1
|
Fluder-Wlodarczyk J, Darakhovich M, Schneider Z, Roleder-Dylewska M, Dobrolińska M, Pawłowski T, Wojakowski W, Gasior P, Pociask E. Artificial Intelligence-Based Algorithm for Stent Coverage Assessments. J Pers Med 2025; 15:151. [PMID: 40278330 PMCID: PMC12028557 DOI: 10.3390/jpm15040151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Background: Neointimal formation after stent implantation is an important prognostic factor since delayed healing may lead to stent thrombosis. In vivo, optical coherence tomography (OCT) can most precisely assess stent strut coverage. Since analyzing neointimal coverage is time-consuming, artificial intelligence (AI) may offer valuable assistance. This study presents the preliminary results of the AI-based tool's performance in detecting and categorizing struts as covered and uncovered. Methods: The algorithm was developed using the YOLO11 (You Only Look Once) neural networks. The first step was preprocessing, then data augmentation techniques were implemented, and the model was trained. Twenty OCT pullbacks were used during model training, and two OCT pullbacks were used in the final validation. Results: The presented tool's performance was validated against two analysts' consensus. Both analysts showed moderate intraobserver agreement (κ = 0.57 for analyst 1 and κ = 0.533 for analyst 2) and fair agreement with each other (κ = 0.389). The algorithm's detection of struts was satisfactory (a 92% positive predictive value (PPV) and a 90% true positive rate (TPR)) and was more accurate in recognizing covered struts (an 81% PPV and an 85% TPR) than uncovered struts (a 73% PPV and a 60% TPR). The agreement was κ = 0.444. Conclusions: The initial results demonstrated a good detection of struts with a more challenging uncovered strut classification. Further clinical studies with a larger sample size are needed to improve the proposed tool.
Collapse
Affiliation(s)
- Joanna Fluder-Wlodarczyk
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Mikhail Darakhovich
- Department of Biocybernetics and Biomedical Engineering, AGH University of Kraków, 30-059 Kraków, Poland; (M.D.)
| | - Zofia Schneider
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Kraków, 30-059 Krakow, Poland
| | - Magda Roleder-Dylewska
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Magdalena Dobrolińska
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Tomasz Pawłowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Pawel Gasior
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, 40-635 Katowice, Poland; (M.R.-D.)
| | - Elżbieta Pociask
- Department of Biocybernetics and Biomedical Engineering, AGH University of Kraków, 30-059 Kraków, Poland; (M.D.)
| |
Collapse
|
2
|
Jessney B, Chen X, Gu S, Brown A, Obaid D, Costopoulos C, Goddard M, Shah N, Garcia-Garcia H, Onuma Y, Serruys P, Hoole SP, Mahmoudi M, Roberts M, Bennett M. Correcting common OCT artifacts enhances plaque classification and identification of higher-risk plaque features. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2025; 73:50-58. [PMID: 38971662 DOI: 10.1016/j.carrev.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Optical coherence tomography (OCT) is used widely to guide stent placement, identify higher-risk plaques, and assess mechanisms of drug efficacy. However, a range of common artifacts can prevent accurate plaque classification and measurements, and limit usable frames in research studies. We determined whether pre-processing OCT images corrects artifacts and improves plaque classification. METHODS We examined both ex-vivo and clinical trial OCT pullbacks for artifacts that prevented accurate tissue identification and/or plaque measurements. We developed Fourier transform-based software that reconstructed images free of common OCT artifacts, and compared corrected and uncorrected images. RESULTS 48 % of OCT frames contained image artifacts, with 62 % of artifacts over or within lesions, preventing accurate measurement in 12 % frames. Pre-processing corrected >70 % of all artifacts, including thrombus, macrophage shadows, inadequate flushing, and gas bubbles. True tissue reconstruction was achieved in 63 % frames that would otherwise prevent accurate clinical measurements. Artifact correction was non-destructive and retained anatomical lumen and plaque parameters. Correction improved accuracy of plaque classification compared against histology and retained accurate assessment of higher-risk features. Correction also changed plaque classification and prevented artifact-related measurement errors in a clinical study, and reduced unmeasurable frames to <5 % ex-vivo and ~1 % in-vivo. CONCLUSIONS Fourier transform-based pre-processing corrects a wide range of common OCT artifacts, improving identification of higher-risk features and plaque classification, and allowing more of the whole dataset to be used for clinical decision-making and in research. Pre-processing can augment OCT image analysis systems both for stent optimization and in natural history or drug studies.
Collapse
Affiliation(s)
- Benn Jessney
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Xu Chen
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sophie Gu
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Adam Brown
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Daniel Obaid
- Swansea University Medical School and Morriston Regional Heart Centre, Swansea, UK
| | | | - Martin Goddard
- Department of Pathology, Royal Papworth Hospital, Cambridge, UK
| | - Nikunj Shah
- Department of Cardiology, Portsmouth Hospital, Portsmouth, UK
| | | | - Yoshinobu Onuma
- Galway University Hospital, Ireland; Cardiovascular Research Centre for Advanced Imaging and Core Laboratory (CORRIB), University of Galway, Ireland
| | - Patrick Serruys
- Cardiovascular Research Centre for Advanced Imaging and Core Laboratory (CORRIB), University of Galway, Ireland
| | - Stephen P Hoole
- Department of Cardiology, Royal Papworth Hospital, Cambridge, UK
| | | | - Michael Roberts
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK; Octiocor Ltd, 201 Haverstock Hill, Second Floor Fkgb, London, UK
| | - Martin Bennett
- Section of Cardiorespiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, UK; Octiocor Ltd, 201 Haverstock Hill, Second Floor Fkgb, London, UK.
| |
Collapse
|
3
|
Cao X, Lu Y, Zhu T, Yan Z, Li K, Mo J. Diagnosis and Post-Treatment Follow-Up Evaluation of Melasma Using Optical Coherence Tomography and Deep Learning. JOURNAL OF BIOPHOTONICS 2025:e70006. [PMID: 40084480 DOI: 10.1002/jbio.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
Melasma is a common pigmentary disorder accompanied by tissue changes in composition and structure through the epidermis and dermis. In this study, we propose to employ optical coherence tomography (OCT) combined with deep learning techniques for melasma diagnostics. Specifically, a portable spectral domain OCT system with a handheld probe was developed for clinical skin imaging. Then, a diagnostic model was built based on the VGG16 neural network by adding a spatial attention mechanism. The results show that a good differentiation with an accuracy of 94.2% can be achieved among health datasets from healthy volunteers, and melasma and tissue-around-melasma datasets from melasma patients. Moreover, the same trained model was applied to treatment evaluation, showing a good capability to assess antivascular medicine treatment. Thus, it can be concluded that OCT combined with deep learning techniques has a good potential to aid in clinical diagnosis and treatment evaluation of melasma.
Collapse
Affiliation(s)
- Xinyuan Cao
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Yifeng Lu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Zhu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhilong Yan
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| | - Ke Li
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Mo
- School of Electronics and Information Engineering, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Xie S, Zhu X, Han F, Wang S, Cui K, Xue J, Xi X, Shi C, Li S, Wang F, Tian J. Discussion on the comparison of Raman spectroscopy and cardiovascular disease-related imaging techniques and the future applications of Raman technology: a systematic review. Lasers Med Sci 2025; 40:116. [PMID: 39988624 PMCID: PMC11847755 DOI: 10.1007/s10103-025-04315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Cardiovascular disease (CVD) is a major cause of unnatural death worldwide, so timely diagnosis of CVD is crucial for improving patient outcomes. Although the traditional diagnostic tools can locate plaque and observe inner wall of blood vessel structure, they commonly have radioactivity and cannot detect the chemical composition of the plaque accurately. Recently emerging Raman techniques can detect the plaque composition precisely, and have the advantages of being fast, high-resolution and marker-free. This makes Raman have great potential for detecting blood samples, understanding disease conditions, and real-time monitoring. This review summarizes the origin and state-of-art of Raman techniques, including the following aspects: (a) the principle and technical classification of Raman techniques; (b) the applicability of Raman techniques and its comparison with traditional diagnostic tools at different diagnosis targets; (c) the applicability of Raman spectroscopy in advanced CVD. Lastly, we highlight the possible future applications of Raman techniques in CVD diagnosis.
Collapse
Affiliation(s)
- Songcai Xie
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Zhu
- Wuhan National Laboratory for Optoelectronics, Hua zhong Univeresity of Science and Technology, Wuhan, China
| | - Feiyuan Han
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shengyuan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xue
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangwen Xi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengyu Shi
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Wang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinwei Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Limcharoen B, Wanichwecharungruang S, Banlunara W, Darvin ME. Seeing through the skin: Optical methods for visualizing transdermal drug delivery with microneedles. Adv Drug Deliv Rev 2025; 217:115478. [PMID: 39603387 DOI: 10.1016/j.addr.2024.115478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Optical methods play a pivotal role in advancing transdermal drug delivery research, particularly with the emergence of microneedle technology. This review presents a comprehensive analysis of optical methods used in studying transdermal drug delivery facilitated by microneedle technology. Beginning with an introduction to microneedle technology and skin anatomy and optical properties, the review explores the integration of optical methods for enhanced visualization. Optical imaging offers key advantages including real-time drug distribution visualization, non-invasive skin response monitoring, and quantitative drug penetration analysis. A spectrum of optical imaging modalities ranging from conventional dermoscopy and stereomicroscopy to advance techniques as fluorescence microscopy, laser scanning microscopy, in vivo imaging system, two-photon microscopy, fluorescence lifetime imaging microscopy, optical coherence tomography, Raman microspectroscopy, laser speckle contrast imaging, and photoacoustic microscopy is discussed. Challenges such as resolution and depth penetration limitations are addressed alongside potential breakthroughs and future directions in optical techniques development. The review underscores the importance of bridging the gap between preclinical and clinical studies, explores opportunities for integrating optical imaging and chemical sensing methods with drug delivery systems, and highlight the importance of non-invasive "optical biopsy" as a valuable alternative to conventional histology. Overall, this review provides insight into the role of optical methods in understanding transdermal drug delivery mechanisms with microneedles.
Collapse
Affiliation(s)
- Benchaphorn Limcharoen
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Maxim E Darvin
- Fraunhofer Institute for Photonic Microsystems IPMS, Dresden 01109, Germany.
| |
Collapse
|
6
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
7
|
Pang W, Yuan C, Zhong T, Huang X, Pan Y, Qu J, Nie L, Zhou Y, Lai P. Diagnostic and therapeutic optical imaging in cardiovascular diseases. iScience 2024; 27:111216. [PMID: 39569375 PMCID: PMC11576408 DOI: 10.1016/j.isci.2024.111216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Cardiovascular disease (CVD) is one of the most prevalent health threats globally. Traditional diagnostic methods for CVDs, including electrocardiography, ultrasound, and cardiac magnetic resonance imaging, have inherent limitations in real-time monitoring and high-resolution visualization of cardiovascular pathophysiology. In recent years, optical imaging technology has gained considerable attention as a non-invasive, high-resolution, real-time monitoring solution in the study and diagnosis of CVD. This review discusses the latest advancements, and applications of optical techniques in cardiac imaging. We compare the advantages of optical imaging over traditional modalities and especially scrutinize techniques such as optical coherence tomography, photoacoustic imaging, and fluorescence imaging. We summarize their investigations in atherosclerosis, myocardial infarction, and heart valve disease, etc. Additionally, we discuss challenges like deep-tissue imaging and high spatiotemporal resolution adjustment, and review existing solutions such as multimodal integration, artificial intelligence, and enhanced optical probes. This article aims to drive further development in optical imaging technologies to provide more precise and efficient tools for early diagnosis, pathological mechanism exploration, and treatment of CVD.
Collapse
Affiliation(s)
- Weiran Pang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiazi Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang 330096, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen 518060, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingying Zhou
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- The Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
8
|
Schulz-Hildebrandt H, Spasic S, Hou F, Ting KC, Batts S, Tearney G, Stankovic KM. Dynamic micro-optical coherence tomography enables structural and metabolic imaging of the mammalian cochlea. Front Mol Neurosci 2024; 17:1436837. [PMID: 39449964 PMCID: PMC11499234 DOI: 10.3389/fnmol.2024.1436837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is caused by damage to the mechanosensory hair cells and auditory neurons of the cochlea. The development of imaging tools that can directly visualize or provide functional information about a patient's cochlear cells is critical to identify the pathobiological defect and determine the cells' receptiveness to emerging SNHL treatments. However, the cochlea's small size, embedded location within dense bone, and sensitivity to perturbation have historically precluded high-resolution clinical imaging. Previously, we developed micro-optical coherence tomography (μOCT) as a platform for otologic imaging in animal models and human cochleae. Here we report on advancing μOCT technology to obtain simultaneously acquired and co-localized images of cell viability/metabolic activity through dynamic μOCT (DμOCT) imaging of intracellular motion. DμOCT obtains cross-sectional images of ATP-dependent movement of intracellular organelles and cytoskeletal polymerization by acquiring sequential μOCT images and computing intensity fluctuation frequency metrics on a pixel-wise basis. Using a customized benchtop DμOCT system, we demonstrate the detailed resolution of anatomical and metabolic features of cells within the organ of Corti, via an apical cochleostomy, in freshly-excised adult mouse cochleae. Further, we show that DμOCT is capable of capturing rapid changes in cochlear cell metabolism following an ototoxic insult to induce cell death and actin stabilization. Notably, as few as 6 frames can be used to reconstruct cochlear DμOCT images with sufficient detail to discern individual cells and their metabolic state. Taken together, these results motivate future development of a DμOCT imaging probe for cellular and metabolic diagnosis of SNHL in humans.
Collapse
Affiliation(s)
- Hinnerk Schulz-Hildebrandt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Svetolik Spasic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Fang Hou
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kuan-Chung Ting
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Guillermo Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Science and Technology, Cambridge, MA, United States
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
9
|
Zhang T, Yuan S, Xu C, Liu P, Chang HC, Ng SHC, Ren H, Yuan W. PneumaOCT: Pneumatic optical coherence tomography endoscopy for targeted distortion-free imaging in tortuous and narrow internal lumens. SCIENCE ADVANCES 2024; 10:eadp3145. [PMID: 39196931 PMCID: PMC11352845 DOI: 10.1126/sciadv.adp3145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The complex anatomy of internal luminal organs, like bronchioles, poses challenges for endoscopic optical coherence tomography (OCT). These challenges include limited steerability for targeted imaging and nonuniform rotation distortion (NURD) with proximal scanning. Using rotary micromotors for distal scanning could address NURD but raises concerns about electrical safety and costs. We present pneumaOCT, the first pneumatic OCT endoscope, comprising a steerable catheter with a soft pneumatic actuator and an imaging probe with a miniature pneumatic turbine. With a diameter of 2.8 mm, pneumaOCT allows for a bending angle of up to 237°, facilitating navigation through narrow turns. The pneumatic turbine enables adjustable imaging speeds from 51 to 446 revolutions per second. We demonstrate the pneumaOCT in vivo imaging of mouse esophagus and colon, as well as targeted and distortion-free imaging of peripheral bronchioles in a bronchial phantom and a porcine lung. This advancement substantially improves endoscopic OCT for navigational imaging in curved and narrow lumens.
Collapse
Affiliation(s)
- Tinghua Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sishen Yuan
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chao Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Peng Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze Hang Calvin Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Sui X, Kuang D, Liu G, Ding Y, Meng M, Xi R. Highly focused beam generated with a height tuned micro-optical structure for high contrast microscopic imaging. OPTICS EXPRESS 2024; 32:19308-19318. [PMID: 38859068 DOI: 10.1364/oe.523606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
Light sheet illumination technology improves the signal-to-noise ratio, resolution, and reduces scattered backgrounds for biological microscopic detection system. Here, we developed a novel micro-optical structure to produce a focused and uniform beam for the enhancement of imaging contrast. The beam intensity and working distance can be modified by adjusting the height and period of the structure. Our experiments successfully recorded structured light illumination, demonstrating the ability of the structure to capture high-contrast imaging data. We compared the light fields generated with and without the structure to assess the imaging quality, revealing a maximum 4.78-fold improvement in the signal-to-noise ratio. This work provides a potential method for high-resolution and high-contrast light sheet fluorescence microscopic detection.
Collapse
|
11
|
Nandy S. 2023 American Thoracic Society BEAR Cage Winning Proposal. Endobronchial Optical Coherence Tomography: A Novel Imaging Technique for Early Microscopic Diagnosis and Monitoring of Interstitial Lung Disease. Am J Respir Crit Care Med 2024; 209:1069-1071. [PMID: 38060298 PMCID: PMC11092955 DOI: 10.1164/rccm.202310-1869ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Sreyankar Nandy
- Division of Pulmonary and Critical Care Medicine Massachusetts General Hospital Boston, Massachusetts
- Harvard Medical School Boston, Massachusetts
| |
Collapse
|
12
|
Chaliha DR, Vaccarezza M, Charng J, Chen FK, Lim A, Drummond P, Takechi R, Lam V, Dhaliwal SS, Mamo JCL. Using optical coherence tomography and optical coherence tomography angiography to delineate neurovascular homeostasis in migraine: a review. Front Neurosci 2024; 18:1376282. [PMID: 38686331 PMCID: PMC11057254 DOI: 10.3389/fnins.2024.1376282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Migraine is one of the world's most debilitating disorders, and it has recently been shown that changes in the retina can be a potential biomarker for the disease. These changes can be detected by optical coherence tomography (OCT), which measures retinal thickness, and optical coherence tomography angiography (OCTA), which measures vessel density. We searched the databases Google Scholar, ProQuest, Scopus, and Web of Science for studies in English using OCT and OCTA in migraineurs, using the search terms "optical coherence tomography," "OCT," "optical coherence tomography angiography," "OCTA" and "migraine." We found 73 primary studies, 11 reviews, and 8 meta-analyses pertaining to OCT and OCTA findings in migraineurs. They showed that migraineurs had reduced retinal thickness (via OCT), retinal vessel density, and greater foveal avascular zone area (via OCTA) than controls. OCTA changes reflect a perfusion compromise occurring in migraineurs as opposed to in healthy controls. OCT and OCTA deficits were worse in migraine-with-aura and chronic migraine than in migraine-without-aura and episodic migraine. Certain areas of the eye, such as the fovea, may be more vulnerable to these perfusion changes than other parts. Direct comparison between study findings is difficult because of the heterogeneity between the studies in terms of both methodology and analysis. Moreover, as almost all case-control studies were cross-sectional, more longitudinal cohort studies are needed to determine cause and effect between migraine pathophysiology and OCT/OCTA findings. Current evidence suggests both OCT and OCTA may serve as retinal markers for migraineurs, and further research in this field will hopefully enable us to better understand the vascular changes associated with migraine, perhaps also providing a new diagnostic and therapeutic biomarker.
Collapse
Affiliation(s)
- Devahuti R. Chaliha
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
| | - Mauro Vaccarezza
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Jason Charng
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Sciences (Lions Eye Institute), The University of Western Australia, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Amy Lim
- Department of Optometry, School of Allied Health, The University of Western Australia, Perth, WA, Australia
| | - Peter Drummond
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Ryusuke Takechi
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Virginie Lam
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| | - Satvinder S. Dhaliwal
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Pulau Pinang, Malaysia
- Singapore University of Social Sciences, Singapore, Singapore
| | - John C. L. Mamo
- Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, WA, Australia
- Perron Institute Neurological and Translational Sciences, Perth, WA, Australia
| |
Collapse
|
13
|
Cordoba A. Brain Tumor Anatomy with Tractography Fluorescence and Confocal Endoscopy. Adv Tech Stand Neurosurg 2024; 52:7-19. [PMID: 39017783 DOI: 10.1007/978-3-031-61925-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Tractography fluorescence and confocal endomicroscopy are complementary technologies to targeted tumor resection, and it is certain that as our technology for fluorescent probes continues to evolve, the confocal microscope will continue to be refined. Recent work suggests that intraoperative high-resolution augmented reality endomicroscopy, a real-time alternative to invasive biopsy and histopathology, has the potential to better quantify tumor burden at the final stages of surgery and ultimately to improve patient outcomes when combined with wide-field imaging approaches. Additional studies are needed to further elucidate the clinical benefits of these new technologies for brain tumor patients.
Collapse
|
14
|
Tang JC, Magalhães R, Wisniowiecki A, Razura D, Walker C, Applegate BE. Optical coherence tomography technology in clinical applications. BIOPHOTONICS AND BIOSENSING 2024:285-346. [DOI: 10.1016/b978-0-44-318840-4.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
15
|
Shaked NT, Boppart SA, Wang LV, Popp J. Label-free biomedical optical imaging. NATURE PHOTONICS 2023; 17:1031-1041. [PMID: 38523771 PMCID: PMC10956740 DOI: 10.1038/s41566-023-01299-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/22/2023] [Indexed: 03/22/2024]
Abstract
Label-free optical imaging employs natural and nondestructive approaches for the visualisation of biomedical samples for both biological assays and clinical diagnosis. Currently, this field revolves around multiple broad technology-oriented communities, each with a specific focus on a particular modality despite the existence of shared challenges and applications. As a result, biologists or clinical researchers who require label-free imaging are often not aware of the most appropriate modality to use. This manuscript presents a comprehensive review of and comparison among different label-free imaging modalities and discusses common challenges and applications. We expect this review to facilitate collaborative interactions between imaging communities, push the field forward and foster technological advancements, biophysical discoveries, as well as clinical detection, diagnosis, and monitoring of disease.
Collapse
Affiliation(s)
- Natan T Shaked
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, Department of Electrical and Computer Engineering,; Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research, Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
16
|
Fujimoto JG, Swanson EA, Huang D. Optical Coherence Tomography-History, Evolution, and Future Prospects: 2023 Lasker-DeBakey Clinical Medical Research Award. JAMA 2023; 330:1427-1428. [PMID: 37732826 DOI: 10.1001/jama.2023.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In this Viewpoint, 2023 Lasker-DeBakey Clinical Medical Research Award winners James G. Fujimoto, David Huang, and Eric A. Swanson discuss their invention—optical coherence tomography, which allows rapid detection of diseases of the retina that impair vision.
Collapse
Affiliation(s)
- James G Fujimoto
- Department of Electrical Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology
| | - Eric A Swanson
- Affiliate of the Research Laboratory of Electronics, Massachusetts Institute of Technology
| | - David Huang
- Casey Eye Institute, Ophthalmology & Biomedical Engineering, Oregon Health and Science University, Portland
| |
Collapse
|
17
|
Unal S, Musicki B, Burnett AL. Cavernous nerve mapping methods for radical prostatectomy. Sex Med Rev 2023; 11:421-430. [PMID: 37500541 DOI: 10.1093/sxmrev/qead030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Preserving the cavernous nerves, the main autonomic nerve supply of the penis, is a major challenge of radical prostatectomy. Cavernous nerve injury during radical prostatectomy predominantly accounts for post-radical prostatectomy erectile dysfunction. The cavernous nerve is a bilateral structure that branches in a weblike distribution over the prostate surface and varies anatomically in individuals, such that standard nerve-sparing methods do not sufficiently sustain penile erection ability. As a consequence, researchers have focused on developing personalized cavernous nerve mapping methods applied to the surgical procedure aiming to improve postoperative sexual function outcomes. OBJECTIVES We provide an updated overview of preclinical and clinical data of cavernous nerve mapping methods, emphasizing their strengths, limitations, and future directions. METHODS A literature review was performed via Scopus, PubMed, and Google Scholar for studies that describe cavernous nerve mapping/localization. RESULTS Several cavernous nerve mapping methods have been investigated based on various properties of the nerve structures including stimulation techniques, spectroscopy/imaging techniques, and assorted combinations of these methods. More recent methods have portrayed the course of the main cavernous nerve as well as its branches based on real-time mapping, high-resolution imaging, and functional imaging. However, each of these methods has distinctive limitations, including low spatial accuracy, lack of standardization for stimulation and response measurement, superficial imaging depth, toxicity risk, and lack of suitability for intraoperative use. CONCLUSION While various cavernous nerve mapping methods have provided improvements in identification and preservation of the cavernous nerve during radical prostatectomy, no method has been implemented in clinical practice due to their distinctive limitations. To overcome the limitations of existing cavernous nerve mapping methods, the development of new imaging techniques and mapping methods is in progress. There is a need for further research in this area to improve sexual function outcomes and quality of life after radical prostatectomy.
Collapse
Affiliation(s)
- Selman Unal
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara 06800, Turkey
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
18
|
Davis TH. QnAs with James G. Fujimoto, David Huang, and Eric A. Swanson: Winners of the 2023 Lasker~DeBakey Clinical Medical Research Award. Proc Natl Acad Sci U S A 2023; 120:e2313883120. [PMID: 37732757 PMCID: PMC10523481 DOI: 10.1073/pnas.2313883120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
|
19
|
Sowmiya P, Dhas TS, Inbakandan D, Anandakumar N, Nalini S, Suganya KSU, Remya RR, Karthick V, Kumar CMV. Optically active organic and inorganic nanomaterials for biological imaging applications: A review. Micron 2023; 172:103486. [PMID: 37262930 DOI: 10.1016/j.micron.2023.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Recent advancements in the field of nanotechnology have enabled targeted delivery of drug agents in vivo with minimal side effects. The use of nanoparticles for bio-imaging has revolutionized the field of nanomedicine by enabling non-invasive targeting and selective delivery of active drug moieties in vivo. Various inorganic nanomaterials like mesoporous silica nanoparticles, gold nanoparticles, magnetite nanoparticles graphene-based nanomaterials etc., have been created for multimodal therapies with varied multi-imaging modalities. These nanomaterials enable us to overcome the disadvantages of conventional imaging contrast agents (organic dyes) such as lack of stability in vitro and in vivo, high reactivity, low-quantum yield and poor photo stability. Inorganic nanomaterials can be easily fabricated, functionalised and modified as per requirements. Recently, advancements in synthesis techniques, such as the ability to generate molecules and construct supramolecular structures for specific functionalities, have boosted the usage of engineered nanomaterials. Their intrinsic physicochemical properties are unique and they possess excellent biocompatibility. Inorganic nanomaterial research has developed as the most actively booming research fields in biotechnology and biomedicine. Inorganic nanomaterials like gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparticles, graphene-based nanomaterials and quantum dots have shown excellent use in bioimaging, targeted drug delivery and cancer therapies. Biocompatibility of nanomaterials is an important aspect for the evolution of nanomaterials in the bench to bedside transition. The conduction of thorough and meticulous study for safety and efficacy in well-designed clinical trials is absolutely necessary to determine the functional and structural relationship between the engineered nanomaterial and its toxicity. In this article an attempt is made to throw some light on the current scenario and developments made in the field of nanomaterials in bioimaging.
Collapse
Affiliation(s)
- P Sowmiya
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - T Stalin Dhas
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - D Inbakandan
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - N Anandakumar
- Department of Education, The Gandhigram Rural Institute, Dindigul 624302, Tamil Nadu, India
| | - S Nalini
- Department of Microbiology, Shree Rahavendra Arts and Science College, Keezhamoongiladi, Chidambaram 608102, Tamil Nadu, India
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram 695018, Kerala, India
| | - R R Remya
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, Tamil Nadu, India
| | - V Karthick
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - C M Vineeth Kumar
- Centre for Ocean Research (DST- FIST Sponsored Centre), MoES-Earth Science and Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| |
Collapse
|
20
|
Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2023; 29:11-20. [PMID: 36474462 PMCID: PMC9780043 DOI: 10.1097/mcp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Imaging techniques play a crucial role in the diagnostic work-up of pulmonary diseases but generally lack detailed information on a microscopic level. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are imaging techniques which provide microscopic images in vivo during bronchoscopy. The purpose of this review is to describe recent advancements in the use of bronchoscopic OCT- and CLE-imaging in pulmonary medicine. RECENT FINDINGS In recent years, OCT- and CLE-imaging have been evaluated in a wide variety of pulmonary diseases and demonstrated to be complementary to bronchoscopy for real-time, near-histological imaging. Several pulmonary compartments were visualized and characteristic patterns for disease were identified. In thoracic malignancy, OCT- and CLE-imaging can provide characterization of malignant tissue with the ability to identify the optimal sampling area. In interstitial lung disease (ILD), fibrotic patterns were detected by both (PS-) OCT and CLE, complementary to current HRCT-imaging. For obstructive lung diseases, (PS-) OCT enables to detect airway wall structures and remodelling, including changes in the airway smooth muscle and extracellular matrix. SUMMARY Bronchoscopic OCT- and CLE-imaging allow high resolution imaging of airways, lung parenchyma, pleura, lung tumours and mediastinal lymph nodes. Although investigational at the moment, promising clinical applications are on the horizon.
Collapse
|
21
|
Bhatti HS, Khan S, Zahra M, Mustafa S, Ashraf S, Ahmad I. Characterization of radiofrequency ablated myocardium with optical coherence tomography. Photodiagnosis Photodyn Ther 2022; 40:103151. [PMID: 36228980 DOI: 10.1016/j.pdpdt.2022.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Certain types of cardiac arrhythmias are best treated with radiofrequency (RF) ablation, in which an electrode is inserted into the targeted area of the myocardium and then RF electrical current is applied to heat and destroy surrounding tissue. The resulting ablation lesion usually consists of a coagulative necrotic core surrounded by a rim region of mixed viable and non-viable cells. The characterization of the RF ablated lesion is of potential clinical importance. Here we aim to elaborate optical coherence tomography (OCT) imaging for the characterization of RF-ablated myocardial tissue. In particular, the underlying principles of OCT and its polarization-sensitive counterpart (PS-OCT) are presented, followed by the knowledge needed to interpret their optical images. Studies focused on real-time monitoring of RF lesion formation in the myocardium using OCT systems are summarized. The design and development of various hybrid probes incorporating both OCT guidance and RF ablation catheters are also discussed. Finally, the challenges related to the transmission of OCT imaging systems to cardiac clinics for real-time monitoring of RF lesions are outlined.
Collapse
Affiliation(s)
| | - Shamim Khan
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Madeeha Zahra
- Department of Physics, The Women University Multan, Pakistan
| | - Sonia Mustafa
- Department of Physics, The Women University Multan, Pakistan
| | - Sumara Ashraf
- Department of Physics, The Women University Multan, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
22
|
Wang C, Gan M. Wavelet attention network for the segmentation of layer structures on OCT images. BIOMEDICAL OPTICS EXPRESS 2022; 13:6167-6181. [PMID: 36589584 PMCID: PMC9774872 DOI: 10.1364/boe.475272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Automatic segmentation of layered tissue is critical for optical coherence tomography (OCT) image analysis. The development of deep learning techniques provides various solutions to this problem, while most existing methods suffer from topological errors such as outlier prediction and label disconnection. The channel attention mechanism is a powerful technique to address these problems due to its simplicity and robustness. However, it relies on global average pooling (GAP), which only calculates the lowest frequency component and leaves other potentially useful information unexplored. In this study, we use the discrete wavelet transform (DWT) to extract multi-spectral information and propose the wavelet attention network (WATNet) for tissue layer segmentation. The DWT-based attention mechanism enables multi-spectral analysis with no complex frequency-selection process and can be easily embedded to existing frameworks. Furthermore, the various wavelet bases make the WATNet adaptable to different tasks. Experiments on a self-collected esophageal dataset and two public retinal OCT dataset demonstrated that the WATNet achieved better performance compared to several widely used deep networks, confirming the advantages of the proposed method.
Collapse
Affiliation(s)
- Cong Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250102, China
| | - Meng Gan
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan 250102, China
| |
Collapse
|
23
|
Martin S, Rashidifard C, Norris D, Goncalves A, Vercollone C, Brezinski M. Minimally Invasive Polarization Sensitive Optical Coherence Tomography (PS-OCT) for assessing Pre-OA, a pilot study on technical feasibility. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4. [DOI: 10.1016/j.ocarto.2022.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Thiboutot J, Yuan W, Park HC, Li D, Loube J, Mitzner W, Yarmus L, Li X, Brown RH. Visualization and Validation of The Microstructures in The Airway Wall in vivo Using Diffractive Optical Coherence Tomography. Acad Radiol 2022; 29:1623-1630. [PMID: 35282990 PMCID: PMC9463401 DOI: 10.1016/j.acra.2022.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/17/2022]
Abstract
RATIONALE AND OBJECTIVES At present, there is no available method to study the in vivo microstructures of the airway wall (epithelium, smooth muscle, adventitia, basement membrane, glands, cartilage). Currently, we rely on ex vivo histologic evaluation of airway biopsies. To overcome this obstacle, we have developed an endoscopic ultrahigh-resolution diffractive optical coherence tomography (OCT) system, operating at a wavelength of 800 nm, to non-invasively study the in vivo microstructures of the airway wall. Prior to human study, validation of diffractive OCT's ability to quantitate airway microstructural components is required. MATERIALS AND METHODS To validate and demonstrate the accuracy of this OCT system, we used an ovine model to image small airways (∼ 2 mm in diameter). Histologic samples and correlated OCT images were matched. The cross-sectional area of the airway wall, lumen, and other microstructures were measured and compared. RESULTS A total of 27 sheep were studied from which we identified 39 paired OCT-histology airway images. We found strong correlations between the OCT and the histology measurements of the airway wall area and the microstructural area measurements of the epithelium, basement membrane, airway smooth muscle, glands, cartilage, and adventitia. The correlations ranged from r=0.61 (p<0.001) for the epithelium to r=0.86 (p<0.001) for the adventitia with the correlation between the OCT and the histology measurements for the entire airway wall of r=0.76 (p<0.001). CONCLUSION Given the high degree of correlation, these data validate the ability to acquire and quantify in vivo microscopic level imaging with this newly developed 800nm ultra-high resolution diffractive OCT system.
Collapse
Affiliation(s)
- Jeffrey Thiboutot
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Wu Yuan
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hyeon-Cheol Park
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Dawei Li
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Wayne Mitzner
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Anesthesiology/Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Lonny Yarmus
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Xingde Li
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Robert H Brown
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland; Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; Department of Anesthesiology/Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
25
|
Araki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, Johnson TW, Guagliumi G, Kastrati A, Joner M, Holm NR, Alfonso F, Wijns W, Adriaenssens T, Nef H, Rioufol G, Amabile N, Souteyrand G, Meneveau N, Gerbaud E, Opolski MP, Gonzalo N, Tearney GJ, Bouma B, Aguirre AD, Mintz GS, Stone GW, Bourantas CV, Räber L, Gili S, Mizuno K, Kimura S, Shinke T, Hong MK, Jang Y, Cho JM, Yan BP, Porto I, Niccoli G, Montone RA, Thondapu V, Papafaklis MI, Michalis LK, Reynolds H, Saw J, Libby P, Weisz G, Iannaccone M, Gori T, Toutouzas K, Yonetsu T, Minami Y, Takano M, Raffel OC, Kurihara O, Soeda T, Sugiyama T, Kim HO, Lee T, Higuma T, Nakajima A, Yamamoto E, Bryniarski KL, Di Vito L, Vergallo R, Fracassi F, Russo M, Seegers LM, McNulty I, Park S, Feldman M, Escaned J, Prati F, Arbustini E, Pinto FJ, Waksman R, Garcia-Garcia HM, Maehara A, Ali Z, Finn AV, Virmani R, Kini AS, Daemen J, Kume T, Hibi K, Tanaka A, Akasaka T, Kubo T, Yasuda S, Croce K, Granada JF, Lerman A, Prasad A, Regar E, Saito Y, Sankardas MA, Subban V, Weissman NJ, Chen Y, Yu B, et alAraki M, Park SJ, Dauerman HL, Uemura S, Kim JS, Di Mario C, Johnson TW, Guagliumi G, Kastrati A, Joner M, Holm NR, Alfonso F, Wijns W, Adriaenssens T, Nef H, Rioufol G, Amabile N, Souteyrand G, Meneveau N, Gerbaud E, Opolski MP, Gonzalo N, Tearney GJ, Bouma B, Aguirre AD, Mintz GS, Stone GW, Bourantas CV, Räber L, Gili S, Mizuno K, Kimura S, Shinke T, Hong MK, Jang Y, Cho JM, Yan BP, Porto I, Niccoli G, Montone RA, Thondapu V, Papafaklis MI, Michalis LK, Reynolds H, Saw J, Libby P, Weisz G, Iannaccone M, Gori T, Toutouzas K, Yonetsu T, Minami Y, Takano M, Raffel OC, Kurihara O, Soeda T, Sugiyama T, Kim HO, Lee T, Higuma T, Nakajima A, Yamamoto E, Bryniarski KL, Di Vito L, Vergallo R, Fracassi F, Russo M, Seegers LM, McNulty I, Park S, Feldman M, Escaned J, Prati F, Arbustini E, Pinto FJ, Waksman R, Garcia-Garcia HM, Maehara A, Ali Z, Finn AV, Virmani R, Kini AS, Daemen J, Kume T, Hibi K, Tanaka A, Akasaka T, Kubo T, Yasuda S, Croce K, Granada JF, Lerman A, Prasad A, Regar E, Saito Y, Sankardas MA, Subban V, Weissman NJ, Chen Y, Yu B, Nicholls SJ, Barlis P, West NEJ, Arbab-Zadeh A, Ye JC, Dijkstra J, Lee H, Narula J, Crea F, Nakamura S, Kakuta T, Fujimoto J, Fuster V, Jang IK. Optical coherence tomography in coronary atherosclerosis assessment and intervention. Nat Rev Cardiol 2022; 19:684-703. [PMID: 35449407 PMCID: PMC9982688 DOI: 10.1038/s41569-022-00687-9] [Show More Authors] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Since optical coherence tomography (OCT) was first performed in humans two decades ago, this imaging modality has been widely adopted in research on coronary atherosclerosis and adopted clinically for the optimization of percutaneous coronary intervention. In the past 10 years, substantial advances have been made in the understanding of in vivo vascular biology using OCT. Identification by OCT of culprit plaque pathology could potentially lead to a major shift in the management of patients with acute coronary syndromes. Detection by OCT of healed coronary plaque has been important in our understanding of the mechanisms involved in plaque destabilization and healing with the rapid progression of atherosclerosis. Accurate detection by OCT of sequelae from percutaneous coronary interventions that might be missed by angiography could improve clinical outcomes. In addition, OCT has become an essential diagnostic modality for myocardial infarction with non-obstructive coronary arteries. Insight into neoatherosclerosis from OCT could improve our understanding of the mechanisms of very late stent thrombosis. The appropriate use of OCT depends on accurate interpretation and understanding of the clinical significance of OCT findings. In this Review, we summarize the state of the art in cardiac OCT and facilitate the uniform use of this modality in coronary atherosclerosis. Contributions have been made by clinicians and investigators worldwide with extensive experience in OCT, with the aim that this document will serve as a standard reference for future research and clinical application.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Sun Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Thomas W Johnson
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | | | - Adnan Kastrati
- Technische Universität München and Munich Heart Alliance, Munich, Germany
| | | | | | | | - William Wijns
- National University of Ireland Galway and Saolta University Healthcare Group, Galway, Ireland
| | | | | | - Gilles Rioufol
- Hospices Civils de Lyon and Claude Bernard University, Lyon, France
| | | | | | | | | | | | - Nieves Gonzalo
- Hospital Clinico San Carlos, IdISSC, Universidad Complutense, Madrid, Spain
| | | | - Brett Bouma
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Gary S Mintz
- Cardiovascular Research Foundation, New York, NY, USA
| | - Gregg W Stone
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christos V Bourantas
- Barts Health NHS Trust, University College London and Queen Mary University London, London, UK
| | - Lorenz Räber
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Myeong-Ki Hong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsoo Jang
- Yonsei University College of Medicine, Seoul, South Korea
| | | | - Bryan P Yan
- Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Italo Porto
- University of Genoa, Genoa, Italy, San Martino Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | | | - Rocco A Montone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | | | - Harmony Reynolds
- New York University Grossman School of Medicine, New York, NY, USA
| | - Jacqueline Saw
- Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Libby
- Brigham and Women's Hospital, Boston, MA, USA
| | - Giora Weisz
- New York Presbyterian Hospital, Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, USA
| | | | - Tommaso Gori
- Universitäts medizin Mainz and DZHK Rhein-Main, Mainz, Germany
| | | | | | | | | | | | - Osamu Kurihara
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | | | | | | | - Tetsumin Lee
- Japanese Red Cross Musashino Hospital, Tokyo, Japan
| | - Takumi Higuma
- Kawasaki Municipal Tama Hospital, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Erika Yamamoto
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Krzysztof L Bryniarski
- Jagiellonian University Medical College, Institute of Cardiology, Department of Interventional Cardiology, John Paul II Hospital, Krakow, Poland
| | | | | | | | - Michele Russo
- Catholic University of the Sacred Heart, Rome, Italy
| | | | | | - Sangjoon Park
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Marc Feldman
- University of Texas Health, San Antonio, TX, USA
| | | | - Francesco Prati
- UniCamillus - Saint Camillus International University of Health Sciences, Rome, Italy
| | - Eloisa Arbustini
- IRCCS Foundation University Hospital Policlinico San Matteo, Pavia, Italy
| | - Fausto J Pinto
- Santa Maria University Hospital, CHULN Center of Cardiology of the University of Lisbon, Lisbon School of Medicine, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Ron Waksman
- MedStar Washington Hospital Center, Washington, DC, USA
| | | | - Akiko Maehara
- Cardiovascular Research Foundation, New York, NY, USA
| | - Ziad Ali
- Cardiovascular Research Foundation, New York, NY, USA
| | | | | | | | - Joost Daemen
- Erasmus University Medical Centre, Rotterdam, Netherlands
| | | | - Kiyoshi Hibi
- Yokohama City University Medical Center, Kanagawa, Japan
| | | | | | | | - Satoshi Yasuda
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kevin Croce
- Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Yundai Chen
- Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Yu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | - Peter Barlis
- University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Jong Chul Ye
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | - Hang Lee
- Massachusetts General Hospital, Boston, MA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filippo Crea
- Catholic University of the Sacred Heart, Rome, Italy
| | | | | | - James Fujimoto
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ik-Kyung Jang
- Massachusetts General Hospital, Boston, MA, USA.
- Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
26
|
Wang T, Pfeiffer T, Akyildiz A, van Beusekom HMM, Huber R, van der Steen AFW, van Soest G. Intravascular optical coherence elastography. BIOMEDICAL OPTICS EXPRESS 2022; 13:5418-5433. [PMID: 36425628 PMCID: PMC9664873 DOI: 10.1364/boe.470039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 05/07/2023]
Abstract
Optical coherence elastography (OCE), a functional extension of optical coherence tomography (OCT), visualizes tissue strain to deduce the tissue's biomechanical properties. In this study, we demonstrate intravascular OCE using a 1.1 mm motorized catheter and a 1.6 MHz Fourier domain mode-locked OCT system. We induced an intraluminal pressure change by varying the infusion rate from the proximal end of the catheter. We analysed the pixel-matched phase change between two different frames to yield the radial strain. Imaging experiments were carried out in a phantom and in human coronary arteries in vitro. At an imaging speed of 3019 frames/s, we were able to capture the dynamic strain. Stiff inclusions in the phantom and calcification in atherosclerotic plaques are associated with low strain values and can be distinguished from the surrounding soft material, which exhibits elevated strain. For the first time, circumferential intravascular OCE images are provided side by side with conventional OCT images, simultaneously mapping both the tissue structure and stiffness.
Collapse
Affiliation(s)
- Tianshi Wang
- Thoraxcentre, Erasmus University Medical Centre, Rotterdam 3015 AA, The Netherlands
| | - Tom Pfeiffer
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck 23562, Germany
| | - Ali Akyildiz
- Thoraxcentre, Erasmus University Medical Centre, Rotterdam 3015 AA, The Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2600 AA, The Netherlands
| | | | - Robert Huber
- Institut für Biomedizinische Optik, Universität zu Lübeck, Lübeck 23562, Germany
| | - Antonius F. W. van der Steen
- Thoraxcentre, Erasmus University Medical Centre, Rotterdam 3015 AA, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China
- Department of Imaging Science and Technology, Delft University of Technology, Delft 2600 AA, The Netherlands
| | - Gijs van Soest
- Thoraxcentre, Erasmus University Medical Centre, Rotterdam 3015 AA, The Netherlands
| |
Collapse
|
27
|
Nishizawa N, Kuchimaru T. Depth estimation of tumor invasion in early gastric cancer using scattering of circularly polarized light: Monte Carlo Simulation study. JOURNAL OF BIOPHOTONICS 2022; 15:e202200062. [PMID: 35666013 DOI: 10.1002/jbio.202200062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Quantitative depth estimation of tumor invasion in early gastric cancer by scattering of circularly polarized light is computationally investigated using the Monte Carlo method. Using the optical parameters of the human stomach wall and its carcinoma, the intensity and circular polarization of light scattered from pseudo-healthy and cancerous tissues were calculated over a wide spectral range. Large differences in the circular polarization with opposite signs, together with the large intensity, are obtained at wavelengths 600 nm and 950 nm. At these two wavelengths, the sampling depth of the biological tissues can be modulated by tuning the detection angle. In bi-layered pseudo-tissues with a cancerous layer on a healthy layer and vice versa, the degree of circular polarization of scattered light shows systematic changes depending on the thickness and depth of the cancerous layer, which indicates the feasibility of in vivo quantitative estimation of cancer progression in early gastric cancer.
Collapse
Affiliation(s)
- Nozomi Nishizawa
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
28
|
Tyberg A, Raijman I, Gaidhane M, Trindade AJ, Shahid H, Sarkar A, Samarasena J, Andalib I, Diehl DL, Pleskow DK, Woods KE, Gordon SR, Pannala R, Kedia P, Draganov PV, Tarnasky PR, Sejpal DV, Kumta NA, Parasher G, Adler DG, Patel K, Yang D, Siddiqui U, Kahaleh M, Joshi V. First interobserver agreement of optical coherence tomography in the bile duct: A multicenter collaborative study. Endosc Int Open 2022; 10:E1065-E1072. [PMID: 35979031 PMCID: PMC9377829 DOI: 10.1055/a-1779-5027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background and study aims Optical coherence tomography (OCT) is a new technology available for evaluation of indeterminate biliary strictures. It allows under-the-surface visualization and preliminary studies have confirmed standardized characteristics associated with malignancy. The aim of this study is to evaluate the first interobserver agreement in identifying previously agreed upon OCT criteria and diagnosing of malignant versus benign disease. Patients and methods Fourteen endoscopists were asked to review an atlas of reference clips and images of eight criteria derived from expert consensus A total of 35 de-identified video clips were then evaluated for presence of the eight criteria and for final diagnosis of malignant versus benign using the atlas as reference Intraclass correlation (ICC) analysis was done to evaluate interrater agreement. Results Clips of 23 malignant lesions and 12 benign lesions were scored. Excellent interobserver agreement was seen with dilated hypo-reflective structures (0.85) and layering effacement (0.89); hyper-glandular mucosa (0.76), intact layering (0.81), and onion-skin layering (0.77); fair agreement was seen with scalloping (0.58), and thickened epithelium (0.4); poor agreement was seen with hyper-reflective surface (0.36). The diagnostic ICC for both neoplastic (0.8) and non-neoplastic (0.8) was excellent interobserver agreement. The overall diagnostic accuracy was 51 %, ranging from 43 % to 60 %. Conclusions Biliary OCT is a promising new modality for evaluation of indeterminate biliary strictures. Interobserver agreement ranged from fair to almost perfect on eight previously identified criteria. Interobserver agreement for malignancy diagnosis was substantial (0.8). Further studies are needed to validate this data.
Collapse
Affiliation(s)
- Amy Tyberg
- Gastroenterology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States
| | - Isaac Raijman
- Baylor St Lukes Medical Center, Houston, Texas, United States
| | - Monica Gaidhane
- Gastroenterology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States
| | - Arvind J. Trindade
- Long Island Jewish Medical Center, New Hyde Park, New York, United States
| | - Haroon Shahid
- Gastroenterology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States
| | - Avik Sarkar
- Gastroenterology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States
| | - Jason Samarasena
- University of California Irvine, Irvine, California, United States
| | - Iman Andalib
- Mount Sinai South Nassau, Oceanside, New York, United States
| | - David L. Diehl
- Geisinger Medical Center, Danville, Pennsylvania, United States
| | - Douglas K. Pleskow
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Kevin E. Woods
- Southeastern Regional Medical Center, Lumberton, North Carolina, United States
| | - Stuart R. Gordon
- Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Rahul Pannala
- Mayo Clinic Phoenix, Phoenix, Arizona, United States
| | - Prashant Kedia
- Methodist Dallas Medical Center, Dallas, Texas, United States
| | - Peter V. Draganov
- University of Florida, Gainesville, Gainesville, Florida, United States
| | | | | | | | - Gulshan Parasher
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States
| | - Douglas G. Adler
- University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Kalpesh Patel
- Baylor College of Medicine, Houston, Texas, United States
| | - Dennis Yang
- University of Florida, Gainesville, Gainesville, Florida, United States
| | - Uzma Siddiqui
- University of Chicago, Chicago, Illinois, United States
| | - Michel Kahaleh
- Gastroenterology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey, United States
| | - Viren Joshi
- Ochsner Medical Center, New Orleans, Louisiana, United States
| |
Collapse
|
29
|
Taylor-Williams M, Spicer G, Bale G, Bohndiek SE. Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220074VR. [PMID: 35922891 PMCID: PMC9346606 DOI: 10.1117/1.jbo.27.8.080901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Measurement and imaging of hemoglobin oxygenation are used extensively in the detection and diagnosis of disease; however, the applied instruments vary widely in their depth of imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost. The wide variation in available instrumentation can make it challenging for end users to select the appropriate tools for their application and to understand the relative limitations of different methods. AIM We aim to provide a systematic overview of the field of hemoglobin imaging and sensing. APPROACH We reviewed the sensing and imaging methods used to analyze hemoglobin oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging, spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation spectroscopy. RESULTS We compared and contrasted the ability of different methods to determine hemoglobin biomarkers such as oxygenation while considering factors that influence their practical application. CONCLUSIONS We highlight key limitations in the current state-of-the-art and make suggestions for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Graham Spicer
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Electrical Division, Department of Engineering, Cambridge, United Kingdom, United Kingdom
| | - Sarah E Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| |
Collapse
|
30
|
Adams DC, Majid A, Suter MJ. Polarization mode dispersion correction in endoscopic polarization-sensitive optical coherence tomography with incoherent polarization input states. BIOMEDICAL OPTICS EXPRESS 2022; 13:3446-3460. [PMID: 35781955 PMCID: PMC9208610 DOI: 10.1364/boe.457790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 05/11/2023]
Abstract
The incorporation of polarization sensitivity into optical coherence tomography (PS-OCT) imaging can greatly enhance utility by allowing differentiation via intrinsic contrast of many types of tissue. In fiber-based OCT systems such as those employing endoscopic imaging probes, however, polarization mode dispersion (PMD) can significantly impact the ability to obtain accurate polarization data unless valuable axial resolution is sacrificed. In this work we present a new technique for compensating for PMD in endoscopic PS-OCT with minimal impact on axial resolution and without requiring mutually coherent polarization inputs, needing only a birefringent structure with known orientation in view (such as the catheter sheath). We then demonstrate the advantages of this technique by comparing it against the current state of the art approach.
Collapse
Affiliation(s)
- David C. Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Adnan Majid
- Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02114, USA
| | - Melissa J. Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
A Novel -Gram-Based Image Classification Model and Its Applications in Diagnosing Thyroid Nodule and Retinal OCT Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3151554. [PMID: 35547561 PMCID: PMC9085325 DOI: 10.1155/2022/3151554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Imbalanced classes and dimensional disasters are critical challenges in medical image classification. As a classical machine learning model, the n-gram model has shown excellent performance in addressing this issue in text classification. In this study, we proposed an algorithm to classify medical images by extracting their n-gram semantic features. This algorithm first converts an image classification problem to a text classification problem by building an n-gram corpus for an image. After that, the algorithm was based on the n-gram model to classify images. The algorithm was evaluated by two independent public datasets. The first experiment is to diagnose benign and malignant thyroid nodules. The best area under the curve (AUC) is 0.989. The second experiment is to diagnose the type of fundus lesion. The best result is that it correctly identified 86.667% of patients with dry age-related macular degeneration (AMD), 93.333% of patients with diabetic macular edema (DME), and 93.333% of normal individuals.
Collapse
|
32
|
Pahlevaninezhad M, Huang YW, Pahlevani M, Bouma B, Suter MJ, Capasso F, Pahlevaninezhad H. Metasurface-based bijective illumination collection imaging provides high-resolution tomography in three dimensions. NATURE PHOTONICS 2022; 16:203-211. [PMID: 35937091 PMCID: PMC9355264 DOI: 10.1038/s41566-022-00956-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/10/2022] [Indexed: 06/08/2023]
Abstract
Microscopic imaging in three dimensions enables numerous biological and clinical applications. However, high-resolution optical imaging preserved in a relatively large depth range is hampered by the rapid spread of tightly confined light due to diffraction. Here, we show that a particular disposition of light illumination and collection paths liberates optical imaging from the restrictions imposed by diffraction. This arrangement, realized by metasurfaces, decouples lateral resolution from depth-of-focus by establishing a one-to-one correspondence (bijection) along a focal line between the incident and collected light. Implementing this approach in optical coherence tomography, we demonstrate tissue imaging at 1.3 μm wavelength with ~ 3.2 μm lateral resolution, maintained nearly intact over 1.25 mm depth-of-focus, with no additional acquisition or computation burden. This method, termed bijective illumination collection imaging, is general and might be adapted across various existing imaging modalities.
Collapse
Affiliation(s)
- Masoud Pahlevaninezhad
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, Canada
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, Canada
| | - Yao-Wei Huang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Majid Pahlevani
- Department of Electrical and Computer Engineering, Queen’s University, Kingston, Ontario, Canada
| | - Brett Bouma
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melissa J. Suter
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Federico Capasso
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Hamid Pahlevaninezhad
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
33
|
Cardinell JL, Ramjist JM, Chen C, Shi W, Nguyen NQ, Yeretsian T, Choi M, Chen D, Clark DS, Curtis A, Kim H, Faughnan ME, Yang VXD. Quantification metrics for telangiectasia using optical coherence tomography. Sci Rep 2022; 12:1805. [PMID: 35110554 PMCID: PMC8810896 DOI: 10.1038/s41598-022-05272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/17/2021] [Indexed: 12/02/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder that causes vascular malformations throughout the body. The most prevalent and accessible of these lesions are found throughout the skin and mucosa, and often rupture causing bleeding and anemia. A recent increase in potential HHT treatments have created a demand for quantitative metrics that can objectively measure the efficacy of new and developing treatments. We employ optical coherence tomography (OCT)—a high resolution, non-invasive imaging modality in a novel pipeline to image and quantitatively characterize dermal HHT lesion behavior over time or throughout the course of treatment. This study is aimed at detecting detailed morphological changes of dermal HHT lesions to understand the underlying dynamic processes of the disease. We present refined metrics tailored for HHT, developed from a pilot study using 3 HHT patients and 6 lesions over the course of multiple imaging dates, totalling to 26 lesion images. Preliminary results from these lesions are presented in this paper alongside representative OCT images. This study provides a new objective method to analyse and understand HHT lesions using a minimally invasive, accessible, cost-effective, and efficient imaging modality with quantitative metrics describing morphology and blood flow.
Collapse
Affiliation(s)
- Jillian L Cardinell
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.
| | - Joel M Ramjist
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| | - Chaoliang Chen
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Weisong Shi
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Nhu Q Nguyen
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada
| | - Tiffany Yeretsian
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Matthew Choi
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - David Chen
- Physical Sciences Platform, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dewi S Clark
- Toronto HHT Centre, Division of Respirology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Anne Curtis
- Division of Dermatology, University of Toronto, Toronto, ON, Canada
| | - Helen Kim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Marie E Faughnan
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Victor X D Yang
- Deparment of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, ON, Canada.,Department of Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China.,Department of Surgery, Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
34
|
Biliary Tree Diagnostics: Advances in Endoscopic Imaging and Tissue Sampling. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010135. [PMID: 35056443 PMCID: PMC8781810 DOI: 10.3390/medicina58010135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
The diagnostic approach to the biliary tree disorders can be challenging, especially for biliary strictures. Albeit the great diagnostic impact of endoscopic retrograde cholangiopancreatography (ERCP) which allows one to obtain fluoroscopic imaging and tissue sampling through brush cytology and/or forceps biopsy, a considerable proportion of cases remain indeterminate, leading to the risk of under/over treated patients. In the last two decades, several endoscopic techniques have been introduced in clinical practice, shrinking cases of uncertainties and improving diagnostic accuracy. The aim of this review is to discuss recent advances and emerging technologies applied to the management of biliary tree disorders through peroral endoscopy procedures.
Collapse
|
35
|
Cykowska A, Danalache M, Bonnaire FC, Feierabend M, Hofmann UK. Detecting early osteoarthritis through changes in biomechanical properties - A review of recent advances in indentation technologies in a clinical arthroscopic setup. J Biomech 2022; 132:110955. [PMID: 35042088 DOI: 10.1016/j.jbiomech.2022.110955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease currently affecting half of all women and one-third of all men aged over 65 and it is predicted to even increase in the next decades. In the variety of causes leading to OA, the first common denominator are changes in the extracellular matrix of the cartilage. In later stages, OA affects the whole joint spreading to higher levels of tissue architecture causing irreversible functional and structural damage. To date, the diagnosis of OA is only formulated in the late stages of the disease. This is also, where most present therapies apply. Since a precise diagnosis is a prerequisite for targeted therapy, tools to diagnose early OA, monitor its progression, and accurately stage the disease are wanted. This review article focuses on recent advances in indentation technologies to diagnose early OA through describing biomechanical cartilage characteristics. We provide an overview of microindentation instruments, indentation-type Atomic Force Microscopy, ultrasound, and water-jet ultrasound indentation, Optical Coherence Tomography-based air-jet indentation, as well as fiber Bragg grating.
Collapse
Affiliation(s)
- Anna Cykowska
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany.
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72076 Tübingen, Germany.
| | - Martina Feierabend
- Department of Computational Systems Biology, Faculty of Science of the University of Tübingen, D-72076 Tübingen, Germany.
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, D-72072 Tübingen, Germany; Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
36
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
37
|
Sobska J, Andreiuk B, Aparin IO, Reisch A, Krezel W, Klymchenko AS. Counterion-insulated near-infrared dyes in biodegradable polymer nanoparticles for in vivo imaging. NANOSCALE ADVANCES 2021; 4:39-48. [PMID: 35028505 PMCID: PMC8691417 DOI: 10.1039/d1na00649e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
Polymeric nanoparticles (NPs) are highly attractive for biomedical applications due to their potential biodegradability and capacity to encapsulate different loads, notably drugs and contrast agents. For in vivo optical bioimaging, NPs should operate in the near-infrared region (NIR) and exhibit stealth properties. In the present work, we applied the approach of ionic dye insulation with bulky hydrophobic counterions for encapsulation of near-infrared cyanine dyes (Cy5.5 and Cy7 bearing two octadecyl chains) into biodegradable polymer (PLGA) NPs. We found that at high dye loading (20-50 mM with respect to the polymer), the bulkiest fluorinated tetraphenylborate counterion minimized best the aggregation-caused quenching and improved fluorescence quantum yields of both NIR dyes, especially of Cy5.5. In addition, bulky counterions also enabled formation of small 40 nm polymeric NPs in contrast to smaller counterions. To provide them stealth properties, we prepared 40 nm dye-loaded PEGylated NPs through nanoprecipitation of synthetic PLGA-PEG block copolymer with the dye/counterion salt. The obtained NIR NPs loaded with Cy5.5 dye salt allowed in vivo imaging of wild-type mice with a good contrast after IV injection. Compared to the bare PLGA NPs, PLGA-PEG NPs exhibited significantly slower accumulation in the liver. Biodistribution studies confirmed the preferential accumulation in the liver, although PLGA and PLGA-PEG NPs could also be distributed in other organs, with the following tendency: liver > spleen > lungs > kidney > heart > testis > brain. Overall, the present work validated the counterion approach for encapsulation of NIR cyanine dyes into biodegradable polymer NPs bearing covalently attached PEG shell. Thus, we propose a simple and robust methodology for preparation of NIR fluorescent biodegradable polymer NPs, which could further improve the existing optical imaging for biomedical applications.
Collapse
Affiliation(s)
- Joanna Sobska
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) - INSERM U1258, CNRS UMR-7104, University of Strasbourg 1, Rue Laurent Fries 67404 Illkirch France
| | - Bohdan Andreiuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Ilya O Aparin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| | - Wojciech Krezel
- Institute of Genetics and Molecular and Cellular Biology (IGBMC) - INSERM U1258, CNRS UMR-7104, University of Strasbourg 1, Rue Laurent Fries 67404 Illkirch France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg 74 Route du Rhin 67401 Illkirch France
| |
Collapse
|
38
|
Zhao X, Ziv O, Mohammadpour R, Crosby B, Hoyt WJ, Jenkins MW, Snyder C, Hendon C, Laurita KR, Rollins AM. Polarization-sensitive optical coherence tomography monitoring of percutaneous radiofrequency ablation in left atrium of living swine. Sci Rep 2021; 11:24330. [PMID: 34934120 PMCID: PMC8692484 DOI: 10.1038/s41598-021-03724-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022] Open
Abstract
Radiofrequency ablation (RFA) is commonly used to treat atrial fibrillation (AF). However, the outcome is often compromised due to the lack of direct real-time feedback to assess lesion transmurality. In this work, we evaluated the ability of polarization-sensitive optical coherence tomography (PSOCT) to measure cardiac wall thickness and assess RF lesion transmurality during left atrium (LA) RFA procedures. Quantitative transmural lesion criteria using PSOCT images were determined ex vivo using an integrated PSOCT-RFA catheter and fresh swine hearts. LA wall thickness of living swine was measured with PSOCT and validated with a micrometer after harvesting the heart. A total of 38 point lesions were created in the LA of 5 living swine with the integrated PSOCT-RFA catheter using standard clinical RFA procedures. For all lesions with analyzable PSOCT images, lesion transmurality was assessed with a sensitivity of 89% (17 of 19 tested positive) and a specificity of 100% (5 of 5 tested negative) using the quantitative transmural criteria. This is the first report of using PSOCT to assess LA RFA lesion transmurality in vivo. The results indicate that PSOCT may potentially provide direct real-time feedback for LA wall thickness and lesion transmurality.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ohad Ziv
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, USA
| | | | - Benjamin Crosby
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Walter J Hoyt
- Department of Pediatrics, Ochsner Health, New Orleans, LA, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Snyder
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Kenneth R Laurita
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Klontzas ME, Protonotarios A. High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review. Bioengineering (Basel) 2021; 8:182. [PMID: 34821748 PMCID: PMC8614770 DOI: 10.3390/bioengineering8110182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid evolution of regenerative medicine and its associated scientific fields, such as tissue engineering, has provided great promise for multiple applications where replacement and regeneration of damaged or lost tissue is required. In order to evaluate and optimise the tissue engineering techniques, visualisation of the material of interest is crucial. This includes monitoring of the cellular behaviour, extracellular matrix composition, scaffold structure, and other crucial elements of biomaterials. Non-invasive visualisation of artificial tissues is important at all stages of development and clinical translation. A variety of preclinical and clinical imaging methods-including confocal multiphoton microscopy, optical coherence tomography, magnetic resonance imaging (MRI), and computed tomography (CT)-have been used for the evaluation of artificial tissues. This review attempts to present the imaging methods available to assess the composition and quality of 3D microenvironments, as well as their integration with human tissues once implanted in the human body. The review provides tissue-specific application examples to demonstrate the applicability of such methods on cardiovascular, musculoskeletal, and neural tissue engineering.
Collapse
Affiliation(s)
- Michail E. Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, 71110, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), 70013 Heraklion, Crete, Greece
- Department of Radiology, School of Medicine, Voutes Campus, University of Crete, 71003 Heraklion, Crete, Greece
| | | |
Collapse
|
40
|
Zeng S, Huang Y, Huang W, Pathak JL, He Y, Gao W, Huang J, Zhang Y, Zhang J, Dong H. Real-Time Monitoring and Quantitative Evaluation of Resin In-Filtrant Repairing Enamel White Spot Lesions Based on Optical Coherence Tomography. Diagnostics (Basel) 2021; 11:diagnostics11112046. [PMID: 34829392 PMCID: PMC8618956 DOI: 10.3390/diagnostics11112046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to explore the feasibility of real-time monitoring and quantitative guiding the repair of enamel white spot lesions (WSLs) with resin infiltration by optical coherence tomography (OCT). Seven New Zealand rabbits were treated with 37% phosphoric acid etchant for 15 min to establish the model of enamel demineralization chalk spots of upper incisors, which were repaired by Icon resin infiltrant. OCT, stereo microscope (SM) imaging, scanning electron microscope (SEM) imaging and hematoxylin eosin (HE) staining were used to image each operation step. The changes of WSLs of enamel before and in the process of restoration with resin infiltrant showed specific performance in OCT images, which were consistent with the corresponding results of stereomicroscope and SEM. OCT can non-invasively and accurately image the whole process of repairing enamel demineralization layer with resin infiltration real-time, which can effectively guide the clinical use of resin infiltrant to repair enamel WSLs and be used as an imaging tool to evaluate the process and effect of restoration with resin infiltrant at the same time.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yuhang Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Janak L. Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Yanbing He
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China; (S.Z.); (Y.H.); (W.H.); (J.L.P.); (Y.H.)
| | - Weijian Gao
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jing Huang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Yiqing Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
| | - Jian Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou 511436, China; (W.G.); (J.H.); (Y.Z.)
- Correspondence:
| | - Huixian Dong
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou 510182, China;
| |
Collapse
|
41
|
Yang Z, Soltanian-Zadeh S, Chu KK, Zhang H, Moussa L, Watts AE, Shaheen NJ, Wax A, Farsiu S. Connectivity-based deep learning approach for segmentation of the epithelium in in vivo human esophageal OCT images. BIOMEDICAL OPTICS EXPRESS 2021; 12:6326-6340. [PMID: 34745740 PMCID: PMC8547995 DOI: 10.1364/boe.434775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 05/03/2023]
Abstract
Optical coherence tomography (OCT) is used for diagnosis of esophageal diseases such as Barrett's esophagus. Given the large volume of OCT data acquired, automated analysis is needed. Here we propose a bilateral connectivity-based neural network for in vivo human esophageal OCT layer segmentation. Our method, connectivity-based CE-Net (Bicon-CE), defines layer segmentation as a combination of pixel connectivity modeling and pixel-wise tissue classification. Bicon-CE outperformed other widely used neural networks and reduced common topological prediction issues in tissues from healthy patients and from patients with Barrett's esophagus. This is the first end-to-end learning method developed for automatic segmentation of the epithelium in in vivo human esophageal OCT images.
Collapse
Affiliation(s)
- Ziyun Yang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Kengyeh K. Chu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Haoran Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lama Moussa
- Center for Esophageal Diseases and Swallowing, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ariel E. Watts
- Center for Esophageal Diseases and Swallowing, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
42
|
Linares-Gonzalez L, Rodenas-Herranz T, Campos F, Ruiz-Villaverde R, Carriel V. Basic Quality Controls Used in Skin Tissue Engineering. Life (Basel) 2021; 11:1033. [PMID: 34685402 PMCID: PMC8541591 DOI: 10.3390/life11101033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of skin defects is often a challenging effort due to the currently limited reconstructive options. In this sense, tissue engineering has emerged as a possible alternative to replace or repair diseased or damaged tissues from the patient's own cells. A substantial number of tissue-engineered skin substitutes (TESSs) have been conceived and evaluated in vitro and in vivo showing promising results in the preclinical stage. However, only a few constructs have been used in the clinic. The lack of standardization in evaluation methods employed may in part be responsible for this discrepancy. This review covers the most well-known and up-to-date methods for evaluating the optimization of new TESSs and orientative guidelines for the evaluation of TESSs are proposed.
Collapse
Affiliation(s)
- Laura Linares-Gonzalez
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Teresa Rodenas-Herranz
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Fernando Campos
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Servicio de Dermatología, Hospital Universitario San Cecilio, 18016 Granada, Spain; (L.L.-G.); (T.R.-H.)
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| | - Víctor Carriel
- Ibs. GRANADA, Instituto Biosanitario de Granada, 18016 Granada, Spain; (F.C.); (V.C.)
- Department of Histology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
43
|
Wei B, Wang C, Cheng Z, Lai B, Gan WB, Cui M. Clear optically matched panoramic access channel technique (COMPACT) for large-volume deep brain imaging. Nat Methods 2021; 18:959-964. [PMID: 34354291 DOI: 10.1038/s41592-021-01230-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/14/2020] [Indexed: 11/09/2022]
Abstract
To understand neural circuit mechanisms underlying behavior, it is crucial to observe the dynamics of neuronal structure and function in different regions of the brain. Since current noninvasive imaging technologies allow cellular-resolution imaging of neurons only within ~1 mm below the cortical surface, the majority of mouse brain tissue remains inaccessible. While miniature optical imaging probes allow access to deep brain regions, cellular-resolution imaging is typically restricted to a small tissue volume. To increase the tissue access volume, we developed a clear optically matched panoramic access channel technique (COMPACT). With probe dimensions comparable to those of common gradient-index lenses, COMPACT enables a two to three orders of magnitude greater tissue access volume. We demonstrated the capabilities of COMPACT by multiregional calcium imaging in mice during sleep. We believe that large-volume in vivo imaging with COMPACT will be valuable to a variety of deep tissue imaging applications.
Collapse
Affiliation(s)
- Bowen Wei
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Chenmao Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Zongyue Cheng
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA.,Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Baoling Lai
- Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Wen-Biao Gan
- Skirball Institute, Department of Neuroscience and Physiology, New York University Langone Medical Center, New York, NY, USA.,Department of Anesthesiology, New York University Langone Medical Center, New York, NY, USA
| | - Meng Cui
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA. .,Department of Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
44
|
Bu R, Balakrishnan S, Iftimia N, Price H, Zdanski C, Mitran S, Oldenburg AL. Sensing Inhalation Injury-Associated Changes in Airway Wall Compliance by Anatomic Optical Coherence Elastography. IEEE Trans Biomed Eng 2021; 68:2360-2367. [PMID: 33175676 PMCID: PMC8110609 DOI: 10.1109/tbme.2020.3037288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quantitative methods for assessing the severity of inhalation (burn) injury are needed to aid in treatment decisions. We hypothesize that it is possible to assess the severity of injuries on the basis of differences in the compliance of the airway wall. Here, we demonstrate the use of a custom-built, endoscopic, anatomic optical coherence elastography (aOCE) system to measure airway wall compliance. The method was first validated using airway phantoms, then performed on ex vivo porcine tracheas under varying degrees of inhalation (steam) injury. A negative correlation between aOCE-derived compliance and severity of steam injuries is found, and spatially-resolved compliance maps reveal regional heterogeneity in airway properties.
Collapse
Affiliation(s)
- Ruofei Bu
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA
| | - Santosh Balakrishnan
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA
| | - Nicusor Iftimia
- Physical Sciences Inc., New England Business Center, Andover, MA 01810, USA
| | - Hillel Price
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599- 3255 USA
| | - Carlton Zdanski
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7070, USA
| | - Sorin Mitran
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255, USA
| | - Amy L. Oldenburg
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599- 3255 USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3216 USA
| |
Collapse
|
45
|
Song G, Jelly ET, Chu KK, Kendall WY, Wax A. A review of low-cost and portable optical coherence tomography. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2021; 3:032002. [PMID: 37645660 PMCID: PMC10465117 DOI: 10.1088/2516-1091/abfeb7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Optical coherence tomography (OCT) is a powerful optical imaging technique capable of visualizing the internal structure of biological tissues at near cellular resolution. For years, OCT has been regarded as the standard of care in ophthalmology, acting as an invaluable tool for the assessment of retinal pathology. However, the costly nature of most current commercial OCT systems has limited its general accessibility, especially in low-resource environments. It is therefore timely to review the development of low-cost OCT systems as a route for applying this technology to population-scale disease screening. Low-cost, portable and easy to use OCT systems will be essential to facilitate widespread use at point of care settings while ensuring that they offer the necessary imaging performances needed for clinical detection of retinal pathology. The development of low-cost OCT also offers the potential to enable application in fields outside ophthalmology by lowering the barrier to entry. In this paper, we review the current development and applications of low-cost, portable and handheld OCT in both translational and research settings. Design and cost-reduction techniques are described for general low-cost OCT systems, including considerations regarding spectrometer-based detection, scanning optics, system control, signal processing, and the role of 3D printing technology. Lastly, a review of clinical applications enabled by low-cost OCT is presented, along with a detailed discussion of current limitations and outlook.
Collapse
Affiliation(s)
- Ge Song
- Author to whom any correspondence should be addressed.
| | | | - Kengyeh K Chu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Wesley Y Kendall
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| |
Collapse
|
46
|
Anagnostakou V, Ughi GJ, Puri AS, Gounis MJ. Optical Coherence Tomography for Neurovascular Disorders. Neuroscience 2021; 474:134-144. [PMID: 34126186 DOI: 10.1016/j.neuroscience.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
Diagnosis of cerebrovascular disease includes vascular neuroimaging techniques such as computed tomography (CT) angiography, magnetic resonance (MR) angiography (with or without use of contrast agents) and catheter digital subtraction angiography (DSA). These techniques provide mostly information about the vessel lumen. Vessel wall imaging with MR seeks to characterize cerebrovascular pathology, but with resolution that is often insufficient for small lesions. Intravascular imaging techniques such as ultrasound and optical coherence tomography (OCT), used for over a decade in the peripheral circulation, is not amendable to routine deployment in the intracranial circulation due to vessel caliber and tortuosity. However, advances in OCT technology including the probe profile, stiffness and unique distal rotation solution, holds the promise for eventual translation of OCT into the clinical arena. As such, it is apropos to review this technology and present the rationale for utilization of OCT in the cerebrovasculature.
Collapse
Affiliation(s)
- Vania Anagnostakou
- University of Massachusetts Medical School, Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - Giovanni J Ughi
- University of Massachusetts Medical School, Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - Ajit S Puri
- University of Massachusetts Medical School, Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States
| | - Matthew J Gounis
- University of Massachusetts Medical School, Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, United States.
| |
Collapse
|
47
|
Abstract
Optical imaging, which possesses noninvasive and high-resolution features for biomedical imaging, has been used to study various biological samples, from in vitro cells, ex vivo tissue, to in vivo imaging of living organism. Furthermore, optical imaging also covers a very wide scope of spatial scale, from submicron sized organelles to macro-scale live biological samples, enabling it a powerful tool for biomedical studies. Before introducing these superior optical imaging methods to researchers, first of all, it is necessary to present the basic concept of light-matter interactions such as absorption, scattering, and fluorescence, which can be used as the imaging contrast and also affect the imaging quality. And then the working mechanism of various imaging modalities including fluorescence microscopy, confocal microscopy, multiphoton microscopy, super-resolution microscopy, optical coherence tomography (OCT), diffuse optical tomography (DOT), etc. will be presented. Meanwhile, the main features and typical bioimaging applications of these optical imaging technologies are discussed. Finally, the perspective of future optical imaging methods is presented. The aim of this chapter is to introduce the background and principle of optical imaging for grasping the mechanism of advanced optical imaging modalities introduced in the following chapters.
Collapse
|
48
|
Pasarikovski CR, Ku JC, Ramjist J, Dobashi Y, Priola SM, da Costa L, Kumar A, Yang VXD. Minimally invasive intrathecal spinal cord imaging with optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210036R. [PMID: 33988003 PMCID: PMC8118064 DOI: 10.1117/1.jbo.26.5.056002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
SIGNIFICANCE Imaging of the spinal cord is challenging due to the surrounding bony anatomy, physiologic motion, and the small diameter of the spinal cord. This precludes the use of non-invasive imaging techniques in assessing structural changes related to trauma and evaluating residual function. AIM The purpose of our research was to apply endovascular technology and techniques and construct a preclinical animal model of intrathecal spinal cord imaging using optical coherence tomography (OCT). APPROACH Five animals (2 Yorkshire Swine and 3 New Zealand Rabbits) were utilized. Intrathecal access was gained using a 16-guage Tuohy, and an OCT catheter was advanced under roadmap technique into the cervical canal. The OCT catheter has a motorized pullback, and a total length of 54 mm of the spinal canal is imaged. RESULTS Image acquisition was successful for all animals. There were no instances of difficult catheter navigation, enabling OCT imaging rostrally to C2. The thecal sac provided excellent thoroughfare for the OCT catheter. The clear cerebrospinal fluid also provided an excellent medium for image acquisition, with no detectable artifact from the contents of the cerebrospinal fluid. The anatomical space of the spinal canal could be readily appreciated including: dural lining of the thecal sac, epidural veins, pial lining of the spinal cord, arachnoid bands, dentate ligaments, and nerve rootlets/roots. CONCLUSION Minimally invasive intrathecal imaging using endovascular OCT was feasible in this preclinical animal study. The repurposing of an endovascular device for spinal imaging comes with limitations, and a spine-specific device is necessary.
Collapse
Affiliation(s)
| | - Jerry C. Ku
- University of Toronto, Division of Neurosurgery, Department of Surgery, Toronto, Ontario, Canada
| | - Joel Ramjist
- University of Toronto, Sunnybrook Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Yuta Dobashi
- University of Toronto, Sunnybrook Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Stefano M. Priola
- Health Sciences North, Division of Neurosurgery, Department of Surgery, Sudbury, Ontario, Canada
| | - Leodante da Costa
- University of Toronto, Sunnybrook Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Ashish Kumar
- University of Toronto, Sunnybrook Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
| | - Victor X. D. Yang
- University of Toronto, Sunnybrook Hospital, Division of Neurosurgery, Toronto, Ontario, Canada
- University of Toronto, Sunnybrook Research Institute, Hurvitz Brain Sciences Research Program, Toronto, Ontario, Canada
- University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Wang C, Gan M. Tissue self-attention network for the segmentation of optical coherence tomography images on the esophagus. BIOMEDICAL OPTICS EXPRESS 2021; 12:2631-2646. [PMID: 34123493 PMCID: PMC8176794 DOI: 10.1364/boe.419809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 05/06/2023]
Abstract
Automatic segmentation of layered tissue is the key to esophageal optical coherence tomography (OCT) image processing. With the advent of deep learning techniques, frameworks based on a fully convolutional network are proved to be effective in classifying pixels on images. However, due to speckle noise and unfavorable imaging conditions, the esophageal tissue relevant to the diagnosis is not always easy to identify. An effective approach to address this problem is extracting more powerful feature maps, which have similar expressions for pixels in the same tissue and show discriminability from those from different tissues. In this study, we proposed a novel framework, called the tissue self-attention network (TSA-Net), which introduces the self-attention mechanism for esophageal OCT image segmentation. The self-attention module in the network is able to capture long-range context dependencies from the image and analyzes the input image in a global view, which helps to cluster pixels in the same tissue and reveal differences of different layers, thus achieving more powerful feature maps for segmentation. Experiments have visually illustrated the effectiveness of the self-attention map, and its advantages over other deep networks were also discussed.
Collapse
Affiliation(s)
- Cong Wang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Meng Gan
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
50
|
Comparison of Pulse Wave Signal Monitoring Techniques with Different Fiber-Optic Interferometric Sensing Elements. PHOTONICS 2021. [DOI: 10.3390/photonics8050142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pulse wave (PW) measurement is a highly prominent technique, used in biomedical diagnostics. Development of novel PW sensors with increased accuracy and reduced susceptibility to motion artifacts will pave the way to more advanced healthcare technologies. This paper reports on a comparison of performance of fiber optic pulse wave sensors, based on Fabry–Perot interferometer, fiber Bragg grating, optical coherence tomography (OCT) and singlemode-multimode-singlemode intermodal interferometer. Their performance was tested in terms of signal to noise ratio, repeatability of demodulated signals and suitability of demodulated signals for extraction of information about direct and reflected waves. It was revealed that the OCT approach of PW monitoring provided the best demodulated signal quality and was most robust against motion artifacts. Advantages and drawbacks of all compared PW measurement approaches in terms of practical questions, such as multiplexing capabilities and abilities to be interrogated by portable hardware are discussed.
Collapse
|