1
|
Li J, Liu D, Li X, Wei J, Du W, Zhao A, Xu M. RNA vaccines: The dawn of a new age for tuberculosis? Hum Vaccin Immunother 2025; 21:2469333. [PMID: 40013818 PMCID: PMC11869779 DOI: 10.1080/21645515.2025.2469333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Since 2019, there has been a growing focus on mRNA vaccines for infectious disease prevention, particularly following the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). mRNA vaccines offer advantages such as rapid production and the ability to induce robust cellular and antibody responses, which are essential for combating infections that require cell-mediated immunity, including Tuberculosis (TB). This review explores recent progress in TB mRNA vaccines and addresses several key areas: (1) the urgent need for new TB vaccines; (2) current advancements in TB vaccine development, and the advantages and challenges of mRNA technology; (3) the design and characteristics of TB mRNA vaccines; (4) the immunological mechanisms of TB mRNA vaccines; (5) manufacturing processes for TB mRNA vaccines; and (6) safety and regulatory considerations. This interdisciplinary review aims to provide insights for researchers working to address critical questions in TB mRNA vaccine development.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Dong Liu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xiaochi Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Jiazheng Wei
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| |
Collapse
|
2
|
Costa GL, Sautto GA. Towards an HCV vaccine: an overview of the immunization strategies for eliciting an effective B-cell response. Expert Rev Vaccines 2025; 24:96-120. [PMID: 39825640 DOI: 10.1080/14760584.2025.2452955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/26/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Fifty-eight million people worldwide are chronically infected with hepatitis C virus (HCV) and are at risk of developing cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antivirals are highly effective; however, they are burdened by high costs and the unchanged risk of HCC and reinfection, making prophylactic countermeasures an urgent medical need. HCV high genetic diversity is one of the main obstacles to vaccine development. The protective role of the humoral response directed against the HCV E2 glycoprotein is well established, and broadly neutralizing antibodies play a crucial role in effective viral clearance. AREAS COVERED This review explores the HCV targets and the different vaccination approaches, encompassing different expression systems, antigen selection strategies, and delivery methods, focusing on those aimed at eliciting a broad and effective humoral response. Our search criteria included the keywords 'HCV,' 'Hepatitis C,' and 'vaccine' using publicly available databases. Following the screening, 54 papers were selected. EXPERT OPINION The investigation of novel vaccine platforms beyond traditional approaches is necessary. While progress has been made in this direction, continued investigations on the HCV virology, immunology, and vaccinology are essential to surmount associated obstacles, heling in the development of an HCV vaccine that can benefit the global public health.
Collapse
Affiliation(s)
- Gabriel L Costa
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
| |
Collapse
|
3
|
Bengtsson NE, Tasfaout H, Chamberlain JS. The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy. Mol Ther 2025; 33:2035-2051. [PMID: 40181545 DOI: 10.1016/j.ymthe.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Forty years after the dystrophin gene was cloned, significant progress has been made in developing gene therapy approaches for Duchenne muscular dystrophy (DMD). The disorder has presented numerous challenges, including the enormous size of the gene (2.2 MB), the need to target muscles body wide, and immunogenic issues against both vectors and dystrophin. Among human genetic disorders, DMD is relatively common, and the genetics are complicated since one-third of all cases arise from a spontaneous new mutation, resulting in thousands of independent lesions throughout the locus. Many approaches have been pursued in the goal of finding an effective therapy, including exon skipping, nonsense codon suppression, upregulation of surrogate genes, gene replacement, and gene editing. Here, we focus specifically on methods using AAV vectors, as these approaches have been tested in numerous clinical trials and are able to target muscles systemically. We discuss early advances to understand the structure of dystrophin, which are crucial for the design of effective DMD gene therapies. Included is a summary of efforts to deliver micro-, mini-, and full-length dystrophins to muscles. Finally, we review current approaches to adapt gene editing to the enormous DMD gene with prospects for improved therapies using all these methods.
Collapse
Affiliation(s)
- Niclas E Bengtsson
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Hichem Tasfaout
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98109, USA; Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Svabek C, Maiezza S, Desmedt E, Mortier L, Boileau M. [Antigen vaccines in melanoma: Towards a new therapeutic paradigm]. Bull Cancer 2025:S0007-4551(25)00127-4. [PMID: 40335368 DOI: 10.1016/j.bulcan.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 05/09/2025]
Abstract
Locally advanced or metastatic melanoma is a cancer with a poor prognosis, characterised by its ability to respond to the induction of an immune response. Anti-tumour vaccination has been studied for many years, although initial results have sometimes been disappointing. The emergence of immune checkpoint inhibiting immunotherapies has dramatically changed the prognosis. Melanoma has emerged as a prime model for renewed research into anti-tumour vaccination. The aim of this review article is to provide an overview of recent developments and prospects for antigen vaccines in the treatment of melanoma. We will explore their mechanism of action, the results of recent clinical trials, and the limitations and challenges of this new therapeutic approach.
Collapse
Affiliation(s)
- Clément Svabek
- Service de dermatologie, université Lille, CHU Lille, 59000 Lille, France
| | - Sophie Maiezza
- Service de dermatologie, université Lille, CHU Lille, 59000 Lille, France
| | - Eve Desmedt
- Service de dermatologie, université Lille, CHU Lille, 59000 Lille, France
| | - Laurent Mortier
- Service de dermatologie, université Lille, CHU Lille, 59000 Lille, France; Université Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France
| | - Marie Boileau
- Service de dermatologie, université Lille, CHU Lille, 59000 Lille, France; Université Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, 59000 Lille, France.
| |
Collapse
|
5
|
Castellano M, Blanco V, Li Calzi M, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. CELL GENOMICS 2025:100874. [PMID: 40334662 DOI: 10.1016/j.xgen.2025.100874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Cell membranes are thought of as barriers to extracellular RNA (exRNA) uptake. While naked exRNAs can be spontaneously internalized by certain cells, functional cytosolic delivery has been rarely observed. Here, we show that extracellular ribonucleases (RNases)-primarily from cell culture supplements-have obscured the study of exRNA functionality. When ribonuclease inhibitor (RI) is added to cell cultures, naked exRNAs can trigger pro-inflammatory responses in dendritic cells and macrophages, largely via endosomal Toll-like receptors (TLRs). Moreover, naked exRNAs can escape endosomes, engaging cytosolic RNA sensors. In addition, naked extracellular mRNAs can be spontaneously internalized and translated by various cell types in an RI-dependent manner. In vivo, RI co-injection amplifies naked-RNA-induced activation of splenic lymphocytes and myeloid leukocytes. Furthermore, naked RNA is inherently pro-inflammatory in RNase-poor compartments like the peritoneal cavity. These findings demonstrate that naked RNA is bioactive without requiring vesicular encapsulation, making a case for nonvesicular-exRNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; EV Core Facility "EXCEL," Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Hospital de Clínicas, Universidad de la República, Montevideo 11600, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Montevideo 11800, Uruguay.
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay.
| |
Collapse
|
6
|
Chatterjee O, Kaur GA, Shukla N, Balayan S, Singh PK, Chatterjee S, Tiwari A. Multifaceted arsenal in SELEX nanomedicine. Adv Colloid Interface Sci 2025; 342:103540. [PMID: 40344950 DOI: 10.1016/j.cis.2025.103540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025]
Abstract
Aptamers, short oligonucleotide sequences that bind specifically to cellular proteins and receptors, are emerging as versatile tools in molecular nanomedicine. Unlike passive tumor targeting via the enhanced permeability and retention (EPR) effect, aptamers enable precise drug delivery, enhancing therapeutic efficacy while minimizing side effects. Developed through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process, aptamers offer compact size, robust structure, chemical versatility, and cost-effective synthesis. They serve as effective delivery vehicles for therapeutic molecules, including miRNA, siRNA, and small-molecule drugs, and function as antibody-like ligands for applications in cancer, diabetes, and autoimmune disorders. Since the approval of Macugen, the first aptamer targeting VEGF, aptamers have also shown promise as diagnostic sensors and theranostic agents. This review explores SELEX-derived aptamers in nanomedicine, focusing on their therapeutic and diagnostic roles, particularly in precision cancer therapies. It also addresses challenges such as degradation and clinical translation alongside prospects in vaccines, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Oishika Chatterjee
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden; Department of Biological Sciences, Bose Institute Unified Academic Campus EN 80, Sector 5, Bidhan Nagar (Salt Lake City) Kolkata 700 091, WB, India
| | - Gun Anit Kaur
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Nutan Shukla
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Sapna Balayan
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Pravin Kumar Singh
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Bose Institute Unified Academic Campus EN 80, Sector 5, Bidhan Nagar (Salt Lake City) Kolkata 700 091, WB, India.
| | - Ashutosh Tiwari
- Institute of Advanced Materials, IAAM, Gammalkilsvägen 18, Ulrika 590 53, Sweden.
| |
Collapse
|
7
|
Wang L, Li Y, Jiang P, Bai H, Wu C, Shuai Q, Yan Y. Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles. Colloids Surf B Biointerfaces 2025; 249:114528. [PMID: 39847891 DOI: 10.1016/j.colsurfb.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Lipid nanoparticles (LNPs) have shown promising performance in mRNA delivery. Nevertheless, a thorough understanding of the relationship between mRNA delivery efficacy and the structure of LNPs remains imperative. In this study, we systematically investigated the effects of additional hydrophobic amines on the physicochemical properties of mRNA LNPs and their delivery efficacy. The results indicated that this influence depended on the chemical structure of the additional amines and the structure of the lipid carriers. The appropriate addition of the hydrophobic amine 2C8 to lipid carriers with structural 2C8 or 2C6 tails significantly increased their mRNA delivery efficiency. In contrast, the addition of hydrophobic amine C18 to LNPs resulted in a decrease in mRNA delivery efficiency, while the addition of hydrophobic amines 2C6 and C8, as well as alkanes C12' and C16', had relatively little effect on mRNA delivery. Further investigations demonstrated that the appropriate addition of 2C8 could reduce LNP size, moderate internal hydrophobicity and LNP stability, facilitate mRNA release, enhance cellular uptake, and improve intracellular transportation of LNPs, thereby achieving superior mRNA delivery efficiency. These findings highlight the important role of additional hydrophobic amines in mRNA delivery with LNPs and provide valuable insights for the advancement of mRNA delivery carriers.
Collapse
Affiliation(s)
- Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yichen Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Bai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Damase TR, Cooke JP. RNA therapeutics in cardiovascular medicine. Curr Opin Cardiol 2025; 40:139-149. [PMID: 39998478 PMCID: PMC12055242 DOI: 10.1097/hco.0000000000001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
PURPOSE OF REVIEW RNA therapeutics came to global attention when mRNA-based vaccines provided an answer to the SARS-CoV-2 pandemic. The immense significance of this development notwithstanding, it is important to note that almost a decade prior to the pandemic, RNA drugs had made important inroads toward the amelioration of disease. The first class of RNA therapies to be introduced into clinical use were the antisense oligomers and siRNA drugs which generally induce a therapeutic effect by acting to brake or to modulate mRNA expression. RNA therapeutics is quickly becoming the fourth pillar of pharmacotherapy, and will have broad applications, including for the treatment of cardiovascular disease. RECENT FINDINGS The United States (US) Food and Drug Administration (FDA) has approved several antisense oligomers (ASOs) and siRNA-based drugs to treat disorders associated with cardiovascular disease. In addition, multiple RNA-based drugs are in clinical trials to assess their safety and efficacy in patients with cardiovascular disorders, such as Zodasiran, a siRNA therapy that targets angiopoietin-like protein 3 (ANGPTL3) to reduce LDL cholesterol. SUMMARY Because of limitless sequence choice; speed of design; and relative ease of synthesis, RNA drugs will be rapidly developed, will have broad applications, and will be generated at lower cost than other drug types. This review aims to highlight RNA therapies for cardiovascular diseases that are approved, and those that are under clinical evaluation.
Collapse
Affiliation(s)
- Tulsi Ram Damase
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas, USA
| | | |
Collapse
|
9
|
Heiser BJ, Veyssi A, Ghosh D. Recent strategies for enhanced delivery of mRNA to the lungs. Nanomedicine (Lond) 2025; 20:1043-1069. [PMID: 40190037 PMCID: PMC12051540 DOI: 10.1080/17435889.2025.2485669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
mRNA-based therapies have emerged as a transformative tool in modern medicine, gaining significant attention following their successful use in COVID-19 vaccines. Delivery to the lungs offers several compelling advantages for mRNA delivery. The lungs are one of the most vascularized organs in the body, which provides an extensive surface area that can facilitate efficient drug transport. Local delivery to the lungs bypasses gastrointestinal degradation, potentially enhancing therapeutic efficacy. In addition, the extensive capillary network of the lungs provides an ideal target for systemic delivery. However, developing effective mRNA therapies for the lungs presents significant challenges. The complex anatomy of the lungs and the body's immune response to foreign particles create barriers to delivery. This review discusses key approaches for overcoming these challenges and improving mRNA delivery to the lungs. It examines both local and systemic delivery strategies aimed at improving lung delivery while mitigating off-target effects. Although substantial progress has been made in lung-targeted mRNA therapies, challenges remain in optimizing cellular uptake and achieving therapeutic efficacy within pulmonary tissues. The continued refinement of delivery strategies that enhance lung-specific targeting while minimizing degradation is critical for the clinical success of mRNA-based pulmonary therapies.
Collapse
Affiliation(s)
- Brittany J. Heiser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Arian Veyssi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Debadyuti Ghosh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Li H, Min L, Du H, Wei X, Tong A. Cancer mRNA vaccines: clinical application progress and challenges. Cancer Lett 2025; 625:217752. [PMID: 40306545 DOI: 10.1016/j.canlet.2025.217752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Messenger RNA (mRNA) vaccines have emerged as one of the most promising and rapidly evolving immunotherapeutic approaches due to their ease of production, demonstrated clinical efficacy, and high safety. The coronavirus disease 2019(COVID-19) pandemic has showcased the remarkable therapeutic potential of mRNA vaccines, prompting researchers to explore their use for cancer treatment. Preclinical studies and human clinical trials have indicated their substantial clinical applicability. However, current research faces several challenges, including the complexity of tumor antigen selection, vaccine stability, and the development of resistance. This review summarizes the optimization strategies for cancer mRNA vaccines in preclinical settings, the progress of clinical trials, and the challenges encountered while analyzing various delivery vehicle types, infusion methods, and application cases across different cancer types, highlighting key factors in vaccine design. The findings demonstrate that mRNA vaccines elicit specific immune responses and exhibit favorable safety and tolerability in clinical trials. Moreover, developing personalized neoantigen vaccines offers a novel direction for cancer immunotherapy. The unique contribution of this review lies in its comprehensive overview of the latest advancements in therapeutic mRNA vaccines for cancer treatment while identifying critical areas for future research to propel the field forward.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Lang Min
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haotian Du
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Tang Y, Yi X, Ai J. mRNA vaccines for prostate cancer: A novel promising immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189333. [PMID: 40288658 DOI: 10.1016/j.bbcan.2025.189333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The treatment of advanced prostate cancer (PCa) primarily based on androgen deprivation therapy (ADT); however, patients inevitably progress to the castration-resistant prostate cancer (CRPC) stage. Despite the recent advancements in CRPC treatment with novel endocrine drugs that further inhibit androgen receptor signaling, resistance ultimately develops, underscoring the urgent need for new effective therapeutic strategies. Therapeutic cancer vaccines, a form of immunotherapy, exert anti-cancer effects by activating the host's immune system. Over the past few decades, various conventional therapeutic PCa vaccines based on cells, microbes, proteins, peptides, or DNA have been developed and tested in patients with advanced PCa. These attempts have largely failed to improve survival, with the sole exception of sipuleucel-T, which extended the median overall survival of asymptomatic or minimally symptomatic metastatic CRPC (mCRPC) patients by four months. The rapid development and high efficacy of mRNA vaccines during the COVID-19 pandemic have garnered worldwide attention. Compared to conventional vaccines, mRNA vaccines offer several unique advantages, including high production efficiency, low cost, high safety, strong immune response induction, and high adaptability and precision. These attributes make mRNA vaccines a promising frontier in the treatment of advanced PCa.
Collapse
Affiliation(s)
- Yaxiong Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, 88 South Keyuan Road, Chengdu 610041, China.
| |
Collapse
|
12
|
Del Bene A, D'Aniello A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Benedetti R, Altucci L, Cosconati S, Di Maro S, Messere A. From genetic code to global health: the impact of nucleic acid vaccines on disease prevention and treatment. RSC Med Chem 2025:d5md00032g. [PMID: 40337306 PMCID: PMC12053015 DOI: 10.1039/d5md00032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Vaccinology has revolutionized modern medicine, delivering groundbreaking solutions to prevent and control infectious diseases while pioneering innovative strategies to tackle non-infectious challenges, including cancer. Traditional vaccines faced inherent limitations, driving the evolution of next-generation vaccines such as subunit vaccines, peptide-based vaccines, and nucleic acid-based platforms. Among these, nucleic acid-based vaccines, including DNA and mRNA technologies, represent a major innovation. Pioneering studies in the 1990s demonstrated their ability to elicit immune responses by encoding specific antigens. Recent advancements in delivery systems and molecular engineering have overcome initial challenges, enabling their rapid development and clinical success. This review explores nucleic acid-based vaccines, including chemically modified variants, by examining their mechanisms, structural features, and therapeutic potential, while underscoring their pivotal role in modern immunization strategies and expanding applications across contemporary medicine.
Collapse
Affiliation(s)
- Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | | | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Erica Campagna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
- Program of Medical Epigenetics, Vanvitelli Hospital 80138 Naples Italy
- Biogem Institute of Molecular and Genetic Biology 83031 Ariano Irpino Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli" Vico Luigi De Crecchio 1 80138 Naples Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli" Caserta Italy
| |
Collapse
|
13
|
Afrashteh F, Seyedpour S, Rezaei N. The therapeutic effect of mRNA vaccines in glioma: a comprehensive review. Expert Rev Clin Immunol 2025:1-13. [PMID: 40249391 DOI: 10.1080/1744666x.2025.2494656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Glioma is the most common primary brain tumor, with glioblastoma being the most lethal type due to its heterogeneous and invasive nature of the cancer. Current therapies have low curative success and are limited to surgery, radiotherapy, and chemotherapy. More than 50% of patients become resistant to chemotherapy, and tumor recurrence occurs in most patients following an initial course of therapy. Therefore, developing novel, effective strategies for glioma treatment is essential. Cancer vaccines are novel therapies that demonstrate advantages over conventional methods and, therefore, may be promising options for treating glioma. AREAS COVERED This article provided a critical review of pre-clinical and clinical studies that explored appropriate tumor antigen candidates for developing mRNA vaccines and discussed their clinical application in glioma patients. Medline database, PubMed, and ClinicalTrials.gov were searched for glioma vaccine studies published before 2025 using related keywords. EXPERT OPINION mRNA vaccines are promising strategies for treating glioma because they are efficient, cost-beneficial, and have lower side effects than other types such as peptide or DNA-based vaccines.
Collapse
Affiliation(s)
- Fatemeh Afrashteh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Kim J, Yang J, Heo S, Poo H. Evaluation of mRNA Transfection Reagents for mRNA Delivery and Vaccine Efficacy via Intramuscular Injection in Mice. ACS APPLIED BIO MATERIALS 2025. [PMID: 40263125 DOI: 10.1021/acsabm.5c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The selection of an effective delivery carrier is crucial to assessing mRNA-based vaccines and therapeutics in vivo. Although lipid nanoparticles (LNPs) are commonly used for mRNA delivery, the LNP-mRNA formulation process is laborious and time-consuming and requires a high-cost microfluidic device. Instead, mixing with commercial reagents may simplify mRNA transfection into cells. However, their potential as in vivo carriers in intramuscular vaccination in mouse models remains unclear. In this study, we used three types of commercial RNA transfection reagents, MessengerMAX (MAX; liposome), TransIT-mRNA (IT; cationic polymer), and Invivofectamine (IVF; LNP), to produce nanoparticles directly by pipetting. The particle characteristics and mRNA delivery efficacy of the mRNA-transfection reagent mixtures were analyzed. Additionally, immune responses to vaccine efficacy and protective immunity of the mRNA mixtures as vaccine antigens were evaluated in a mouse model. Although MAX and IT showed high in vitro transfection efficiencies, their in vivo performances were limited. In contrast, IVF exhibited notable particle stability and homogeneity, making it a promising delivery carrier. Intramuscular IVF injection significantly enhanced both innate and adaptive immune responses with a robust systemic protein expression. Notably, when using SARS-CoV-2 Spike mRNA, IVF showed robust humoral immune responses, including production of IgG and neutralizing antibodies, thereby resulting in complete protection against SARS-CoV-2 infection. Therefore, these findings position IVF as an accessible and efficient mRNA carrier for evaluating mRNA vaccines and therapeutic efficacy in basic research.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Suhyeon Heo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Yan R, Xu YM, Lau ATY. Immobilized metal ion affinity chromatography: waltz of metal ions and biomacromolecules. Expert Rev Proteomics 2025. [PMID: 40249414 DOI: 10.1080/14789450.2025.2492764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
INTRODUCTION Immobilized metal ion affinity chromatography (IMAC) is an effective method developed in the 1980s for the separation and purification of proteins. The system consists of a solid-phase matrix, a linking ligand, and a metal ion. The method is based on the ability of metal ions to bind specifically to certain specific amino acid residues of proteins, thereby selectively enriching and purifying proteins. AREAS COVERED This review aims to describe current knowledge of fundamental principle of IMAC and summarize the supports, chelating ligands, and metal ions of IMAC. In addition, how IMAC technology is used in proteomics and DNA research are highlighted. EXPERT OPINION Over the past decades, IMAC has been extensively utilized as a predominant technique for protein enrichment in a variety of biological and medical research, such as disease diagnosis, tumor biomarker identification, protein purification, and nucleic acid research. In the future, IMAC should be integrated with other proteomics technologies to promote the applications of metalloproteomes in disease diagnosis, metallodrug development and clinical translation.
Collapse
Affiliation(s)
- Rui Yan
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Andy T Y Lau
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
16
|
Vallet T, Vignuzzi M. Self-Amplifying RNA: Advantages and Challenges of a Versatile Platform for Vaccine Development. Viruses 2025; 17:566. [PMID: 40285008 PMCID: PMC12031284 DOI: 10.3390/v17040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Self-amplifying RNA is synthetic nucleic acid engineered to replicate within cells without generating viral particles. Derived from alphavirus genomes, saRNA retains the non-structural elements essential for replication while replacing the structural elements with an antigen of interest. By enabling efficient intracellular amplification, saRNA offers a promising alternative to conventional mRNA vaccines, enhancing antigen expression while requiring lower doses. However, this advantage comes with challenges. In this review, we highlight the key limitations of saRNA technology and explore potential strategies to overcome them. By identifying these challenges, we aim to provide insights that can guide the future design of saRNA-based therapeutics, extending their potential beyond vaccine applications.
Collapse
Affiliation(s)
- Thomas Vallet
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| | - Marco Vignuzzi
- A*STAR Infectious Diseases Labs (A*IDL), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore;
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 118420, Singapore
| |
Collapse
|
17
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
18
|
Paczkowska A, Hoffmann K, Andrzejczak A, Pucek WF, Kopciuch D, Bryl W, Nowakowska E, Kus K. The Application of mRNA Technology for Vaccine Production-Current State of Knowledge. Vaccines (Basel) 2025; 13:389. [PMID: 40333251 PMCID: PMC12031289 DOI: 10.3390/vaccines13040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Over the past 20 years, intensive research has been conducted on the development of therapeutic mRNA, leading to numerous discoveries that have enabled its use in therapy. The main achievements in this field include increasing mRNA stability, reducing its immunogenicity (i.e., its ability to trigger an immune response), and solving the challenge of delivering mRNA into cells-all to achieve a therapeutic effect. The aim of this study was to review the scientific literature on the use of mRNA technology in the production of vaccines. Various methods of applying mRNA technology that could potentially be introduced into clinical practice in the future are described. A detailed analysis was conducted on the approved COVID-19 vaccines developed by Pfizer/BioNTech (New York, NY, USA) and Moderna (Kirkland, QC, Canada), as their introduction marked a groundbreaking moment in the advancement of mRNA technology. This study was based on the latest scientific literature from reputable publishers and medical databases such as PubMed and ClinicalTrials. In conclusion, mRNA technology is currently experiencing rapid development, significantly driven by the ongoing COVID-19 pandemic. The application of this technology holds great potential not only for vaccines against infectious diseases but also for cancer treatment. However, further research is necessary to facilitate its broader clinical implementation.
Collapse
Affiliation(s)
- Anna Paczkowska
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Karolina Hoffmann
- Department and Clinic of Internal Diseases and Metabolic Disorders, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (K.H.); (W.B.)
| | - Agata Andrzejczak
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Weronika Faustyna Pucek
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Dorota Kopciuch
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| | - Wiesław Bryl
- Department and Clinic of Internal Diseases and Metabolic Disorders, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (K.H.); (W.B.)
| | - Elżbieta Nowakowska
- Department of Pharmacology and Toxicology Institute of Health Sciences, Collegium Medicum, University of Zielona Gora, Licealna 9 Street, 65-417 Zielona Góra, Poland;
| | - Krzysztof Kus
- Department of Pharmacoeconomics and Social Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 Street, 60-806 Poznan, Poland; (A.A.); (W.F.P.); (D.K.); (K.K.)
| |
Collapse
|
19
|
Lin G, Elkashif A, Saha C, Coulter JA, Dunne NJ, McCarthy HO. Key considerations for a prostate cancer mRNA vaccine. Crit Rev Oncol Hematol 2025; 208:104643. [PMID: 39900315 DOI: 10.1016/j.critrevonc.2025.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Prostate cancer has the second highest cancer mortality rate in the UK in males. Early prostate cancer is typically asymptomatic, with diagnosis at a locally advanced or metastatic stage. In addition, the inherent heterogeneity of prostate cancer tumours differs significantly in terms of genetic, molecular, and histological features. The successful treatment of prostate cancer is therefore exceedingly challenging. Immunotherapies, particularly therapeutic vaccines, have been widely used in preclinical and clinical studies to treat various cancers. Sipuleucel-T was the first cancer vaccine approved by the FDA for the treatment of asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC), ushering in a new era of immunotherapy. In this review, the latest immunotherapy strategies for prostate cancer are considered with key tumour-associated antigens (TAA) and tumour-specific antigens (TSA) highlighted. The key components of mRNA vaccines include in vitro transcription, stability, and immunogenicity. Finally, strategies to circumvent in vivo mRNA degradation and approaches to optimise in vitro transcription (IVT) process are also discussed.
Collapse
Affiliation(s)
- Guanjie Lin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chayanika Saha
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin D09 NA55, Ireland; Biodesign Europe, Dublin City University, Dublin D09 NA55, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin D02 PN40, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin D09 NA55, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin D09 NA55, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin D02 PN40, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin D02 PN40, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
20
|
Yaraghi P, Kheyri A, Mikaeili N, Boroumand A, Abbasifard M, Farhangnia P, Rezagholizadeh F, Khorramdelazad H. Nanoparticle-mediated enhancement of DNA Vaccines: Revolutionizing immunization strategies. Int J Biol Macromol 2025; 302:140558. [PMID: 39900152 DOI: 10.1016/j.ijbiomac.2025.140558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
DNA vaccines are a novel form of vaccination that aims to harness genetic material to produce targeted immune responses. Nevertheless, their therapeutic application is hampered by low transfection efficacy, immunogenicity, and instability. Nanoparticle (NP) - based delivery systems are beneficial in enhancing DNA stability, increasing DNA uptake by antigen-presenting cells (APCs), and controlling antigen release. Some key progress includes the polymeric, lipid-based, and hybrid NPs and biocompatible carriers with inherent adjuvant effects. These systems have helped to enhance the antigen cross-presentation and T-cell activation significantly. In addition, biocompatible hybrid nanocarriers, antigen cross-presentation strategies, and next-generation sequencing (NGS) technologies are speeding up the identification of new antigens, while AI and machine learning are facilitating the development of efficient delivery systems. This review aims to assess how NPs have contributed to improving the effectiveness of DNA vaccines for treating diseases, cancer, and emerging diseases, as well as advancing the next generation of DNA vaccines.
Collapse
Affiliation(s)
- Pegah Yaraghi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Kheyri
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Narges Mikaeili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Armin Boroumand
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Rezagholizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
21
|
Webb ALJ, Welbourne EN, Evans CA, Dickman MJ. Characterisation and analysis of mRNA critical quality attributes using liquid chromatography based methods. J Chromatogr A 2025; 1745:465724. [PMID: 39946818 PMCID: PMC11855904 DOI: 10.1016/j.chroma.2025.465724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
mRNA technology has been successfully deployed to rapidly develop and mass-manufacture vaccines. Beyond vaccines, RNA-based therapeutics have potential for treatments for infectious diseases, cancer, metabolic disorders, cardiovascular conditions and autoimmune diseases. mRNA based vaccines and therapeutics work by translating exogenous mRNA into the target protein. Analytical methods for mRNA characterisation, lot release and stability testing of mRNA drug substance and drug product must be developed and performed to monitor critical quality attributes (CQAs). mRNA is a highly polar molecule due to its extensive negatively charged phosphodiester backbone. Its single stranded nature forms dynamic alternative secondary structures that can generate potential sample heterogeneity, creating challenges for the analysis and characterisation of this large biomolecule. In this review, we describe current analytical methods, focussing on high performance liquid chromatography in conjunction with both UV detection and mass spectrometry for the analysis and characterisation of mRNA. In particular, we describe recent developments covering a wide range of methods centred on liquid chromatography for the analysis of important CQAs including mRNA identity, mRNA integrity, 5' capping efficiency and poly(A) tail length and heterogeneity.
Collapse
Affiliation(s)
- Alexandra L J Webb
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Emma N Welbourne
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Caroline A Evans
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Mark J Dickman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
22
|
Vélez DE, Torres BL, Hernández G. The Bright Future of mRNA as a Therapeutic Molecule. Genes (Basel) 2025; 16:376. [PMID: 40282336 PMCID: PMC12027115 DOI: 10.3390/genes16040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
The rapid success of messenger (m) RNA vaccines against COVID-19 has pushed the mRNA to the forefront of drug research. The promise of mRNA-based therapeutics and vaccines in other areas is not new but is now emerging stronger. We review basic concepts, key historical aspects, and recent research on mRNA as a therapeutic molecule to fight infectious diseases and cancer. We also show a current patent perspective of this field. Altogether, we describe that the technology of mRNA as a therapeutic molecule is a rapidly moving field aiming for a bright future.
Collapse
Affiliation(s)
- Dora Emma Vélez
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, Instituo Nacional de Cancerología (National Institute of Cancer, INCan), Mexico City 14080, Mexico; (D.E.V.); (B.L.T.)
| | - Blanca Licia Torres
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, Instituo Nacional de Cancerología (National Institute of Cancer, INCan), Mexico City 14080, Mexico; (D.E.V.); (B.L.T.)
| | - Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, Instituo Nacional de Cancerología (National Institute of Cancer, INCan), Mexico City 14080, Mexico; (D.E.V.); (B.L.T.)
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Mexico City 14380, Mexico
| |
Collapse
|
23
|
Zhang Y, Zang C, Mao M, Zhang M, Tang Z, Chen W, Zhu W. Advances in RNA therapy for the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103753. [PMID: 39842534 DOI: 10.1016/j.autrev.2025.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Autoimmune diseases (ADs) are a group of complex, chronic conditions characterized by disturbance of immune tolerance, with examples including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. These diseases have unclear pathogenesis, and traditional therapeutic approaches remain limited. However, advances in high-throughput histology technology and scientific discoveries have led to the identification of various pathogenic factors contributing to ADs. Coupled with improvements in RNA nucleic acid-based drug synthesis, design, and delivery, RNA-based therapies have been extensively investigated for their potential in treating ADs. This paper reviews the progress in the use of miRNAs, lncRNAs, circRNAs, siRNAs, antisense oligonucleotides (ASOs), aptamers, mRNAs, and other RNA-based therapies in ADs, focusing on their therapeutic potential and application prospects, providing insights for future research and clinical treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Ying Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Chenyang Zang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Manyun Mao
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Mi Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
24
|
Li T, Liu G, Bu G, Xu Y, He C, Zhao G. Optimizing mRNA translation efficiency through rational 5'UTR and 3'UTR combinatorial design. Gene 2025; 942:149254. [PMID: 39824328 DOI: 10.1016/j.gene.2025.149254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Advances in molecular medicine and biotechnology have demonstrated messenger RNA (mRNA)-based therapies to be a promising therapeutic modality for infectious diseases, genetic disorders, and cancers. However, key challenges persist, including low translation efficiency and short half-life of exogenous mRNA. The untranslated regions (UTRs) influence important parameters like mRNA stability and translation efficiency. This study adopted a combinatorial screening strategy to enhance exogenous mRNA translation efficiency by de novo designing 5'UTRs and combining them with multiple potential 3'UTRs. We designed a novel 5'UTR, 5UTR05, which exhibited comparable protein expression levels to the reference mRNA-1273 5'UTR that has been found to exhibit high expression in the COVID-19 vaccine development. Furthermore, the screening experiments found that combining 5UTR05 with both the 3'UTR of immunoglobulin heavy constant gamma 2 (IGHG2) and the 3'UTR of mitochondrially encoded 12S ribosomal RNA (mtRNR1) significantly improved mRNA translation efficiency, compared to individual 3'UTRs. Collectively, these findings provide valuable insights for UTR optimization strategies aimed at augmenting exogenous mRNA therapeutic translation. Continuing exploration of synergistic UTR combinations offers promise to advance customized mRNA constructs with optimized expression profiles tailored for diverse applications.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Gangfeng Liu
- Department of Oncology, The Affiliated Hospital of Qingdao Binhai University, 689 Haiya Road, Qingdao 266404, China
| | - Guolong Bu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yien Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Caiyun He
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Gexin Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Fant P, Laurent S, Desert P, Combadière B, Palazzi X, Choudhary S, Gervais F, Broudic K, Rossi R, Gauthier BE. Proceedings of the 2023 Annual Scientific Meeting of the French Society of Toxicologic Pathology (SFPT) on Preclinical Development and Therapeutic Applications of mRNA-Based Technologies. Toxicol Pathol 2025:1926233251326089. [PMID: 40110665 DOI: 10.1177/01926233251326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The 2023 annual scientific meeting of the French Society of Toxicologic Pathology (Société Française de Pathologie Toxicologique, SFPT), entitled "mRNA-based technologies: preclinical development and therapeutic applications," was held in Lyon (France) on May 25 to 26, 2023. The aim of the meeting was to discuss the biology, immunology, and preclinical development of messenger RNA (mRNA)-based vaccines and therapeutics, including immuno-oncology and rare diseases, as well as the regulatory aspect of the COVID-19 vaccines and an overview of the principles and applications of in situ hybridization techniques. This article presents the summary of five lectures along with selected figures, tables, and key literature references on this topic.
Collapse
Affiliation(s)
- Pierluigi Fant
- Charles River Laboratories Safety Assessment, Saint Germain-Nuelles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao H, Zhou YY, Shan SR, Wu ZJ, Cao Y, Chen GY, Wu YM, Sun WK, Xia X, Yan H, Xu Y, Chen JL. A high-capacity combination of Pluronic L64-Cupping for intramuscular gene delivery. Int J Pharm 2025; 672:125366. [PMID: 39956407 DOI: 10.1016/j.ijpharm.2025.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Intramuscular injection of plasmid DNA (pDNA) is a promising approach for gene therapy, but its efficiency is hindered by both extracellular and intracellular barriers. The extracellular matrix (ECM), including collagens and nucleases, obstructs pDNA penetration, while intracellular challenges include crossing the plasma membrane, escaping endosomes, and reaching the nucleus. Though non-viral carriers like polymers and cationic lipids have been developed, they often fail to address both barriers simultaneously, leading to poor gene transfer in vivo. Physical methods exist but may damage tissues and cause patient discomfort. Here, we introduce a Pluronic L64-Cupping (L/C) gene delivery system that enhances pDNA delivery by sequentially overcoming ECM diffusion, membrane permeabilization, and intracellular transfection. After intramuscular injection of the pDNA-Pluronic L64 mixture, negative pressure is applied to the injection site, significantly boosting reporter gene expression and sustaining it for at least 42 days. Additionally, this system effectively induces HBsAb production in mice, offering a safe, efficient, and cost-effective platform for both laboratory and clinical gene therapy applications.
Collapse
Affiliation(s)
- Huan Zhao
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Yuan-Yuan Zhou
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Shi-Ru Shan
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Zheng-Jie Wu
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Yu Cao
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Guan-Yu Chen
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Yao-Mei Wu
- Yingshan County Hospital of Traditional Chinese Medicine, Nanchong 637700, China
| | - Wen-Kui Sun
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China
| | - Xun Xia
- The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Huan Yan
- The First Affiliated Hospital of Traditional Chinese Medicine of Chengdu Medical College , XinDu Hospital of Traditional Chinese Medicine, Chengdu 610500, China.
| | - Ying Xu
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China; The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Jian-Lin Chen
- School of Laboratory Medicine, Key Laboratory of Structure-Specific Small Molecule Drugs, Key Laboratory of Target Discovery and Protein Drug Development in Major Diseases, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
27
|
Yang Y, Yang C, Deng K, Xiao Y, Liu X, Du Z. Nucleic Acid Drugs in Radiotherapy. Chembiochem 2025; 26:e202400854. [PMID: 39903093 DOI: 10.1002/cbic.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Radiotherapy remains a cornerstone of cancer treatment, using high-energy radiation to induce DNA damage in tumor cells, leading to cell death. However, its efficacy is often hindered by challenges such as radiation resistance and side effects. As a powerful class of functional molecules, nucleic acid drugs (NADs) present a promising solution to these limitations. Engineered to target key pathways like DNA repair and tumor hypoxia, NADs can enhance radiotherapy sensitivity. NADs can also serve as delivery vehicles for radiotherapy agents such as radionuclides, improving targeting accuracy and minimizing side effects. This review explores the role of NADs in optimizing radiotherapy, highlighting their mechanisms, clinical applications, and synergies with radiotherapy, ultimately offering a promising strategy for improving patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Yuying Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Kai Deng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Universities and Colleges Admissions Service (UCAS), Hangzhou, 310024, China
| | - Xiangsheng Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhen Du
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
28
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
29
|
Kamel GAM, Attia RA, Al-Noman HG, Salama LA. Advancement insights in cancer vaccines: mechanisms, types, and clinical applications. Mol Biol Rep 2025; 52:290. [PMID: 40053260 DOI: 10.1007/s11033-025-10370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
Immunotherapy can treat cancer by boosting the immune system to mark and destroy cancer cells. Cancer vaccine is a promising therapeutic strategy in immunotherapy. Cancer vaccines are divided into four groups according to different preparation techniques: cell-based vaccine, virus-based vaccine, peptide-based vaccine, and nucleic acid-based vaccine. Cancer vaccines can be given with traditional treatments or another immunotherapy to give better results and overcome tumor resistance. The cancer vaccine is a promising immunotherapy that could stimulate the immune response to kill cancer cells and create immune surveillance. However, much work is still needed to identify neoantigens, optimize the vaccination platform, and develop combination therapy to improve the efficacy of immunotherapy. This review highlights the mechanism of action of cancer vaccines, the main four groups of cancer vaccines regarding their development, research progress, and clinical applications, and how to assess immune response following cancer vaccination.
Collapse
Affiliation(s)
- Gellan Alaa Mohamed Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
- Department of Pharmacology and Toxicology, College of Pharmacy, Uruk University, Baghdad, Iraq.
| | - Rasha A Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Pharmacognosy Department, College of Pharmacy, Uruk University, Baghdad, Iraq
| | - Hifaa G Al-Noman
- Nogoud Medical Centre, Ministry of Health, Almadinah Almowarah, Saudi Arabia
| | - Lamiaa A Salama
- Microbiology and Immunology Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Microbiology and Immunology Department, College of Pharmacy, Uruk University, Baghdad, Iraq
| |
Collapse
|
30
|
Zhou H, Dai J, Li D, Wang L, Ye M, Hu X, LoTurco J, Hu J, Sun W. Efficient gene delivery admitted by small metabolites specifically targeting astrocytes in the mouse brain. Mol Ther 2025; 33:1166-1179. [PMID: 39799395 PMCID: PMC11897751 DOI: 10.1016/j.ymthe.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene delivery approach admitted by small metabolites (gDAM) for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM uses a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells. Using gDAM, we successfully co-deliver the PiggyBac transposon and the CRISPR-Cas9 system to induce long-term overexpression of the oncogene EGFRvIII and knockout of tumor suppressor genes Nf1, Pten, and Trp53 in astrocytes, leading to the development of astrocyte-derived gliomas in immunocompetent mice. Furthermore, gDAM facilitates the delivery of naked DNA to peripheral glioma astrocytes. The overexpression of interferon-β and granulocyte-macrophage colony-stimulating factor in these peripheral glioma astrocytes significantly prolongs the overall survival of mice bearing 73C glioma cells. This approach offers a new perspective on developing gene delivery systems that specifically target astrocytes to meet the varied needs of both research and gene therapy. The innovative strategy behind gDAM is expected to provide fresh inspiration in the quest for DNA delivery to other tissues, such as skeletal muscle and skin.
Collapse
Affiliation(s)
- Haibin Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Jiajing Dai
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Luyao Wang
- Chinese Institute for Brain Research, Beijing 102206, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiaoling Hu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China.
| | - Wenzhi Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
31
|
Wei Z, Zhang S, Wang X, Xue Y, Dang S, Zhai J. Technological breakthroughs and advancements in the application of mRNA vaccines: a comprehensive exploration and future prospects. Front Immunol 2025; 16:1524317. [PMID: 40103818 PMCID: PMC11913674 DOI: 10.3389/fimmu.2025.1524317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
mRNA vaccines utilize single-stranded linear DNA as a template for in vitro transcription. The mRNA is introduced into the cytoplasm via the corresponding delivery system to express the target protein, which then performs its relevant biological function. mRNA vaccines are beneficial in various fields, including cancer vaccines, infectious disease vaccines, protein replacement therapy, and treatment of rare diseases. They offer advantages such as a simple manufacturing process, a quick development cycle, and ease of industrialization. Additionally, mRNA vaccines afford flexibility in adjusting antigen designs and combining sequences of multiple variants, thereby addressing the issue of frequent mutations in pathogenic microorganisms. This paper aims to provide an extensive review of the global development and current research status of mRNA vaccines, with a focus on immunogenicity, classification, design, delivery vector development, stability, and biomedical application. Moreover, the study highlights current challenges and offers insights into future directions for development.
Collapse
Affiliation(s)
- Zhimeng Wei
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Keerqin District First People's Hospital, Tongliao, China
| | - Shuai Zhang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Xingya Wang
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Ying Xue
- Keerqin District First People's Hospital, Tongliao, China
| | - Sheng Dang
- Keerqin District First People's Hospital, Tongliao, China
| | - Jingbo Zhai
- School of Basic Medical Sciences, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
32
|
Zwolsman R, Darwish YB, Kluza E, van der Meel R. Engineering Lipid Nanoparticles for mRNA Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70007. [PMID: 40195623 PMCID: PMC11976204 DOI: 10.1002/wnan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/09/2025]
Abstract
Over the last decades, messenger RNA (mRNA) has emerged as a promising therapeutic modality, enabling the delivery of genetic instructions to cells for producing therapeutic proteins or antigens. As such, mRNA-based therapies can be developed for a wide range of conditions, including infections, cancer, metabolic disorders, and genetic diseases. Nevertheless, using mRNA therapeutically requires chemical modifications to reduce immunostimulatory effects and nanotechnology to prevent degradation and ensure intracellular delivery. Lipid nanoparticles (LNPs) have become the most effective delivery platform for mRNA therapeutics, which are primarily employed for vaccine purposes following local administration and hepatic applications following systemic administration. Here, we review the state-of-the-art LNP-mRNA technology and discuss its potential for immunotherapy. We first outline the requirements for mRNA to be used therapeutically, including the role of LNP-mediated delivery. Next, we highlight LNP-mRNA immunotherapy approaches for vaccination, immuno-oncology, and autoimmune disorders. In addition, we discuss challenges that are limiting LNP-mRNA's widespread use, including tunable biodistribution and immunostimulatory effects. Finally, we provide an outlook on how implementing approaches such as library screening and machine learning will guide the development of next-generation mRNA therapeutics.
Collapse
Affiliation(s)
- Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Youssef B. Darwish
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
33
|
Ma L, Lin Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 2025; 21:451-463. [PMID: 39753704 DOI: 10.1038/s41589-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025]
Abstract
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.
Collapse
Affiliation(s)
- Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Peking University, Chengdu, China.
| |
Collapse
|
34
|
Welbourne EN, Copley RJ, Owen GR, Evans CA, Isoko K, Cook K, Cordiner J, Kis Z, Moghadam PZ, Dickman MJ. Mass spectrometry-based mRNA sequence mapping via complementary RNase digests and bespoke visualisation tools. Analyst 2025; 150:1012-1021. [PMID: 39928146 PMCID: PMC11809621 DOI: 10.1039/d5an00033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
mRNA technology has significantly changed the timeline for developing and delivering a new vaccine from years to months, as demonstrated by the development and approval of two highly efficacious vaccines based on mRNA sequences encoding for a modified version of the SARS-CoV-2 spike protein. Analytical methods are required to characterise mRNA therapeutics and underpin manufacturing development. In this study, we have developed and utilised partial RNase digests of mRNA using RNase T1 and RNase U2 in conjunction with an automated, high throughput workflow for the rapid characterisation and direct sequence mapping of mRNA therapeutics. In conjunction with this, we have developed novel software engineered to optimise and streamline the visualisation and analysis of sequence mapping of mRNA using LC-MS/MS. We show that increased mRNA sequence coverage is obtained by combining multiple partial RNase T1 digests-44% and 37% individually, 64% together-or RNase T1 and U2 partial digests-73% and 52% individually, 88% combined. The developed software automates the process of combining digests, ensuring faster and more accurate analysis. Furthermore, the software provides additional information on sequence coverage by taking into account multiple overlapping oligoribonucleotide fragments to increase the confidence of the sequence mapping. Finally, the software enables powerful and accessible visualisation capabilities by generating spiral plots to quickly analyse the sequence maps in a single output from combined multiple partial RNase digests.
Collapse
Affiliation(s)
- Emma N Welbourne
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - Royce J Copley
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - Gareth R Owen
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - Caroline A Evans
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - Kesler Isoko
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
- Department of Chemical Engineering, University College London, London, UK
| | - Ken Cook
- ThermoFisher Scientific, Hemel Hempstead, UK
| | - Joan Cordiner
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| | - Zoltán Kis
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Peyman Z Moghadam
- Department of Chemical Engineering, University College London, London, UK
| | - Mark J Dickman
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Sheffield, UK.
| |
Collapse
|
35
|
Otgaar TC, Bernert M, Morris G, Baichan P, Bignoux MJ, Letsolo B, Weiss SFT, Ferreira E. 37 kDa LRP::FLAG enhances telomerase activity and reduces ageing markers in vivo. Cell Mol Life Sci 2025; 82:83. [PMID: 39985566 PMCID: PMC11846807 DOI: 10.1007/s00018-025-05593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/24/2025]
Abstract
Ageing is a degenerative process characterised by a decline in physiological functioning of the organism. One of the core regulators of cellular ageing are telomeres, repetitive DNA sequences of TTAGGG that cap the ends of chromosomes and are maintained by the ribonucleoprotein complex, telomerase. Age-dependent progressive loss of the telomere ends eventually induces cell cycle arrest for the induction of either replicative senescence or apoptosis. It was previously established that overexpression of the 37 kDa/ 67 kDa laminin receptor (LRP/LR) increased telomerase activity and telomere length while concomitantly reducing senescence markers in aged normal cells in vitro. Therefore, it was hypothesized that elevating LRP/LR in vivo may increase telomerase activity and hinder the ageing process on an organism scale. To this end, aged C57BL/6J mice were treated/transfected to induce an overexpression of LRP::FLAG. Various physiological tests and histological analyses were performed to assess overall organism fitness as well as to discern the treatments' ability at reducing tissue degeneration and atrophy. It was found that mice overexpressing LRP::FLAG displayed improved physiological characteristics and markedly less tissue degeneration and atrophy when compared to control and non-treated mice. Alongside these improvements, certain organs displayed increased telomerase activity with a corresponding elongation in average telomere length. In addition the overexpression of LRP::FLAG significantly improved various proliferative and anti-ageing associated proteins while causing a concomitant decrease in senescence associated proteins. These findings are therefore indicative of a novel function of LRP/LR delaying the onset of senescence, while also promoting healthier ageing through elevating TERT and telomerase activity.
Collapse
Affiliation(s)
- Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Pavan Baichan
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Boitelo Letsolo
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, Johannesburg, 2050, Republic of South Africa.
| |
Collapse
|
36
|
Fatima M, Park PG, Hong KJ. Clinical advancements in mRNA vaccines against viral infections. Clin Immunol 2025; 271:110424. [PMID: 39734036 DOI: 10.1016/j.clim.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Over the last decade, mRNA vaccines development has shown significant advancement, particularly during the COVID-19 pandemic. This comprehensive review examines the efficacy of pivotal vaccines against emerging COVID-19 variants and strategies for enhancing vaccine effectiveness. It also explores the versatility of mRNA technology in addressing other infectious diseases such as influenza, respiratory syncytial virus, HIV, cytomegalovirus, Ebola, Zika, Rabies, and Nipah viruses. The analysis includes safety and clinical progress of mRNA vaccines and evaluates their potential in combination vaccine strategies. Additionally, it addresses challenges related to delivery and scalability while highlighting opportunities for future advancements in the field. Recent advances in mRNA optimization, biomaterial-based delivery and thermostable designs offer promising solutions. It is essential to gain insights into the evolving landscape of mRNA vaccine technology to maximize its vital role in addressing diverse viral threats, advancing vaccinology and enhancing public health preparedness for future pandemic.
Collapse
Affiliation(s)
- Munazza Fatima
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Kee-Jong Hong
- Department of Microbiology, Gachon University College of Medicine, Incheon, Republic of Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea; Korea mRNA Vaccine Initiative, Gachon University, Seongnam, Republic of Korea.
| |
Collapse
|
37
|
Gupta RK. The vital role of biological standardization in ensuring efficacy and safety of biological products - Historical perspectives. J Pharm Sci 2025; 114:690-700. [PMID: 39710320 DOI: 10.1016/j.xphs.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Biological Standardization has been pivotal to the success of traditional biological products, such as vaccines, antitoxins, and immune globulins, by ensuring their quality and consistency across manufacturers worldwide. The principles of biological standardization have similarly supported the development and manufacture of safe and effective modern biological products, including hormone, therapeutic protein, and monoclonal antibody products, and continue to play a vital role in advancing new cutting-edge biological products, such as tissue, cellular, and gene-therapy products. Biological standardization started with the physical standards ensuring the reliability and suitability of methods used to test biological products and science of bioassays or biological methods and related biostatistics providing a framework for evaluating biological, functional activity or potency of these products. It expanded to include written standards defining the quality requirements for manufacturing and regulation of biological standards. Due to the shift in the biologics industry from public health to commercial-driven enterprises during the past 50 years, the biological standardization program has evolved to include the product-specific reference standards and harmonization of physical standards. The global success of conventional vaccines in controlling numerous deadly infectious diseases can largely be attributed to the availability of physical and written international standards developed through a strong biological standardization program. This article explores the evolution of biological standardization for more than a century, its scientific and regulatory principles, challenges from disruption in international standardization efforts, and future perspectives for the field.
Collapse
Affiliation(s)
- Rajesh K Gupta
- Biologics Quality & Regulatory Consultants, LLC, North Potomac, MD 20878, USA.
| |
Collapse
|
38
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
39
|
Rezaei S, Moncada-Restrepo M, Leng S, Chambers JW, Leng F. Synthesizing unmodified, supercoiled circular DNA molecules in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634800. [PMID: 39896529 PMCID: PMC11785245 DOI: 10.1101/2025.01.24.634800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Supercoiled (Sc) circular DNA, such as plasmids, has shown therapeutic potential since the 1990s, but is limited by bacterial modifications, unnecessary DNA sequences, and contaminations that may trigger harmful responses. To overcome these challenges, we have developed two novel scalable biochemical methods to synthesize unmodified Sc circular DNA. Linear DNA with two loxP sites in the same orientation is generated via PCR or rolling circle amplification. Cre recombinase then converts this linear DNA into relaxed circular DNA. After T5 exonuclease removes unwanted linear DNA, topoisomerases are employed to generate Sc circular DNA. We have synthesized EGFP-FL, a 2,002 bp mini-circular DNA carrying essential EGFP expression elements. EGFP-FL transfected human HeLa and mouse C2C12 cells with much higher efficiency than E. coli-derived plasmids. These new biochemical methods can produce unmodified Sc circular DNA, in length from 196 base pairs to several kilobases and in quantities from micrograms to milligrams, providing a promising platform for diverse applications.
Collapse
Affiliation(s)
- Sepideh Rezaei
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Monica Moncada-Restrepo
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Sophia Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| | - Jeremy W. Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| |
Collapse
|
40
|
Liao HC, Liu SJ. Advances in nucleic acid-based cancer vaccines. J Biomed Sci 2025; 32:10. [PMID: 39833784 PMCID: PMC11748563 DOI: 10.1186/s12929-024-01102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025] Open
Abstract
Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology. In oncology, the combination of mRNA vaccine encoding neoantigens and immune checkpoint inhibitors (ICIs) has shown remarkable efficacy in eliciting protective responses against diseases like melanoma and pancreatic cancer. Although the use of a COVID-19 DNA vaccine has been limited to India, the inherent stability at room temperature and cost-effectiveness of DNA vaccines present a viable option that could benefit developing countries. These advantages may help DNA vaccines address some of the challenges associated with mRNA vaccines. Currently, several trials are exploring the use of DNA-encoded neoantigens in combination with ICIs across various cancer types. These studies highlight the promising role of nucleic acid-based vaccines as the next generation of immunotherapeutic agents in cancer treatment. This review will delve into the recent advancements and current developmental status of both mRNA and DNA-based cancer vaccines.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|
41
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
42
|
Bello MB, Alsaadi A, Naeem A, Almahboub SA, Bosaeed M, Aljedani SS. Development of nucleic acid-based vaccines against dengue and other mosquito-borne flaviviruses: the past, present, and future. Front Immunol 2025; 15:1475886. [PMID: 39840044 PMCID: PMC11747009 DOI: 10.3389/fimmu.2024.1475886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Due to their widespread geographic distribution and frequent outbreaks, mosquito-borne flaviviruses, such as DENV (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and West Nile virus (WNV), are considered significant global public health threats and contribute to dramatic socioeconomic imbalances worldwide. The global prevalence of these viruses is largely driven by extensive international travels and ecological disruptions that create favorable conditions for the breeding of Aedes and Culex species, the mosquito vectors responsible for the spread of these pathogens. Currently, vaccines are available for only DENV, YFV, and JEV, but these face several challenges, including safety concerns, lengthy production processes, and logistical difficulties in distribution, especially in resource-limited regions, highlighting the urgent need for innovative vaccine approaches. Nucleic acid-based platforms, including DNA and mRNA vaccines, have emerged as promising alternatives due to their ability to elicit strong immune responses, facilitate rapid development, and support scalable manufacturing. This review provides a comprehensive update on the progress of DNA and mRNA vaccine development against mosquito-borne flaviviruses, detailing early efforts and current strategies that have produced candidates with remarkable protective efficacy and strong immunogenicity in preclinical models. Furthermore, we explore future directions for advancing nucleic acid vaccine candidates, which hold transformative potential for enhancing global public health.
Collapse
Affiliation(s)
- Muhammad Bashir Bello
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahlam Alsaadi
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Asif Naeem
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah A. Almahboub
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Bosaeed
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Safia S. Aljedani
- Infectious Disease Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University of Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
44
|
Xu L, Li C, Liao R, Xiao Q, Wang X, Zhao Z, Zhang W, Ding X, Cao Y, Cai L, Rosenecker J, Guan S, Tang J. From Sequence to System: Enhancing IVT mRNA Vaccine Effectiveness through Cutting-Edge Technologies. Mol Pharm 2025; 22:81-102. [PMID: 39601789 DOI: 10.1021/acs.molpharmaceut.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The COVID-19 pandemic has spotlighted the potential of in vitro transcribed (IVT) mRNA vaccines with their demonstrated efficacy, safety, cost-effectiveness, and rapid manufacturing. Numerous IVT mRNA vaccines are now under clinical trials for a range of targets, including infectious diseases, cancers, and genetic disorders. Despite their promise, IVT mRNA vaccines face hurdles such as limited expression levels, nonspecific targeting beyond the liver, rapid degradation, and unintended immune activation. Overcoming these challenges is crucial to harnessing the full therapeutic potential of IVT mRNA vaccines for global health advancement. This review provides a comprehensive overview of the latest research progress and optimization strategies for IVT mRNA molecules and delivery systems, including the application of artificial intelligence (AI) models and deep learning techniques for IVT mRNA structure optimization and mRNA delivery formulation design. We also discuss recent development of the delivery platforms, such as lipid nanoparticles (LNPs), polymers, and exosomes, which aim to address challenges related to IVT mRNA protection, cellular uptake, and targeted delivery. Lastly, we offer insights into future directions for improving IVT mRNA vaccines, with the hope to spur further progress in IVT mRNA vaccine research and development.
Collapse
Affiliation(s)
- Lifeng Xu
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Chao Li
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Rui Liao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Qin Xiao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoran Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Weijun Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Xiaoyan Ding
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Yuxue Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Larry Cai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, Munich 80337, Germany
| | - Shan Guan
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Jie Tang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
45
|
Araujo Cirne C, Foldvari M. Pulmonary Delivery of Nonviral Nucleic Acid-Based Vaccines With Spotlight on Gold Nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70000. [PMID: 39800783 PMCID: PMC11725562 DOI: 10.1002/wnan.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Nucleic acid-based vaccines are leading-edge tools in developing next-generation preventative care. Much research has been done to convert vaccine gene therapy from an invasive to a noninvasive administration approach. The lung's large surface area and permeability make the pulmonary route a promising noninvasive delivery option for vaccines, with systemic and local applications. This review summarizes the challenges and the approaches that have been carried out to optimize the delivery of nucleic acids through the pulmonary route for vaccination purposes in recent years, with a spotlight on gold nanoparticles (AuNPs). Nonviral delivery systems have been widely explored, and AuNPs with their unique properties are emerging as promising tools for nucleic acid vaccines due to surface functionalization with mucus-penetrating polymers and targeting moieties that can bypass the barriers in pulmonary delivery and successfully deliver nucleic acids to the cells of interest. However, while promising, several challenges remain including selectively overcoming the lungs' immunological surveillance and adhesive mucus.
Collapse
Affiliation(s)
- Carolina Araujo Cirne
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of NanotechnologyUniversity of Waterloo, 200 University Avenue WestWaterlooOntarioCanada
| |
Collapse
|
46
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
47
|
He X, Li G, Huang L, Shi H, Zhong S, Zhao S, Jiao X, Xin J, Yin X, Liu S, He Z, Guo M, Yang C, Jin Z, Guo J, Song X. Nonviral targeted mRNA delivery: principles, progresses, and challenges. MedComm (Beijing) 2025; 6:e70035. [PMID: 39760110 PMCID: PMC11695212 DOI: 10.1002/mco2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/07/2025] Open
Abstract
Messenger RNA (mRNA) therapeutics have garnered considerable attention due to their remarkable efficacy in the treatment of various diseases. The COVID-19 mRNA vaccine and RSV mRNA vaccine have been approved on the market. Due to the inherent nuclease-instability and negative charge of mRNA, delivery systems are developed to protect the mRNA from degradation and facilitate its crossing cell membrane to express functional proteins or peptides in the cytoplasm. However, the deficiency in transfection efficiency and targeted biological distribution are still the major challenges for the mRNA delivery systems. In this review, we first described the physiological barriers in the process of mRNA delivery and then discussed the design approach and recent advances in mRNA delivery systems with an emphasis on their tissue/cell-targeted abilities. Finally, we pointed out the existing challenges and future directions with deep insights into the design of efficient mRNA delivery systems. We believe that a high-precision targeted delivery system can greatly improve the therapeutic effects and bio-safety of mRNA therapeutics and accelerate their clinical transformations. This review may provide a new direction for the design of mRNA delivery systems and serve as a useful guide for researchers who are looking for a suitable mRNA delivery system.
Collapse
Affiliation(s)
- Xi He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
- State Key Laboratory of Quality Research in Chinese MedicineMacau Institute for Applied Research in Medicine and HealthMacau University of Science and TechnologyTaipaMacauChina
| | - Guohong Li
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Letao Huang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Haixing Shi
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Sha Zhong
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Siyu Zhao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangyu Jiao
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jinxiu Xin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiaoling Yin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shengbin Liu
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhongshan He
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengran Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chunli Yang
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaohui Jin
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jun Guo
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
48
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
49
|
Wang H, Cheng Y. Polymers for mRNA Delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70002. [PMID: 39763235 DOI: 10.1002/wnan.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology. In this review, our focus is on the latest advancements in designing functional polymers to achieve efficient mRNA delivery. Biodegradable polymers and low molecular weight polymers in addressing the balance in mRNA binding and release are summarized. Benefiting from the excellent performance of lipid nanoparticles in mRNA delivery, polymer/lipid hybrid nanostructures are also included. Finally, the challenges and future prospects in the development of polymer-based mRNA delivery systems are discussed.
Collapse
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
50
|
Liu Y, Ou Y, Hou L. Advances in RNA-Based Therapeutics: Challenges and Innovations in RNA Delivery Systems. Curr Issues Mol Biol 2024; 47:22. [PMID: 39852137 PMCID: PMC11763986 DOI: 10.3390/cimb47010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Nucleic acids, as carriers of genetic information, have found wide applications in both medical and research fields, including gene editing, disease diagnostics, and drug development. Among various types of nucleic acids, RNA offers greater versatility compared to DNA due to its single-stranded structure, ability to directly encode proteins, and high modifiability for targeted therapeutic and regulatory applications. Despite its promising potential in biomedicine, RNA-based medicine still faces several challenges. Notably, one of the most significant technical hurdles is achieving efficient and targeted RNA delivery while minimizing immune responses. Various strategies have been developed for RNA delivery, including viral vectors, virus-like particles (VLPs), lipid nanoparticles (LNPs), and extracellular vesicles (EVs). In this review, we explore the applications of these delivery methods, highlight their advantages and limitations, and discuss recent research advancements, providing insights for the future of RNA-based therapeutics.
Collapse
Affiliation(s)
| | | | - Linlin Hou
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (Y.O.)
| |
Collapse
|