 2024; 13:12. [PMID: 39857596 PMCID: PMC11759867 DOI: 10.3390/biomedicines13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Hemorrhagic shock is a type of hypovolemic shock and a significant cause of trauma-related death worldwide. The innate immune system has been implicated as a key mediator in developing severe complications after shock. Inflammation from the innate immune system begins at the time of initial insult; however, its activation is exaggerated, resulting in early and late-stage complications. Hypoxia and hypoperfusion lead to the release of molecules that act as danger signals known as damage-associated molecular patterns (DAMPs). DAMPs continue to circulate after shock, resulting in excess inflammation and tissue damage. We recently discovered that cold-inducible RNA-binding protein released into the extracellular space acts as a DAMP. During hemorrhagic shock, hypoperfusion leads to cell necrosis and the release of CIRP into circulation, triggering both systemic inflammation and local tissue damage. In this review, we discuss extracellular cold-inducible RNA-binding protein (eCIRP)'s role in sterile inflammation, as well as its various mechanisms of action. We also share our more newly developed anti-eCIRP agents with the eventual goal of producing drug therapies to mitigate organ damage, reduce mortality, and improve patient outcomes related to hemorrhagic shock. Finally, we suggest that future preclinical studies are required to develop the listed therapeutics for hemorrhagic shock and related conditions. In addition, we emphasize on the challenges to the translational phase and caution that the therapy should allow the immune system to continue to function well against secondary infections during hospitalization.
Collapse
Affiliation(s)
- Naureen Rashid
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (N.R.); (Z.H.)
| | - Zhijian Hu
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (N.R.); (Z.H.)
| | - Asha Jacob
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (N.R.); (Z.H.)
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA; (N.R.); (Z.H.)
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, USA
| |
Collapse
|
28
|
Li J, Lou L, Chen W, Qiang X, Zhu C, Wang H. Connexin 43 and Pannexin 1 hemichannels as endogenous regulators of innate immunity in sepsis. Front Immunol 2024; 15:1523306. [PMID: 39763679 PMCID: PMC11701031 DOI: 10.3389/fimmu.2024.1523306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 02/02/2025] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1. Mimetic peptides targeting specific regions of Cx43 and Panx1 can distinctly modulate hemichannel activity in vitro, and diversely impact sepsis-induced lethality in vivo. Along with extensive supporting evidence from others, we now propose that hemichannel molecules play critical roles as endogenous regulators of innate immunity in sepsis.
Collapse
Affiliation(s)
- Jianhua Li
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Li Lou
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Weiqiang Chen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Xiaoling Qiang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Cassie Zhu
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Haichao Wang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
29
|
Ge S, Wu S, Yin Q, Tan M, Wang S, Yang Y, Chen Z, Xu L, Zhang H, Meng C, Xia Y, Asakawa N, Wei W, Gong K, Pan X. Ecliptasaponin A protects heart against acute ischemia-induced myocardial injury by inhibition of the HMGB1/TLR4/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118612. [PMID: 39047883 DOI: 10.1016/j.jep.2024.118612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta prostrata (Linn.) is a traditional medicinal Chinese herb that displays multiple biological activities, such as encompassing immunomodulatory, anti-inflammatory, anti-tumor, liver-protective, antioxidant, and lipid-lowering effects. Ecliptasaponin A (ESA), a pentacyclic triterpenoid saponin isolated from Eclipta prostrata (Linn.), has been demonstrated to exert superior anti-inflammatory activity against many inflammatory disorders. AIM OF THE STUDY Inflammation plays a critical role in acute myocardial infarction (AMI). This study aims to explore the treatment effects of ESA in AMI, as well as the underlying mechanism. METHODS An AMI mouse model was established in mice via left anterior descending coronary artery (LAD) ligation. After surgery, ESA was injected at doses of 0.5, 1.25, and 2.5 mg/kg, respectively. Myocardial infarction size, cardiomyocyte apoptosis and cardiac echocardiography were studied. The potential mechanism of action of ESA was investigated by RNA-seq, Western blot, surface plasmon resonance (SPR), molecular docking, and immunofluorescence staining. RESULTS ESA treatment not only significantly reduced myocardial infarct size, decreased myocardial cell apoptosis, and inhibited inflammatory cell infiltration, but also facilitated to improve cardiac function. RNA-seq and Western blot analysis proved that ESA treatment-induced differential expression genes mainly enriched in HMGB1/TLR4/NF-κB pathway. Consistently, ESA treatment resulted into the down-regulation of IL-1β, IL-6, and TNF-α levels after AMI. Furthermore, SPR and molecular docking results showed that ESA could bind directly to HMGB1, thereby impeding the activation of the downstream TLR4/NF-κB pathway. The immunofluorescence staining and Western blot results at the cellular level also demonstrated that ESA inhibited the activation of the HMGB1/TLR4/NF-κB pathway in H9C2 cells. CONCLUSION Our study was the first to demonstrate a cardiac protective role of ESA in AMI. Mechanism study indicated that the treatment effects of ESA are mainly attributed to its anti-inflammatory activity that was mediated by the HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Sumin Ge
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sihua Wu
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qin Yin
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Meng Tan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Sichuan Wang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yonghao Yang
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zixuan Chen
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Lei Xu
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Hui Zhang
- School of Medicine, Yangzhou University, Yangzhou 225000, Jiangsu, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Naoki Asakawa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan
| | - Wenping Wei
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Kaizheng Gong
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| | - Xin Pan
- Department of Cardiology, Department of Pediatrics, Central Laboratory, Cutting-edge Innovation Key Lab of Major CVD in Yangzhou, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
30
|
Li W, Peng Y, Liu J, Wu T, Qiang X, Zhao Q, He D. Discovery and synthesis of novel glyrrhizin-analogs containing furanoylpiperazine and the activity against myocardial injury in sepsis. Bioorg Chem 2024; 153:107846. [PMID: 39341082 DOI: 10.1016/j.bioorg.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The signaling pathway mediated by high mobility group protein B1 (HMGB1) plays a key role in myocardial injury during sepsis. Glyrrhizin (GL) is a natural product that inhibits HMGB1 biological activities through forming GL-HMGB1 complex; the research shows its aglycone (GA) is the main pharmacophore binding to HMGB1, while the glycosyl mainly altering its pharmacokinetic properties and enhances the stability of the complex. GL is often metabolized to GA in the gastrointestinal tract, which has a lower efficacy in the treatment of HMGB1-mediated diseases. To obtain the GL analogs with higher activity and better pharmacokinetic properties, 24 GL analogs were synthesized by simplification the glycosyl of GL. Among all the compounds, compound 11 with furanoylpiperazine was screened. The pharmacokinetics experiments showed that compound 11 is converted to 11a in vivo, and 11 serves as its prodrug. Compound 11a displayed a lower cytotoxicity to RAW264.7 cells and three types of cardiomyocyte lines, with IC50 > 800 µM. In the anti-inflammatory assay, 11a not only strongly inhibited NO production (IC50 5.73 µM), but also down-regulated the levels of HMGB1, IL-1β and TNF-α in a dose-dependent manner; in the anti-oxidative stress assay, compound 11a reduced the level of ROS and increased the MMP in H9c2 cells. More importantly, in the myocardial injury model of septic mice, compound 11a not only alleviated the symptom of myocardial injury by reducing inflammatory infiltration and oxidative stress, but also improved the myocardial blood supply by shrinking the inner diameter of the left ventricle and increasing the ejection fraction (EF) more dramatically (155.8 %); meanwhile, compound 11a adjusted myocardial enzymes in serum of septic mice. In addition, in molecular docking experiments, compound 11a showed stronger HMGB1 binding ability than GL. In summary, compound 11 is a prodrug, which can be converted to 11a in vivo. And compound 11a has a good activity against septic myocardial injury, as well as improving the myocardial blood supply function. This suggests compound 11 is a potential drug candidate for the treatment of septic myocardial injury and deserves further investigate.
Collapse
Affiliation(s)
- Wei Li
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Yijie Peng
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Jianrong Liu
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Tianbo Wu
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Xin Qiang
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| | - Quanyi Zhao
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China.
| | - Dian He
- Institute of Medicinal Chemistry, School of Pharmacy of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
31
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Xu L, Ge S. An Amino Acids and Dipeptide Injection Inhibits the TNF-α/HMGB1 Inflammatory Signaling Pathway to Reduce Pyroptosis and M1 Microglial Polarization in POCD Mice: the Gut to the Brain. Mol Neurobiol 2024; 61:10097-10114. [PMID: 38700653 DOI: 10.1007/s12035-024-04209-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/27/2024] [Indexed: 11/24/2024]
Abstract
Peripheral surgery-induced neural inflammation is a key pathogenic mechanism of postoperative cognitive dysfunction (POCD). However, the mechanism underlying neuroinflammation and associated neural injury remains elusive. Surgery itself can lead to gut damage, and the occurrence of POCD is accompanied by high levels of TNF-α in the serum and blood‒brain barrier (BBB) damage. Reductions in stress, inflammation and protein loss have been emphasized as strategies for enhanced recovery after surgery (ERAS). We designed an amino acids and dipeptide (AAD) formula for injection that could provide intestinal protection during surgery. Through the intraoperative infusion of AAD based on the ERAS concept, we aimed to explore the effect of AAD injection on POCD and its underlying mechanism from the gut to the brain. Here, we observed that AAD injection ameliorated neural injury in POCD, in addition to restoring the function of the intestinal barrier and BBB. We also found that TNF-α levels decreased in the ileum, blood and hippocampus. Intestinal barrier protectors and TNF-α inhibitors also alleviated neural damage. AAD injection treatment decreased HMGB1 production, pyroptosis, and M1 microglial polarization and increased M2 polarization. In vitro, AAD injection protected the impaired gut barrier and decreased TNF-α production, alleviating damage to the BBB by stimulating cytokine transport in the body. HMGB1 and Caspase-1 inhibitors decreased pyroptosis and M1 microglial polarization and increased M2 polarization to protect TNF-α-stimulated microglia in vitro. Collectively, these findings suggest that the gut barrier-TNF-α-BBB-HMGB1-Caspase-1 inflammasome-pyroptosis-M1 microglia pathway is a novel mechanism of POCD related to the gut-brain axis and that intraoperative AAD infusion is a potential treatment for POCD.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
32
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
33
|
Vitali R, Novelli F, Palone F, Cucchiara S, Stronati L, Pioli C. PARP1 inactivation increases regulatory T / Th17 cell proportion in intestinal inflammation. Role of HMGB1. Immunol Lett 2024; 270:106912. [PMID: 39237041 DOI: 10.1016/j.imlet.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic relapsing disorders with increasing prevalence. Knowledge gaps still limit the possibility to develop more specific and effective therapies. Using a dextran sodium sulfate colitis mouse model, we found that inflammation increased the total number and altered the frequencies of leukocytes within colon mesenteric lymph nodes (cMLNs). Although the inflammation reduced the frequency of regulatory T (Treg) cells, their absolute numbers were increased. Increased frequency of colitogenic Th17 cells was also observed. Noteworthy, untreated mice lacking Poly(ADP-ribose)-Polimerase-1 functional gene (PARP-1KO) displayed higher frequency of Treg cells and lower percentage of Th17 cells in cMLNs. In colitic PARP-1KO mice the inflammation driven expansion of the Foxp3 Treg population was more pronounced than in WT mice. Conversely, colitis increased Th17 cells to a lower extent in PARP-1KO mice compared with WT mice, resulting in a more protective Treg/Th17 cell ratio. Consequently PARP-1KO mice developed less severe colitis with reduced expression of inflammatory cytokines. In ex vivo experiments PARP-1KO and WT CD11c dendritic cells (DCs) promoted naïve CD4 T cell differentiation differently, the former sustaining more efficiently the generation of Treg cells, the latter that of Th17 cells. Addition of HMGB1 B box or of dipotassium glycyrrhizate, which sequesters extracellular HMGB1, revealed a role for this alarmin in the regulation exerted by PARP-1 on the stimulating vs. tolerogenic function of DCs during colitis. Moreover, a higher percentage of CD11c DC from PARP-1KO mice expressed CD103, a marker associated with the ability of DC to induce Treg cells, compared with WT DC. Conversely, PARP-1KO DC were including a reduced percentage of CX3CR1+ DC, described to induce Th17 cells. These findings were observed in both splenic and colon lamina propria DC.
Collapse
Affiliation(s)
| | | | | | - Salvatore Cucchiara
- Department of Maternal Infantile and Urological Sciences, Sapienza University, Rome, Italy
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | |
Collapse
|
34
|
Yang HM, Zhao XN, Li XL, Wang X, Pu Y, Wei DK, Li Z. A pan-cancer analysis of the oncogenic function of HMGB1 in human tumors. Biochem Biophys Rep 2024; 40:101851. [PMID: 39582753 PMCID: PMC11584604 DOI: 10.1016/j.bbrep.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although high mobility group box protein 1 (HMGB1) has been researched in relation to cancer in many investigations, a thorough investigation of its role in pan-cancer has yet to be conducted. With the objective of bridging this gap, we delved into the functions of HMGB1 in various tumors. Methods This investigation employed The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to examine HMGB1 gene expression differences and correlation with survival across various human tumors. Then, genetic alterations of HMGB1 were analyzed by tool cBioPortal, and immune cell infiltration was assessed. Finally, we gathered clinial samples from 95 patients with various types of solid tumor and performed somatic mutation analysis using panel sequencing. This further highlighted the role of HMGB1 in different solid tumors. Results There was a notable elevation of HMGB1 gene expression in tumor tissues as opposed to non-cancerous tissues across the bulk of tumor types. Elevated HMGB1 gene expression had a connection with shorter overall survival, progression-free survival, and disease-free survival in specific tumor types. Genetic alterations of HMGB1 suggested that the amplifications and mutations of HMGB1 may impact the prognosis of breast cancer (BRCA) and liver hepatocellular carcinoma (LIHC). Both BRCA and mesothelioma (MESO) displayed a connection between the infiltration of cancer-associated fibroblasts (CAFs) and HMGB1 gene expression. Moreover, HMGB1 co-expression analysis revealed its association with genes involved in RNA splicing, mRNA processing, and modulation of mRNA metabolic processes. Additionally, a pathway analysis by use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) unveiled that HMGB1 was implicated in the pathogenic mechanisms of "Hepatitis B," "Viral Carcinogenesis," and "Hepatocellular Carcinoma." Based on somatic mutation analysis of 95 patients with different solid tumors, we found that the frequency of HMGB1 mutations was higher in Liver cancer patients compared to other solid tumors. This finding is consistent with our in-silico study results. Additionally, we discovered that the frequency of HMGB1 mutations ranked among the top 20 mutated genes in the 95 patients' data, indicating that HMGB1 plays an important role in the development and prognosis of various solid tumors. Conclusion This pan-cancer study of HMGB1 underscores its potential as a signature marker and target for the management of various tumor types.
Collapse
Affiliation(s)
- Hui-min Yang
- Shanghai Singlera Medical Laboratory, 1rst Floor, No. 20 Building, 500 Furonghua Road, Pudong New District, Shanghai, China
| | - Xiang-ning Zhao
- Department of Surgical Oncology, Shanghai Mengchao Cancer Hospital, 118 Qianyang Road, Jiading District, Shanghai, China
| | | | - Xi Wang
- Suzhou Func Biotech Inc, Suzhou, Jiangsu, China
| | - Yu Pu
- Suzhou Func Biotech Inc, Suzhou, Jiangsu, China
| | | | - Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong New District, Shanghai, China
| |
Collapse
|
35
|
Mun SJ, Cho E, Gil WJ, Kim SJ, Kim HK, Ham YS, Yang CS. Dual alarmin-receptor-specific targeting peptide systems for treatment of sepsis. Acta Pharm Sin B 2024; 14:5451-5463. [PMID: 39807314 PMCID: PMC11725134 DOI: 10.1016/j.apsb.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 01/16/2025] Open
Abstract
The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis. In this study, we developed a novel alarmin/receptor-targeting system using a TLR4/MD2/RAGE-blocking peptide (TMR peptide) derived from the HMGB1/PTX3-receptors interacting motifs. The TMR peptide successfully attenuated HMGB1/PTX3- and LPS-mediated inflammatory cytokine production by impairing its interactions with TLR4 and RAGE. Moreover, we developed TMR peptide-conjugated liposomes (TMR-Lipo) to improve the peptide pharmacokinetics. In combination therapy, moderately antibiotic-loaded TMR-Lipo demonstrated a significant therapeutic effect in a mouse model of cecal ligation- and puncture-induced sepsis. The identification of these peptides will pave the way for the development of novel pharmacological tools for sepsis therapy.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Engineering, Hanyang University, Seoul 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Engineering, Hanyang University, Seoul 04673, Republic of Korea
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Woo Jin Gil
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Seong Jae Kim
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo Keun Kim
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Yu Seong Ham
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea
- Department of Medicinal and Life Science, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
36
|
Datta S, Rahman MA, Koka S, Boini KM. High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies. Cells 2024; 13:1946. [PMID: 39682695 PMCID: PMC11639863 DOI: 10.3390/cells13231946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure-function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions.
Collapse
Affiliation(s)
- Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Mohammad Atiqur Rahman
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Saisudha Koka
- Department of Pharmaceutical Sciences, Irma Lerma College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Krishna M. Boini
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
37
|
Xing WQ, Piao XJ, Han Q, Shi HY, Wu WC, Si F, Lu JJ, Zhou TZ, Guo JR, Li SZ, Xu B. SIRT2 regulates high mobility group protein B1 nucleoplasmic shuttle and degradation via deacetylation in microglia. J Cell Physiol 2024; 239:e31364. [PMID: 39129208 DOI: 10.1002/jcp.31364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 08/13/2024]
Abstract
High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells. Here, we demonstrated that Sirtuin 2 (SIRT2) physically interacts with and deacetylates HMGB1 at 43 lysine residue at nuclear localization signal locations, strengthening its interaction with HMGB1 and causing HMGB1 to be localized in the cytoplasm. These discoveries are the first to shed light on the SIRT2 nucleoplasmic shuttle, which influences HMGB1 and its degradation, hence revealing novel therapeutic targets and avenues for neuroinflammation treatment.
Collapse
Affiliation(s)
- Wan-Qun Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Qi Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui-Ying Shi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Cong Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fan Si
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing-Jing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tie-Zhong Zhou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
38
|
Ge X, Subramaniyam N, Song Z, Desert R, Han H, Das S, Komakula SSB, Wang C, Lantvit D, Ge Z, Hoshida Y, Nieto N. Post-translational modifications drive the effects of HMGB1 in alcohol-associated liver disease. Hepatol Commun 2024; 8:e0549. [PMID: 39760999 PMCID: PMC11495752 DOI: 10.1097/hc9.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/26/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND We previously identified that high-mobility group box-1 (HMGB1) is increased and undergoes post-translational modifications (PTMs) in response to alcohol consumption. Here, we hypothesized that specific PTMs, occurring mostly in hepatocytes and myeloid cells, could contribute to the pathogenesis of alcohol-associated liver disease (AALD). METHODS We used the Lieber-DeCarli (LD) model of early alcohol-induced liver injury, combined with engineered viral vectors and genetic approaches to regulate the expression of HMGB1, its PTMs (reduced [H], oxidized [O], acetylated [Ac], both [O + Ac]), and its receptors (RAGE, TLR4) in a cell-specific manner (hepatocytes and/or myeloid cells). RESULTS Hmgb1 ablation in hepatocytes or myeloid cells partially protected, while ablation in both prevented steatosis, inflammation, IL1B production, and alcohol-induced liver injury. Hepatocytes were a major source of [H], [O], and [Ac] HMGB1, whereas myeloid cells produced only [H] and [Ac] HMGB1. Neutralization of HMGB1 prevented, whereas injection of [H] HMGB1 increased AALD, which was worsened by injection of [O] HMGB1. While [O] HMGB1 induced liver injury, [Ac] HMGB1 protected and counteracted the effects of [O] HMGB1 in AALD. [O] HMGB1 stimulated macrophage (MF) migration, activation, IL1B production, and secretion. Ethanol-fed RageΔMye but not Tlr4ΔMye, RageΔHep, or Tlr4ΔHep mice were protected from AALD, indicating a crucial role of RAGE in myeloid cells for AALD. [O] HMGB1 recruited and activated myeloid cells through RAGE and contributed to steatosis, inflammation, and IL1B production in AALD. CONCLUSIONS These results provide evidence for targeting [O] HMGB1 of hepatocyte origin as a ligand for RAGE signaling in myeloid cells and a driver of steatosis, inflammatory cell infiltration, and IL1B production in AALD. Importantly, we reveal that [Ac] HMGB1 offsets the noxious effects of [O] HMGB1 in AALD.
Collapse
Affiliation(s)
- Xiaodong Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Zhuolun Song
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Romain Desert
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Hui Han
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Chao Wang
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Daniel Lantvit
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Zhiyan Ge
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yujin Hoshida
- Department of Internal Medicine, Division of Digestive and Liver Diseases, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, Illinois, USA
- Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, lllinois, USA
| |
Collapse
|
39
|
Wasim R, Singh A, Islam A, Mohammed S, Anwar A, Mahmood T. High Mobility Group Box 1 and Cardiovascular Diseases: Study of Act and Connect. Cardiovasc Toxicol 2024; 24:1268-1286. [PMID: 39242448 DOI: 10.1007/s12012-024-09919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Cardiovascular disease is the deadly disease that can result in sudden death, and inflammation plays an important role in its onset and progression. High mobility group box 1 (HMGB1) is a nuclear protein that regulates transcription, DNA replication, repair, and nucleosome assembly. HMGB1 is released passively by necrotic tissues and actively secreted by stressed cells. Extracellular HMGB1 functions as a damage associated molecular patterns molecule, producing numerous redox forms that induce a range of cellular responses by binding to distinct receptors and interactors, including tissue inflammation and regeneration. Extracellular HMGB1 inhibition reduces inflammation and is protective in experimental models of myocardial ischemia/reperfusion damage, myocarditis, cardiomyopathies caused by mechanical stress, diabetes, bacterial infection, or chemotherapeutic drugs. HMGB1 administration following a myocardial infarction followed by permanent coronary artery ligation improves cardiac function by stimulating tissue regeneration. HMGB1 inhibits contractility and produces hypertrophy and death in cardiomyocytes, while also stimulating cardiac fibroblast activity and promoting cardiac stem cell proliferation and differentiation. Maintaining normal nuclear HMGB1 levels, interestingly, protects cardiomyocytes from apoptosis by limiting DNA oxidative stress, and mice with HMGB1cardiomyocyte-specific overexpression are partially protected from cardiac injury. Finally, elevated levels of circulating HMGB1 have been linked to human heart disease. As a result, following cardiac damage, HMGB1 elicits both detrimental and helpful responses, which may be due to the formation and stability of the various redox forms, the particular activities of which in this context are mostly unknown. This review covers recent findings in HMGB1 biology and cardiac dysfunction.
Collapse
Affiliation(s)
- Rufaida Wasim
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Aditya Singh
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Anas Islam
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Saad Mohammed
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Aamir Anwar
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India
| |
Collapse
|
40
|
Vladimirova D, Staneva S, Ugrinova I. Multifaceted role of HMGB1: From nuclear functions to cytoplasmic and extracellular signaling in inflammation and cancer-Review. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:271-300. [PMID: 39843137 DOI: 10.1016/bs.apcsb.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein involved in key nuclear processes such as DNA repair, replication, and gene regulation. Beyond its established nuclear roles, HMGB1 has crucial functions in the cytoplasm and extracellular environment. When translocated to the cytoplasm, HMGB1 plays a role in autophagy, cell survival, and immune response modulation. In its extracellular form, HMGB1 acts as a damage-associated molecular pattern molecule, initiating inflammatory responses by interacting with receptors such as Receptor for advanced glycation endproducts and Toll-like receptors. Recent studies have shown its role in promoting tissue regeneration, wound healing, and angiogenesis, highlighting its dual role in both inflammation and tissue repair. Notably, the redox status of HMGB1 influences its function, with the reduced form promoting autophagy and the disulfide form driving inflammation. Dysregulation of HMGB1 contributes to the progression of various diseases, including cancer, where it influences tumor growth, metastasis, and resistance to therapy. This review provides an overview of the nuclear, cytoplasmic, and extracellular roles of HMGB1, discussing its involvement in nuclear homeostasis, rare genetic diseases, autophagy, inflammation, cancer progression, and tissue regeneration.
Collapse
Affiliation(s)
- Desislava Vladimirova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sonya Staneva
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- "Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
41
|
Wu J, Ai T, He P, Shi Q, Li Y, Zhang Z, Chen M, Huang Z, Wu S, Chen W, Han J. Cecal necroptosis triggers lethal cardiac dysfunction in TNF-induced severe SIRS. Cell Rep 2024; 43:114778. [PMID: 39325617 DOI: 10.1016/j.celrep.2024.114778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Tumor necrosis factor (TNF) induces systemic inflammatory response syndrome (SIRS), and severe SIRS can serve as a model for studying animal death caused by organ failure. Through strategic cecectomy, we demonstrate that necroptosis in the cecum initiates the death process in TNF-treated mice, but it is not the direct cause of death. Instead, we show that it is the cardiac dysfunction downstream of cecum damage that ultimately leads to the death of TNF-treated mice. By in vivo and ex vivo physiological analyses, we reveal that TNF and the damage-associated molecular patterns (DAMPs) released from necroptotic cecal cells jointly target cardiac endothelial cells, triggering caspase-8 activation and subsequent cardiac endothelial damage. Cardiac endothelial damage is a primary cause of the deterioration of diastolic function in the heart of TNF-treated mice. Our research provides insights into the pathophysiological process of TNF-induced lethality.
Collapse
Affiliation(s)
- Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Tingting Ai
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Peng He
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Qilin Shi
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yangxin Li
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ziguan Zhang
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Minwei Chen
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Zhengrong Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, China
| | - Suqin Wu
- Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China
| | - Wanze Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518000, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian 361102, China; Laboratory Animal Research Center, Xiamen University, Xiamen, Fujian 361102, China; Research Unit of Cellular Stress of Chinese Academy of Medical Sciences, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
42
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
43
|
Febriza A, Idrus HH. Curcumin and Vitamin D Reduce HMGB-1 mRNA Levels in Mice Infected with Salmonella typhi. Malays J Med Sci 2024; 31:143-150. [PMID: 39416736 PMCID: PMC11477468 DOI: 10.21315/mjms2024.31.5.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 10/19/2024] Open
Abstract
Background This study examined the effects of curcumin and vitamin D on high-mobility group box-1 (HMGB-1) mRNA expression in mice infected with Salmonella typhi. Methods The experimental design allocated 40 mice, intraperitoneally infected with S. typhi, to pre- and post-test controls randomly divided into four groups (10 mice per group). Mice in group A were treated with the antibiotic levofloxacin (1.95 mg/kg once daily) as the positive control; group B mice were administered curcumin at a dose of 200 mg/kg body weight; group C mice were treated with a curcumin dose of 200 mg/kg BW and vitamin D; and group D mice received distilled water (placebo) as the negative control. The intervention was performed for 5 days. On day 10, HMGB-1 mRNA expression was measured, and the results were compared to those before the intervention. Results HMGB-1 mRNA level in group C decreased significantly by 5.76-fold (95% confidence interval: 2.55, 8.98). In contrast, HMGB-1 mRNA levels did not decrease significantly in group B. Conclusion These results suggest that the combination of curcumin and vitamin D reduced HMGB-1 mRNA levels in infected mice, highlighting the potential of this combination as an antimicrobial and anti-inflammatory agent.
Collapse
Affiliation(s)
- Ami Febriza
- Department of Physiology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Indonesia
- Centre for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Centre, West Java, Indonesia
| | - Hasta Handayani Idrus
- Centre for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Centre, West Java, Indonesia
| |
Collapse
|
44
|
Hernandez-Torres F, Matias-Valiente L, Alzas-Gomez V, Aranega AE. Macrophages in the Context of Muscle Regeneration and Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10393. [PMID: 39408722 PMCID: PMC11477283 DOI: 10.3390/ijms251910393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages are essential to muscle regeneration, as they regulate inflammation, carry out phagocytosis, and facilitate tissue repair. These cells exhibit phenotypic switching from pro-inflammatory (M1) to anti-inflammatory (M2) states during muscle repair, influencing myoblast proliferation, differentiation, and myofiber formation. In Duchenne Muscular Dystrophy (DMD), asynchronous muscle injuries disrupt the normal temporal stages of regeneration, leading to fibrosis and failed regeneration. Altered macrophage activity is associated with DMD progression and physiopathology. Gaining insight into the intricate relationship between macrophages and muscle cells is crucial for creating effective therapies aimed at treating this muscle disorder. This review explores the dynamic functions of macrophages in muscle regeneration and their implications in DMD.
Collapse
Affiliation(s)
- Francisco Hernandez-Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
| | - Lidia Matias-Valiente
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Virginia Alzas-Gomez
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| | - Amelia Eva Aranega
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain; (L.M.-V.); (V.A.-G.)
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain
| |
Collapse
|
45
|
Huang G, Yao Y, Fan L, Li S. Genetic effect of basal metabolic rate on the benign neoplasm of bone and articular cartilage: a Mendelian randomization study. Front Oncol 2024; 14:1446310. [PMID: 39391241 PMCID: PMC11464414 DOI: 10.3389/fonc.2024.1446310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Background Previous studies have found an association between basal metabolic rate (BMR) and various malignant neoplasms, including bone tumors. BMR is also associated with bone mineral density, but the causality between BMR and benign neoplasms of bone and articular cartilage remains uncertain. Design Single nucleotide polymorphisms (SNPs) associated with BMR (p < 5 × 10-8) were used as instrumental variables for Mendelian randomization analysis of neoplasm risk. The inverse variance weighted (IVW) method was the primary approach, with the weighted median and MR-Egger regression serving as supplements. Results In this MR analysis, the IVW method supported a causal relationship between BMR and benign neoplasms of bone and articular cartilage (OR = 1.417; 95% CI, 1.039 to 1.930; p = 0.027). No evidence of heterogeneity or pleiotropy in the selected SNPs was found in our study. Thus, based on these results, we discovered a possible causal relationship between BMR and benign neoplasms of bone and articular cartilage. Conclusions In this MR study, evidence suggested a genetic correlation between genetically predicted BMR and the risk of neoplasms in bone and articular cartilage.
Collapse
Affiliation(s)
- Guijin Huang
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ying Yao
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lin Fan
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sisi Li
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
46
|
Machida A, Banshoya K, Miyamaru A, Eto T, Maehara S, Hieda Y, Hata T, Ohnishi M. A Glycyrrhizin Derivative with a More Potent Inhibitory Activity against High-Mobility Group Box 1 Efficiently Discovered by Chemical Synthesis Inspired by the Bioconversion Products of an Endophytic Fungus Isolated from Licorice. J Med Chem 2024; 67:16328-16337. [PMID: 39231005 DOI: 10.1021/acs.jmedchem.4c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Glycyrrhizin (GL) from licorice alleviates intracerebral hemorrhage (ICH) injuries by interacting with high-mobility group box (HMGB) 1, an inflammatory factor. We found that GL is bioconverted by endophyte coexisting with licorice and succeeded in isolating two derivatives. The aim of this study was to identify the compound with more potent HMGB1 inhibitory activity inspired by these GL derivatives. We took advantage of a ketone introduced by an endophyte at the C-3 position and attempted methyl esterification at the C-30 position because it was suggested that the water or lipid solubility of the molecule plays an important role. Among three derivatives synthesized, the product that is both ketonized and esterified showed more potent HMGB1 inhibitory activity than GL in macrophages and significantly improved adverse events occurred in ICH in vivo. These results suggest that modification of the hydrophilicity of GL, particularly at the C-3 and C-30 positions, enhances the HMGB1 inhibitory activity.
Collapse
Affiliation(s)
- Aoi Machida
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Kengo Banshoya
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Akiho Miyamaru
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Tamaki Eto
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Shoji Maehara
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Yuhzo Hieda
- Common Resources Center, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Toshiyuki Hata
- Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| | - Masatoshi Ohnishi
- Department of Pharmacotherapeutics, Graduate School of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
- Department of Pharmacotherapeutics, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1, Sanzo, Higashimura-cho, Fukuyama, Hiroshima 729-0292, Japan
| |
Collapse
|
47
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
48
|
Wu K, Zha H, Wu T, Liu H, Peng R, Lin Z, Lv D, Liao X, Sun Y, Zhang Z. Cytosolic Hmgb1 accumulation in mesangial cells aggravates diabetic kidney disease progression via NFκB signaling pathway. Cell Mol Life Sci 2024; 81:408. [PMID: 39287634 PMCID: PMC11408458 DOI: 10.1007/s00018-024-05433-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
Diabetic kidney disease (DKD) is the predominant type of end-stage renal disease. Increasing evidence suggests thatglomerular mesangial cell (MC) inflammation is pivotal for cell proliferation and DKD progression. However, the exactmechanism of MC inflammation remains largely unknown. This study aims to elucidate the role of inflammatoryfactor high-mobility group box 1 (Hmgb1) in DKD. Inflammatory factors related to DKD progression are screened viaRNA sequencing (RNA-seq). In vivo and in vitro experiments, including db/db diabetic mice model, CCK-8 assay, EdUassay, flow cytometric analysis, Co-IP, FISH, qRT-PCR, western blot, single cell nuclear RNA sequencing (snRNA-seq),are performed to investigate the effects of Hmgb1 on the inflammatory behavior of MCs in DKD. Here, wedemonstrate that Hmgb1 is significantly upregulated in renal tissues of DKD mice and mesangial cells cultured withhigh glucose, and Hmgb1 cytopasmic accumulation promotes MC inflammation and proliferation. Mechanistically,Hmgb1 cytopasmic accumulation is two-way regulated by MC-specific cyto-lncRNA E130307A14Rik interaction andlactate-mediated acetylated and lactylated Hmgb1 nucleocytoplasmic translocation, and accelerates NFκB signalingpathway activation via directly binding to IκBα. Together, this work reveals the promoting role of Hmgb1 on MCinflammation and proliferation in DKD and helps expound the regulation of Hmgb1 cytopasmic accumulation in twoways. In particular, Hmgb1 may be a promising therapeutic target for DKD.
Collapse
Affiliation(s)
- Keqian Wu
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - He Zha
- Department of Laboratory Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou, China
| | - Tianhui Wu
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
- School of Public Health and Laboratory, Qilu Medical University, Zibo, 255300, Shandong, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyue Lin
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - Dan Lv
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| | - Yan Sun
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| | - Zheng Zhang
- Department of Nephrology, The Second Affiliated Hospital, Basic Medicine College, Key Laboratory of Major Brain Disease and Aging Research(Ministry of Education), Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
49
|
Cui W, Niu Y, Zhang X, Huang B, Shang X, Zhao W, Yan X, Mi Y, Ma M, Zhang J, Yang X. Overexpression of serum HMGB1 and IDO in esophageal squamous cell carcinoma patients: potential clinical auxiliary diagnostic markers and immunotherapeutic targets. Front Oncol 2024; 14:1452282. [PMID: 39314628 PMCID: PMC11416914 DOI: 10.3389/fonc.2024.1452282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and indoleamino-2, 3-dioxygenase (IDO) participate in the occurrence and development of esophageal squamous cell carcinoma (ESCC), regulate the tumor immune microenvironment, and are closely related to tumor growth and metastasis. However, the regulatory mechanism of serum HMGB1 and IDO has not been clarified and needs further exploration. Methods Blood samples of 55 ESCC patients initially hospitalized in the Fourth Hospital of Hebei Medical University from August 2021 to January 2022 were selected as the ESCC group, and relevant clinical data were collected, and blood samples from 40 healthy people during the same period were selected as the control group. Serum HMGB1 and IDO levels were determined by ELISA, and lymphocyte subsets in peripheral blood of all subjects were detected by flow cytometry. The correlation between the expression levels of HMGB1 and IDO in ESCC cells was detected by Western blot. Results Serum HMGB1 and IDO levels were significantly increased in ESCC patients, and with the progression of ESCC patients, serum HMGB1 and IDO levels were also gradually increased; serum HMGB1 was significantly correlated with IDO; serum HMGB1 and IDO combined with CEA and SCC-Ag were of high value in predicting the clinical progression of ESCC patients; the absolute counts of CD4+CD28+T cells and CD8+CD28+T cells in high HMGB1 group were significantly lower than those in low HMGB1 group, while the percentage of CD4+PD-1+T cells was significantly higher than that in low HMGB1 group; the percentage and absolute counts of CD4+CD28+T cells and the absolute counts of CD8+CD28+T cells in high IDO group were significantly lower than those in the low IDO group, while the percentage of CD8+PD-1+T cells was significantly higher than that in the low IDO group; increased serum HMGB1 and IDO expression levels were closely related to poor prognosis in ESCC patients; and HMGB1 may promote IDO expression by activating NF-κB signaling pathway. Conclusion Serum HMGB1 and IDO have a synergistic effect, they inhibit immune function and promote tumor progression in ESCC patients, and also lead to poor prognosis.
Collapse
Affiliation(s)
- Wenxuan Cui
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yinghao Niu
- Department of Clinical Biobank, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xueyuan Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Beixuan Huang
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoya Shang
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Zhao
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi Yan
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunqiang Mi
- Clinical Laboratory, 984th Joint Logistic Support Force Hospital, Beijing, China
| | - Ming Ma
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinyan Zhang
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xingxiao Yang
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
50
|
Rhodes JD, Devaraj A, Robledo-Avila F, Balu S, Mashburn-Warren L, Buzzo JR, Partida-Sanchez S, Bakaletz LO, Goodman SD. Noninflammatory 97-amino acid High Mobility Group Box 1 derived polypeptide disrupts and prevents diverse biofilms. EBioMedicine 2024; 107:105304. [PMID: 39182358 PMCID: PMC11385066 DOI: 10.1016/j.ebiom.2024.105304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Bacterial biofilm communities are embedded in a protective extracellular matrix comprised of various components, with its' integrity largely owed to a 3-dimensional lattice of extracellular DNA (eDNA) interconnected by Holliday Junction (HJ)-like structures and stabilised by the ubiquitous eubacterial DNABII family of DNA-binding architectural proteins. We recently showed that the host innate immune effector High Mobility Group Box 1 (HMGB1) protein possesses extracellular anti-biofilm activity by destabilising these HJ-like structures, resulting in release of biofilm-resident bacteria into a vulnerable state. Herein, we showed that HMGB1's anti-biofilm activity was completely contained within a contiguous 97 amino acid region that retained DNA-binding activity, called 'mB Box-97'. METHODS We engineered a synthetic version of this 97-mer and introduced a single amino acid change which lacked any post-translational modifications, and tested its activity independently and in combination with a humanised monoclonal antibody that disrupts biofilms by the distinct mechanism of DNABII protein sequestration. FINDINGS mB Box-97 disrupted and prevented biofilms, including those formed by the ESKAPEE pathogens, and importantly reduced measurable proinflammatory activity normally associated with HMGB1 in a murine lung infection model. INTERPRETATION Herein, we discuss the value of targeting the ubiquitous eDNA-dependent matrix of biofilms via mB Box-97 used singly or in a dual host-augmenting/pathogen-targeted cocktail to resolve bacterial biofilm infections. FUNDING This work was supported by NIH/NIDCD R01DC011818 to L.O.B. and S.D.G. and NIH/NIAID R01AI155501 to S.D.G.
Collapse
Affiliation(s)
- Jaime D Rhodes
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Aishwarya Devaraj
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sabarathnam Balu
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Lauren Mashburn-Warren
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|