1
|
Xue J, Chen H, Wang Y, Jiang Y. Structural mechanisms of human sodium-coupled high-affinity choline transporter CHT1. Cell Discov 2024; 10:116. [PMID: 39587078 PMCID: PMC11589582 DOI: 10.1038/s41421-024-00731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 11/27/2024] Open
Abstract
Mammalian sodium-coupled high-affinity choline transporter CHT1 uptakes choline in cholinergic neurons for acetylcholine synthesis and plays a critical role in cholinergic neurotransmission. Here, we present the high-resolution cryo-EM structures of human CHT1 in apo, substrate- and ion-bound, hemicholinium-3-inhibited, and ML352-inhibited states. These structures represent three distinct conformational states, elucidating the structural basis of the CHT1-mediated choline uptake mechanism. Three ion-binding sites, two for Na+ and one for Cl-, are unambiguously defined in the structures, demonstrating that both ions are indispensable cofactors for high-affinity choline-binding and are likely transported together with the substrate in a 2:1:1 stoichiometry. The two inhibitor-bound CHT1 structures reveal two distinct inhibitory mechanisms and provide a potential structural platform for designing therapeutic drugs to manipulate cholinergic neuron activity. Combined with the functional analysis, this study provides a comprehensive view of the structural mechanisms underlying substrate specificity, substrate/ion co-transport, and drug inhibition of a physiologically important symporter.
Collapse
Affiliation(s)
- Jing Xue
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongwen Chen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Youxing Jiang
- Howard Hughes Medical Institute and Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Functional Expression of Choline Transporters in Microglia and Their Regulation of Microglial M1/M2 Polarization. Int J Mol Sci 2022; 23:ijms23168924. [PMID: 36012189 PMCID: PMC9408370 DOI: 10.3390/ijms23168924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Microglia are key cells of the immune system in the central nervous system and are suggested to be deeply involved in the development of neurodegenerative diseases. It is well known that microglia have functional plasticity, with an inflammatory M1 phenotype and an anti-inflammatory M2 phenotype. Inhibition of choline transport in macrophages has been reported to suppress the secretion of inflammatory cytokines. However, the role of the choline transport system in regulating microglial M1/M2 polarization has not been fully elucidated to date. In this study, we investigated the mechanism of choline uptake in microglia, and its association with microglial M1/M2 polarization. Methods: The immortalized mouse microglial cell line SIM-A9 was used for [3H]choline uptake and expression analysis of choline transporters. The association between the choline uptake system and the M1/M2 polarization of microglia was also analyzed. Results: Choline transporter-like protein (CTL) 1 and CTL2 were highly expressed in SIM-A9 cells, and CTL1 and CTL2 were localized in the plasma membrane and mitochondria, respectively. Functional analysis of choline uptake demonstrated the existence of Na+-independent, pH-dependent, and intermediate-affinity choline transport systems. Choline uptake was concentration-dependently inhibited by hemicholinium-3 (HC-3), an inhibitor of choline uptake, and increased by lipopolysaccharide (LPS) and interleukin-4 (IL-4). Expression of the mRNA of M1 microglia markers IL-1β and IL-6 was increased by LPS, and their effects were suppressed by choline deprivation and HC-3. In contrast, mRNA expression of the M2 microglial marker arginase-1 (Arg-1) was increased by IL-4, and the effect was enhanced by choline deprivation and HC-3. Conclusions: Our results suggest that inhibition of CTL1-mediated choline uptake in microglia preferentially induces M2 microglia polarization, which is a potential therapeutic approach for inflammatory brain diseases.
Collapse
|
3
|
Yang JM, Yang XY, Wan JH. Multiple roles for cholinergic signaling in pancreatic diseases. World J Gastroenterol 2022; 28:2910-2919. [PMID: 35978870 PMCID: PMC9280742 DOI: 10.3748/wjg.v28.i25.2910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cholinergic nerves are widely distributed throughout the human body and participate in various physiological activities, including sensory, motor, and visceral activities, through cholinergic signaling. Cholinergic signaling plays an important role in pancreatic exocrine secretion. A large number of studies have found that cholinergic signaling overstimulates pancreatic acinar cells through muscarinic receptors, participates in the onset of pancreatic diseases such as acute pancreatitis and chronic pancreatitis, and can also inhibit the progression of pancreatic cancer. However, cholinergic signaling plays a role in reducing pain and inflammation through nicotinic receptors, but enhances the proliferation and invasion of pancreatic tumor cells. This review focuses on the progression of cholinergic signaling and pancreatic diseases in recent years and reveals the role of cholinergic signaling in pancreatic diseases.
Collapse
Affiliation(s)
- Jun-Min Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
4
|
Donovan E, Avila C, Klausner S, Parikh V, Fenollar-Ferrer C, Blakely RD, Sarter M. Disrupted Choline Clearance and Sustained Acetylcholine Release In Vivo by a Common Choline Transporter Coding Variant Associated with Poor Attentional Control in Humans. J Neurosci 2022; 42:3426-3444. [PMID: 35232764 PMCID: PMC9034784 DOI: 10.1523/jneurosci.1334-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
Transport of choline via the neuronal high-affinity choline transporter (CHT; SLC5A7) is essential for cholinergic terminals to synthesize and release acetylcholine (ACh). In humans, we previously demonstrated an association between a common CHT coding substitution (rs1013940; Ile89Val) and reduced attentional control as well as attenuated frontal cortex activation. Here, we used a CRISPR/Cas9 approach to generate mice expressing the I89V substitution and assessed, in vivo, CHT-mediated choline transport, and ACh release. Relative to wild-type (WT) mice, CHT-mediated clearance of choline in male and female mice expressing one or two Val89 alleles was reduced by over 80% in cortex and over 50% in striatum. Choline clearance in CHT Val89 mice was further reduced by neuronal inactivation. Deficits in ACh release, 5 and 10 min after repeated depolarization at a low, behaviorally relevant frequency, support an attenuated reloading capacity of cholinergic neurons in mutant mice. The density of CHTs in total synaptosomal lysates and neuronal plasma-membrane-enriched fractions was not impacted by the Val89 variant, indicating a selective impact on CHT function. When challenged with a visual disruptor to reveal attentional control mechanisms, Val89 mice failed to adopt a more conservative response bias. Structural modeling revealed that Val89 may attenuate choline transport by altering conformational changes of CHT that support normal transport rates. Our findings support the view that diminished sustained cholinergic signaling capacity underlies perturbed attentional performance in individuals expressing CHT Val89. The CHT Val89 mouse serves as a valuable model to study heritable risk for cognitive disorders arising from cholinergic dysfunction.SIGNIFICANCE STATEMENT Acetylcholine (ACh) signaling depends on the functional capacity of the neuronal choline transporter (CHT). Previous research demonstrated that humans expressing the common CHT coding variant Val89 exhibit attentional vulnerabilities and attenuated fronto-cortical activation during attention. Here, we find that mice engineered to express the Val89 variant exhibit reduced CHT-mediated choline clearance and a diminished capacity to sustain ACh release. Additionally, Val89 mice lack cognitive flexibility in response to an attentional challenge. These findings provide a mechanistic and cognitive framework for interpreting the attentional phenotype associated with the human Val89 variant and establish a model that permits a more invasive interrogation of CNS effects as well as the development of therapeutic strategies for those, including Val89 carriers, with presynaptic cholinergic perturbations.
Collapse
Affiliation(s)
- Eryn Donovan
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Cassandra Avila
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Sarah Klausner
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Vinay Parikh
- Department of Psychology & Neuroscience Program, Temple University, Philadelphia, Pennsylvania 19122
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, Section of Human Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Randy D Blakely
- Stiles-Nicholson Brain Institute and Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458
| | - Martin Sarter
- Department of Psychology, Neuroscience Program and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
5
|
Luo D, Chen L, Yu B. Inhibition of the high affinity choline transporter enhances hyperalgesia in a rat model of chronic pancreatitis. Biochem Biophys Res Commun 2017; 488:204-210. [DOI: 10.1016/j.bbrc.2017.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022]
|
6
|
Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochem Int 2017; 108:410-416. [PMID: 28577989 DOI: 10.1016/j.neuint.2017.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease.
Collapse
|
7
|
Ennis EA, Blakely RD. Choline on the Move: Perspectives on the Molecular Physiology and Pharmacology of the Presynaptic Choline Transporter. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:175-213. [PMID: 27288078 DOI: 10.1016/bs.apha.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetic, biochemical, physiological, and pharmacological approaches have advanced our understanding of cholinergic biology for over 100 years. High-affinity choline uptake (HACU) was one of the last features of cholinergic signaling to be defined at a molecular level, achieved through the cloning of the choline transporter (CHT, SLC5A7). In retrospect, the molecular era of CHT studies initiated with the identification of hemicholinium-3 (HC-3), a potent, competitive CHT antagonist, though it would take another 30 years before HC-3, in radiolabeled form, was used by Joseph Coyle's laboratory to identify and monitor the dynamics of CHT proteins. Though HC-3 studies provided important insights into CHT distribution and regulation, another 15 years would pass before the structure of CHT genes and proteins were identified, a full decade after the cloning of most other neurotransmitter-associated transporters. The availability of CHT gene and protein probes propelled the development of cell and animal models as well as efforts to gain insights into how human CHT gene variation affects the risk for brain and neuromuscular disorders. Most recently, our group has pursued a broadening of CHT pharmacology, elucidating novel chemical structures that may serve to advance cholinergic diagnostics and medication development. Here we provide a short review of the transformation that has occurred in HACU research and how such advances may promote the development of novel therapeutics.
Collapse
Affiliation(s)
- E A Ennis
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - R D Blakely
- Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
8
|
Iwamoto H, Calcutt MW, Blakely RD. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine. Neurochem Int 2016; 98:138-45. [PMID: 27013347 DOI: 10.1016/j.neuint.2016.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/12/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
The efficient import of choline into cholinergic nerve terminals by the presynaptic, high-affinity choline transporter (CHT, SLC5A7) dictates the capacity for acetylcholine (ACh) synthesis and release. Tissue levels of ACh are significantly reduced in mice heterozygous for a loss of function mutation in Slc5a7 (HET, CHT(+/-)), but significantly elevated in overexpressing, Slc5a7 BAC-transgenic mice (BAC). Since the readily-releasable pool of ACh is thought to constitute a small fraction of the total ACh pool, these genotype-dependent changes raised the question as to whether CHT expression or activity might preferentially influence the size of reserve pool ACh vesicles. In the current study, we approached this question by evaluating CHT genotype effects on the release of ACh from suprafused mouse forebrain slices. We treated slices from HET, BAC or wildtype (WT) controls with elevated K(+) and monitored release of both newly synthesized and storage pools of ACh. Newly synthesized ACh produced following uptake of [(3)H]choline was quantified by scintillation spectrometry whereas release of endogenous ACh storage pools was quantified by an HPLC-MS approach, from the same samples. Whereas endogenous ACh release scaled with CHT gene dosage, preloaded [(3)H]ACh release displayed no significant genotype dependence. Our findings suggest that CHT protein levels preferentially impact the capacity for ACh release afforded by mobilization of reserve pool vesicles.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Wade Calcutt
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
9
|
Utilization of Superfused Cerebral Slices in Probing Muscarinic Receptor Autoregulation of Acetylcholine Release. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-1-4939-2858-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
10
|
Berry AS, Blakely RD, Sarter M, Lustig C. Cholinergic capacity mediates prefrontal engagement during challenges to attention: evidence from imaging genetics. Neuroimage 2015; 108:386-95. [PMID: 25536497 PMCID: PMC4469545 DOI: 10.1016/j.neuroimage.2014.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/01/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022] Open
Abstract
In rodent studies, elevated cholinergic neurotransmission in right prefrontal cortex (PFC) is essential for maintaining attentional performance, especially in challenging conditions. Apparently paralleling the rises in acetylcholine seen in rodent studies, fMRI studies in humans reveal right PFC activation at or near Brodmann's areas 9 (BA 9) increases in response to elevated attentional demand. In the present study, we leveraged human genetic variability in the cholinergic system to test the hypothesis that the cholinergic system contributes to the BA 9 response to attentional demand. Specifically, we scanned (BOLD fMRI) participants with a polymorphism of the choline transporter gene that is thought to limit choline transport capacity (Ile89Val variant of the choline transporter gene SLC5A7, rs1013940) and matched controls while they completed a task previously used to demonstrate demand-related increases in right PFC cholinergic transmission in rats and right PFC activation in humans. As hypothesized, we found that although controls showed the typical pattern of robust BA 9 responses to increased attentional demand, Ile89Val participants did not. Further, pattern analysis of activation within this region significantly predicted participant genotype. Additional exploratory pattern classification analyses suggested that Ile89Val participants differentially recruited orbitofrontal cortex and parahippocampal gyrus to maintain attentional performance to the level of controls. These results contribute to a growing body of translational research clarifying the role of cholinergic signaling in human attention and functional neural measures, and begin to outline the risk and resiliency factors associated with potentially suboptimal cholinergic function with implications for disorders characterized by cholinergic dysregulation.
Collapse
Affiliation(s)
- Anne S Berry
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN 37232, USA
| | - Martin Sarter
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA
| | - Cindy Lustig
- Neuroscience Program, University of Michigan, Ann Arbor, MI 49109-1043, USA; Psychology Department, University of Michigan, Ann Arbor, MI 49109-1043, USA.
| |
Collapse
|
11
|
Synthesis and structure-activity relationships of a series of 4-methoxy-3-(piperidin-4-yl)oxy benzamides as novel inhibitors of the presynaptic choline transporter. Bioorg Med Chem Lett 2015; 25:1757-1760. [PMID: 25801932 DOI: 10.1016/j.bmcl.2015.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
Abstract
The synthesis and SAR of 4-methoxy-3-(piperidin-4-yl) benzamides identified after a high-throughput screen of the MLPCN library is reported. SAR was explored around the 3-piperidine substituent as well as the amide functionality of the reported compounds. Starting from the initial lead compounds, 1-7, iterative medicinal chemistry efforts led to the identification of ML352 (10m). ML352 represents a potent and selective inhibitor of CHT based on a drug-like scaffold.
Collapse
|
12
|
Abstract
This article summarizes molecular properties of the high-affinity choline transporter (CHT1) with reference to the historical background focusing studies performed in laboratories of the author. CHT1 is present on the presynaptic terminal of cholinergic neurons, and takes up choline which is the precursor of acetylcholine. The Na(+)-dependent uptake of choline by CHT1 is the rate-limiting step for synthesis of acetylcholine. CHT1 is the integral membrane protein with 13 transmembrane segments, belongs to the Na(+)/glucose co-transporter family (SLC5), and has 20-25% homology with members of this family. A single nucleotide polymorphism (SNP) for human CHT1 has been identified, which has a replacement from isoleucine to valine in the third transmembrane segment and shows the choline uptake activity of 50-60% as much as that of wild-type CHT1. The proportion of this SNP is high among Asians. Possible importance of choline diet for those with this SNP was discussed.
Collapse
Affiliation(s)
- Tatsuya Haga
- Tokyo University, 7-3-1 Hongo, Tokyo 113-8654, Japan
| |
Collapse
|
13
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
14
|
Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 2013; 252:212-21. [DOI: 10.1016/j.neuroscience.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/11/2023]
|
15
|
Dong Y, Dani JA, Blakely RD. Choline transporter hemizygosity results in diminished basal extracellular dopamine levels in nucleus accumbens and blunts dopamine elevations following cocaine or nicotine. Biochem Pharmacol 2013; 86:1084-8. [PMID: 23939187 PMCID: PMC4413453 DOI: 10.1016/j.bcp.2013.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
Dopamine (DA) signaling in the central nervous system mediates the addictive capacities of multiple commonly abused substances, including cocaine, amphetamine, heroin and nicotine. The firing of DA neurons residing in the ventral tegmental area (VTA), and the release of DA by the projections of these neurons in the nucleus accumbens (NAc), is under tight control by cholinergic signaling mediated by nicotinic acetylcholine (ACh) receptors (nAChRs). The capacity for cholinergic signaling is dictated by the availability and activity of the presynaptic, high-affinity, choline transporter (CHT, SLC5A7) that acquires choline in an activity-dependent matter to sustain ACh synthesis. Here, we present evidence that a constitutive loss of CHT expression, mediated by genetic elimination of one copy of the Slc5a7 gene in mice (CHT+/-), leads to a significant reduction in basal extracellular DA levels in the NAc, as measured by in vivo microdialysis. Moreover, CHT heterozygosity results in blunted DA elevations following systemic nicotine or cocaine administration. These findings reinforce a critical role of ACh signaling capacity in both tonic and drug-modulated DA signaling and argue that genetically imposed reductions in CHT that lead to diminished DA signaling may lead to poor responses to reinforcing stimuli, possibly contributing to disorders linked to perturbed cholinergic signaling including depression and attention-deficit hyperactivity disorder (ADHD).
Collapse
Affiliation(s)
- Yu Dong
- Center on Addiction, Learning, Memory; Baylor College of Medicine, Houston, TX USA 77030-3498
| | - John A. Dani
- Center on Addiction, Learning, Memory; Baylor College of Medicine, Houston, TX USA 77030-3498
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Randy D. Blakely
- Departments of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN USA 37232-8548
| |
Collapse
|
16
|
The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 2013; 33:2326-37. [PMID: 23392663 DOI: 10.1523/jneurosci.4993-12.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Functional variation in the gene encoding the presynaptic choline transporter (CHT) has been linked to attention-deficit/hyperactivity disorder. Here, we report that a heterozygous deletion in the CHT gene in mice (CHT(+/-)) limits the capacity of cholinergic neurons to sustain acetylcholine (ACh) release and attentional performance. Cortical microdialysis and amperometric methods revealed that, whereas wild-type and CHT(+/-) animals support equivalent basal ACh release and choline clearance, CHT(+/-) animals exhibit a significant inability to elevate extracellular ACh following basal forebrain stimulation, in parallel with a diminished choline clearance capacity following cessation of stimulation. Consistent with these findings, the density of CHTs in cortical synaptosomal plasma membrane-enriched fractions from unstimulated CHT(+/-) animals matched those observed in wild-type animals despite reductions in CHT levels in total extracts, achieved via a redistribution of CHT from vesicle pools. As a consequence, in CHT(+/-) animals, basal forebrain stimulation was unable to mobilize wild-type quantities of CHT to the plasma membrane. In behavioral studies, CHT(+/-) mice were impaired in performing a sustained attention task known to depend on cortical cholinergic activity. In wild-type mice, but not CHT(+/-) mice, attentional performance increased the density of CHTs in the synaptosomal membrane in the right frontal cortex. Basal CHT levels in vesicle-enriched membranes predicted the degree of CHT mobilization as well as individual variations in performance on the sustained attention task. Our findings demonstrate biochemical and physiological alterations that underlie cognitive impairments associated with genetically imposed reductions in choline uptake capacity.
Collapse
|
17
|
Ruggiero A, Wright J, Ferguson SM, Lewis M, Emerson K, Iwamoto H, Ivy MT, Holmstrand EC, Ennis EA, Weaver CD, Blakely RD. Nonoisotopic assay for the presynaptic choline transporter reveals capacity for allosteric modulation of choline uptake. ACS Chem Neurosci 2012; 3:767-81. [PMID: 23077721 PMCID: PMC3474274 DOI: 10.1021/cn3000718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022] Open
Abstract
Current therapies to enhance CNS cholinergic function rely primarily on extracellular acetylcholinesterase (AChE) inhibition, a pharmacotherapeutic strategy that produces dose-limiting side effects. The Na(+)-dependent, high-affinity choline transporter (CHT) is an unexplored target for cholinergic medication development. Although functional at the plasma membrane, CHT at steady-state is localized to synaptic vesicles such that vesicular fusion can support a biosynthetic response to neuronal excitation. To identify allosteric potentiators of CHT activity, we mapped endocytic sequences in the C-terminus of human CHT, identifying transporter mutants that exhibit significantly increased transport function. A stable HEK-293 cell line was generated from one of these mutants (CHT LV-AA) and used to establish a high-throughput screen (HTS) compatible assay based on the electrogenic nature of the transporter. We established that the addition of choline to these cells, at concentrations appropriate for high-affinity choline transport at presynaptic terminals, generates a hemicholinium-3 (HC-3)-sensitive, membrane depolarization that can be used for the screening of CHT inhibitors and activators. Using this assay, we discovered that staurosporine increased CHT LV-AA choline uptake activity, an effect mediated by a decrease in choline K(M) with no change in V(max). As staurosporine did not change surface levels of CHT, nor inhibit HC-3 binding, we propose that its action is directly or indirectly allosteric in nature. Surprisingly, staurosporine reduced choline-induced membrane depolarization, suggesting that increased substrate coupling to ion gradients, arising at the expense of nonstoichiometric ion flow, accompanies a shift of CHT to a higher-affinity state. Our findings provide a new approach for the identification of CHT modulators that is compatible with high-throughput screening approaches and presents a novel model by which small molecules can enhance substrate flux through enhanced gradient coupling.
Collapse
Affiliation(s)
- Alicia
M. Ruggiero
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Jane Wright
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Shawn M. Ferguson
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Michelle Lewis
- Vanderbilt Institute
of Chemical
Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6304, United States
| | - Katie
S. Emerson
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Hideki Iwamoto
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Michael T. Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee 37209-1561,
United States
| | - Ericka C. Holmstrand
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - Elizabeth. A. Ennis
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
| | - C. David Weaver
- Vanderbilt Institute
of Chemical
Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6304, United States
- Department
of Pharmacology, Vanderbilt University School of Medicine, Nashville,
Tennessee 37232-6600, United States
| | - Randy D. Blakely
- Center for Molecular
Neuroscience,
Department of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-8548, United
States
- Department of Psychiatry, Vanderbilt
University School of Medicine, Nashville,
Tennessee 37232-8548, United States
| |
Collapse
|
18
|
Yamada H, Imajoh-Ohmi S, Haga T. The high-affinity choline transporter CHT1 is regulated by the ubiquitin ligase Nedd4-2. ACTA ACUST UNITED AC 2012; 33:1-8. [PMID: 22361880 DOI: 10.2220/biomedres.33.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The high-affinity choline transporter (CHT1), which is specifically expressed in cholinergic neurons, constitutes a rate-limiting step for acetylcholine synthesis. We have found that the exogenous ubiquitin ligase Nedd4-2 interacts with CHT1 expressed in HEK293 cells decreasing the amount of cell surface CHT1 by approximately 40%, and that small interfering RNA for endogenous Nedd4-2 enhances the choline uptake activity by CHT1 in HEK293 cells. These results indicate that Nedd4-2-mediated ubiquitination regulates the cell surface expression of CHT1 in cultured cells and suggest a possibility that treatments or drugs which inhibit the interaction between CHT1 and Nedd4-2 might be useful for diseases involving decrease in acetylcholine level such as Alzheimer's disease.
Collapse
Affiliation(s)
- Haruhiko Yamada
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | | | |
Collapse
|
19
|
Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 2012; 4:a005595. [PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.
Collapse
Affiliation(s)
- Randy D Blakely
- Department of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | |
Collapse
|
20
|
Effects of acetylcholinesterase inhibitor paraoxon denote the possibility of non-quantal acetylcholine release in myocardium of different vertebrates. J Comp Physiol B 2011; 182:101-8. [PMID: 21761139 DOI: 10.1007/s00360-011-0602-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/12/2011] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
Effects of organophosphorous acetylcholinesterase inhibitor paraoxon were studied in the isolated atrial and ventricular myocardium preparations of a fish (cod), an amphibian (frog) and a mammal (rat) using the microelectrode technique. Incubation of isolated atrium with paraoxon (5 × 10(-6)-5 × 10(-5) M) caused significant reduction of action potential duration and marked slowing of sinus rhythm. These effects were abolished by muscarinic blocker atropine and therefore are caused by acetylcholine, which accumulates in the myocardium due to acetylcholinesterase inhibition even in the absence of vagal input. Hemicholinium III is a blocker of high affinity choline-uptake transporters, which are believed to mediate non-quantal release of acetylcholine from cholinergic terminals in different tissues. In the atrial myocardium of all the three studied species, hemicholinium III (10(-5) M) significantly suppressed all the effects of paraoxon. Blocker of parasympathetic ganglionic transmission hexamethonium bromide (10(-4) M) and inhibitor of vesicular acetylcholine transporters vesamicol (10(-5) M) failed to attenuate paraoxon effects. Among ventricular myocardium preparations of three species paraoxon provoked marked cholinergic effects only in frog, hemicholinium III abolished these effects effectively. We conclude that paraoxon stops degradation of acetylcholine in the myocardium and helps to reveal the effects of acetylcholine, which is continuously secreted from the cholinergic nerves in non-quantal manner. Thus, non-quantal release of acetylcholine in the heart is not specific only for mammals, but is also present in the hearts of different vertebrates.
Collapse
|
21
|
Chávez J, Vargas MH, Cruz-Valderrama JE, Montaño LM. Non-quantal release of acetylcholine in guinea-pig airways: role of choline transporter. Exp Physiol 2011; 96:460-7. [DOI: 10.1113/expphysiol.2010.056440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
|
23
|
3-D-QSAR and docking studies on the neuronal choline transporter. Bioorg Med Chem Lett 2010; 20:4870-7. [DOI: 10.1016/j.bmcl.2010.06.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 11/21/2022]
|
24
|
Holmstrand EC, Asafu-Adjei J, Sampson AR, Blakely RD, Sesack SR. Ultrastructural localization of high-affinity choline transporter in the rat anteroventral thalamus and ventral tegmental area: differences in axon morphology and transporter distribution. J Comp Neurol 2010; 518:1908-24. [PMID: 20394050 DOI: 10.1002/cne.22310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The high-affinity choline transporter (CHT) is a protein integral to the function of cholinergic neurons in the central nervous system (CNS). We examined the ultrastructural distribution of CHT in axonal arborizations of the mesopontine tegmental cholinergic neurons, a cell group in which CHT expression has yet to be characterized at the electron microscopic level. By using silver-enhanced immunogold detection, we compared the morphological characteristics of CHT-immunoreactive axon varicosities specifically within the anteroventral thalamus (AVN) and the ventral tegmental area (VTA). We found that CHT-immunoreactive axon varicosities in the AVN displayed a smaller cross-sectional area and a lower frequency of synapse formation and dense-cored vesicle content than CHT-labeled profiles in the VTA. We further examined the subcellular distribution of CHT and observed that immunoreactivity for this protein was predominantly localized to synaptic vesicles and minimally to the plasma membrane of axons in both regions. This pattern is consistent with the subcellular distribution of CHT displayed in other cholinergic systems. Axons in the AVN showed significantly higher levels of CHT immunoreactivity than those in the VTA and correspondingly displayed a higher level of membrane CHT labeling. These novel findings have important implications for elucidating regional differences in cholinergic signaling within the thalamic and brainstem targets of the mesopontine cholinergic system.
Collapse
Affiliation(s)
- Ericka C Holmstrand
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | |
Collapse
|
25
|
Black SAG, Ribeiro FM, Ferguson SSG, Rylett RJ. Rapid, transient effects of the protein kinase C activator phorbol 12-myristate 13-acetate on activity and trafficking of the rat high-affinity choline transporter. Neuroscience 2010; 167:765-73. [PMID: 20167259 DOI: 10.1016/j.neuroscience.2010.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 02/05/2010] [Accepted: 02/11/2010] [Indexed: 11/24/2022]
Abstract
Cholinergic neurons rely on the sodium-dependent choline transporter CHT to provide choline for synthesis of acetylcholine. CHT cycles between cell surface and subcellular organelles, but little is known about regulation of this trafficking. We hypothesized that activation of protein kinase C with phorbol ester modulates choline uptake by altering the rate of CHT internalization from or delivery to the plasma membrane. Using SH-SY5Y cells that stably express rat CHT, we found that exposure of cells to phorbol ester for 2 or 5 min significantly increased choline uptake, whereas longer treatment had no effect. Kinetic analysis revealed that 5 min phorbol ester treatment significantly enhanced V(max) of choline uptake, but had no effect on K(m) for solute binding. Cell-surface biotinylation assays showed that plasma membrane levels of CHT protein were enhanced following 5 min phorbol ester treatment; this was blocked by protein kinase C inhibitor bisindolylmaleimide-I. Moreover, CHT internalization was decreased and delivery of CHT to plasma membrane was increased by phorbol ester. Our results suggest that treatment of neural cells with the protein kinase C activator phorbol ester rapidly and transiently increases cell surface CHT levels and this corresponds with enhanced choline uptake activity which may play an important role in replenishing acetylcholine stores following its release by depolarization.
Collapse
Affiliation(s)
- S A G Black
- Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Fujii T, Masai M, Misawa H, Okuda T, Takada-Takatori Y, Moriwaki Y, Haga T, Kawashima K. Acetylcholine synthesis and release in NIH3T3 cells coexpressing the high-affinity choline transporter and choline acetyltransferase. J Neurosci Res 2010; 87:3024-32. [PMID: 19405101 DOI: 10.1002/jnr.22117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholine (ACh) is known to be a key neurotransmitter in the central and peripheral nervous systems, but it is also produced in a variety of non-neuronal tissues and cells, including lymphocytes, placenta, amniotic membrane, vascular endothelial cells, keratinocytes, and epithelial cells in the digestive and respiratory tracts. To investigate contribution made by the high-affinity choline transporter (CHT1) to ACh synthesis in both cholinergic neurons and nonneuronal cells, we transfected rat CHT1 cDNA into NIH3T3ChAT cells, a mouse fibroblast line expressing mouse choline acetyltransferase (ChAT), to establish the NIH3T3ChAT 112-1 cell line, which stably expresses both CHT1 and ChAT. NIH3T3ChAT 112-1 cells showed increased binding of the CHT1 inhibitor [(3)H]hemicholinium-3 (HC-3) and greater [(3)H]choline uptake and ACh synthesis than NIH3T3ChAT 103-1 cells, a CHT1-negative control cell line. HC-3 significantly inhibited ACh synthesis in NIH3T3ChAT 112-1 cells but did not affect synthesis in NIH3T3ChAT 103-1 cells. ACh synthesis in NIH3T3ChAT 112-1 cells was also reduced by amiloride, an inhibitor of organic cation transporters (OCTs) involved in low-affinity choline uptake, and by procaine and lidocaine, two local anesthetics that inhibit plasma membrane phospholipid metabolism. These results suggest that CHT1 plays a key role in ACh synthesis in NIH3T3ChAT 112-1 cells and that choline taken up by OCTs or derived from the plasma membrane is also utilized for ACh synthesis in both cholinergic neurons and nonneuronal cholinergic cells, such as lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan. tfujii-dwc.doshisha.ac.jp
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ivy MT, Newkirk RF, Wang Y, Townsel JG. A novel choline cotransporter sequestration compartment in cholinergic neurons revealed by selective endosomal ablation. J Neurochem 2009; 112:1295-304. [PMID: 20015153 DOI: 10.1111/j.1471-4159.2009.06543.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sodium-dependent, high affinity choline transporter - choline cotransporter - (ChCoT, aka: cho-1, CHT1, CHT) undergoes constitutive and regulated trafficking between the plasma membrane and cytoplasmic compartments. The pathways and regulatory mechanisms of this trafficking are not well understood. We report herein studies involving selective endosomal ablation to further our understanding of the trafficking of the ChCoT. Selective ablation of early sorting and recycling endosomes resulted in a decrease of approximately 75% of [3H]choline uptake and approximately 70% of [3H]hemicholinium-3 binding. Western blot analysis showed that ablation produced a similar decrease in ChCoTs in the plasma membrane subcellular fraction. The time frame for this loss was approximately 2 h which has been shown to be the constitutive cycling time for ChCoTs in this tissue. Ablation appears to be dependent on the intracellular cycling of transferrin-conjugated horseradish peroxidase and the selective deposition of transferrin-conjugated horseradish peroxidase in early endosomes, both sorting and recycling. Ablated brain slices retained their capacity to recruit via regulated trafficking ChCoTs to the plasma membrane. This recruitment of ChCoTs suggests that the recruitable compartment is distinct from the early endosomes. It will be necessary to do further studies to identify the novel sequestration compartment supportive of the ChCoT regulated trafficking.
Collapse
Affiliation(s)
- Michael T Ivy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | | | | | |
Collapse
|
28
|
Speth RC. A life well-lived: Henry I. “Hank” Yamamura. Life Sci 2009; 84:634-6. [DOI: 10.1016/j.lfs.2009.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Bennett KM, Hoelting C, Martin CP, Stoll J. Estrogen effects on high-affinity choline uptake in primary cultures of rat basal forebrain. Neurochem Res 2008; 34:205-14. [PMID: 18483854 DOI: 10.1007/s11064-008-9746-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 05/07/2008] [Indexed: 10/22/2022]
Abstract
Basal forebrain cholinergic neurons (BFCNs) degenerate in aging and Alzheimer's disease. It has been proposed that estrogen can affect the survival and function of BFCNs. This study characterized primary rat BFCN cultures and investigated the effect of estrogen on high-affinity choline uptake (HACU). BFCNs were identified by immunoreactivity to the vesicular acetylcholine transporter (VAChT) and represented up to 5% of total cells. HACU was measured in living BFCN cultures and differentiated from low-affinity choline uptake by hemicholinium-3 (HC-3) inhibition. A HC-3 concentration curve showed that 0.3 muM HC-3, but not higher concentrations that inhibit LACU, could distinguish the two transport activities. 17-beta-Estradiol treatment increased HACU in some culture preparations that contained non-neuronal cells. Elimination of dividing cells using antimitotic treatments resulted in a lack of estrogen effects on HACU. These results suggest that estrogen may have indirect effects on BFCNs that are mediated through non-neuronal cells.
Collapse
Affiliation(s)
- Katie M Bennett
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, 1300 S Coulter, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
30
|
Udin SB. The instructive role of binocular vision in the Xenopus tectum. BIOLOGICAL CYBERNETICS 2007; 97:493-503. [PMID: 17952453 DOI: 10.1007/s00422-007-0188-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 09/24/2007] [Indexed: 05/25/2023]
Abstract
This review presents the fascinating neurobiology underlying the development of the frog optic tectum, the brain structure where the two separate inputs from the two eye are combined into a single, integrated map. In the species Xenopus laevis, binocular visual information has a dramatic impact on axon growth and connectivity, and the formation of binocular connections in this system provides a rich basis for both theoretical and experimental investigations.
Collapse
Affiliation(s)
- Susan B Udin
- Department of Physiology and Biophysics, Program in Neuroscience, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
31
|
Mullen GP, Mathews EA, Vu MH, Hunter JW, Frisby DL, Duke A, Grundahl K, Osborne JD, Crowell JA, Rand JB. Choline transport and de novo choline synthesis support acetylcholine biosynthesis in Caenorhabditis elegans cholinergic neurons. Genetics 2007; 177:195-204. [PMID: 17603106 PMCID: PMC2013710 DOI: 10.1534/genetics.107.074120] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cho-1 gene in Caenorhabditis elegans encodes a high-affinity plasma-membrane choline transporter believed to be rate limiting for acetylcholine (ACh) synthesis in cholinergic nerve terminals. We found that CHO-1 is expressed in most, but not all cholinergic neurons in C. elegans. cho-1 null mutants are viable and exhibit mild deficits in cholinergic behavior; they are slightly resistant to the acetylcholinesterase inhibitor aldicarb, and they exhibit reduced swimming rates in liquid. cho-1 mutants also fail to sustain swimming behavior; over a 33-min time course, cho-1 mutants slow down or stop swimming, whereas wild-type animals sustain the initial rate of swimming over the duration of the experiment. A functional CHO-1GFP fusion protein rescues these cho-1 mutant phenotypes and is enriched at cholinergic synapses. Although cho-1 mutants clearly exhibit defects in cholinergic behaviors, the loss of cho-1 function has surprisingly mild effects on cholinergic neurotransmission. However, reducing endogenous choline synthesis strongly enhances the phenotype of cho-1 mutants, giving rise to a synthetic uncoordinated phenotype. Our results indicate that both choline transport and de novo synthesis provide choline for ACh synthesis in C. elegans cholinergic neurons.
Collapse
Affiliation(s)
- Gregory P Mullen
- Program in Molecular, Cell and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Silva VS, Nunes MA, Cordeiro JM, Calejo AI, Santos S, Neves P, Sykes A, Morgado F, Dunant Y, Gonçalves PP. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase. Toxicology 2007; 236:158-77. [PMID: 17560001 DOI: 10.1016/j.tox.2007.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/16/2007] [Accepted: 04/10/2007] [Indexed: 11/25/2022]
Abstract
Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3) on choline uptake and acetylcholine release only resembled those of ouabain when rat synaptosomes were assayed. Therefore, important differences were found between the species regarding the cholinotoxic action of aluminum. The variability of (Na(+)/K(+))ATPase sensitivity to aluminum of cholinergic neurons might contribute to their differential susceptibility to this neurotoxic agent.
Collapse
Affiliation(s)
- Virgília S Silva
- CESAM, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Iwamoto H, Blakely RD, De Felice LJ. Na+, Cl-, and pH dependence of the human choline transporter (hCHT) in Xenopus oocytes: the proton inactivation hypothesis of hCHT in synaptic vesicles. J Neurosci 2006; 26:9851-9. [PMID: 17005849 PMCID: PMC6674471 DOI: 10.1523/jneurosci.1862-06.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent cloning of the human choline transporter (hCHT) has allowed its expression in Xenopus laevis oocytes and the simultaneous measurement of choline transport and choline-induced current under voltage clamp. hCHT currents and choline transport are evident in cRNA-injected oocytes and significantly enhanced by the hCHT trafficking mutant L530A/V531A. The charge/choline ratio of hCHT varies from 10e/choline at -80 mV to 3e/choline at -20 mV, in contrast with the reported fixed stoichiometry of the Na+-coupled glucose transporter in the same gene family. Ion substitution shows that the choline uptake and choline-induced current are Na+ and Cl- dependent; however, the reversal potential of the induced current suggests a Na+-selective mechanism, consigning Cl- to a regulatory role rather than a coupled, cotransported-ion role. The hCHT-specific inhibitor hemicholinium-3 (HC-3) blocks choline uptake and choline-induced current; in addition, HC-3 alone reveals a constitutive, depolarizing leak current through hCHT. We show that external protons reduce hCHT current, transport, and binding with a similar pKa of 7.4, suggesting proton titration of residue(s) that support choline binding and transport. Given the localization of the choline transporter to synaptic vesicles, we propose that proton inactivation of hCHT prevents acetylcholine and proton leakage from the acidic interior of cholinergic synaptic vesicles. This mechanism would allow cholinergic, activity-triggered delivery of silent choline transporters to the plasma membrane, in which normal pH would reactivate the transporters for choline uptake and subsequent acetylcholine synthesis.
Collapse
Affiliation(s)
- Hideki Iwamoto
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville Tennessee 37232-8548
| | - Randy D. Blakely
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville Tennessee 37232-8548
| | - Louis J. De Felice
- Department of Pharmacology and Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville Tennessee 37232-8548
| |
Collapse
|
34
|
Bazalakova MH, Blakely RD. The high-affinity choline transporter: a critical protein for sustaining cholinergic signaling as revealed in studies of genetically altered mice. Handb Exp Pharmacol 2006:525-44. [PMID: 16722248 DOI: 10.1007/3-540-29784-7_21] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In cholinergic neurons, the presynaptic choline transporter (CHT) mediates high-affinity choline uptake (HACU) as the rate-limiting step in acetylcholine (ACh) synthesis. It has previously been shown that HACU is increased by behaviorally and pharmacologically-induced activity of cholinergic neurons in vivo, but the molecular mechanisms of this change in CHT function and regulation have only recently begun to be elucidated. The recent cloning of CHT has led to the generation of new valuable tools, including specific anti-CHT antibodies and a CHT knockout mouse. These new reagents have allowed researchers to investigate the possibility of a presynaptic, CHT-mediated, molecular plasticity mechanism, regulated by and necessary for sustained in vivo cholinergic activity. Studies in various mouse models of cholinergic dysfunction, including acetylcholinesterase (AChE) transgenic and knockout mice, choline acetyltransferase (ChAT) heterozygote mice, muscarinic (mAChR) and nicotinic (mAChR) receptor knockout mice, as well as CHT knockout and heterozygote mice, have revealed new information about the role of CHT expression and regulation in response to long-term alterations in cholinergic neurotransmission. These mouse models highlight the capacity of CHT to provide for functional compensation in states of cholinergic dysfunction. A better understanding of modes of CHT regulation should allow for experimental manipulation of cholinergic signaling in vivo with potential utility in human disorders of known cholinergic dysfunction such as Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, and dysautonomia.
Collapse
Affiliation(s)
- M H Bazalakova
- Vanderbilt School of Medicine, Suite 7140, MRB III, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
35
|
Matthies DS, Fleming PA, Wilkes DM, Blakely RD. The Caenorhabditis elegans choline transporter CHO-1 sustains acetylcholine synthesis and motor function in an activity-dependent manner. J Neurosci 2006; 26:6200-12. [PMID: 16763028 PMCID: PMC6675188 DOI: 10.1523/jneurosci.5036-05.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic neurotransmission supports motor, autonomic, and cognitive function and is compromised in myasthenias, cardiovascular diseases, and neurodegenerative disorders. Presynaptic uptake of choline via the sodium-dependent, hemicholinium-3-sensitive choline transporter (CHT) is believed to sustain acetylcholine (ACh) synthesis and release. Analysis of this hypothesis in vivo is limited in mammals because of the toxicity of CHT antagonists and the early postnatal lethality of CHT-/- mice (Ferguson et al., 2004). In Caenorhabditis elegans, in which cholinergic signaling supports motor activity and mutant alleles impacting ACh secretion and response can be propagated, we investigated the contribution of CHT (CHO-1) to facets of cholinergic neurobiology. Using the cho-1 promoter to drive expression of a translational, green fluorescent protein-CHO-1 fusion (CHO-1:GFP) in wild-type and kinesin (unc-104) mutant backgrounds, we establish in the living nematode that the transporter localizes to cholinergic synapses, and likely traffics on synaptic vesicles. Using embryonic primary cultures, we demonstrate that CHO-1 mediates hemicholinium-3-sensitive, high-affinity choline uptake that can be enhanced with depolarization in a Ca(2+)-dependent manner supporting ACh synthesis. Although homozygous cho-1 null mutants are viable, they possess 40% less ACh than wild-type animals and display stress-dependent defects in motor activity. In a choline-free liquid environment, cho-1 mutants demonstrate premature paralysis relative to wild-type animals. Our findings establish a requirement for presynaptic choline transport activity in vivo in a model amenable to a genetic dissection of CHO-1 regulation.
Collapse
|
36
|
Parikh V, Sarter M. Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J Neurochem 2006; 97:488-503. [PMID: 16539662 DOI: 10.1111/j.1471-4159.2006.03766.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.
Collapse
Affiliation(s)
- V Parikh
- Department of Psychology, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
37
|
Ribeiro FM, Black SAG, Prado VF, Rylett RJ, Ferguson SSG, Prado MAM. The "ins" and "outs" of the high-affinity choline transporter CHT1. J Neurochem 2006; 97:1-12. [PMID: 16524384 DOI: 10.1111/j.1471-4159.2006.03695.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintenance of acetylcholine (ACh) synthesis depends on the activity of the high-affinity choline transporter (CHT1), which is responsible for the reuptake of choline from the synaptic cleft into presynaptic neurons. In this review, we discuss the current understanding of mechanisms involved in the cellular trafficking of CHT1. CHT1 protein is mainly found in intracellular organelles, such as endosomal compartments and synaptic vesicles. The presence of CHT1 at the plasma membrane is limited by rapid endocytosis of the transporter in clathrin-coated pits in a mechanism dependent on a dileucine-like motif present in the carboxyl-terminal region of the transporter. The intracellular pool of CHT1 appears to constitute a reserve pool of transporters, important for maintenance of cholinergic neurotransmission. However, the physiological basis of the presence of CHT1 in intracellular organelles is not fully understood. Current knowledge about CHT1 indicates that stimulated and constitutive exocytosis, in addition to endocytosis, will have major consequences for regulating choline uptake. Future investigations of CHT1 trafficking should elucidate such regulatory mechanisms, which may aid in understanding the pathophysiology of diseases that affect cholinergic neurons, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Departamento de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Bales KR, Tzavara ET, Wu S, Wade MR, Bymaster FP, Paul SM, Nomikos GG. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A beta antibody. J Clin Invest 2006; 116:825-32. [PMID: 16498501 PMCID: PMC1378188 DOI: 10.1172/jci27120] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022] Open
Abstract
Disruption of cholinergic neurotransmission contributes to the memory impairment that characterizes Alzheimer disease (AD). Since the amyloid cascade hypothesis of AD pathogenesis postulates that amyloid beta (A beta) peptide accumulation in critical brain regions also contributes to memory impairment, we assessed cholinergic function in transgenic mice where the human A beta peptide is overexpressed. We first measured hippocampal acetylcholine (ACh) release in young, freely moving PDAPP mice, a well-characterized transgenic mouse model of AD, and found marked A beta-dependent alterations in both basal and evoked ACh release compared with WT controls. We also found that A beta could directly interact with the high-affinity choline transporter which may impair steady-state and on-demand ACh release. Treatment of PDAPP mice with the anti-A beta antibody m266 rapidly and completely restored hippocampal ACh release and high-affinity choline uptake while greatly reducing impaired habituation learning that is characteristic of these mice. Thus, soluble "cholinotoxic" species of the A beta peptide can directly impair cholinergic neurotransmission in PDAPP mice leading to memory impairment in the absence of overt neurodegeneration. Treatment with certain anti-A beta antibodies may therefore rapidly reverse this cholinergic dysfunction and relieve memory deficits associated with early AD.
Collapse
Affiliation(s)
- Kelly R Bales
- Neuroscience Discovery Research, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Katz-Brull R, Koudinov AR, Degani H. Direct detection of brain acetylcholine synthesis by magnetic resonance spectroscopy. Brain Res 2005; 1048:202-10. [PMID: 15921662 DOI: 10.1016/j.brainres.2005.04.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 04/24/2005] [Accepted: 04/26/2005] [Indexed: 11/26/2022]
Abstract
The cholinergic system is an important modulatory neurotransmitter system in the brain. Changes in acetylcholine concentration have been previously determined directly in animal models and human brain biopsy specimens, and indirectly, by the effects of drugs, in living humans. Here, we developed a method for direct determination of acetylcholine synthesis in living brain tissue. The method is based on administration of choline, enriched with carbon-13 (stable isotope) in the two methylene positions, and detection of labeled acetylcholine and all other metabolic fates of choline, by carbon-13 magnetic resonance spectroscopy. We tested this method in rat brain slices and found it to be specific for acetylcholine synthesis in both the cortex and hippocampus. This method is potentially useful as a research tool for exploring the cholinergic system role in cognitive processes and memory storage as well as in diseases in which the malfunction of the cholinergic system has been implicated.
Collapse
Affiliation(s)
- Rachel Katz-Brull
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
40
|
Ribeiro FM, Black SAG, Cregan SP, Prado VF, Prado MAM, Rylett RJ, Ferguson SSG. Constitutive high-affinity choline transporter endocytosis is determined by a carboxyl-terminal tail dileucine motif. J Neurochem 2005; 94:86-96. [PMID: 15953352 DOI: 10.1111/j.1471-4159.2005.03171.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis.
Collapse
Affiliation(s)
- Fabiola M Ribeiro
- Cell Biology Research Group, Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Inazu M, Takeda H, Matsumiya T. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes. J Neurochem 2005; 94:1427-37. [PMID: 16000150 DOI: 10.1111/j.1471-4159.2005.03299.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we examined the molecular and functional characterization of choline uptake into cultured rat cortical astrocytes. Choline uptake into astrocytes showed little dependence on extracellular Na+. Na+-independent choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 35.7 +/- 4.1 microm and a maximal velocity (Vmax) of 49.1 +/- 2.0 pmol/mg protein/min. Choline uptake was significantly decreased by acidification of the extracellular medium and by membrane depolarization. Na+-independent choline uptake was inhibited by unlabeled choline, acetylcholine and the choline analogue hemicholinium-3. The prototypical organic cation tetrahexylammonium (TEA), and other n-tetraalkylammonium compounds such as tetrabutylammonium (TBA) and tetrahexylammonium (THA), inhibited Na+-independent choline uptake, and their inhibitory potencies were in the order THA > TBA > TEA. Various organic cations, such as 1-methyl-4-tetrahydropyridinium (MPP+), clonidine, quinine, quinidine, guanidine, N-methylnicotinamide, cimetidine, desipramine, diphenhydramine and verapamil, also interacted with the Na+-independent choline transport system. Corticosterone and 17beta-estradiol, known inhibitors of organic cation transporter 3 (OCT3), did not cause any significant inhibition. However, decynium22, which inhibits OCTs, markedly inhibited Na+-independent choline uptake. RT-PCR demonstrated that astrocytes expressed low levels of OCT1, OCT2 and OCT3 mRNA, but the functional characteristics of choline uptake are very different from the known properties of these OCTs. The high-affinity Na+-dependent choline transporter, CHT1, is not expressed in astrocytes as evidenced by RT-PCR. Furthermore, mRNA for choline transporter-like protein 1 (CTL1), and its splice variants CTL1a and CTL1b, was expressed in rat astrocytes, and the inhibition of CTL1 expression by RNA interference completely inhibited Na+-independent choline uptake. We conclude that rat astrocytes express an intermediate-affinity Na+-independent choline transport system. This system seems to occur through a CTL1 and is responsible for the uptake of choline and organic cations in these cells.
Collapse
Affiliation(s)
- Masato Inazu
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | |
Collapse
|
42
|
Traiffort E, Ruat M, O'Regan S, Meunier FM. Molecular characterization of the family of choline transporter-like proteins and their splice variants. J Neurochem 2005; 92:1116-25. [PMID: 15715662 DOI: 10.1111/j.1471-4159.2004.02962.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We show here that the choline transporter-like (CTL) family is more extensive than initially described with five genes in humans and complex alternative splicing. In adult rat tissues, CTL2-4 mRNAs are mainly detected in peripheral tissues, while CTL1 is widely expressed throughout the nervous system. During rat post-natal development, CTL1 is expressed in several subpopulations of neurones and in the white matter, where its spatio-temporal distribution profile recalls that of myelin basic protein, an oligodendrocyte marker. We identified two major rat splice variants of CTL1 (CTL1a and CTL1b) differing in their carboxy-terminal tails with both able to increase choline transport after transfection in neuroblastoma cells. In the developing brain, CTL1a is expressed in both neurones and oligodendroglial cells, whereas CTL1b is restricted to oligodendroglial cells. These findings suggest specific roles for CTL1 splice variants in both neuronal and oligodendrocyte physiology.
Collapse
Affiliation(s)
- E Traiffort
- Institut de Neurobiologie Alfred Fessard IFR 2118 CNRS, Laboratoire de Neurobiologie Cellulaire et Moléculaire, UPR 9040, Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
43
|
Wu K, Meyers CA, Guerra NK, King MA, Meyer EM. The effects of rAAV2-mediated NGF gene delivery in adult and aged rats. Mol Ther 2004; 9:262-9. [PMID: 14759810 DOI: 10.1016/j.ymthe.2003.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Accepted: 11/18/2003] [Indexed: 12/13/2022] Open
Abstract
Nerve growth factor (NGF) therapy has been proposed to treat patients with age-related cognitive deficits, including those with Alzheimer's disease. One promising approach to delivering this protein into brain involves viral vectors. However, little is known about the effects of aging on gene transfer in brain generally and in particular its effect on transgenic NGF expression. To examine the transgene expression and biological effects of NGF gene transfer in adult and aged rats, we delivered mouse NGF with C-terminal myc-tag, using a recombinant adeno-associated virus serotype 2 (rAAV2) vector, into the septum of 6- and 21-month-old Fischer 344/Brown Norway hybrid rats. Other animals received a control vector encoding green fluorescent protein. As expected, this strain of rat demonstrated very few age-related deficits in spatial memory-related behavior in the Morris water task either before gene transfer (6 vs 21 months) or afterward (up to 11 vs 26 months). We found that rAAV2 vectors drove transgene expression in aged rats up to 5 months, although the level of transgene expression was lower than that of adult animals. We also showed that NGF gene transfer into the septum of aged animals induced local trophic effects by increasing the number and soma area of septal cholinergic neurons and improved distal synaptic activity by increasing the level of depolarization-induced acetylcholine (ACh) release from hippocampal synaptic terminals. Interestingly, NGF gene transfer suppressed depolarization-induced ACh release in adult rats. These findings show for the first time, to our knowledge, that septal NGF gene transfer modulates hippocampal nerve terminal function. These results are relevant for the potential clinical application of NGF gene therapy.
Collapse
Affiliation(s)
- Ke Wu
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
44
|
Gates J, Ferguson SM, Blakely RD, Apparsundaram S. Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A. J Pharmacol Exp Ther 2004; 310:536-45. [PMID: 15064333 DOI: 10.1124/jpet.104.066795] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Na(+)/Cl(-)-dependent, hemicholinium-3-sensitive choline transporter (CHT) provides choline for acetylcholine biosynthesis. Recent studies show that CHT contains canonical protein kinase C (PKC) serine and threonine residues. We examined the ability of PKC and serine/threonine protein phosphatase 1/2A (PP1/PP2A) to regulate CHT function, surface expression, and phosphorylation. In mouse crude striatal and hippocampal synaptosomes, PKC activators beta-phorbol 12-myristate 13-acetate (beta-PMA) and beta-phorbol 12,13-dibutyrate produced time- and concentration-dependent reductions in CHT function. PP1/PP2A inhibitors okadaic acid (OKA) and calyculin A (CL-A) produced a time- and concentration-dependent decrease in CHT function. However, tautomycin (PP1 inhibitor) and cyclosporin A (PP2B inhibitor) failed to alter CHT-mediated choline uptake. Choline transport kinetic studies following beta-PMA, OKA, and CL-A treatment revealed a reduction in the maximal choline transport velocity (V(max)) with no change in K(m) for choline. These modulators also produced no change in the total levels of CHT protein in the crude hippocampal and striatal synaptosomes; however, surface biotinylation studies using the membrane-impermeant N-hydroxysuccinimide-biotin in crude synaptosomes following treatment with beta-PMA, OKA, and CL-A indicate significant reductions of CHT levels in biotinylated fractions. Pretreatment with OKA alone, but not beta-PMA, significantly augmented the phosphorylation level of CHT proteins. Our findings suggest that neuronal PKC and PP1/PP2A activity may establish the level of function and surface expression of CHT. These studies also provide the first evidence that CHT is a phosphoprotein and that the basal PP1/PP2A activity may have a dominant role in controlling the levels of CHT phosphorylation.
Collapse
Affiliation(s)
- Jeremiah Gates
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 306 Whitney-Hendrickson Building, 800 Rose Street, Lexington, KY 40536-0098, USA
| | | | | | | |
Collapse
|
45
|
Ferguson SM, Bazalakova M, Savchenko V, Tapia JC, Wright J, Blakely RD. Lethal impairment of cholinergic neurotransmission in hemicholinium-3-sensitive choline transporter knockout mice. Proc Natl Acad Sci U S A 2004; 101:8762-7. [PMID: 15173594 PMCID: PMC423269 DOI: 10.1073/pnas.0401667101] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presynaptic acetylcholine (ACh) synthesis and release is thought to be sustained by a hemicholinium-3-sensitive choline transporter (CHT). We disrupted the murine CHT gene and examined CHT-/- and +/- animals for evidence of impaired cholinergic neurotransmission. Although morphologically normal at birth, CHT-/- mice become immobile, breathe irregularly, appear cyanotic, and die within an hour. Hemicholinium-3-sensitive choline uptake and subsequent ACh synthesis are specifically lost in CHT-/- mouse brains. Moreover, we observe a time-dependent loss of spontaneous and evoked responses at CHT-/- neuromuscular junctions. Consistent with deficits in synaptic ACh availability, we also observe developmental alterations in neuromuscular junction morphology reminiscent of changes in mutants lacking ACh synthesis. Adult CHT+/- mice overcome reductions in CHT protein levels and sustain choline uptake activity at wild-type levels through posttranslational mechanisms. Our results demonstrate that CHT is an essential and regulated presynaptic component of cholinergic signaling and indicate that CHT warrants consideration as a candidate gene for disorders characterized by cholinergic hypofunction.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Over the last 15 years, a number of transporters that translocate organic cations were characterized functionally and also identified on the molecular level. Organic cations include endogenous compounds such as monoamine neurotransmitters, choline, and coenzymes, but also numerous drugs and xenobiotics. Some of the cloned organic cation transporters accept one main substrate or structurally similar compounds (oligospecific transporters), while others translocate a variety of structurally diverse organic cations (polyspecific transporters). This review provides a survey of cloned organic cation transporters and tentative models that illustrate how different types of organic cation transporters, expressed at specific subcellular sites in hepatocytes and renal proximal tubular cells, are assembled into an integrated functional framework. We briefly describe oligospecific Na(+)- and Cl(-)-dependent monoamine neurotransmitter transporters ( SLC6-family), high-affinity choline transporters ( SLC5-family), and high-affinity thiamine transporters ( SLC19-family), as well as polyspecific transporters that translocate some organic cations next to their preferred, noncationic substrates. The polyspecific cation transporters of the SLC22 family including the subtypes OCT1-3 and OCTN1-2 are presented in detail, covering the current knowledge about distribution, substrate specificity, and recent data on their electrical properties and regulation. Moreover, we discuss artificial and spontaneous mutations of transporters of the SLC22 family that provide novel insight as to the function of specific protein domains. Finally, we discuss the clinical potential of the increasing knowledge about polymorphisms and mutations in polyspecific organic cation transporters.
Collapse
Affiliation(s)
- H Koepsell
- Institut für Anatomie und Zellbiologie, Bayerischen Julius-Maximilians-Universität, Koellikerstr. 6, 97070 Würzburg, Germany.
| | | | | |
Collapse
|
47
|
Liston DR, Nielsen JA, Villalobos A, Chapin D, Jones SB, Hubbard ST, Shalaby IA, Ramirez A, Nason D, White WF. Pharmacology of selective acetylcholinesterase inhibitors: implications for use in Alzheimer's disease. Eur J Pharmacol 2004; 486:9-17. [PMID: 14751402 DOI: 10.1016/j.ejphar.2003.11.080] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholinesterase inhibitors vary in their selectivity for acetylcholinesterase versus butyrylcholinesterase. We examined several cholinesterase inhibitors and assessed the relative role of acetylcholinesterase versus butyrylcholinesterase inhibition in central and peripheral responses to these medications. Donepezil and icopezil are highly selective for acetylcholinesterase, whereas tacrine and heptylphysostigmine demonstrated greater potency for butyrylcholinesterase over acetylcholinesterase. All four compounds increased acetylcholine levels in mouse brains. Dose-response curves for tremor (central effect) and salivation (peripheral effect) showed that donepezil and icopezil possess a more favourable therapeutic index than the nonselective inhibitors, tacrine and heptylphysostigmine. Co-administration of the selective butyrylcholinesterase inhibitor tetraisopropylpyrophosphoramide (iso-OMPA) potentiated peripheral, but not central, effects of the selective acetylcholinesterase inhibitor icopezil. The improved therapeutic index observed in mice with icopezil is due to a high degree of selectivity for acetylcholinesterase versus butyrylcholinesterase, suggesting that high selectivity for acetylcholinesterase may contribute to the clinically favourable tolerability profile of agents such as donepezil in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Dane R Liston
- CNS Discovery, Pfizer Global Research and Development, Pfizer Inc., Eastern Point Road, Mailstop 8220-4016, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakata K, Okuda T, Misawa H. Ultrastructural localization of high-affinity choline transporter in the rat neuromuscular junction: Enrichment on synaptic vesicles. Synapse 2004; 53:53-6. [PMID: 15150741 DOI: 10.1002/syn.20029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In cholinergic neurons, Na(+)- and Cl(-)-dependent, hemicholinium-3-sensitive, high-affinity choline uptake system is thought to be the rate-limiting step in acetylcholine (ACh) synthesis. The system is highly regulated by neuronal activity; the choline uptake is increased by a condition in which ACh release is favored. Here we analyzed the ultrastructural localization of the high-affinity choline transporter (CHT) in the rat neuromuscular junctions with two separate antibodies. The majority (>90%) of immunogold labeling of CHT was observed on synaptic vesicles rather than the presynaptic plasma membrane. Less than 5% of the gold-silver particles were associated with the plasma membrane, and more than 70% of such particles were localized within or in close vicinity to presynaptic active zones. Our morphological data support the recent hypothesis that trafficking of CHT from synaptic vesicles to the plasma membrane couples neuronal activity and choline uptake.
Collapse
Affiliation(s)
- Kazuko Nakata
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
49
|
Abstract
Presynaptic synthesis of acetylcholine (ACh) requires a steady supply of choline, acquired by a plasma membrane, hemicholinium-3-sensitive (HC-3) choline transporter (CHT). A significant fraction of synaptic choline is recovered from ACh hydrolyzed by acetylcholinesterase (AChE) after vesicular release. Although antecedent neuronal activity is known to dictate presynaptic CHT activity, the mechanisms supporting this regulation are unknown. We observe an exclusive localization of CHT to cholinergic neurons and demonstrate that the majority of CHTs reside on small vesicles within cholinergic presynaptic terminals in the rat and mouse brain. Furthermore, immunoisolation of presynaptic vesicles with multiple antibodies reveals that CHT-positive vesicles carry the vesicular acetylcholine transporter (VAChT) and synaptic vesicle markers such as synaptophysin and Rab3A and also contain acetylcholine. Depolarization of synaptosomes evokes a Ca2+-dependent botulinum neurotoxin C-sensitive increase in the Vmax for HC-3-sensitive choline uptake that is accompanied by an increase in the density of CHTs in the synaptic plasma membrane. Our study leads to the novel hypothesis that CHTs reside on a subpopulation of synaptic vesicles in cholinergic terminals that can transit to the plasma membrane in response to neuronal activity to couple levels of choline re-uptake to the rate of ACh release.
Collapse
|
50
|
Ribeiro FM, Alves-Silva J, Volknandt W, Martins-Silva C, Mahmud H, Wilhelm A, Gomez MV, Rylett RJ, Ferguson SSG, Prado VF, Prado MAM. The hemicholinium-3 sensitive high affinity choline transporter is internalized by clathrin-mediated endocytosis and is present in endosomes and synaptic vesicles. J Neurochem 2003; 87:136-46. [PMID: 12969261 DOI: 10.1046/j.1471-4159.2003.01974.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synthesis of acetylcholine depends on the plasma membrane uptake of choline by a high affinity choline transporter (CHT1). Choline uptake is regulated by nerve impulses and trafficking of an intracellular pool of CHT1 to the plasma membrane may be important for this regulation. We have generated a hemagglutinin (HA) epitope tagged CHT1 to investigate the organelles involved with intracellular trafficking of this protein. Expression of CHT1-HA in HEK 293 cells establishes Na+-dependent, hemicholinium-3 sensitive high-affinity choline transport activity. Confocal microscopy reveals that CHT1-HA is found predominantly in intracellular organelles in three different cell lines. Importantly, CHT1-HA seems to be continuously cycling between the plasma membrane and endocytic organelles via a constitutive clathrin-mediated endocytic pathway. In a neuronal cell line, CHT1-HA colocalizes with the early endocytic marker green fluorescent protein (GFP)-Rab 5 and with two markers of synaptic-like vesicles, VAMP-myc and GFP-VAChT, suggesting that in cultured cells CHT1 is present mainly in organelles of endocytic origin. Subcellular fractionation and immunoisolation of organelles from rat brain indicate that CHT1 is present in synaptic vesicles. We propose that intracellular CHT1 can be recruited during stimulation to increase choline uptake in nerve terminals.
Collapse
Affiliation(s)
- F M Ribeiro
- Laboratório de Neurobiologia Molecular, Departamento de Bioquímica-Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|