1
|
He Y, Gan M, Ma J, Liang S, Chen L, Niu L, Zhao Y, Wang Y, Zhu L, Shen L. TGF-β signaling in the ovary: Emerging roles in development and disease. Int J Biol Macromol 2025; 306:141455. [PMID: 40015411 DOI: 10.1016/j.ijbiomac.2025.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The TGF-β superfamily plays a pivotal role in a wide array of cellular processes, including cell proliferation, differentiation, apoptosis, and migration. It is also critically involved in ovarian development and the pathogenesis of various diseases. Within the ovary, follicles act as the primary functional units, housing numerous members of the TGF-β superfamily that regulate follicular development and, consequently, overall ovarian function. Dysregulation of the TGF-β signaling pathway is associated with reproductive disorders and the development of ovarian diseases in female mammals, such as polycystic ovary syndrome (PCOS), premature ovarian aging, ovarian insufficiency, and ovarian cancer. This article highlights the significant contributions of key TGF-β signaling pathway members to follicular development and ovarian disease progression, aiming to deepen the understanding of TGF-β signaling's critical role in reproductive health.
Collapse
Affiliation(s)
- Yuxu He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Sun M, Gu Y, Wang J, Zhang Z, Ling Z, Shao F, Lin C, He H, Li R, Liu H, Xu J. Smad4 loss identifies aggressive subtype with immunotherapy and anti-HER-2 treatment resistance in gastric cancer. Br J Cancer 2025:10.1038/s41416-025-03002-8. [PMID: 40281303 DOI: 10.1038/s41416-025-03002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND SMAD4 mutation and homozygous deletion represent the most prevalent genomic events driving aggressive biological behavior in gastric cancer (GC). However, clinical outcome and therapeutic response in GC patients with Smad4-loss remains obscure. METHODS This study included 990 GC patients from four independent clinical centers including the Zhongshan Hospital (ZSHS) cohort, the Cancer Genomic Atlas (TCGA) cohort, the Samsung Medical Center (SMC) cohort and the Memorial Sloan Kettering Cancer Center (MSKCC) cohort. RESULTS In ZSHS cohort, 60/454 GC patients harbored Smad4-loss are characterized by lower pN stage, well histology differentiation, lower EBV infection, null p53 staining and lower tumor proliferation. Smad4-loss GC patients exhibit miserable overall survival across ZSHS cohort and TCGA cohort. Moreover, Smad4-loss GC patients yield no impact on adjuvant chemotherapy, poor outcome upon anti-PD-1 immunotherapy or anti-HER-2 therapy. Interestingly, Smad4-loss GC show more well and intermediate differentiation and lower Ki67 staining. Furthermore, Smad4-loss GC exhibit tumor immunosuppressive contexture characterized with enriched CXCL13+CD8+T cells, reduced IFN-γ+ cells and GZMB+ cells infiltration. CONCLUSIONS Smad4 loss yields poor clinical outcome, immunotherapy and anti-HER-2 treatment resistance and tumor immunosuppressive contexture in GC patients. Our findings provide clues for further detailed biological investigation and aggressive clinical management in Smad4-loss GC patients.
Collapse
Affiliation(s)
- Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Gastrointestinal Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ziqiu Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Ling
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lin
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hao Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Liu Y, Li C, Cui X, Li M, Liu S, Wang Z. Potentially diagnostic and prognostic roles of piRNAs/PIWIs in pancreatic cancer: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189286. [PMID: 39952623 DOI: 10.1016/j.bbcan.2025.189286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited early diagnostic methods and therapeutic options, contributing to its poor prognosis. Recent advances in high-throughput sequencing have highlighted the critical roles of noncoding RNAs (ncRNAs), particularly PIWI-interacting RNAs (piRNAs), in cancer biology. In this review, we systematically summarize the emerging roles of piRNAs and their associated PIWI proteins in PDAC pathogenesis, progression, and prognosis. We provide a comprehensive analysis of the molecular mechanisms by which piRNAs/PIWIs regulate gene expression and cellular signaling pathways in PDAC. Furthermore, we discuss their potential as novel biomarkers for early diagnosis and therapeutic targets. Importantly, this review identifies key piRNAs/PIWIs involved in PDAC and proposes innovative strategies for improving diagnosis and treatment outcomes. Our work not only consolidates current knowledge but also offers new perspectives for future research and clinical applications in PDAC management.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changlei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Li
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Zusen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Kulkarni AM, Gayam PKR, Baby BT, Aranjani JM. Epithelial-Mesenchymal Transition in Cancer: A Focus on Itraconazole, a Hedgehog Inhibitor. Biochim Biophys Acta Rev Cancer 2025; 1880:189279. [PMID: 39938662 DOI: 10.1016/j.bbcan.2025.189279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Cancer, and the resulting mortality from it, is an ever-increasing concern in global health. Cancer mortality stems from the metastatic progression of the disease, by dissemination of the tumor cells. Epithelial-Mesenchymal Transition, the major hypothesis purported to be the origin of metastasis, confers mesenchymal phenotype to epithelial cells in a variety of contexts, physiological and pathological. EMT in cancer leads to rise of cancer-stem-like cells, drug resistance, relapse, and progression of malignancy. Inhibition of EMT could potentially attenuate the mortality. While novel molecules for inhibiting EMT are underway, repurposing drugs is also being considered as a viable strategy. In this review, Itraconazole is focused upon, as a repurposed molecule to mitigate EMT. Itraconazole is known to inhibit Hedgehog signaling, and light is shed upon the existing evidence, as well as the questions remaining to be answered.
Collapse
Affiliation(s)
- Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| | - Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104, India.
| |
Collapse
|
6
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Cui X, Song Y, Han J, Yuan Z. The multifaceted role of SMAD4 in immune cell function. Biochem Biophys Rep 2025; 41:101902. [PMID: 39802394 PMCID: PMC11721226 DOI: 10.1016/j.bbrep.2024.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response. Understanding SMAD4's role in immune cells is crucial, as its dysregulation can lead to autoimmune disorders, chronic inflammation, and immune deficiencies. The review emphasizes the significance of SMAD4 in immune regulation, proposing that deeper investigation could reveal novel therapeutic targets for immune-mediated conditions. Insights into SMAD4's involvement in processes like T cell differentiation, B cell class switch recombination, and macrophage polarization underscore its potential as a therapeutic target for a range of diseases, including autoimmune disorders and cancer.
Collapse
Affiliation(s)
- Xinmu Cui
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| | - Jianfeng Han
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
- Cellular Biomedicine Group Inc, Shanghai, 201203, China
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China
| |
Collapse
|
8
|
Demir T, Moloney C, Mahalingam D. Threading the Needle: Navigating Novel Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:715. [PMID: 40075563 PMCID: PMC11898821 DOI: 10.3390/cancers17050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor prognosis. Currently, chemotherapy is the only option for most patients with advanced-stage PDAC. Further, conventional immunotherapies and targeted therapies improve survival outcomes only in rare PDAC patient subgroups. To date, combinatory immunotherapeutic strategies to overcome the immune-hostile PDAC tumor microenvironment (TME) have resulted in limited efficacy in clinical studies. However, efforts are ongoing to develop new treatment strategies for patients with PDAC with the evolving knowledge of the TME, molecular characterization, and immune resistance mechanisms. Further, the growing arsenal of various immunotherapeutic agents, including novel classes of immune checkpoint inhibitors and oncolytic, chimeric antigen receptor T cell, and vaccine therapies, reinforces these efforts. This review will focus on the place of immunotherapy and future possible strategies in PDAC.
Collapse
Affiliation(s)
| | | | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (T.D.); (C.M.)
| |
Collapse
|
9
|
Zohud O, Lone IM, Midlej K, Nashef A, Iraqi FA. Smad4 Heterozygous Knockout Effect on Pancreatic and Body Weight in F1 Population Using Collaborative Cross Lines. BIOLOGY 2024; 13:918. [PMID: 39596873 PMCID: PMC11592182 DOI: 10.3390/biology13110918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Smad4, a critical tumor suppressor gene, plays a significant role in pancreatic biology and tumorigenesis. Genetic background and sex are known to influence phenotypic outcomes, but their impact on pancreatic weight in Smad4-deficient mice remains unclear. This study investigates the impact of Smad4 deficiency on pancreatic weight in first-generation (F1) mice from diverse collaborative cross (CC) lines, focusing on the influence of genetic background and sex. F1 mice were generated by crossbreeding female CC mice with C57BL/6J-Smad4tm1Mak males. Genotyping confirmed the presence of Smad4 knockout alleles. Mice were housed under standard conditions, euthanized at 80 weeks, and their pancreatic weights were measured, adjusted for body weight, and analyzed for effects of Smad4 deficiency, sex, and genetic background. The overall population of F1 mice showed a slight but non-significant increase in adjusted pancreatic weights in heterozygous knockout mice compared to wild-type mice. Sex-specific analysis revealed no significant difference in males but a significant increase in adjusted pancreatic weights in heterozygous knockout females. Genetic background analysis showed that lines CC018 and CC025 substantially increased adjusted pancreatic weights in heterozygous knockout mice. In contrast, other lines showed no significant difference or varied non-significant changes. The interplay between genetic background and sex further influenced these outcomes. Smad4 deficiency affects pancreatic weight in a manner significantly modulated by genetic background and sex. This study highlights the necessity of considering these factors in genetic research and therapeutic development, demonstrating the value of the collaborative cross mouse population in dissecting complex genetic interactions.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 1528001, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Oral and Maxillofacial Surgery, Meir Medical Center, Kfar Saba Affiliated to the Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel; (O.Z.); (I.M.L.); (K.M.)
| |
Collapse
|
10
|
Lee M, Ham H, Lee J, Lee ES, Chung CH, Kong DH, Park JR, Lee DK. TGF-β-Induced PAUF Plays a Pivotal Role in the Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cell Line Panc-1. Int J Mol Sci 2024; 25:11420. [PMID: 39518973 PMCID: PMC11546992 DOI: 10.3390/ijms252111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) was initially identified as a secreted protein that is substantially expressed in pancreatic ductal adenocarcinoma (PDAC). PAUF also affects invasiveness, motility, and the proliferation of cells in several types of cancer. Recently, PAUF was reported to play a pivotal role in the TLR4-mediated migration and invasion of PDAC cells. However, the mechanism inducing PAUF expression and its functional role in TGF-β-stimulated PDAC cells have not yet been studied. Thus, we first assessed whether TGF-β regulates PAUF expression in several PDAC cell lines and found a significant increase in PAUF expression in Smad signaling-positive Panc-1 cells treated with TGF-β. We also found that the PAUF promoter region contains a Smad-binding element. TGF-β-treated Panc-1 cells showed an increase in PAUF promoter activity, but this effect was not observed in TGF-β-stimulated Smad4-null BxPC-3 cells. Restoring Smad4 expression increased the PAUF promoter activity and expression in Smad4-overexpressing BxPC-3 cells treated with TGF-β. We further found that PAUF aggravated the TGF-β-induced epithelial-mesenchymal transition (EMT) in Panc-1 and BxPC-3 cells via the activation of MEK-ERK signaling. These results indicate that TGF-β/Smad signaling-mediated upregulation of PAUF plays a crucial role in EMT progression by activating the TGF-β-mediated MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Miso Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Hyejun Ham
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Jiyeong Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Eun Soo Lee
- Department of Internal Medicine, Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Gangwon-do, Republic of Korea; (E.S.L.); (C.H.C.)
| | - Choon Hee Chung
- Department of Internal Medicine, Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju 26426, Gangwon-do, Republic of Korea; (E.S.L.); (C.H.C.)
| | - Deok-Hoon Kong
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Jeong-Ran Park
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| | - Dong-Keon Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.L.); (H.H.); (J.L.); (D.-H.K.)
| |
Collapse
|
11
|
Racu ML, Schiavo AA, Van Campenhout C, De Nève N, Masuy T, Maris C, Decaestecker C, Remmelink M, Salmon I, D'Haene N. Validation of a targeted next-generation sequencing panel for pancreatic ductal adenocarcinomas. Exp Mol Pathol 2024; 139:104920. [PMID: 39033589 DOI: 10.1016/j.yexmp.2024.104920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is reported to be amongst the cancers with the lowest survival rate at 5 years. In the present study we aimed to validate a targeted next-generation sequencing (tNGS) panel to use in clinical routine, investigating genes important for PDAC diagnostic, prognostic and potential theragnostic aspect. In this NGS panel we also designed target regions to inquire about loss of heterozygosity (LOH) of chromosome 18 that has been described to be possibly linked to a worse disease progression. Copy number alteration has also been explored for a subset of genes. The last two methods are not commonly used for routine diagnostic with tNGS panels and we investigated their possible contribution to better characterize PDAC. A series of 140 formalin-fixed paraffin-embedded (FFPE) PDAC samples from 140 patients was characterized using this panel. Ninety-two % of patients showed alterations in at least one of the investigated genes (most frequent KRAS, TP53, SMAD4, CDKN2A and RNF43). Regarding LOH evaluation, we were able to detect chr18 LOH starting at 20% cell tumor percentage. The presence of LOH on chr18 is associated with a worse disease- and metastasis-free survival, in uni- and multivariate analyses. The present study validates the use of a tNGS panel for PDAC characterization, also evaluating chr18 LOH status for prognostic stratification.
Collapse
Affiliation(s)
- Marie-Lucie Racu
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Andrea Alex Schiavo
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Nancy De Nève
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Thomas Masuy
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Calliope Maris
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Christine Decaestecker
- Digital Image Analysis in Pathology (DIAPath), Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), Gosselies, Belgium; Laboratory of Image Synthesis and Analysis (LISA), Brussels School of Engineering/École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Ixelles, Belgium
| | - Myriam Remmelink
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), CUB Hôpital Érasme, Route de Lennik, 808 1070 Brussels, Belgium.
| |
Collapse
|
12
|
Tang H, Li YX, Lian JJ, Ng HY, Wang SSY. Personalized treatment using predictive biomarkers in solid organ malignancies: A review. TUMORI JOURNAL 2024; 110:386-404. [PMID: 39091157 DOI: 10.1177/03008916241261484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, the influence of specific biomarkers in the diagnosis and prognosis of solid organ malignancies has been increasingly prominent. The relevance of the use of predictive biomarkers, which predict cancer response to specific forms of treatment provided, is playing a more significant role than ever before, as it affects diagnosis and initiation of treatment, monitoring for efficacy and side effects of treatment, and adjustment in treatment regimen in the long term. In the current review, we explored the use of predictive biomarkers in the treatment of solid organ malignancies, including common cancers such as colorectal cancer, breast cancer, lung cancer, prostate cancer, and cancers associated with high mortalities, such as pancreatic cancer, liver cancer, kidney cancer and cancers of the central nervous system. We additionally analyzed the goals and types of personalized treatment using predictive biomarkers, and the management of various types of solid organ malignancies using predictive biomarkers and their relative efficacies so far in the clinical settings.
Collapse
|
13
|
Scolaro T, Manco M, Pecqueux M, Amorim R, Trotta R, Van Acker HH, Van Haele M, Shirgaonkar N, Naulaerts S, Daniluk J, Prenen F, Varamo C, Ponti D, Doglioni G, Ferreira Campos AM, Fernandez Garcia J, Radenkovic S, Rouhi P, Beatovic A, Wang L, Wang Y, Tzoumpa A, Antoranz A, Sargsian A, Di Matteo M, Berardi E, Goveia J, Ghesquière B, Roskams T, Soenen S, Voets T, Manshian B, Fendt SM, Carmeliet P, Garg AD, DasGupta R, Topal B, Mazzone M. Nucleotide metabolism in cancer cells fuels a UDP-driven macrophage cross-talk, promoting immunosuppression and immunotherapy resistance. NATURE CANCER 2024; 5:1206-1226. [PMID: 38844817 PMCID: PMC11358017 DOI: 10.1038/s43018-024-00771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/23/2024] [Indexed: 08/16/2024]
Abstract
Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Tommaso Scolaro
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Marta Manco
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mathieu Pecqueux
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ricardo Amorim
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rosa Trotta
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Heleen H Van Acker
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Niranjan Shirgaonkar
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Stefan Naulaerts
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jan Daniluk
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chiara Varamo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Donatella Ponti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ana Margarida Ferreira Campos
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Juan Fernandez Garcia
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Silvia Radenkovic
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Pegah Rouhi
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Liwei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Amalia Tzoumpa
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Ara Sargsian
- Translation Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Emanuele Berardi
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jermaine Goveia
- Unicle Biomedical Data Science, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Core Facility, Center for Cancer Biology, VIB, Leuven, Belgium
- Metabolomics Core Facility, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Bella Manshian
- Translation Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Laboratory for Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ramanuj DasGupta
- Laboratory of Precision Oncology and Cancer Evolution, Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Baki Topal
- Department of Visceral Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium.
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Song Y, Gu D, Gao N, Sa H, Wang R, Fang L, Yuan Z. Smad4 deficiency inhibits lung metastases through enhancing phagocytosis of lung interstitial macrophages. Biochem Biophys Res Commun 2024; 715:150007. [PMID: 38678783 DOI: 10.1016/j.bbrc.2024.150007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Smad4, a critical mediator of TGF-β signaling, plays a pivotal role in regulating various cellular functions, including immune responses. In this study, we investigated the impact of Smad4 knockout specifically in macrophages on anti-tumor immunity, focusing on lung metastasis of B16 melanoma cells. Using a mouse model with Smad4 knockout in macrophages established via Lyz2-cre mice and Smad4 flox/flox mice, we demonstrated a significant inhibition of B16 metastasis in the lungs. Interestingly, the inhibition of tumor growth was found to be independent of adaptive immunity, as no significant changes were observed in the numbers or activities of T cells, B cells, or NK cells. Instead, Smad4 knockout led to the emergence of an MCHIIlow CD206high subset of lung interstitial macrophages, characterized by enhanced phagocytosis function. Our findings highlight the crucial role of Smad4 in modulating the innate immune response against tumors and provide insights into potential therapeutic strategies targeting lung interstitial macrophages to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Yu Song
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
| | - Dongxu Gu
- Department of Transfusion Medicine, The Third Bethune Hospital of Jilin University, 2, Xiantai Street, Changchun, 130012, China.
| | - Nan Gao
- Laboratory Department, The Third Affiliated Hospital of CCUCM, 1643, Jingyue Street, Changchun, 130021, China.
| | - Huanlan Sa
- Cancer Center, The First Hospital of Jilin University, 1, Xinmin Street, Changchun, 130021, China.
| | - Ruonan Wang
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
| | - Lin Fang
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
| | - Zhaoxin Yuan
- Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.
| |
Collapse
|
15
|
Kim BH, Kwon M, Lee D, Park SW, Shin E. K-ras mutation detected by peptide nucleic acid-clamping polymerase chain reaction, Ki-67, S100P, and SMAD4 expression can improve the diagnostic accuracy of inconclusive pancreatic EUS-FNB specimens. Pancreatology 2024; 24:584-591. [PMID: 38693041 DOI: 10.1016/j.pan.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
OBJECTIVES We aimed to assess the diagnostic utility of an immunohistochemical panel including calcium-binding protein P, p53, Ki-67, and SMAD family member 4 and K-ras mutation for diagnosing pancreatic solid lesion specimens obtained by endoscopic ultrasound-guided fine-needle biopsy and to confirm their usefulness in histologically inconclusive cases. METHODS Immunohistochemistry and peptide nucleic acid-clamping polymerase chain reaction for K-ras mutation were performed on 96 endoscopic ultrasound-guided fine-needle biopsy specimens. The diagnostic efficacy of each marker and the combination of markers was calculated. The diagnostic performances of these markers were evaluated in 27 endoscopic ultrasound-guided fine-needle biopsy specimens with histologically inconclusive diagnoses. A classification tree was constructed. RESULTS K-ras mutation showed the highest accuracy and consistency. Positivity in more than two or three of the five markers showed high diagnostic accuracy (94.6 % and 93.6 %, respectively), and positivity for more than three markers showed the highest accuracy for inconclusive cases (92.0 %). A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 showed high diagnostic performance, with only two misclassifications in inconclusive cases. CONCLUSIONS K-ras mutation detection via peptide nucleic acid-clamping polymerase chain reaction is a stable and accurate method for distinguishing between pancreatic ductal adenocarcinoma and non-pancreatic ductal adenocarcinoma lesions. A classification tree using K-ras mutation, Ki-67, S100P, and SMAD4 helps increase the diagnostic accuracy of cases that are histologically difficult to diagnose.
Collapse
Affiliation(s)
- Bo-Hyung Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Hospital, Seoul, South Korea; East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea.
| | - Minji Kwon
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University Hospital, Seoul, South Korea.
| | - Donghwan Lee
- Department of Statistics, Ewha Womans University, Seoul, South Korea.
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, South Korea.
| | - Eun Shin
- Department of Pathology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Gyeonggi-do, South Korea.
| |
Collapse
|
16
|
Ross AB, Gorhe D, Kim JK, Hodapp S, DeVine L, Chan KM, Chio IIC, Jovanovic M, Ayres Pereira M. Systematic analysis of proteome turnover in an organoid model of pancreatic cancer by dSILO. CELL REPORTS METHODS 2024; 4:100760. [PMID: 38677284 PMCID: PMC11133751 DOI: 10.1016/j.crmeth.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
The role of protein turnover in pancreatic ductal adenocarcinoma (PDA) metastasis has not been previously investigated. We introduce dynamic stable-isotope labeling of organoids (dSILO): a dynamic SILAC derivative that combines a pulse of isotopically labeled amino acids with isobaric tandem mass-tag (TMT) labeling to measure proteome-wide protein turnover rates in organoids. We applied it to a PDA model and discovered that metastatic organoids exhibit an accelerated global proteome turnover compared to primary tumor organoids. Globally, most turnover changes are not reflected at the level of protein abundance. Interestingly, the group of proteins that show the highest turnover increase in metastatic PDA compared to tumor is involved in mitochondrial respiration. This indicates that metastatic PDA may adopt alternative respiratory chain functionality that is controlled by the rate at which proteins are turned over. Collectively, our analysis of proteome turnover in PDA organoids offers insights into the mechanisms underlying PDA metastasis.
Collapse
Affiliation(s)
- Alison B Ross
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Lela DeVine
- Department of Biology, Barnard College, New York, NY 10027, USA; Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Karina M Chan
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Iok In Christine Chio
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA.
| | - Marina Ayres Pereira
- Institute for Cancer Genetics, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
17
|
Olaoba OT, Adelusi TI, Yang M, Maidens T, Kimchi ET, Staveley-O’Carroll KF, Li G. Driver Mutations in Pancreatic Cancer and Opportunities for Targeted Therapy. Cancers (Basel) 2024; 16:1808. [PMID: 38791887 PMCID: PMC11119842 DOI: 10.3390/cancers16101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer is the sixth leading cause of cancer-related mortality globally. As the most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC) represents up to 95% of all pancreatic cancer cases, accounting for more than 300,000 deaths annually. Due to the lack of early diagnoses and the high refractory response to the currently available treatments, PDAC has a very poor prognosis, with a 5-year overall survival rate of less than 10%. Targeted therapy and immunotherapy are highly effective and have been used for the treatment of many types of cancer; however, they offer limited benefits in pancreatic cancer patients due to tumor-intrinsic and extrinsic factors that culminate in drug resistance. The identification of key factors responsible for PDAC growth and resistance to different treatments is highly valuable in developing new effective therapeutic strategies. In this review, we discuss some molecules which promote PDAC initiation and progression, and their potential as targets for PDAC treatment. We also evaluate the challenges associated with patient outcomes in clinical trials and implications for future research.
Collapse
Affiliation(s)
- Olamide T. Olaoba
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Temitope I. Adelusi
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Ming Yang
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Tessa Maidens
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA;
| | - Eric T. Kimchi
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| | - Guangfu Li
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; (O.T.O.); (T.I.A.); (M.Y.); (E.T.K.)
| |
Collapse
|
18
|
Lai C, Xu L, Dai S. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clin Transl Med 2024; 14:e1684. [PMID: 38783482 PMCID: PMC11116501 DOI: 10.1002/ctm2.1684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Exportin-1 (XPO1), a crucial protein regulating nuclear-cytoplasmic transport, is frequently overexpressed in various cancers, driving tumor progression and drug resistance. This makes XPO1 an attractive therapeutic target. Over the past few decades, the number of available nuclear export-selective inhibitors has been increasing. Only KPT-330 (selinexor) has been successfully used for treating haematological malignancies, and KPT-8602 (eltanexor) has been used for treating haematologic tumours in clinical trials. However, the use of nuclear export-selective inhibitors for the inhibition of XPO1 expression has yet to be thoroughly investigated in clinical studies and therapeutic outcomes for solid tumours. METHODS We collected numerous literatures to explain the efficacy of XPO1 Inhibitors in preclinical and clinical studies of a wide range of solid tumours. RESULTS In this review, we focus on the nuclear export function of XPO1 and results from clinical trials of its inhibitors in solid malignant tumours. We summarized the mechanism of action and therapeutic potential of XPO1 inhibitors, as well as adverse effects and response biomarkers. CONCLUSION XPO1 inhibition has emerged as a promising therapeutic strategy in the fight against cancer, offering a novel approach to targeting tumorigenic processes and overcoming drug resistance. SINE compounds have demonstrated efficacy in a wide range of solid tumours, and ongoing research is focused on optimizing their use, identifying response biomarkers, and developing effective combination therapies. KEY POINTS Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle. XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours. The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours. Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.
Collapse
Affiliation(s)
- Chuanxi Lai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Lingna Xu
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| | - Sheng Dai
- Department of Colorectal SurgerySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Biotherapy of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
19
|
Buchberg J, de Stricker K, Pfeiffer P, Mortensen MB, Detlefsen S. Mutational profiling of 103 unresectable pancreatic ductal adenocarcinomas using EUS-guided fine-needle biopsy. Endosc Ultrasound 2024; 13:154-164. [PMID: 39318643 PMCID: PMC11419524 DOI: 10.1097/eus.0000000000000072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background and Objective Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-year survival rate of around 9%. Only 20% are candidates for surgery. Most unresectable patients undergo EUS-guided fine-needle biopsy (EUS-FNB) for diagnosis. Identification of targetable mutations using next-generation sequencing (NGS) is increasingly requested. Data on feasibility of EUS-FNB for NGS and knowledge regarding mutational profile of unresectable PDAC are scarce. We evaluated the "technical yield" of EUS-FNB for NGS in unresectable PDAC: relative fraction of diagnostic EUS-FNBs meeting technical criteria. We also investigated the "molecular yield": relative fraction of EUS-FNBs included in NGS containing sufficient DNA for detection of at least one mutation. Furthermore, we determined the relative frequency of cancer-associated mutations in unresectable PDAC. Patients and Methods Formalin-fixed and paraffin-embedded EUS-FNBs diagnostic of unresectable PDAC and fulfilling these criteria were included (n = 105): minimum 3-mm2 tissue, minimum of 2-mm2 tumor area, and minimum 20% relative tumor area. NGS was performed using Ion GeneStudio S5 Prime System and Oncomine™ Comprehensive Assay v.3 including 161 cancer-related genes. Results Technical yield was 48% (105/219) and molecular yield was 98% (103/105). Most frequently mutated genes were KRAS (89.3%) and TP53 (69.9%), followed by CDKN2A (24.3%), ARID1A (9.7%), SMAD4 (7.8%), TSC2 (7.8%), and CCND3 (6.8%). Conclusion EUS-FNB for NGS of unresectable PDAC is feasible. Our technical criteria for NGS, using leftovers in formalin-fixed and paraffin-embedded blocks after routine pathology diagnosis, were met by around half of EUS-FNBs. Almost all EUS-FNBs fulfilling the technical criteria yielded a successful NGS analysis.
Collapse
Affiliation(s)
- Julie Buchberg
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Karin de Stricker
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Per Pfeiffer
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
- Department of Surgery, Upper GI and HPB Section, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
20
|
Chi LH, Redfern AD, Roslan S, Street IP, Burrows AD, Anderson RL. Loss of tumor-derived SMAD4 enhances primary tumor growth but not metastasis following BMP4 signalling. Cell Commun Signal 2024; 22:248. [PMID: 38689334 PMCID: PMC11060976 DOI: 10.1186/s12964-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Bone morphogenetic protein 4 (BMP4) is a potent inhibitor of breast cancer metastasis. However, a tumor-promoting effect of BMP4 is reported in other tumor types, especially when SMAD4 is inactive. METHODS To assess the requirement for SMAD4 in BMP4-mediated suppression of metastasis, we knocked down SMAD4 in two different breast tumors and enforced SMAD4 expression in a third line with endogenous SMAD4 deletion. In addition, we assessed the requirement for SMAD4 in tumor cell-specific BMP signalling by expression of a constitutively active BMP receptor. Delineation of genes regulated by BMP4 in the presence or absence of SMAD4 was assessed by RNA sequencing and a BMP4-induced gene, MYO1F was assessed for its role in metastasis. Genes regulated by BMP4 and/or SMAD4 were assessed in a publicly available database of gene expression profiles of breast cancer patients. RESULTS In the absence of SMAD4, BMP4 promotes primary tumor growth that is accompanied by increased expression of genes associated with DNA replication, cell cycle, and MYC signalling pathways. Despite increased primary tumor growth, BMP4 suppresses metastasis in the absence of tumor cell expression of SMAD4. Consistent with the anti-metastatic activity of BMP4, enforced signalling through the constitutively active receptor in SMAD4 positive tumors that lacked BMP4 expression still suppressed metastasis, but in the absence of SMAD4, the suppression of metastasis was largely prevented. Thus BMP4 is required for suppression of metastasis regardless of tumor SMAD4 status. The BMP4 upregulated gene, MYO1F, was shown to be a potent suppressor of breast cancer metastasis. Gene signature upregulated by BMP4 in the absence of SMAD4 was associated with poor prognosis in breast cancer patients, whereas gene signature upregulated by BMP4 in the presence of SMAD4 was associated with improved prognosis. CONCLUSIONS BMP4 expression is required for suppression of metastasis regardless of the SMAD4 status of the tumor cells. Since BMP4 is a secreted protein, we conclude that it can act both in an autocrine manner in SMAD4-expressing tumor cells and in a paracrine manner on stromal cells to suppress metastasis. Deletion of SMAD4 from tumor cells does not prevent BMP4 from suppressing metastasis via a paracrine mechanism.
Collapse
Affiliation(s)
- Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andrew D Redfern
- Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Suraya Roslan
- Department of Surgery, St. Vincent's Hospital, Fitzroy, VIC, Australia
| | - Ian P Street
- Children's Cancer Institute, University of New South Wales, New South Wales, Australia
| | - Allan D Burrows
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
Qu HQ, Glessner JT, Qu J, Liu Y, Watson D, Chang X, Saeidian AH, Qiu H, Mentch FD, Connolly JJ, Hakonarson H. High Comorbidity of Pediatric Cancers in Patients with Birth Defects: Insights from Whole Genome Sequencing Analysis of Copy Number Variations. Transl Res 2024; 266:49-56. [PMID: 37989391 DOI: 10.1016/j.trsl.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/01/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Patients with birth defects (BD) exhibit an elevated risk of cancer. We aimed to investigate the potential link between pediatric cancers and BDs, exploring the hypothesis of shared genetic defects contributing to the coexistence of these conditions. METHODS This study included 1454 probands with BDs (704 females and 750 males), including 619 (42.3%) with and 845 (57.7%) without co-occurrence of pediatric onset cancers. Whole genome sequencing (WGS) was done at 30X coverage through the Kids First/Gabriella Miller X01 Program. RESULTS 8211 CNV loci were called from the 1454 unrelated individuals. 191 CNV loci classified as pathogenic/likely pathogenic (P/LP) were identified in 309 (21.3%) patients, with 124 (40.1%) of these patients having pediatric onset cancers. The most common group of CNVs are pathogenic deletions covering the region ChrX:52,863,011-55,652,521, seen in 162 patients including 17 males. Large recurrent P/LP duplications >5MB were detected in 33 patients. CONCLUSIONS This study revealed that P/LP CNVs were common in a large cohort of BD patients with high rate of pediatric cancers. We present a comprehensive spectrum of P/LP CNVs in patients with BDs and various cancers. Notably, deletions involving E2F target genes and genes implicated in mitotic spindle assembly and G2/M checkpoint were identified, potentially disrupting cell-cycle progression and providing mechanistic insights into the concurrent occurrence of BDs and cancers.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Yichuan Liu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Deborah Watson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Haijun Qiu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - John J Connolly
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA; Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
22
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
23
|
Li Z, Ma Z, Wang S, Yan Q, Zhuang H, Zhou Z, Liu C, Chen Y, Han M, Wu Z, Huang S, Zhou Q, Hou B, Zhang C. LINC00909 up-regulates pluripotency factors and promotes cancer stemness and metastasis in pancreatic ductal adenocarcinoma by targeting SMAD4. Biol Direct 2024; 19:24. [PMID: 38504385 PMCID: PMC10949730 DOI: 10.1186/s13062-024-00463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Pancreatic cancer stem cells are crucial for tumorigenesis and cancer metastasis. Presently, long non-coding RNAs were found to be associated with Pancreatic Ductal Adenocarcinoma stemness characteristics but the underlying mechanism is largely known. Here, we aim to explore the function of LINC00909 in regulating pancreatic cancer stemness and cancer metastasis. METHODS The expression level and clinical characteristics of LINC00909 were verified in 80-paired normal pancreas and Pancreatic Ductal Adenocarcinoma tissues from Guangdong Provincial People's Hospital cohort by in situ hybridization. RNA sequencing of PANC-1 cells with empty vector or vector encoding LINC00909 was experimented for subsequent bioinformatics analysis. The effect of LINC00909 in cancer stemness and metastasis was examined by in vitro and in vivo experiments. The interaction between LINC00909 with SMAD4 and the pluripotency factors were studied. RESULTS LINC00909 was generally upregulated in pancreatic cancer tissues and was associated with inferior clinicopathologic features and outcome. Over-expression of LINC00909 enhanced the expression of pluripotency factors and cancer stem cells phenotype, while knock-down of LINC00909 decreased the expression of pluripotency factors and cancer stem cells phenotype. Moreover, LINC00909 inversely regulated SMAD4 expression, knock-down of SMAD4 rescued the effect of LINC00909-deletion inhibition on pluripotency factors and cancer stem cells phenotype. These indicated the effect of LINC00909 on pluripotency factors and CSC phenotype was dependent on SMAD4 and MAPK/JNK signaling pathway, another downstream pathway of SMAD4 was also activated by LINC00909. Specifically, LINC00909 was localized in the cytoplasm in pancreatic cancer cells and decreased the stability the SMAD4 mRNA. Finally, we found over-expression of LINC00909 not only accelerated tumor growth in subcutaneous mice models, but also facilitated tumorigenicity and spleen metastasis in orthotopic mice models. CONCLUSION We demonstrate LINC00909 inhibits SMAD4 expression at the post-transcriptional level, which up-regulates the expression of pluripotency factors and activates the MAPK/JNK signaling pathway, leading to enrichment of cancer stem cells and cancer metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhenchong Li
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Zuyi Ma
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shujie Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Hongkai Zhuang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zixuan Zhou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Chunsheng Liu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Mingqian Han
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zelong Wu
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Shanzhou Huang
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong, 516081, China.
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Baohua Hou
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Heyuan people's Hospital, Heyuan, 517000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
- South China University of Technology School of Medicine, Guangzhou, Guangdong Province, 510006, China.
| |
Collapse
|
24
|
Tindall RR, Bailey-Lundberg JM, Cao Y, Ko TC. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front Oncol 2024; 14:1362247. [PMID: 38500662 PMCID: PMC10944957 DOI: 10.3389/fonc.2024.1362247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
The transforming growth factor (TGF)-β superfamily has important physiologic roles and is dysregulated in many pathologic processes, including pancreatic cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and current therapies are largely ineffective due to tumor resistance and late-stage diagnosis with poor prognosis. Recent efforts are focused on the potential of immunotherapies in improving therapeutic results for patients with pancreatic cancer, among which TGF-β has been identified as a promising target. This review focuses on the role of TGF-β in the diseased pancreas and pancreatic cancer. It also aims to summarize the current status of therapies targeting the TGF-β superfamily and postulate potential future directions in targeting the TGF-β signaling pathways.
Collapse
Affiliation(s)
- Rachel R. Tindall
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- McGovern Medical School, Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanna Cao
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tien C. Ko
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
25
|
Debernardi S, Liszka L, Ntala C, Steiger K, Esposito I, Carlotti E, Baker A, McDonald S, Graham T, Dmitrovic B, Feakins RM, Crnogorac‐Jurcevic T. Molecular characteristics of early-onset pancreatic ductal adenocarcinoma. Mol Oncol 2024; 18:677-690. [PMID: 38145461 PMCID: PMC10920080 DOI: 10.1002/1878-0261.13576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023] Open
Abstract
The median age of patients with pancreatic ductal adenocarcinoma (PDAC) at diagnosis is 71 years; however, around 10% present with early-onset pancreatic cancer (EOPC), i.e., before age 50. The molecular mechanisms underlying such an early onset are unknown. We assessed the role of common PDAC drivers (KRAS, TP53, CDKN2A and SMAD4) and determined their mutational status and protein expression in 90 formalin-fixed, paraffin-embedded tissues, including multiple primary and matched metastases, from 37 EOPC patients. KRAS was mutated in 88% of patients; p53 was altered in 94%, and p16 and SMAD4 were lost in 86% and 71% of patients, respectively. Meta-synthesis showed a higher rate of p53 alterations in EOPC than in late-onset PDAC (94% vs. 69%, P = 0.0009) and significantly higher loss of SMAD4 (71% vs. 44%, P = 0.0025). The majority of EOPC patients accumulated aberrations in all four drivers; in addition, high tumour heterogeneity was observed across all tissues. The cumulative effect of an exceptionally high rate of alterations in all common PDAC driver genes combined with high tumour heterogeneity suggests an important mechanism underlying the early onset of PDAC.
Collapse
Affiliation(s)
- Silvana Debernardi
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Lukasz Liszka
- Department of Pathomorphology and Molecular DiagnosticsMedical University of SilesiaKatowicePoland
| | | | - Katja Steiger
- Institute of Pathology, School of Medicine and HealthTechnical University of MunichGermany
| | - Irene Esposito
- Institute of PathologyHeinrich‐Heine University and University Hospital of DusseldorfGermany
| | - Emanuela Carlotti
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Ann‐Marie Baker
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Stuart McDonald
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Trevor Graham
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonUK
| | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineClinical Hospital Center OsijekCroatia
| | - Roger M. Feakins
- Department of Cellular PathologyRoyal Free London NHS Foundation TrustUK
| | - Tatjana Crnogorac‐Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer InstituteQueen Mary University of LondonUK
| |
Collapse
|
26
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
27
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MHG, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2024; 8:27. [PMID: 38310130 PMCID: PMC10838312 DOI: 10.1038/s41698-024-00505-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024] Open
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 patients with PDAC (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p < 0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p = 0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p < 0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p = 0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p = 0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n = 408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Hasselluhn MC, Schlösser D, Versemann L, Schmidt GE, Ulisse M, Oschwald J, Zhang Z, Hamdan F, Xiao H, Kopp W, Spitalieri J, Kellner C, Schneider C, Reutlinger K, Nagarajan S, Steuber B, Sastra SA, Palermo CF, Appelhans J, Bohnenberger H, Todorovic J, Kostyuchek I, Ströbel P, Bockelmann A, König A, Ammer-Herrmenau C, Schmidleitner L, Kaulfuß S, Wollnik B, Hahn SA, Neesse A, Singh SK, Bastians H, Reichert M, Sax U, Olive KP, Johnsen SA, Schneider G, Ellenrieder V, Hessmann E. An NFATc1/SMAD3/cJUN Complex Restricted to SMAD4-Deficient Pancreatic Cancer Guides Rational Therapies. Gastroenterology 2024; 166:298-312.e14. [PMID: 37913894 DOI: 10.1053/j.gastro.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/19/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND & AIMS The highly heterogeneous cellular and molecular makeup of pancreatic ductal adenocarcinoma (PDAC) not only fosters exceptionally aggressive tumor biology, but contradicts the current concept of one-size-fits-all therapeutic strategies to combat PDAC. Therefore, we aimed to exploit the tumor biological implication and therapeutic vulnerabilities of a clinically relevant molecular PDAC subgroup characterized by SMAD4 deficiency and high expression of the nuclear factor of activated T cells (SMAD4-/-/NFATc1High). METHODS Transcriptomic and clinical data were analyzed to determine the prognostic relevance of SMAD4-/-/NFATc1High cancers. In vitro and in vivo oncogenic transcription factor complex formation was studied by immunoprecipitation, proximity ligation assays, and validated cross model and species. The impact of SMAD4 status on therapeutically targeting canonical KRAS signaling was mechanistically deciphered and corroborated by genome-wide gene expression analysis and genetic perturbation experiments, respectively. Validation of a novel tailored therapeutic option was conducted in patient-derived organoids and cells and transgenic as well as orthotopic PDAC models. RESULTS Our findings determined the tumor biology of an aggressive and chemotherapy-resistant SMAD4-/-/NFATc1High subgroup. Mechanistically, we identify SMAD4 deficiency as a molecular prerequisite for the formation of an oncogenic NFATc1/SMAD3/cJUN transcription factor complex, which drives the expression of RRM1/2. RRM1/2 replenishes nucleoside pools that directly compete with metabolized gemcitabine for DNA strand incorporation. Disassembly of the NFATc1/SMAD3/cJUN complex by mitogen-activated protein kinase signaling inhibition normalizes RRM1/2 expression and synergizes with gemcitabine treatment in vivo to reduce the proliferative index. CONCLUSIONS Our results suggest that PDAC characterized by SMAD4 deficiency and oncogenic NFATc1/SMAD3/cJUN complex formation exposes sensitivity to a mitogen-activated protein kinase signaling inhibition and gemcitabine combination therapy.
Collapse
Affiliation(s)
- Marie C Hasselluhn
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Denise Schlösser
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Lennart Versemann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Geske E Schmidt
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Maria Ulisse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Joana Oschwald
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Zhe Zhang
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Feda Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Laboratory, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Harry Xiao
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Waltraut Kopp
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Jessica Spitalieri
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Christin Kellner
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Kristina Reutlinger
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Sankari Nagarajan
- Manchester Breast Centre and Manchester Cancer Research Centre, Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Benjamin Steuber
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephen A Sastra
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Carmine F Palermo
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Jennifer Appelhans
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Jovan Todorovic
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Irina Kostyuchek
- Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Aiko Bockelmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander König
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Laura Schmidleitner
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Silke Kaulfuß
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Bernd Wollnik
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Institute of Human Genetics, University Medical Center Goettingen, Goettingen, Germany; Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Goettingen, Germany
| | - Stephan A Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular Gastrointestinal Oncology, Bochum, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Shiv K Singh
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany
| | - Holger Bastians
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Molecular Oncology, Section for Cellular Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany; German Cancer Consortium (a partnership between Deutsches Krebsforschungszentrum and University Hospital Klinikum Rechts der Isar), Munich, Germany; Center for Protein Assemblies, Technical University of Munich, Garching, Germany; Center for Organoid Systems and Tissue Engineering, Technical University Munich, Garching, Germany
| | - Ulrich Sax
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of Medical Informatics, University Medical Center Goettingen, Goettingen, Germany
| | - Kenneth P Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Robert Bosch Center for Tumor Diseases, Stuttgart, Germany
| | - Günter Schneider
- Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, Goettingen, Germany; Comprehensive Cancer Center, Lower Saxony, Goettingen and Hannover, Germany.
| |
Collapse
|
29
|
Alexander BE, Zhao H, Astrof S. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development. Dev Dyn 2024; 253:119-143. [PMID: 37650555 PMCID: PMC10842824 DOI: 10.1002/dvdy.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Collapse
Affiliation(s)
- Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
30
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
31
|
Qahaz N, Lone IM, Khadija A, Ghnaim A, Zohud O, Nun NB, Nashef A, Abu El-Naaj I, Iraqi FA. Host Genetic Background Effect on Body Weight Changes Influenced by Heterozygous Smad4 Knockout Using Collaborative Cross Mouse Population. Int J Mol Sci 2023; 24:16136. [PMID: 38003328 PMCID: PMC10671513 DOI: 10.3390/ijms242216136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Obesity and its attendant conditions have become major health problems worldwide, and obesity is currently ranked as the fifth most common cause of death globally. Complex environmental and genetic factors are causes of the current obesity epidemic. Diet, lifestyle, chemical exposure, and other confounding factors are difficult to manage in humans. The mice model is helpful in researching genetic BW gain because genetic and environmental risk factors can be controlled in mice. Studies in mouse strains with various genetic backgrounds and established genetic structures provide unparalleled opportunities to find and analyze trait-related genomic loci. In this study, we used the Collaborative Cross (CC), a large panel of recombinant inbred mouse strains, to present a predictive study using heterozygous Smad4 knockout profiles of CC mice to understand and effectively identify predispositions to body weight gain. Male C57Bl/6J Smad4+/- mice were mated with female mice from 10 different CC lines to create F1 mice (Smad4+/-x CC). Body weight (BW) was measured weekly until week 16 and then monthly until the end of the study (week 48). The heritability (H2) of the assessed traits was estimated and presented. Comparative analysis of various machine learning algorithms for predicting the BW changes and genotype of mice was conducted. Our data showed that the body weight records of F1 mice with different CC lines differed between wild-type and mutant Smad4 mice during the experiment. Genetic background affects weight gain and some lines gained more weight in the presence of heterozygous Smad4 knockout, while others gained less, but, in general, the mutation caused overweight mice, except for a few lines. In both control and mutant groups, female %BW had a higher heritability (H2) value than males. Additionally, both sexes with wild-type genotypes showed higher heritability values than the mutant group. Logistic regression provides the most accurate mouse genotype predictions using machine learning. We plan to validate the proposed method on more CC lines and mice per line to expand the literature on machine learning for BW prediction.
Collapse
Affiliation(s)
- Nayrouz Qahaz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aya Khadija
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aya Ghnaim
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Nadav Ben Nun
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| | - Aysar Nashef
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 15208, Israel; (A.N.); (I.A.E.-N.)
| | - Imad Abu El-Naaj
- Department of Oral and Maxillofacial Surgery, Baruch Padeh Medical Center, Poriya 15208, Israel; (A.N.); (I.A.E.-N.)
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (N.Q.); (I.M.L.); (A.K.); (A.G.); (O.Z.); (N.B.N.)
| |
Collapse
|
32
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
33
|
Massagué J, Sheppard D. TGF-β signaling in health and disease. Cell 2023; 186:4007-4037. [PMID: 37714133 PMCID: PMC10772989 DOI: 10.1016/j.cell.2023.07.036] [Citation(s) in RCA: 282] [Impact Index Per Article: 141.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023]
Abstract
The TGF-β regulatory system plays crucial roles in the preservation of organismal integrity. TGF-β signaling controls metazoan embryo development, tissue homeostasis, and injury repair through coordinated effects on cell proliferation, phenotypic plasticity, migration, metabolic adaptation, and immune surveillance of multiple cell types in shared ecosystems. Defects of TGF-β signaling, particularly in epithelial cells, tissue fibroblasts, and immune cells, disrupt immune tolerance, promote inflammation, underlie the pathogenesis of fibrosis and cancer, and contribute to the resistance of these diseases to treatment. Here, we review how TGF-β coordinates multicellular response programs in health and disease and how this knowledge can be leveraged to develop treatments for diseases of the TGF-β system.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Dean Sheppard
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
34
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
36
|
Giansante V, Stati G, Sancilio S, Guerra E, Alberti S, Di Pietro R. The Dual Role of Necroptosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2023; 24:12633. [PMID: 37628814 PMCID: PMC10454309 DOI: 10.3390/ijms241612633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer (PC) is the seventh leading cause of cancer-related death. PC incidence has continued to increase by about 1% each year in both men and women. Although the 5-year relative survival rate of PC has increased from 3% to 12%, it is still the lowest among cancers. Hence, novel therapeutic strategies are urgently needed. Challenges in PC-targeted therapeutic strategies stem from the high PC heterogeneity and from the poorly understood interplay between cancer cells and the surrounding microenvironment. Signaling pathways that drive PC cell growth have been the subject of intense scrutiny and interest has been attracted by necroptosis, a distinct type of programmed cell death. In this review, we provide a historical background on necroptosis and a detailed analysis of the ongoing debate on the role of necroptosis in PC malignant progression.
Collapse
Affiliation(s)
- Valentina Giansante
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Silvia Sancilio
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technologies (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Saverio Alberti
- Unit of Medical Genetics, Department of Biomedical Sciences, University of Messina, 98122 Messina, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, Section of Biomorphology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
37
|
Lee JW, Hruban RH, Wood LD. Molecular Understanding of the Development of Ductal Pancreatic Cancer. THE PANCREAS 2023:912-920. [DOI: 10.1002/9781119876007.ch119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Marin AM, Sanchuki HBS, Namur GN, Uno M, Zanette DL, Aoki MN. Circulating Cell-Free Nucleic Acids as Biomarkers for Diagnosis and Prognosis of Pancreatic Cancer. Biomedicines 2023; 11:biomedicines11041069. [PMID: 37189687 DOI: 10.3390/biomedicines11041069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
A lack of reliable early diagnostic tools represents a major challenge in the management of pancreatic cancer (PCa), as the disease is often only identified after it reaches an advanced stage. This highlights the urgent need to identify biomarkers that can be used for the early detection, staging, treatment monitoring, and prognosis of PCa. A novel approach called liquid biopsy has emerged in recent years, which is a less- or non-invasive procedure since it focuses on plasmatic biomarkers such as DNA and RNA. In the blood of patients with cancer, circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) have been identified such as DNA, mRNA, and non-coding RNA (miRNA and lncRNA). The presence of these molecules encouraged researchers to investigate their potential as biomarkers. In this article, we focused on circulating cfNAs as plasmatic biomarkers of PCa and analyzed their advantages compared to traditional biopsy methods.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Guilherme Naccache Namur
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Departamento de Radiologia e Oncologia, Instituto do Câncer do Estado de São Paulo (ICESP), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 01246-000, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof Algacyr Munhoz Mader 3775 Street, Curitiba 81350-010, Brazil
| |
Collapse
|
39
|
Wang L, Gu S, Chen F, Yu Y, Cao J, Li X, Gao C, Chen Y, Yuan S, Liu X, Qin J, Zhao B, Xu P, Liang T, Tong H, Lin X, Feng XH. Imatinib blocks tyrosine phosphorylation of Smad4 and restores TGF-β growth-suppressive signaling in BCR-ABL1-positive leukemia. Signal Transduct Target Ther 2023; 8:120. [PMID: 36959211 PMCID: PMC10036327 DOI: 10.1038/s41392-023-01327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 03/25/2023] Open
Abstract
Loss of TGF-β-mediated growth suppression is a major contributor to the development of cancers, best exemplified by loss-of-function mutations in genes encoding components of the TGF-β signaling pathway in colorectal and pancreatic cancers. Alternatively, gain-of-function oncogene mutations can also disrupt antiproliferative TGF-β signaling. However, the molecular mechanisms underlying oncogene-induced modulation of TGF-β signaling have not been extensively investigated. Here, we show that the oncogenic BCR-ABL1 of chronic myelogenous leukemia (CML) and the cellular ABL1 tyrosine kinases phosphorylate and inactivate Smad4 to block antiproliferative TGF-β signaling. Mechanistically, phosphorylation of Smad4 at Tyr195, Tyr301, and Tyr322 in the linker region interferes with its binding to the transcription co-activator p300/CBP, thereby blocking the ability of Smad4 to activate the expression of cyclin-dependent kinase (CDK) inhibitors and induce cell cycle arrest. In contrast, the inhibition of BCR-ABL1 kinase with Imatinib prevented Smad4 tyrosine phosphorylation and re-sensitized CML cells to TGF-β-induced antiproliferative and pro-apoptotic responses. Furthermore, expression of phosphorylation-site-mutated Y195F/Y301F/Y322F mutant of Smad4 in Smad4-null CML cells enhanced antiproliferative responses to TGF-β, whereas the phosphorylation-mimicking Y195E/Y301E/Y322E mutant interfered with TGF-β signaling and enhanced the in vivo growth of CML cells. These findings demonstrate the direct role of BCR-ABL1 tyrosine kinase in suppressing TGF-β signaling in CML and explain how Imatinib-targeted therapy restored beneficial TGF-β anti-growth responses.
Collapse
Affiliation(s)
- Lijing Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchen Gu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fenfang Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yi Yu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinran Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Gao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Yanzhen Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Shuchong Yuan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
| | - Jun Qin
- Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Pinglong Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang, 321000, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
40
|
Alexander BE, Zhao H, Astrof S. SMAD4: A Critical Regulator of Cardiac Neural Crest Cell Fate and Vascular Smooth Muscle Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532676. [PMID: 36993156 PMCID: PMC10055180 DOI: 10.1101/2023.03.14.532676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The pharyngeal arch arteries (PAAs) are precursor vessels which remodel into the aortic arch arteries (AAAs) during embryonic cardiovascular development. Cardiac neural crest cells (NCs) populate the PAAs and differentiate into vascular smooth muscle cells (vSMCs), which is critical for successful PAA-to-AAA remodeling. SMAD4, the central mediator of canonical TGFβ signaling, has been implicated in NC-to-vSMC differentiation; however, its distinct roles in vSMC differentiation and NC survival are unclear. Results Here, we investigated the role of SMAD4 in cardiac NC differentiation to vSMCs using lineage-specific inducible mouse strains in an attempt to avoid early embryonic lethality and NC cell death. We found that with global SMAD4 loss, its role in smooth muscle differentiation could be uncoupled from its role in the survival of the cardiac NC in vivo . Moreover, we found that SMAD4 may regulate the induction of fibronectin, a known mediator of NC-to-vSMC differentiation. Finally, we found that SMAD4 is required in NCs cell-autonomously for NC-to-vSMC differentiation and for NC contribution to and persistence in the pharyngeal arch mesenchyme. Conclusions Overall, this study demonstrates the critical role of SMAD4 in the survival of cardiac NCs, their differentiation to vSMCs, and their contribution to the developing pharyngeal arches.
Collapse
|
41
|
Xing F, Qin Y, Xu J, Wang W, Zhang B. Stress granules dynamics and promising functions in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188885. [PMID: 36990249 DOI: 10.1016/j.bbcan.2023.188885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Stress granules (SGs), non-membrane subcellular organelles made up of non-translational messenger ribonucleoproteins (mRNPs), assemble in response to various environmental stimuli in cancer cells, including pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC) which has a low 5-year survival rate of 10%. The pertinent research on SGs and pancreatic cancer has not, however, been compiled. In this review, we talk about the dynamics of SGs and their positive effects on pancreatic cancer such as SGs promote PDAC viability and repress apoptosis, meanwhile emphasizing the connection between SGs in pancreatic cancer and signature mutations such KRAS, P53, and SMAD4 as well as the functions of SGs in antitumor drug resistance. This novel stress management technique may open the door to better treatment options in the future.
Collapse
|
42
|
Self-nanoemulsifying drug delivery system for pancreatic cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
43
|
Centeno BA. Cytopathology of Inflammatory Lesions of the Pancreatobiliary Tree. Arch Pathol Lab Med 2023; 147:267-282. [PMID: 36848529 DOI: 10.5858/arpa.2021-0595-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 03/01/2023]
Abstract
CONTEXT.— A variety of inflammatory processes affect the pancreatobiliary tree. Some form mass lesions in the pancreas, mimicking pancreatic ductal adenocarcinoma, and others cause strictures in the bile ducts, mimicking cholangiocarcinoma. Acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, and paraduodenal groove pancreatitis have distinct cytopathologic features that, when correlated with clinical and imaging features, may lead to correct classification preoperatively. In biliary strictures sampled by endobiliary brushing, the uniform features are the variable presence of inflammation and reactive ductal atypia. A potential pitfall in the interpretation of pancreatobiliary fine-needle aspiration and duct brushing specimens is ductal atypia induced by the reactive process. Recognizing cytologic criteria that differentiate reactive from malignant epithelium, using ancillary testing, and correlating these features with clinical and imaging findings can lead to the correct preoperative diagnosis. OBJECTIVE.— To summarize the cytomorphologic features of inflammatory processes in the pancreas, describe the cytomorphology of atypia in pancreatobiliary specimens, and review ancillary studies applicable for the differential diagnosis of benign from malignant ductal processes for the purpose of best pathology practice. DATA SOURCES.— A PubMed review was performed. CONCLUSIONS.— Accurate preoperative diagnosis of benign and malignant processes in the pancreatobiliary tract can be achieved with application of diagnostic cytomorphologic criteria and correlation of ancillary studies with clinical and imaging findings.
Collapse
Affiliation(s)
- Barbara A Centeno
- From the Department of Pathology, Moffitt Cancer Center and Research Institution, Tampa, Florida
| |
Collapse
|
44
|
Selven H, Busund LTR, Andersen S, Pedersen MI, Lombardi APG, Kilvaer TK. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I-III Colon Cancer. Cancers (Basel) 2023; 15:cancers15051448. [PMID: 36900240 PMCID: PMC10000923 DOI: 10.3390/cancers15051448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Colon cancer is a common malignancy and a major contributor to human morbidity and mortality. In this study, we explore the expression and prognostic impact of IRS-1, IRS-2, RUNx3, and SMAD4 in colon cancer. Furthermore, we elucidate their correlations with miRs 126, 17-5p, and 20a-5p, which are identified as potential regulators of these proteins. Tumor tissue from 452 patients operated for stage I-III colon cancer was retrospectively collected and assembled into tissue microarrays. Biomarkers' expressions were examined by immunohistochemistry and analyzed using digital pathology. In univariate analyses, high expression levels of IRS1 in stromal cytoplasm, RUNX3 in tumor (nucleus and cytoplasm) and stroma (nucleus and cytoplasm), and SMAD4 in tumor (nucleus and cytoplasm) and stromal cytoplasm were related to increased disease-specific survival (DSS). In multivariate analyses, high expression of IRS1 in stromal cytoplasm, RUNX3 in tumor nucleus and stromal cytoplasm, and high expression of SMAD4 in tumor and stromal cytoplasm remained independent predictors of improved DSS. Surprisingly, with the exception of weak correlations (0.2 < r < 0.25) between miR-126 and SMAD4, the investigated markers were mostly uncorrelated with the miRs. However, weak to moderate/strong correlations (0.3 < r < 0.6) were observed between CD3 and CD8 positive lymphocyte density and stromal RUNX3 expression. High expression levels of IRS1, RUNX3, and SMAD4 are positive prognostic factors in stage I-III colon cancer. Furthermore, stromal expression of RUNX3 is associated with increased lymphocyte density, suggesting that RUNX3 is an important mediator during recruitment and activation of immune cells in colon cancer.
Collapse
Affiliation(s)
- Hallgeir Selven
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Sigve Andersen
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | - Mona Irene Pedersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
| | | | - Thomas Karsten Kilvaer
- Department of Oncology, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, 9038 Tromsø, Norway
- Correspondence: ; Tel.: +47-905-24-635
| |
Collapse
|
45
|
Chen JF, Wu SW, Shi ZM, Hu B. Traditional Chinese medicine for colorectal cancer treatment: potential targets and mechanisms of action. Chin Med 2023; 18:14. [PMID: 36782251 PMCID: PMC9923939 DOI: 10.1186/s13020-023-00719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is a disease with complex pathogenesis, it is prone to metastasis, and its development involves abnormalities in multiple signaling pathways. Surgery, chemotherapy, radiotherapy, target therapy, and immunotherapy remain the main treatments for CRC, but improvement in the overall survival rate and quality of life is urgently needed. Traditional Chinese medicine (TCM) has a long history of preventing and treating CRC. It could affect CRC cell proliferation, apoptosis, cell cycle, migration, invasion, autophagy, epithelial-mesenchymal transition, angiogenesis, and chemoresistance by regulating multiple signaling pathways, such as PI3K/Akt, NF-κB, MAPK, Wnt/β-catenin, epidermal growth factor receptors, p53, TGF-β, mTOR, Hedgehog, and immunomodulatory signaling pathways. In this paper, the main signaling pathways and potential targets of TCM and its active ingredients in the treatment of CRC were systematically summarized, providing a theoretical basis for treating CRC with TCM and new ideas for further exploring the pathogenesis of CRC and developing new anti-CRC drugs.
Collapse
Affiliation(s)
- Jin-Fang Chen
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Shi-Wei Wu
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Zi-Man Shi
- grid.412540.60000 0001 2372 7462Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China ,grid.412540.60000 0001 2372 7462Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032 Shanghai, People’s Republic of China
| | - Bing Hu
- Institute of Traditional Chinese Medicine in Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China. .,Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
46
|
Huang Q, Baudis M. Candidate targets of copy number deletion events across 17 cancer types. Front Genet 2023; 13:1017657. [PMID: 36726722 PMCID: PMC9885371 DOI: 10.3389/fgene.2022.1017657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Genome variation is the direct cause of cancer and driver of its clonal evolution. While the impact of many point mutations can be evaluated through their modification of individual genomic elements, even a single copy number aberration (CNA) may encompass hundreds of genes and therefore pose challenges to untangle potentially complex functional effects. However, consistent, recurring and disease-specific patterns in the genome-wide CNA landscape imply that particular CNA may promote cancer-type-specific characteristics. Discerning essential cancer-promoting alterations from the inherent co-dependency in CNA would improve the understanding of mechanisms of CNA and provide new insights into cancer biology and potential therapeutic targets. Here we implement a model using segmental breakpoints to discover non-random gene coverage by copy number deletion (CND). With a diverse set of cancer types from multiple resources, this model identified common and cancer-type-specific oncogenes and tumor suppressor genes as well as cancer-promoting functional pathways. Confirmed by differential expression analysis of data from corresponding cancer types, the results show that for most cancer types, despite dissimilarity of their CND landscapes, similar canonical pathways are affected. In 25 analyses of 17 cancer types, we have identified 19 to 169 significant genes by copy deletion, including RB1, PTEN and CDKN2A as the most significantly deleted genes among all cancer types. We have also shown a shared dependence on core pathways for cancer progression in different cancers as well as cancer type separation by genome-wide significance scores. While this work provides a reference for gene specific significance in many cancers, it chiefly contributes a general framework to derive genome-wide significance and molecular insights in CND profiles with a potential for the analysis of rare cancer types as well as non-coding regions.
Collapse
Affiliation(s)
- Qingyao Huang
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Michael Baudis
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| |
Collapse
|
47
|
Kapoor A, Mandal CC. A Perspective on Bone Morphogenetic Proteins: Dilemma behind Cancer- related Responses. Curr Drug Targets 2023; 24:382-387. [PMID: 36725830 DOI: 10.2174/1389450124666230201144605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins are a center of serious concern and are known to execute various cancer-related issues. The BMP signaling cascades have become more unpredictable as a result of their pleiotropic and risky characteristics, particularly when it comes to cancer responses. This perspective discusses the current therapeutic implications, emphasizes different cellular aspects that impact the failures of the current drug treatments, and speculates on future research avenues that include novel strategies like metabolomic studies and bio-mimetic peptide therapeutics to mitigate cancerous outcomes.
Collapse
Affiliation(s)
- Anmol Kapoor
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
48
|
Song J, Wu J, Ding J, Liang Y, Chen C, Liu Y. The effect of SMAD4 on the prognosis and immune response in hypopharyngeal carcinoma. Front Med (Lausanne) 2023; 10:1139203. [PMID: 37035326 PMCID: PMC10076535 DOI: 10.3389/fmed.2023.1139203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives In malignant tumors, elevated infiltration of intratumoral CD8+ cytotoxic T cells predicts a beneficial prognosis, whereas high levels of CD15+ neutrophils in peritumor tissues indicate poor prognosis. It is unclear how SMAD4, which promotes favorable clinical outcomes and antitumor immunoregulation, along with CD8+ cytotoxic T cells and CD15+ neutrophils exert an influence on hypopharyngeal carcinoma (HPC). Materials and methods Specimens were collected from 97 patients with HPC. Immunohistological analyses of SMAD4, CD8+ cytotoxic T cell and CD15+ neutrophil expression were performed. SMAD4 nuclear intensity was measured, meanwhile, CD8+ cytotoxic T cells and CD15+ neutrophils were counted under a microscope. The prognostic role of SMAD4 was determined using the log-rank test and univariate and multivariate analyses. The relationship among SMAD4, CD8+ cytotoxic T cells, and CD15+ neutrophils was estimated by Mann-Whitney U test. Results High levels of SMAD4 were associated with favorable overall survival (OS) and disease-free survival (DFS) in HPC. Multivariate analysis suggested that SMAD4 is an independent predictor of OS and DFS. A high density of intratumoral CD8+ cytotoxic T cells and low accumulation of CD15+ neutrophils in the peritumor area were associated with longer OS and DFS. Furthermore, SMAD4 was linked to the levels of intratumoral CD8+ cytotoxic T cells and peritumoral CD15+ neutrophils. Patients with high SMAD4/high intratumoral CD8+ cytotoxic T cells or high SMAD4/low peritumoral CD15+ neutrophils showed the best prognosis. Conclusion SMAD4, CD8+ cytotoxic T cell level, and CD15+ neutrophil level have prognostic value in HPC. SMAD4 is a promising prognostic marker reflecting immune response in HPC.
Collapse
|
49
|
Anwaier A, Zhu SX, Tian X, Xu WH, Wang Y, Palihati M, Wang WY, Shi GH, Qu YY, Zhang HL, Ye DW. Large-Scale Proteomics Data Reveal Integrated Prognosis-Related Protein Signatures and Role of SMAD4 and RAD50 in Prognosis and Immune Infiltrations of Prostate Cancer Microenvironment. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:404-418. [PMID: 36939777 PMCID: PMC9712904 DOI: 10.1007/s43657-022-00070-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022]
Abstract
As prostate cancer (PCa) is one of the most commonly diagnosed cancer worldwide, identifying potential prognostic biomarkers is crucial. In this study, the survival information, gene expression, and protein expression data of 344 PCa cases were collected from the Cancer Proteome Atlas (TCPA) and the Cancer Genome Atlas (TCGA) to investigate the potential prognostic biomarkers. The integrated prognosis-related proteins (IPRPs) model was constructed based on the risk score of each patients using machine-learning algorithm. IPRPs model suggested that Elevated RAD50 expression (p = 0.016) and down-regulated SMAD4 expression (p = 0.017) were significantly correlated with unfavorable outcomes for PCa patients. Immunohistochemical (IHC) staining and western blot (WB) analysis revealed significant differential expression of SMAD4 and RAD50 protein between tumor and normal tissues in validation cohort. According to the overall IHC score, patients with low SMAD4 (p < 0.0001) expression and high RAD50 expression (p = 0.0001) were significantly correlated with poor outcomes. Besides, expression of SMAD4 showed significantly negative correlation with most immune checkpoint molecules, and the low SMAD4 expression group exhibited significantly high levels of LAG3 (p < 0.05), TGFβ (p < 0.001), and PD-L1 (p < 0.05) compared with the high SMAD4 expression group in the validation cohort. Patients with low SMAD4 expression had significantly higher infiltration of memory B cells (p = 0.002), CD8 + T cells (p < 0.001), regulatory T cells (p = 0.006), M2-type macrophages (p < 0.001), and significantly lower infiltration of naïve B cells (p = 0.002), plasma cells (p < 0.001), resting memory CD4 + T cells (p < 0.001) and eosinophils (p = 0.045). Candidate proteins were mainly involved in antigen processing and presentation, stem cell differentiation, and type I interferon pathways. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00070-1.
Collapse
Affiliation(s)
- Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Shu-Xuan Zhu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Maierdan Palihati
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Wei-Yue Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, No. 270 Dong’an Road, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 20032 People’s Republic of China
| |
Collapse
|
50
|
Kim D, Kiprov DD, Luellen C, Lieb M, Liu C, Watanabe E, Mei X, Cassaleto K, Kramer J, Conboy MJ, Conboy IM. Old plasma dilution reduces human biological age: a clinical study. GeroScience 2022; 44:2701-2720. [PMID: 35999337 PMCID: PMC9398900 DOI: 10.1007/s11357-022-00645-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
This work extrapolates to humans the previous animal studies on blood heterochronicity and establishes a novel direct measurement of biological age. Our results support the hypothesis that, similar to mice, human aging is driven by age-imposed systemic molecular excess, the attenuation of which reverses biological age, defined in our work as a deregulation (noise) of 10 novel protein biomarkers. The results on biological age are strongly supported by the data, which demonstrates that rounds of therapeutic plasma exchange (TPE) promote a global shift to a younger systemic proteome, including youthfully restored pro-regenerative, anticancer, and apoptotic regulators and a youthful profile of myeloid/lymphoid markers in circulating cells, which have reduced cellular senescence and lower DNA damage. Mechanistically, the circulatory regulators of the JAK-STAT, MAPK, TGF-beta, NF-κB, and Toll-like receptor signaling pathways become more youthfully balanced through normalization of TLR4, which we define as a nodal point of this molecular rejuvenation. The significance of our findings is confirmed through big-data gene expression studies.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | | | - Connor Luellen
- Biophysics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Michael Lieb
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Etsuko Watanabe
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Xiaoyue Mei
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | | | - Joel Kramer
- Brain Aging Center, UCSF, San Francisco, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|