1
|
Bakleh MZ, Al Haj Zen A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025; 14:673. [PMID: 40358197 PMCID: PMC12071368 DOI: 10.3390/cells14090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Hypoxia results in a wide range of adaptive physiological responses, including metabolic reprogramming, erythropoiesis, and angiogenesis. The response to hypoxia at the cellular level is mainly regulated by hypoxia-inducible factors (HIFs): HIF1α and HIF2α isoforms. Although structurally similar and overlapping gene targets, both isoforms can exhibit distinct expression patterns and functions in some conditions of hypoxia. The interaction between these isoforms, known as the "HIF switch", determines their coordinated function under varying oxygen levels and exposure time. In angiogenesis, HIF-1α is rapidly stabilized under acute hypoxia, prompting a metabolic shift from oxidative phosphorylation to glycolysis and initiating angiogenesis by activating endothelial cells and extracellular matrix remodeling. Conversely, HIF-2α regulates cell responses to chronic hypoxia by sustaining genes critical for vascular remodeling and maturation. The current review highlights the different roles and regulatory mechanisms of HIF-1α and HIF-2α isoforms, focusing on their involvement in cell metabolism and the multi-step process of angiogenesis. Tuning the specific targeting of HIF isoforms and finding the right therapeutic window is essential to obtaining the best therapeutic effect in diseases such as cancer and vascular ischemic diseases.
Collapse
Affiliation(s)
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
2
|
Tharayil JS, Kandettu A, Chakrabarty S. The curious case of mitochondrial sirtuin in rewiring breast cancer metabolism: Mr Hyde or Dr Jekyll? Biochim Biophys Acta Mol Basis Dis 2025; 1871:167691. [PMID: 39864670 DOI: 10.1016/j.bbadis.2025.167691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Mammalian sirtuins are class III histone deacetylases involved in the regulation of multiple biological processes including senescence, DNA repair, apoptosis, proliferation, caloric restriction, and metabolism. Among the mammalian sirtuins, SIRT3, SIRT4, and SIRT5 are localized in the mitochondria and collectively termed the mitochondrial sirtuins. Mitochondrial sirtuins are NAD+-dependent deacetylases that play a central role in cellular metabolism and function as epigenetic regulators by performing post-translational modification of cellular proteins. Several studies have identified the role of mitochondrial sirtuins in age-related pathologies and the rewiring of cancer metabolism. Mitochondrial sirtuins regulate cellular functions by contributing to post-translational modifications, including deacetylation, ADP-ribosylation, demalonylation, and desuccinylation of diverse cellular proteins to maintain cellular homeostasis. Here, we review and discuss the structure and function of the mitochondrial sirtuins and their role as metabolic regulators in breast cancer. Altered breast cancer metabolism may promote tumor progression and has been an essential target for therapy. Further, we discuss the potential role of targeting mitochondrial sirtuin and its impact on breast cancer progression using sirtuin inhibitors and activators as anticancer agents.
Collapse
Affiliation(s)
- Jesline Shaji Tharayil
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Centre for DNA Repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Nisar A, Khan S, Pan Y, Hu L, Yang P, Gold NM, Zhou Z, Yuan S, Zi M, Mehmood SA, He Y. The Role of Hypoxia in Longevity. Aging Dis 2025:AD.2024.1630. [PMID: 39965249 DOI: 10.14336/ad.2024.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/15/2025] [Indexed: 02/20/2025] Open
Abstract
Aging is marked by a progressive decrease in physiological function and reserve capacity, which results in increased susceptibility to diseases. Understanding the mechanisms of driving aging is crucial for extending health span and promoting human longevity. Hypoxia, marked by reduced oxygen availability, has emerged as a promising area of study within aging research. This review explores recent findings on the potential of oxygen restriction to promote healthy aging and extend lifespan. While the role of hypoxia-inducible factor 1 (HIF-1) in cellular responses to hypoxia is well-established, its impact on lifespan remains complex and context-dependent. Investigations in invertebrate models suggest a role for HIF-1 in longevity, while evidence in mammalian models is limited. Hypoxia extends the lifespan independent of dietary restriction (DR), a known intervention underlying longevity. However, both hypoxia and DR converge on common downstream effectors, such as forkhead box O (FOXO) and flavin-containing monooxygenase (FMOs) to modulate the lifespan. Further work is required to elucidate the molecular mechanisms underlying hypoxia-induced longevity and optimize clinical applications. Understanding the crosstalk between HIF-1 and other longevity-associated pathways is crucial for developing interventions to enhance lifespan and healthspan. Future studies may uncover novel therapeutic strategies to promote healthy aging and longevity in human populations.
Collapse
Affiliation(s)
- Ayesha Nisar
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan 410083, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Yongzhang Pan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Li Hu
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Pengyun Yang
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Naheemat Modupeola Gold
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen Zhou
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shengjie Yuan
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Meiting Zi
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | - Yonghan He
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
4
|
Burtscher J, Denti V, Gostner JM, Weiss AK, Strasser B, Hüfner K, Burtscher M, Paglia G, Kopp M, Dünnwald T. The interplay of NAD and hypoxic stress and its relevance for ageing. Ageing Res Rev 2025; 104:102646. [PMID: 39710071 DOI: 10.1016/j.arr.2024.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential regulator of cellular metabolism and redox processes. NAD levels and the dynamics of NAD metabolism change with increasing age but can be modulated via the diet or medication. Because NAD metabolism is complex and its regulation still insufficiently understood, achieving specific outcomes without perturbing delicate balances through targeted pharmacological interventions remains challenging. NAD metabolism is also highly sensitive to environmental conditions and can be influenced behaviorally, e.g., by exercise. Changes in oxygen availability directly and indirectly affect NAD levels and may result from exposure to ambient hypoxia, increased oxygen demand during exercise, ageing or disease. Cellular responses to hypoxic stress involve rapid alterations in NAD metabolism and depend on many factors, including age, glucose status, the dose of the hypoxic stress and occurrence of reoxygenation phases, and exhibit complex time-courses. Here we summarize the known determinants of NAD-regulation by hypoxia and evaluate the role of NAD in hypoxic stress. We define the specific NAD responses to hypoxia and identify a great potential of the modulation of NAD metabolism regarding hypoxic injuries. In conclusion, NAD metabolism and cellular hypoxia responses are strongly intertwined and together mediate protective processes against hypoxic insults. Their interactions likely contribute to age-related changes and vulnerabilities. Targeting NAD homeostasis presents a promising avenue to prevent/treat hypoxic insults and - conversely - controlled hypoxia is a potential tool to regulate NAD homeostasis.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria.
| | - Vanna Denti
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Johanna M Gostner
- Medical University of Innsbruck, Biocenter, Institute of Medical Biochemistry, Innsbruck, Austria
| | - Alexander Kh Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, Vienna, Austria; Faculty of Medicine, Sigmund Freud Private University, Vienna, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Paglia
- School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, MB, Italy
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Tobias Dünnwald
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL - Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| |
Collapse
|
5
|
Wang Z, Zhu C, Sun X, Deng H, Liu W, Jia S, Bai Y, Xiao W, Liu X. Spring viremia of carp virus infection induces hypoxia response in zebrafish by stabilizing hif1α. J Virol 2025; 99:e0149124. [PMID: 39601573 PMCID: PMC11784138 DOI: 10.1128/jvi.01491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The hypoxia signaling pathway controls hypoxia adaptation and tolerance of organisms, which is regulated by multiple mechanisms. Viral infection elicits various pathophysiological responses in the host. However, whether viral infection can affect the hypoxia response is not yet fully understood. In this study, we found that Spring viremia of carp virus (SVCV) infection in zebrafish caused symptoms similar to those in zebrafish under hypoxic conditions. Further assays indicated that SVCV infection activated the hypoxia signaling pathway in zebrafish. In addition, SVCV infection caused increased glycolysis and reactive oxygen species (ROS) levels in cells. Mechanistically, SVCV-G protein interacted with hif1α-a/b and attenuated their K48-linked polyubiquitination, leading to their stabilization and subsequent enhancement of target gene expression. Moreover, treatment with the HIF1α-specific inhibitor PX478 enhanced the antiviral ability against SVCV infection in zebrafish and zebrafish cells. This study reveals a relationship between SVCV infection and the hypoxia signaling pathway in fish and provides a strategy for reducing the damage of viral disease in the aquaculture industry. IMPORTANCE Viral infection triggers various pathophysiological responses in the host. The hypoxia signaling pathway controls hypoxia adaptation and tolerance of organisms. However, whether viral infection can affect the hypoxia response is not yet fully understood. This study showed that Spring viremia of carp virus (SVCV) infection activated the hypoxia signaling pathway and induced a hypoxia response. The SVCV-G protein interacted with hif1α-a/b and reduced their K48-linked polyubiquitination, leading to their stabilization and subsequent enhancement of target gene expression. Additionally, treatment with the HIF1α-specific inhibitor PX478 enhanced the antiviral ability against SVCV infection in zebrafish and zebrafish cells. Our findings not only reveal a relationship between SVCV infection and the hypoxia signaling pathway in fish but also provide a strategy for reducing the damage of viral disease in the aquaculture industry.
Collapse
Affiliation(s)
- Zixuan Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunchun Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xueyi Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Deng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Life Science, Wuhan University, Wuhan, China
| | - Wen Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shuke Jia
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yao Bai
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Wuhan Xiao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Science, Wuhan University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xing Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Science, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Kleibert M, Tkacz K, Winiarska K, Małyszko J, Cudnoch-Jędrzejewska A. The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease. J Nephrol 2025; 38:37-47. [PMID: 39648258 PMCID: PMC11903585 DOI: 10.1007/s40620-024-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
According to the 10th edition of the IDF Diabetes Atlas, 537 million people suffered from diabetes in 2021, and this number will increase by 47% by 2045. It is estimated that even 30-40% of these individuals may develop diabetic kidney disease (DKD) in the course of diabetes. DKD is one of the most important complications of diabetes, both in terms of impact and magnitude. It leads to high morbidity and mortality, which subsequently impacts on quality of life, and it carries a high financial burden. Diabetic kidney disease is considered a complex and heterogeneous entity involving disturbances in vascular, glomerular, podocyte, and tubular function. It would appear that hypoxia-inducible factors (HIF)-1 and HIF-2 may be important players in the pathogenesis of this disease. However, their exact role is still not fully investigated. In this article, we summarize the current knowledge about HIF signaling and its role in DKD. In addition, we focus on the possible effects of nephroprotective drugs on HIF expression and activity in various tissues.
Collapse
Affiliation(s)
- Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Kamil Tkacz
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
7
|
Elliott J, Oyama MA. Sodium glucose transporter 2 inhibitors: Will these drugs benefit non-diabetic veterinary patients with cardiac and kidney diseases? J Vet Pharmacol Ther 2025; 48 Suppl 1:1-18. [PMID: 39001645 PMCID: PMC11737021 DOI: 10.1111/jvp.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 01/18/2025]
Abstract
Sodium glucose transporter type 2 (SGLT2) inhibitors have been introduced into human medicine where their beneficial effects go beyond the expected improvement in blood glucose control. These drugs appear to prevent progression of both cardiovascular and kidney diseases, not only in diabetic but also in non-diabetic human patients. As these drugs have received conditional approval for use in diabetic cats and are being used in other veterinary species, the intriguing question as to whether they will have similar cardioprotective and nephroprotective effects in dogs and cats is being asked. The primary mechanism(s) by which SGLT2 inhibitors are cardio- and nephroprotective remain to be fully characterized. This paper reviews these suggested mechanisms in the context of the pathophysiology of progressive cardiovascular and kidney diseases in dogs and cats with the goal of predicting which categories of non-diabetic veterinary patients these drugs might be of most benefit.
Collapse
Affiliation(s)
- Jonathan Elliott
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of LondonLondonUK
| | - Mark A. Oyama
- Department of Clinical Sciences & Advanced MedicineUniversity of Pennsylvania School of Veterinary MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
8
|
Diseri A, Stravodimos G, Argyriou A, Spyroulias GA, Leonidas DD, Liakos P. Expression, purification, and biophysical analysis of a part of the C-terminal domain of human hypoxia inducible factor-2α (HIF-2α). Biochem Biophys Res Commun 2024; 739:150965. [PMID: 39556935 DOI: 10.1016/j.bbrc.2024.150965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia inducible factor 2α (HIF-2α) is a member of the basic helix-loop-helix(bHLH)-Per-Arnt-Sim (PAS) family of transcription factors. It is overexpressed in several cancers, associated with poor prognosis of the patients and resistance to treatment. Here, we study the residues 366-704 of the C-terminal end of human HIF-2α, which contains the N-transcriptional activation domain (NTAD), the oxygen-dependent degradation domain (ODD), and a part of the inhibitory domain (IH). An efficient protocol was developed to produce the 366-704 domain of human HIF-2α protein. Subsequently, we analyzed its biophysical characteristics using circular dichroism spectroscopy and size exclusion chromatography showing that the protein forms an antiparallel beta sheet conformation, and a computational model of the HIF-2α structure was produced. Our data offer new structural information for the unique biological properties of HIF-2α.
Collapse
Affiliation(s)
- Aikaterini Diseri
- Laboratory of Biochemistry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - George Stravodimos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panagiotis Liakos
- Laboratory of Biochemistry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
9
|
Karuga FF, Kaczmarski P, Sochal M, Szmyd B, Białasiewicz P, Gabryelska A. Cross-Sectional Analysis of Hypoxia-Regulated miRNA-181a, miRNA-199a, HIF-1α, and SIRT1 in the Development of Type 2 Diabetes in Patients with Obstructive Sleep Apnea-Preliminary Study. J Clin Med 2024; 13:7644. [PMID: 39768567 PMCID: PMC11728235 DOI: 10.3390/jcm13247644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction: Obstructive sleep apnea (OSA) is recognized as an independent risk factor for diabetes mellitus type 2 (T2DM) development, which is twice as common in patients with OSA compared to non-OSA patients. Objectives: This study aimed to investigate changes in oxygen metabolism and their role in T2DM development among OSA patients through epigenetic processes via miRNA-181a, miRNA-199a, and enzymatic processes via SIRT1 and HIF-1α. Methods: Based on polysomnography, apnea-hypopnea index and the presence of T2DM patients were divided into three groups: control group (n = 17), OSA group (n = 11), OSA&T2DM (n = 20) group. Total RNA was extracted from the buffy coat. Moreover, HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) was counted. Results: Morning miRNA-181a expression was significantly higher in the OSA&T2DM group than in the control group: 67.618 vs. 32.685 (p = 0.036). Evening miRNA-199a expression was significantly higher in the OSA group than in the control group: 5.043 vs. 2.081 (p = 0.042), while its morning expression was significantly higher in the OSA&T2DM group when compared to the control: 4.065 vs. 1.605 (p = 0.036). MiRNA-181a evening expression revealed a negative correlation with the SIRT1 evening and morning expressions (R = -0.367, p = 0.010 and R = -0.405, p = 0.004, respectively). Moreover, morning miRNA-181a was positively correlated with HOMA-IR (R = 0.321, p = 0.034). MiRNA-199a evening expression presented a moderate positive correlation with the SIRT1 morning expressions (R = 0.48, p < 0.001) and HOMA-IR (R = 0.35, p = 0.02). Conclusions: Patients suffering from OSA and T2DM had an increased expression of miRNA-181a. Moreover, a negative correlation between miRNA-181a and SIRT1 expression was observed, while a correlation between miRNA-181a and insulin resistance was positive. This phenomenon might suggest a possible epigenetic pathway for an increased incidence of T2DM in OSA patients however further research is needed.
Collapse
Affiliation(s)
- Filip Franciszek Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (P.K.); (M.S.); (P.B.)
| | - Piotr Kaczmarski
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (P.K.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (P.K.); (M.S.); (P.B.)
| | - Bartosz Szmyd
- Department of Neurosurgery and Neuro-Oncology, Barlicki University Hospital, Medical University of Lodz, 90-419 Lodz, Poland;
- Department of Pediatrics, Oncology, and Hematology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (P.K.); (M.S.); (P.B.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (P.K.); (M.S.); (P.B.)
| |
Collapse
|
10
|
Maiese K. Cardiovascular and nonalcoholic fatty liver disease: Sharing common ground through SIRT1 pathways. World J Cardiol 2024; 16:632-643. [PMID: 39600987 PMCID: PMC11586725 DOI: 10.4330/wjc.v16.i11.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
As a non-communicable disease, cardiovascular disorders have become the leading cause of death for men and women. Of additional concern is that cardiovascular disease is linked to chronic comorbidity disorders that include nonalcoholic fatty liver disease (NAFLD). NAFLD, also termed metabolic-dysfunction-associated steatotic liver disease, is the greatest cause of liver disease throughout the world, increasing in prevalence concurrently with diabetes mellitus (DM), and can progress to nonalcoholic steatohepatitis that leads to cirrhosis and liver fibrosis. Individuals with metabolic disorders, such as DM, are more than two times likely to experience cardiac disease, stroke, and liver disease that includes NAFLD when compared individuals without metabolic disorders. Interestingly, cardiovascular disorders and NAFLD share a common underlying cellular mechanism for disease pathology, namely the silent mating type information regulation 2 homolog 1 (SIRT1; Saccharomyces cerevisiae). SIRT1, a histone deacetylase, is linked to metabolic pathways through nicotinamide adenine dinucleotide and can offer cellular protection though multiple avenues, including trophic factors such as erythropoietin, stem cells, and AMP-activated protein kinase. Translating SIRT1 pathways into clinical care for cardiovascular and hepatic disease can offer significant hope for patients, but further insights into the complexity of SIRT1 pathways are necessary for effective treatment regimens.
Collapse
Affiliation(s)
- Kenneth Maiese
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20810, United States.
| |
Collapse
|
11
|
Wanner C, Nangaku M, Kraus BJ, Zinman B, Mattheus M, Hantel S, Schumacher M, Ohneberg K, Schmoor C, Inzucchi SE. How do SGLT2 inhibitors protect the kidney? A mediation analysis of the EMPA-REG OUTCOME trial. Nephrol Dial Transplant 2024; 39:1504-1513. [PMID: 38323492 PMCID: PMC11361804 DOI: 10.1093/ndt/gfae032] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Indexed: 02/08/2024] Open
Abstract
INTRODUCTION Mechanisms underlying kidney benefits with sodium-glucose cotransporter-2 (SGLT2) inhibition in heart failure and/or type 2 diabetes (T2D) with established cardiovascular disease are currently unclear. METHODS We evaluated post hoc the factors mediating the effect of empagliflozin on a composite kidney outcome (first sustained estimated glomerular filtration rate ≥40% reduction from baseline, initiation of renal replacement therapy or death due to kidney disease) in EMPA-REG OUTCOME (Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients). Variables, calculated as change from baseline or updated mean, were evaluated as time-dependent covariates and using a landmark approach (at Week 12) in Cox regression analyses. In multivariable analyses, variables with the greatest mediating effect were added using a step-up procedure. RESULTS In univariable time-dependent updated mean covariate analyses, the strongest mediator was hematocrit (99.5% mediation). Hemoglobin, uric acid and urine albumin-to-creatinine ratio mediated 79.4%, 33.2% and 31.0%, respectively. Multivariable analyses were not performed due to the very strong mediation effect of hematocrit. In univariable Week 12 landmark change from baseline analyses, the strongest mediators included hematocrit (40.7%), glycated hemoglobin (28.3%), systolic blood pressure (16.8%) and free fatty acids (16.5%), which yielded a combined mediation of 78.9% in multivariable analysis. CONCLUSIONS Changes in hematocrit and hemoglobin were the strongest mediators of empagliflozin's kidney benefits in EMPA-REG OUTCOME participants with T2D and cardiovascular disease.
Collapse
Affiliation(s)
- Christoph Wanner
- Department of Medicine, Würzburg University Clinic, Würzburg, Germany
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Department of Hemodialysis and Apheresis, The University of Tokyo Hospital, Tokyo, Japan
| | - Bettina J Kraus
- Medical Affairs, Boehringer Ingelheim International GmbH, Ingelheim, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| | - Bernard Zinman
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michaela Mattheus
- Biostatistics, Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | - Stefan Hantel
- Biostatistics, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Martin Schumacher
- Institute for Medical Biometry and Statistics and Clinical Trials Unit, Faculty of Medicine, and Medical Center, University of Freiburg, Freiburg, Germany
| | - Kristin Ohneberg
- Institute for Medical Biometry and Statistics and Clinical Trials Unit, Faculty of Medicine, and Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudia Schmoor
- Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Silvio E Inzucchi
- Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Lian B, Zhang J, Yin X, Wang J, Li L, Ju Q, Wang Y, Jiang Y, Liu X, Chen Y, Tang X, Sun C. SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2. Cell Rep Med 2024; 5:101684. [PMID: 39128469 PMCID: PMC11384727 DOI: 10.1016/j.xcrm.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.
Collapse
Affiliation(s)
- Bolin Lian
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiang Yin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jiayan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| |
Collapse
|
13
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
14
|
Abstract
Sirtuins (SIRTs) are putative regulators of lifespan in model organisms. Since the initial discovery that SIRTs could promote longevity in nematodes and flies, the identification of additional properties of these proteins has led to understanding of their roles as exquisite sensors that link metabolic activity to oxidative states. SIRTs have major roles in biological processes that are important in kidney development and physiological functions, including mitochondrial metabolism, oxidative stress, autophagy, DNA repair and inflammation. Furthermore, altered SIRT activity has been implicated in the pathophysiology and progression of acute and chronic kidney diseases, including acute kidney injury, diabetic kidney disease, chronic kidney disease, polycystic kidney disease, autoimmune diseases and renal ageing. The renoprotective roles of SIRTs in these diseases make them attractive therapeutic targets. A number of SIRT-activating compounds have shown beneficial effects in kidney disease models; however, further research is needed to identify novel SIRT-targeting strategies with the potential to treat and/or prevent the progression of kidney diseases and increase the average human healthspan.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| |
Collapse
|
15
|
Prajapati M, Zhang JZ, Chiu L, Chong GS, Mercadante CJ, Kowalski HL, Delaney B, Anderson JA, Guo S, Aghajan M, Bartnikas TB. Hepatic HIF2 is a key determinant of manganese excess and polycythemia in SLC30A10 deficiency. JCI Insight 2024; 9:e169738. [PMID: 38652538 PMCID: PMC11141921 DOI: 10.1172/jci.insight.169738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Manganese is an essential yet potentially toxic metal. Initially reported in 2012, mutations in SLC30A10 are the first known inherited cause of manganese excess. SLC30A10 is an apical membrane protein that exports manganese from hepatocytes into bile and from enterocytes into the lumen of the gastrointestinal tract. SLC30A10 deficiency results in impaired gastrointestinal manganese excretion, leading to manganese excess, neurologic deficits, liver cirrhosis, polycythemia, and erythropoietin excess. Neurologic and liver disease are attributed to manganese toxicity. Polycythemia is attributed to erythropoietin excess. The goal of this study was to determine the basis of erythropoietin excess in SLC30A10 deficiency. Here, we demonstrate that transcription factors hypoxia-inducible factor 1a (Hif1a) and 2a (Hif2a), key mediators of the cellular response to hypoxia, are both upregulated in livers of Slc30a10-deficient mice. Hepatic Hif2a deficiency corrected erythropoietin expression and polycythemia and attenuated aberrant hepatic gene expression in Slc30a10-deficient mice, while hepatic Hif1a deficiency had no discernible impact. Hepatic Hif2a deficiency also attenuated manganese excess, though the underlying cause of this is not clear at this time. Overall, our results indicate that hepatic HIF2 is a key determinant of pathophysiology in SLC30A10 deficiency and expand our understanding of the contribution of HIFs to human disease.
Collapse
Affiliation(s)
- Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jared Z. Zhang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Lauren Chiu
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Grace S. Chong
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Courtney J. Mercadante
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Heather L. Kowalski
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Bradley Delaney
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Jessica A. Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Shuling Guo
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
16
|
Lyu Y, Yang Y, Talwar V, Lu H, Chen C, Salman S, Wicks EE, Huang TYT, Drehmer D, Wang Y, Zuo Q, Datan E, Jackson W, Dordai D, Wang R, Semenza GL. Hypoxia-inducible factor 1 recruits FACT and RNF20/40 to mediate histone ubiquitination and transcriptional activation of target genes. Cell Rep 2024; 43:113972. [PMID: 38517892 DOI: 10.1016/j.celrep.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator that mediates cellular adaptation to decreased oxygen availability. HIF-1 recruits chromatin-modifying enzymes leading to changes in histone acetylation, citrullination, and methylation at target genes. Here, we demonstrate that hypoxia-inducible gene expression in estrogen receptor (ER)-positive MCF7 and ER-negative SUM159 human breast cancer cells requires the histone H2A/H2B chaperone facilitates chromatin transcription (FACT) and the H2B ubiquitin ligase RING finger protein 20/40 (RNF20/40). Knockdown of FACT or RNF20/40 expression leads to decreased transcription initiation and elongation at HIF-1 target genes. Mechanistically, FACT and RNF20/40 are recruited to hypoxia response elements (HREs) by HIF-1 and stabilize binding of HIF-1 (and each other) at HREs. Hypoxia induces the monoubiquitination of histone H2B at lysine 120 at HIF-1 target genes in an HIF-1-dependent manner. Together, these findings delineate a cooperative molecular mechanism by which FACT and RNF20/40 stabilize multiprotein complex formation at HREs and mediate histone ubiquitination to facilitate HIF-1 transcriptional activity.
Collapse
Affiliation(s)
- Yajing Lyu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yongkang Yang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Varen Talwar
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haiquan Lu
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Chelsey Chen
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaima Salman
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth E Wicks
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tina Yi-Ting Huang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daiana Drehmer
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yufeng Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaozhu Zuo
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emmanuel Datan
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Walter Jackson
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dominic Dordai
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ru Wang
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregg L Semenza
- Armstrong Oxygen Biology Research Center and Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Suh J, Kim H, Min J, Yeon HJ, Hemberg M, Scimeca L, Wu MR, Kang HG, Kim YJ, Kim JH. Decoupling NAD + metabolic dependency in chondrosarcoma by targeting the SIRT1-HIF-2α axis. Cell Rep Med 2024; 5:101342. [PMID: 38128534 PMCID: PMC10829737 DOI: 10.1016/j.xcrm.2023.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Chondrosarcomas represent the second most common primary bone malignancy. Despite the vulnerability of chondrosarcoma cells to nicotinamide adenine dinucleotide (NAD+) depletion, targeting the NAD+ synthesis pathway remains challenging due to broad implications in biological processes. Here, we establish SIRT1 as a central mediator reinforcing the dependency of chondrosarcoma cells on NAD+ metabolism via HIF-2α-mediated transcriptional reprogramming. SIRT1 knockdown abolishes aggressive phenotypes of chondrosarcomas in orthotopically transplanted tumors in mice. Chondrosarcoma cells thrive under glucose starvation by accumulating NAD+ and subsequently activating the SIRT1-HIF-2α axis. Decoupling this link via SIRT1 inhibition unleashes apoptosis and suppresses tumor progression in conjunction with chemotherapy. Unsupervised clustering analysis identifies a high-risk chondrosarcoma patient subgroup characterized by the upregulation of NAD+ biosynthesis genes. Finally, SIRT1 inhibition abolishes HIF-2α transcriptional activity and sensitizes chondrosarcoma cells to doxorubicin-induced cytotoxicity, irrespective of underlying pathways to accumulate intracellular NAD+. We provide system-level guidelines to develop therapeutic strategies for chondrosarcomas.
Collapse
Affiliation(s)
- Jooyeon Suh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyeonkyeong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Liflex Science, Cheongju 28160, South Korea
| | - Jiyun Min
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hyun Ju Yeon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Martin Hemberg
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Luca Scimeca
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Mila, The Quebec AI Institute, Montreal, QC H2S 3H1, Canada
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyun Guy Kang
- Orthopaedic Oncology Clinic, Research Institute and Hospital, National Cancer Center, Goyang 10408, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul 07804, South Korea; Department of Radiation Oncology, College of Medicine, Ewha Womans University, Seoul 07804, South Korea; Graduate Program in System Health Science and Engineering, College of Medicine, Ewha Womans University, Seoul 07804, South Korea.
| | - Jin-Hong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, South Korea; Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, South Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
18
|
Wang R, Cai X, Li X, Li J, Liu X, Wang J, Xiao W. USP38 promotes deubiquitination of K11-linked polyubiquitination of HIF1α at Lys769 to enhance hypoxia signaling. J Biol Chem 2024; 300:105532. [PMID: 38072059 PMCID: PMC10805703 DOI: 10.1016/j.jbc.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 01/02/2024] Open
Abstract
HIF1α is one of the master regulators of the hypoxia signaling pathway and its activation is regulated by multiple post-translational modifications (PTMs). Deubiquitination mediated by deubiquitylating enzymes (DUBs) is an essential PTM that mainly modulates the stability of target proteins. USP38 belongs to the ubiquitin-specific proteases (USPs). However, whether USP38 can affect hypoxia signaling is still unknown. In this study, we used quantitative real-time PCR assays to identify USPs that can influence hypoxia-responsive gene expression. We found that overexpression of USP38 increased hypoxia-responsive gene expression, but knockout of USP38 suppressed hypoxia-responsive gene expression under hypoxia. Mechanistically, USP38 interacts with HIF1α to deubiquitinate K11-linked polyubiquitination of HIF1α at Lys769, resulting in stabilization and subsequent activation of HIF1α. In addition, we show that USP38 attenuates cellular ROS and suppresses cell apoptosis under hypoxia. Thus, we reveal a novel role for USP38 in the regulation of hypoxia signaling.
Collapse
Affiliation(s)
- Rui Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, P. R. China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China; University of Chinese Academy of Sciences, Beijing, P. R. China; Hubei Hongshan Laboratory, Wuhan, P. R. China.
| |
Collapse
|
19
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
20
|
Packer M. Mechanisms of enhanced renal and hepatic erythropoietin synthesis by sodium-glucose cotransporter 2 inhibitors. Eur Heart J 2023; 44:5027-5035. [PMID: 37086098 PMCID: PMC10733737 DOI: 10.1093/eurheartj/ehad235] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/06/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major heart failure events, an action that is statistically linked to enhanced erythropoiesis, suggesting that stimulation of erythropoietin and cardioprotection are related to a shared mechanism. Four hypotheses have been proposed to explain how these drugs increase erythropoietin production: (i) renal cortical reoxygenation with rejuvenation of erythropoietin-producing cells; (ii) counterregulatory distal sodium reabsorption leading to increased tubular workload and oxygen consumption, and thus, to localized hypoxia; (iii) increased iron mobilization as a stimulus of hypoxia-inducible factor-2α (HIF-2α)-mediated erythropoietin synthesis; and (iv) direct HIF-2α activation and enhanced erythropoietin gene transcription due to increased sirtuin-1 (SIRT1) signaling. The first two hypotheses assume that the source of increased erythropoietin is the interstitial fibroblast-like cells in the deep renal cortex. However, SGLT2 inhibitors do not alter regional tissue oxygen tension in the non-diabetic kidney, and renal erythropoietin synthesis is markedly impaired in patients with anemia due to chronic kidney disease, and yet, SGLT2 inhibitors produce an unattenuated erythrocytic response in these patients. This observation raises the possibility that the liver contributes to the production of erythropoietin during SGLT2 inhibition. Hypoxia-inducible factor-2α and erythropoietin are coexpressed not only in the kidney but also in hepatocytes; the liver is a major site of production when erythropoietin stimulation is maintained for prolonged periods. The ability of SGLT2 inhibitors to improve iron mobilization by derepressing hepcidin and ferritin would be expected to increase cytosolic ferrous iron, which might stimulate HIF-2α expression in both the kidney and liver through the action of iron regulatory protein 1. Alternatively, the established ability of SGLT2 inhibitors to enhance SIRT1 might be the mechanism of enhanced erythropoietin production with these drugs. In hepatic cell lines, SIRT1 can directly activate HIF-2α by deacetylation, and additionally, through an effect of SIRT in the liver, peroxisome proliferator-activated receptor-γ coactivator-1α binds to hepatic nuclear factor 4 to promote transcription of the erythropoietin gene and synthesis of erythropoietin. Since SIRT1 up-regulation exerts direct cytoprotective effects on the heart and stimulates erythropoietin, it is well-positioned to represent the shared mechanism that links erythropoiesis to cardioprotection during SGLT2 inhibition.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, 621 North Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| |
Collapse
|
21
|
Minisini M, Cricchi E, Brancolini C. Acetylation and Phosphorylation in the Regulation of Hypoxia-Inducible Factor Activities: Additional Options to Modulate Adaptations to Changes in Oxygen Levels. Life (Basel) 2023; 14:20. [PMID: 38276269 PMCID: PMC10821055 DOI: 10.3390/life14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
O2 is essential for the life of eukaryotic cells. The ability to sense oxygen availability and initiate a response to adapt the cell to changes in O2 levels is a fundamental achievement of evolution. The key switch for adaptation consists of the transcription factors HIF1A, HIF2A and HIF3A. Their levels are tightly controlled by O2 through the involvement of the oxygen-dependent prolyl hydroxylase domain-containing enzymes (PHDs/EGNLs), the von Hippel-Lindau tumour suppressor protein (pVHL) and the ubiquitin-proteasome system. Furthermore, HIF1A and HIF2A are also under the control of additional post-translational modifications (PTMs) that positively or negatively regulate the activities of these transcription factors. This review focuses mainly on two PTMs of HIF1A and HIF2A: phosphorylation and acetylation.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Lab of Epigenomics, Department of Medicine, Università degli Studi di Udine, 33100 Udine, Italy; (M.M.); (E.C.)
| |
Collapse
|
22
|
Munk SHN, Merchut-Maya JM, Adelantado Rubio A, Hall A, Pappas G, Milletti G, Lee M, Johnsen LG, Guldberg P, Bartek J, Maya-Mendoza A. NAD + regulates nucleotide metabolism and genomic DNA replication. Nat Cell Biol 2023; 25:1774-1786. [PMID: 37957325 PMCID: PMC10709141 DOI: 10.1038/s41556-023-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
The intricate orchestration of enzymatic activities involving nicotinamide adenine dinucleotide (NAD+) is essential for maintaining metabolic homeostasis and preserving genomic integrity. As a co-enzyme, NAD+ plays a key role in regulating metabolic pathways, such as glycolysis and Kreb's cycle. ADP-ribosyltransferases (PARPs) and sirtuins rely on NAD+ to mediate post-translational modifications of target proteins. The activation of PARP1 in response to DNA breaks leads to rapid depletion of cellular NAD+ compromising cell viability. Therefore, the levels of NAD+ must be tightly regulated. Here we show that exogenous NAD+, but not its precursors, has a direct effect on mitochondrial activity. Short-term incubation with NAD+ boosts Kreb's cycle and the electron transport chain and enhances pyrimidine biosynthesis. Extended incubation with NAD+ results in depletion of pyrimidines, accumulation of purines, activation of the replication stress response and cell cycle arrest. Moreover, a combination of NAD+ and 5-fluorouridine selectively kills cancer cells that rely on de novo pyrimidine synthesis. We propose an integrated model of how NAD+ regulates nucleotide metabolism, with relevance to healthspan, ageing and cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Arnaldur Hall
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - George Pappas
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark
| | - MyungHee Lee
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden.
| | | |
Collapse
|
23
|
Nsiah NY, Morgan AB, Donkor N, Inman DM. Long-term HIF-1α stabilization reduces respiration, promotes mitophagy, and results in retinal cell death. Sci Rep 2023; 13:20541. [PMID: 37996657 PMCID: PMC10667534 DOI: 10.1038/s41598-023-47942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Ocular hypertension during glaucoma can lead to hypoxia, activation of the HIF transcription factors, and a metabolic shift toward glycolysis. This study aims to test whether chronic HIF activation and the attendant metabolic reprogramming can initiate glaucoma-associated pathology independently of ocular hypertension. HIF-1α stabilization was induced in mice for 2 and 4 weeks by inhibiting prolyl hydroxylases using the small molecule Roxadustat. HIF-1α stabilization and the expression of its downstream bioenergetic targets were investigated in the retina by immunofluorescence, capillary electrophoresis, and biochemical enzyme activity assays. Roxadustat dosing resulted in significant stabilization of HIF-1α in the retina by 4 weeks, and upregulation in glycolysis-associated proteins (GLUT3, PDK-1) and enzyme activity in both neurons and glia. Accordingly, succinate dehydrogenase, mitochondrial marker MTCO1, and citrate synthase activity were significantly decreased at 4 weeks, while mitophagy was significantly increased. TUNEL assay showed significant apoptosis of cells in the retina, and PERG amplitude was significantly decreased with 4 weeks of HIF-1α stabilization. A significant increase in AMPK activation and glial hypertrophy, concomitant with decreases in retinal ganglion cell function and inner retina cell death suggests that chronic HIF-1α stabilization alone is detrimental to retina metabolic homeostasis and cellular survival.
Collapse
Affiliation(s)
- Nana Yaa Nsiah
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Genentech, South San Francisco, CA, USA
| | - Autumn B Morgan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nina Donkor
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Denise M Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
24
|
Wątroba M, Szewczyk G, Szukiewicz D. The Role of Sirtuin-1 (SIRT1) in the Physiology and Pathophysiology of the Human Placenta. Int J Mol Sci 2023; 24:16210. [PMID: 38003402 PMCID: PMC10671790 DOI: 10.3390/ijms242216210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Sirtuins, especially SIRT1, play a significant role in regulating inflammatory response, autophagy, and cell response to oxidative stress. Since their discovery, sirtuins have been regarded as anti-ageing and longevity-promoting enzymes. Sirtuin-regulated processes seem to participate in the most prevalent placental pathologies, such as pre-eclampsia. Furthermore, more and more research studies indicate that SIRT1 may prevent pre-eclampsia development or at least alleviate its manifestations. Having considered this, we reviewed recent studies on the role of sirtuins, especially SIRT1, in processes determining normal or abnormal development and functioning of the placenta.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (M.W.); (G.S.)
| |
Collapse
|
25
|
Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, Ghattas Y, Abdlmalek J, Bayali O, Elhusseini Y, Maghrabia A, El-Gamal R. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother 2023; 167:115629. [PMID: 37804810 DOI: 10.1016/j.biopha.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
RATIONALE Renal hypoxia is one of the currently highlighted pathophysiologic mechanisms of diabetic nephropathy (DN). Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are major regulators of renal adaptive responses to hypoxia. OBJECTIVES This study aims to compare the effects of vildagliptin (a dipeptidyl peptidase-IV inhibitor, DPP-4i) and empagliflozin (a sodium-glucose cotransporter 2 inhibitor, SGLT2i) on the differential expression of renal HIF-1α/2α. Tissue expression of prolylhydroxylase 3 (PHD3), a key regulator of HIF-2α stability, was also highlighted in a diabetic nephropathy rat model. Type 1 diabetes mellitus was induced and diabetic rats were treated with either Vildagliptin or Empagliflozin (10 mg/kg/d each) for 12 weeks. Improvements in the kidney functional and histopathological parameters were addressed and correlated to changes in the renal expression of HIF-1α/2α, and PHD3. Urinary KIM-1 concentration was tested as a correlate to HIF pathway changes. FINDINGS Both vildagliptin- and empagliflozin-treated groups exhibited significant improvement in the functional, pathological, and ultra-structural renal changes induced by chronic diabetes. Compared to the untreated group, renal gene expression of HIF-1α was decreased while that of HIF-2α was increased in both treated groups, with significantly greater effects observed with SGLT2i. Renal PHD3 immune-reactivity was also decreased by both drugs, again with better efficacy for the SGLT2i. Importantly, improvements in the diabetic kidney biochemical and structural biomarkers were significantly correlated to PHD3 reductions and HIF-2α increments. CONCLUSIONS Both DPP-4i and SGLT2i could delay the progression of DN through their differential modulating effects on the PHD3/ HIF-2α pathway with significantly better efficacy for SGLT2i.
Collapse
Affiliation(s)
- Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 35516, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Clinical Pharmacology, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt.
| | - Hoda M M Abdulaziz
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Dina Ibrahim
- Pathology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Rana ElBayar
- Undergraduate Medical student, Faculty of Medicine, Mansoura University, Egypt
| | - Yasmin Ghattas
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Joly Abdlmalek
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Omnia Bayali
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | - Aya Maghrabia
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Randa El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| |
Collapse
|
26
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
27
|
Joo HY, Jung JK, Kim MY, Woo SR, Jeong JM, Park ER, Kim YM, Park JJ, Kim J, Yun M, Shin HJ, Lee KH. NADH elevation during chronic hypoxia leads to VHL-mediated HIF-1α degradation via SIRT1 inhibition. Cell Biosci 2023; 13:182. [PMID: 37777750 PMCID: PMC10543270 DOI: 10.1186/s13578-023-01130-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Under conditions of hypoxia, cancer cells with hypoxia inducible factor-1α (HIF-1α) from heterogeneous tumor cells show greater aggression and progression in an effort to compensate for harsh environmental conditions. Extensive study on the stability of HIF-1α under conditions of acute hypoxia in cancer progression has been conducted, however, understanding of its involvement during the chronic phase is limited. METHODS In this study, we investigated the effect of SIRT1 on HIF1 stability in a typical chronic hypoxic conditon that maintains cells for 24 h under hypoxia using Western blotting, co-IP, measurement of intracellular NAD + and NADH levels, semi-quantitative RT-PCR analysis, invasion assay, gene knockdown. RESULTS Here we demonstrated that the high concentration of pyruvate in the medium, which can be easily overlooked, has an effect on the stability of HIF-1α. We also demonstrated that NADH functions as a signal for conveyance of HIF-1α degradation via the SIRT1 and VHL signaling pathway under conditions of chronic hypoxia, which in turn leads to attenuation of hypoxically strengthened invasion and angiogenic activities. A steep increase in the level of NADH occurs during chronic hypoxia, leading to upregulation of acetylation and degradation of HIF-1α via inactivation of SIRT1. Of particular interest, p300-mediated acetylation at lysine 709 of HIF-1α is recogonized by VHL, which leads to degradation of HIF-1α via ubiquitin/proteasome machinary under conditions of chronic hypoxia. In addition, we demonstrated that NADH-elevation-induced acetylation and subsequent degradation of HIF-1α was independent of proline hydroxylation. CONCLUSIONS Our findings suggest a critical role of SIRT1 as a metabolic sensor in coordination of hypoxic status via regulation of HIF-1α stability. These results also demonstrate the involvement of VHL in degradation of HIF-1α through recognition of PHD-mediated hydroxylation in normoxia and p300-mediated HIF-1α acetylation in hypoxia.
Collapse
Affiliation(s)
- Hyun-Yoo Joo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Lab. of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Jin Kyu Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
- Neuro-Oncology Branch, The Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mi-Yeon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seon Rang Woo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University School of Medicine, Hyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jae Min Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Yong-Min Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Joong-Jean Park
- Department of Physiology, College of Medicine, Korea University, Seoul, Korea
| | - Joon Kim
- Lab. of Biochemistry, School of Life Sciences & Biotechnology, Korea University, Seoul, Korea
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul, Korea.
| | - Hyun-Jin Shin
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
28
|
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sanchez I, Weiss-Steider B, Santiago-Osorio E. Role of SIRT1 in Chemoresistant Leukemia. Int J Mol Sci 2023; 24:14470. [PMID: 37833921 PMCID: PMC10573076 DOI: 10.3390/ijms241914470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Leukemias of the AML, CML, and CLL types are the most common blood cancers worldwide, making them a major global public health problem. Furthermore, less than 24% of patients treated with conventional chemotherapy (low-risk patients) and 10-15% of patients ineligible for conventional chemotherapy (high-risk patients) survive five years. The low levels of survival are mainly due to toxicity and resistance to chemotherapy or other medication, the latter leading to relapse of the disease, which is the main obstacle to the treatment of leukemia. Drug resistance may include different molecular mechanisms, among which epigenetic regulators are involved. Silent information regulator 2 homolog 1 (SIRT1) is an epigenetic factor belonging to the sirtuin (SIRT) family known to regulate aspects of chromatin biology, genome stability, and metabolism, both in homeostasis processes and in different diseases, including cancer. The regulatory functions of SIRT1 in different biological processes and molecular pathways are dependent on the type and stage of the neoplasia; thus, it may act as both an oncogenic and tumor suppressor factor and may also participate in drug resistance. In this review, we explore the role of SIRT1 in drug-resistant leukemia and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Guadalupe Rosario Fajardo-Orduña
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.R.F.-O.)
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.R.F.-O.)
| | - Itzen Aguiñiga-Sanchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.R.F.-O.)
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 56410, Mexico
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.R.F.-O.)
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, Mexico City 09230, Mexico; (G.R.F.-O.)
| |
Collapse
|
29
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Collier H, Albanese A, Kwok CS, Kou J, Rocha S. Functional crosstalk between chromatin and hypoxia signalling. Cell Signal 2023; 106:110660. [PMID: 36990334 DOI: 10.1016/j.cellsig.2023.110660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Eukaryotic genomes are organised in a structure called chromatin, comprising of DNA and histone proteins. Chromatin is thus a fundamental regulator of gene expression, as it offers storage and protection but also controls accessibility to DNA. Sensing and responding to reductions in oxygen availability (hypoxia) have recognised importance in both physiological and pathological processes in multicellular organisms. One of the main mechanisms controlling these responses is control of gene expression. Recent findings in the field of hypoxia have highlighted how oxygen and chromatin are intricately linked. This review will focus on mechanisms controlling chromatin in hypoxia, including chromatin regulators such as histone modifications and chromatin remodellers. It will also highlight how these are integrated with hypoxia inducible factors and the knowledge gaps that persist.
Collapse
Affiliation(s)
- Harry Collier
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Adam Albanese
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Chun-Sui Kwok
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Jiahua Kou
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, United Kingdom.
| |
Collapse
|
31
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|
32
|
Sharma P, Mohanty S, Ahmad Y. A study of survival strategies for improving acclimatization of lowlanders at high-altitude. Heliyon 2023; 9:e14929. [PMID: 37025911 PMCID: PMC10070159 DOI: 10.1016/j.heliyon.2023.e14929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Human Acclimatization and therapeutic approaches are the core components for conquering the physiological variations at high altitude (≥2500 m) exposure. The declined atmospheric pressure and reduced partial pressure of oxygen at high altitudes tend to decrease the temperature by several folds. Hypobaric hypoxia is a major threat to humanity at high altitudes, and its potential effects include altitude mountain sickness. On severity, it may lead to the development of conditions like high-altitude cerebral edema (HACE) or high-altitude pulmonary edema (HAPE) and cause unexpected physiological changes in the healthy population of travelers, athletes, soldiers, and low landers while sojourning at high altitude. Previous investigations have been done on long-drawn-out acclimatization strategies such as the staging method to prevent the damage caused by high-altitude hypobaric Hypoxia. Inherent Limitations of this strategy hamper the daily lifestyle and time consuming for people. It is not suitable for the rapid mobilization of people at high altitudes. There is a need to recalibrate acclimatization strategies for improving health protection and adapting to the environmental variations at high altitudes. This narrative review details the geographical changes and physiological changes at high altitudes and presents a framework of acclimatization, pre-acclimatization, and pharmacological aspects of high-altitude survival to enhance the government efficacy and capacity for the strategic planning of acclimatization, use of therapeutics, and safe de-induction from high altitude for minimizing the life loss. It's simply too ambitious for the importance of the present review to reduce life loss, and it can be proved as the most essential aspect of the preparatory phase of high-altitude acclimatization in plateau regions without hampering the daily lifestyle. The application of pre-acclimatization techniques can be a boon for people serving at high altitudes, and it can be a short bridge for the rapid translocation of people at high altitudes by minimizing the acclimatization time.
Collapse
Affiliation(s)
- Poornima Sharma
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Swaraj Mohanty
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| | - Yasmin Ahmad
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Timarpur, New Delhi, 110054, India
| |
Collapse
|
33
|
Wang XX, Mao GH, Li QQ, Tang J, Zhang H, Wang KL, Wang L, Ni H, Sheng R, Qin ZH. Neuroprotection of NAD + and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Front Pharmacol 2023; 14:1096533. [PMID: 37056986 PMCID: PMC10086243 DOI: 10.3389/fphar.2023.1096533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Ischemic stroke seriously threatens human health because of high rates of morbidity, mortality and disability. This study compared the effects of nicotinamide adenine dinucleotide (NAD+) and butylphthalide (NBP) on in vitro and in vivo ischemic stroke models. Methods: Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) model was established in mice, and the cultured primary cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cerebral infarct volume, neurobehavioral indices, antioxidant activity, ATP level and lactic acid content were determined. The neuroprotective effects of NAD+ or NBP were compared using sirtuin inhibitor niacinamide (NAM). Results: Intraperitoneal injection of NBP within 4 h or intravenous injection of NAD+ within 1 h after t-MCAO/R significantly reduced the volume of infarcts, cerebral edema, and neurological deficits. Administration of NAD+ and NBP immediately after t-MCAO/R in mice showed similar neuroprotection against acute and long-term ischemic injury. Both NAD+ and NBP significantly inhibited the accumulation of MDA and H2O2 and reduced oxidative stress. NAD+ was superior to NBP in inhibiting lipid oxidation and DNA damage. Furthermore, although both NAD+ and NBP improved the morphology of mitochondrial damage induced by ischemia/reperfusion, NAD+ more effectively reversed the decrease of ATP and increase of lactic acid after ischemia/reperfusion compared with NBP. NAD+ but not NBP treatment significantly upregulated SIRT3 in the brain, but the sirtuin inhibitor NAM could abolish the protective effect of NAD+ and NBP by inhibiting SIRT1 or SIRT3. Conclusions: These results confirmed the protective effects of NAD+ and NBP on cerebral ischemic injury. NBP and NAD+ showed similar antioxidant effects, while NAD+ had better ability in restoring energy metabolism, possibly through upregulating the activity of SIRT1 and SIRT3. The protection provided by NBP against cerebral ischemia/reperfusion may be achieved through SIRT1.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Guang-Hui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | | | - Lei Wang
- Hefei Knature Bio-pharm Co., Ltd., Hefei, China
| | - Hong Ni
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| |
Collapse
|
34
|
Epigenetic Regulation Mediated by Sphingolipids in Cancer. Int J Mol Sci 2023; 24:ijms24065294. [PMID: 36982369 PMCID: PMC10048860 DOI: 10.3390/ijms24065294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Epigenetic changes are heritable modifications that do not directly affect the DNA sequence. In cancer cells, the maintenance of a stable epigenetic profile can be crucial to support survival and proliferation, and said profile can differ significantly from that of healthy cells. The epigenetic profile of a cancer cell can be modulated by several factors, including metabolites. Recently, sphingolipids have emerged as novel modulators of epigenetic changes. Ceramide and sphingosine 1-phosphate have become well known in cancer due to activating anti-tumour and pro-tumour signalling pathways, respectively, and they have recently been shown to also induce several epigenetic modifications connected to cancer growth. Additionally, acellular factors in the tumour microenvironment, such as hypoxia and acidosis, are now recognised as crucial in promoting aggressiveness through several mechanisms, including epigenetic modifications. Here, we review the existing literature on sphingolipids, cancer, and epigenetic changes, with a focus on the interaction between these elements and components of the chemical tumour microenvironment.
Collapse
|
35
|
Garcia JA, Chen R, Xu M, Comerford SA, Hammer RE, Melton SD, Feagins LA. Acss2/HIF-2 signaling facilitates colon cancer growth and metastasis. PLoS One 2023; 18:e0282223. [PMID: 36862715 PMCID: PMC9980813 DOI: 10.1371/journal.pone.0282223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
The microenvironment of solid tumors is characterized by oxygen and glucose deprivation. Acss2/HIF-2 signaling coordinates essential genetic regulators including acetate-dependent acetyl CoA synthetase 2 (Acss2), Creb binding protein (Cbp), Sirtuin 1 (Sirt1), and Hypoxia Inducible Factor 2α (HIF-2α). We previously shown in mice that exogenous acetate augments growth and metastasis of flank tumors derived from fibrosarcoma-derived HT1080 cells in an Acss2/HIF-2 dependent manner. Colonic epithelial cells are exposed to the highest acetate levels in the body. We reasoned that colon cancer cells, like fibrosarcoma cells, may respond to acetate in a pro-growth manner. In this study, we examine the role of Acss2/HIF-2 signaling in colon cancer. We find that Acss2/HIF-2 signaling is activated by oxygen or glucose deprivation in two human colon cancer-derived cell lines, HCT116 and HT29, and is crucial for colony formation, migration, and invasion in cell culture studies. Flank tumors derived from HCT116 and HT29 cells exhibit augmented growth in mice when supplemented with exogenous acetate in an Acss2/HIF-2 dependent manner. Finally, Acss2 in human colon cancer samples is most frequently localized in the nucleus, consistent with it having a signaling role. Targeted inhibition of Acss2/HIF-2 signaling may have synergistic effects for some colon cancer patients.
Collapse
Affiliation(s)
- Joseph A. Garcia
- Department of Medicine, Columbia University Medical Center, New York, New York, United States of America
- Research & Development, James J. Peters Veterans Affairs Medical Center, New York, New York, United States of America
| | - Rui Chen
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Min Xu
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Shelby D. Melton
- Pathology & Laboratory Medicine, Veterans Affairs North Texas Health Care System, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Linda A. Feagins
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
36
|
Histone acetyltransferase 1 (HAT1) acetylates hypoxia-inducible factor 2 alpha (HIF2A) to execute hypoxia response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194900. [PMID: 36410688 DOI: 10.1016/j.bbagrm.2022.194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Hypoxic response to low oxygen levels is characteristic of most solid cancers. Hypoxia-inducible factors (HIFs) regulate cellular metabolism, survival, proliferation, and cancer stem cell growth during hypoxia. The genome-wide analysis identified HAT1, a type B histone acetyltransferase, as an upregulated and essential gene in glioblastoma (GBM). GSEA analysis of differentially regulated genes in HAT1 silenced cells identified significant depletion of "hypoxia" gene sets. Hypoxia conditions induced HIF2A, not HIF1A protein levels in glioma cells in a HAT1-dependent manner. HAT1 and HIF2A interacted with each other and occupied the promoter of VEGFA, a bonafide HIF1A/HIF2A target. Acetylation of K512 and K596 residues by HAT1 is essential for HIF2A stabilization under normoxia and hypoxia as HIF2A carrying acetylation mimic mutations at either of these residues (H512Q or K596Q) showed stable expression in HAT1 silenced cells under normoxia and hypoxia conditions. Finally, we demonstrate that the HAT1-HIF2A axis is essential for hypoxia-promoted cancer stem cell maintenance and reprogramming. Thus, our study identifies that the HAT1-dependent acetylation of HIF2A is vital to executing the hypoxia-induced cell survival and cancer stem cell growth, therefore proposing the HAT1-HIF2A axis as a potential therapeutic target.
Collapse
|
37
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
38
|
Pawlos A, Broncel M, Woźniak E, Markiewicz Ł, Piastowska-Ciesielska A, Gorzelak-Pabiś P. SGLT2 Inhibitors May Restore Endothelial Barrier Interrupted by 25-Hydroxycholesterol. Molecules 2023; 28:1112. [PMID: 36770777 PMCID: PMC9921803 DOI: 10.3390/molecules28031112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
SGLT2 (Sodium-glucose Cotransporter-2) inhibitors are newer glucose-lowering drugs with many cardiovascular benefits that are not fully understood yet. Endothelial integrity plays a key role in cardiovascular homeostasis. 25-hydroxycholesterol (25-OHC), which is a proatherogenic stimuli that impairs endothelial barrier functions. VE-cadherin is an endothelial-specific protein crucial in maintaining endothelial integrity. The aim of this study was to assess the influence of SGLT2i on the integrity of endothelial cells interrupted by 25-OHC. We also aimed to evaluate whether this effect is associated with changes in the levels of VE-cadherin. We pre-incubated HUVECs with 10 μg/mL of 25-hydroxycholesterol (25-OHC) for 4 h and then removed it and incubated endothelial cells with 1 μM of empagliflozin, 1 μM canagliflozin, or 1 μM dapagliflozin for 24 h. The control group included HUVECs cultured with the medium or with 25-OHC 10 μg/mL. The integrity of endothelial cells was measured by the RTCA-DP xCELLigence system, and VE-cadherin was assessed in confocal microscopy. Our results show that SGLT2 inhibitors significantly increase endothelial integrity in comparison to medium controls, and they improve endothelial cell integrity interrupted by 25-OHC. This effect is associated with significant improvements in VE-cadherin levels. SGLT2i: empagliflozin, canagliflozin, and dapagliflozin have a beneficial effect on the endothelial cell integrity and VE-cadherin levels reduced by 25-OHC.
Collapse
Affiliation(s)
- Agnieszka Pawlos
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland
| | - Marlena Broncel
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland
| | - Ewelina Woźniak
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland
| | | | | | - Paulina Gorzelak-Pabiś
- Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, 91-347 Lodz, Poland
| |
Collapse
|
39
|
Lancho O, Singh A, da Silva-Diz V, Aleksandrova M, Khatun J, Tottone L, Nunes PR, Luo S, Zhao C, Zheng H, Chiles E, Zuo Z, Rocha PP, Su X, Khiabanian H, Herranz D. A Therapeutically Targetable NOTCH1-SIRT1-KAT7 Axis in T-cell Leukemia. Blood Cancer Discov 2023; 4:12-33. [PMID: 36322781 PMCID: PMC9818047 DOI: 10.1158/2643-3230.bcd-22-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a NOTCH1-driven disease in need of novel therapies. Here, we identify a NOTCH1-SIRT1-KAT7 link as a therapeutic vulnerability in T-ALL, in which the histone deacetylase SIRT1 is overexpressed downstream of a NOTCH1-bound enhancer. SIRT1 loss impaired leukemia generation, whereas SIRT1 overexpression accelerated leukemia and conferred resistance to NOTCH1 inhibition in a deacetylase-dependent manner. Moreover, pharmacologic or genetic inhibition of SIRT1 resulted in significant antileukemic effects. Global acetyl proteomics upon SIRT1 loss uncovered hyperacetylation of KAT7 and BRD1, subunits of a histone acetyltransferase complex targeting H4K12. Metabolic and gene-expression profiling revealed metabolic changes together with a transcriptional signature resembling KAT7 deletion. Consistently, SIRT1 loss resulted in reduced H4K12ac, and overexpression of a nonacetylatable KAT7-mutant partly rescued SIRT1 loss-induced proliferation defects. Overall, our results uncover therapeutic targets in T-ALL and reveal a circular feedback mechanism balancing deacetylase/acetyltransferase activation with potentially broad relevance in cancer. SIGNIFICANCE We identify a T-ALL axis whereby NOTCH1 activates SIRT1 through an enhancer region, and SIRT1 deacetylates and activates KAT7. Targeting SIRT1 shows antileukemic effects, partly mediated by KAT7 inactivation. Our results reveal T-ALL therapeutic targets and uncover a rheostat mechanism between deacetylase/acetyltransferase activities with potentially broader cancer relevance. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Victoria da Silva-Diz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Maya Aleksandrova
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Jesminara Khatun
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Luca Tottone
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Patricia Renck Nunes
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Shirley Luo
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Caifeng Zhao
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eric Chiles
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Zhenyu Zuo
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Pedro P. Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.,National Cancer Institute, NIH, Bethesda, Maryland
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey.,Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey.,Corresponding Author: Daniel Herranz, Department of Pharmacology and Pediatrics, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, Office Room 3037, Lab Room 3026, New Brunswick, NJ 08901. Phone: 1-732-235-4064; E-mail:
| |
Collapse
|
40
|
Wang N, Hua J, Fu Y, An J, Chen X, Wang C, Zheng Y, Wang F, Ji Y, Li Q. Updated perspective of EPAS1 and the role in pulmonary hypertension. Front Cell Dev Biol 2023; 11:1125723. [PMID: 36923253 PMCID: PMC10008962 DOI: 10.3389/fcell.2023.1125723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Pulmonary hypertension (PH) is a group of syndromes characterized by irreversible vascular remodeling and persistent elevation of pulmonary vascular resistance and pressure, leading to ultimately right heart failure and even death. Current therapeutic strategies mainly focus on symptoms alleviation by stimulating pulmonary vessel dilation. Unfortunately, the mechanism and interventional management of vascular remodeling are still yet unrevealed. Hypoxia plays a central role in the pathogenesis of PH and numerous studies have shown the relationship between PH and hypoxia-inducible factors family. EPAS1, known as hypoxia-inducible factor-2 alpha (HIF-2α), functions as a transcription factor participating in various cellular pathways. However, the detailed mechanism of EPAS1 has not been fully and systematically described. This article exhibited a comprehensive summary of EPAS1 including the molecular structure, biological function and regulatory network in PH and other relevant cardiovascular diseases, and furthermore, provided theoretical reference for the potential novel target for future PH intervention.
Collapse
Affiliation(s)
- Na Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Jing Hua
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yuhua Fu
- Department of Pulmonary and Critical Care Medicine, Central Hospital of Jiading District, Shanghai, China
| | - Jun An
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Chen
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Chuancui Wang
- Department of Pulmonary and Critical Care Medicine, Jinshan Branch of Shanghai Sixth People's Hospital, Shanghai, China
| | - Yanghong Zheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Yingqun Ji
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital Affiliated by Tongji University, Shanghai, China
| |
Collapse
|
41
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
42
|
Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity. J Biol Chem 2022; 298:102633. [PMID: 36273580 PMCID: PMC9692045 DOI: 10.1016/j.jbc.2022.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Hypoxia-inducible factor (HIF)1α, a main transcriptional regulator of the cellular response to hypoxia, also plays important roles in oxygen homeostasis of aerobic organisms, which is regulated by multiple mechanisms. However, the full cellular response to hypoxia has not been elucidated. In this study, we found that expression of SMYD3, a methyltransferase, augments hypoxia signaling independent of its enzymatic activity. We demonstrated SMYD3 binds to and stabilizes HIF1α via co-immunoprecipitation and Western blot assays, leading to the enhancement of HIF1α transcriptional activity under hypoxia conditions. In addition, the stabilization of HIF1α by SMYD3 is independent of HIF1α hydroxylation by prolyl hydroxylases and the intactness of the von Hippel-Lindau ubiquitin ligase complex. Furthermore, we showed SMYD3 induces reactive oxygen species accumulation and promotes hypoxia-induced cell apoptosis. Consistent with these results, we found smyd3-null zebrafish exhibit higher hypoxia tolerance compared to their wildtype siblings. Together, these findings define a novel role of SMYD3 in affecting hypoxia signaling and demonstrate that SMYD3-mediated HIF1α stabilization augments hypoxia signaling, leading to the impairment of hypoxia tolerance.
Collapse
|
43
|
Naranjo-Bonilla P, Giménez-Gómez R, Muñoz-Villanueva MDC, Jurado-Gámez B. Retinal and Choroidal Effects of Continuous Positive Airway Pressure as Treatment for Sleep Apnea: Results at 12 Months. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12637. [PMID: 36231937 PMCID: PMC9566654 DOI: 10.3390/ijerph191912637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND To determine the impacts of continuous positive airway pressure (CPAP) treatment on retinal and choroidal thickness measurement in individuals with obstructive sleep apnea (OSA). METHODS Participants were 28 patients with OSA treated with CPAP who were enrolled immediately after diagnosis and graded according to the apnea hypopnea index (AHI) determined in an overnight polysomnography. Inclusion criteria were a new diagnosis of OSA and an indication for CPAP. Participants underwent a full ophthalmologic examination including standard automated perimetry (SAP) and optical coherence tomography (OCT) at the levels peripapillary, macular, and choroidal before CPAP onset, and after three and twelve months of CPAP. The data compared before and after treatment were intraocular pressure, SAP, and the thicknesses peripapillary retinal nerve fiber layer (pRNFL), total retinal (TR), retinal ganglion cell layer (RGCL), inner plexiform layer (IPL), photoreceptor layer (PL), and choroidal. RESULTS After 3 months of CPAP, we observed thickening of the pRNFL (in 5/6 subfields) (p < 0.004) and TR (in 5/9 subfields) (p < 0.010). At 12 months, thickening persisted in these layers, this time affecting 2/6 and 2/9 subfields, respectively (p < 0.012 and p < 0.001, respectively). Choroidal thinning was observed at the temporal level at both 3 and 12 months compared to measurements before starting CPAP treatment (p = 0.014 and p = 0.038, respectively). SAP remained unchanged. Intraocular pressure was higher at 12 months than at 3 months (p = 0.001). CONCLUSIONS 12 months of CPAP avoids retinal thinning and normalizes choroidal thickness in OSA patients.
Collapse
Affiliation(s)
- Pedro Naranjo-Bonilla
- Ophthalmology Department, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Córdoba, Spain
- Ophthalmology Department, University Hospital Juan Ramón Jiménez, 21005 Huelva, Spain
| | - Rafael Giménez-Gómez
- Ophthalmology Department, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University Hospital Reina Sofía, 14004 Córdoba, Spain
| | | | - Bernabé Jurado-Gámez
- Respiratory Department, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University Hospital Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
44
|
Davanian A, Williamson L, Taylor C, Harrover A, Bollinger K, Chaudhary B, Taskar V, Lee TJ, Liu Y, Chen Q, Marcus DM. Optical coherence tomography angiography and Humphrey visual field in patients with obstructive sleep apnea. J Clin Sleep Med 2022; 18:2133-2142. [PMID: 35532117 PMCID: PMC9435350 DOI: 10.5664/jcsm.10054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To determine if obstructive sleep apnea syndrome (OSAS) predisposes patients to glaucoma and macular disease due to vascular compromise by evaluating retinal and optic nerve vasculature and function using optical coherence tomography angiography and Humphrey visual field testing, respectively. METHODS In this prospective, observational, cross-sectional study 45 patients undergoing polysomnography ordered per standard of care were selected and stratified based on apnea-hypopnea index (AHI). Medical history, visual acuity testing, 24-2 Humphrey visual field, intraocular pressure measurement, and optical coherence tomography angiography studies of the macular and peripapillary retina were obtained. Correlations between polysomnography parameters and imaging data were analyzed. RESULTS The radial peripapillary capillary vascular density demonstrated no relationship to AHI (95% confidence interval [CI] [-0.026,0.038]) or severity of OSAS (95% CI: [-0.772, 3.648]) for moderate OSAS compared to mild/normal and (-1.295, 3.1421) for severe compared to mild/normal. Optical coherence tomography angiography superficial parafoveal vascular density (95% CI: [-0.068,0.011], deep parafoveal vascular density (95% CI: [-0.080,0.009]), and foveal avascular zone (95% CI: [-0.001, 0.001]) showed no statistically significant relationship to AHI or OSAS severity after controlling for confounders. Optical coherence tomography retinal nerve fiber layer thickness increased with AHI (P = .014), but there was no statistically significant correlation with OSAS severity with retinal nerve fiber layer thickness (95% CI: [-12.543, 6.792] for moderate comparing to normal and [-2.883, 16.551] for severe comparing to normal). Visual field parameters were unaffected by OSAS (95% CI: mean deviation [-0.21,0.29], pattern standard deviation: [-0.351, 0.121], visual field index: [-0.166, 0.329]). Optical coherence tomography choroidal thickness showed a statistically significant decrease when OSAS was grouped by severity (P = .0092) but did not correlate with AHI (P = .129, 95% CI: [-1.210, 0.095]). CONCLUSIONS The severity of OSAS did not show a statistically significant effect on parameters associated with glaucoma or macular vascular disease. Larger cohorts may be required to determine the physiologic consequences of OSAS on the macular and optic nerve vasculature, structure, and function. CITATION Davanian A, Williamson L, Taylor C, et al. Optical coherence tomography angiography and Humphrey visual field in patients with obstructive sleep apnea. J Clin Sleep Med 2022;18(9):2133-2142.
Collapse
Affiliation(s)
- Arash Davanian
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
- Vanderbilt Eye Institute, Nashville, Tennessee
| | | | | | - Abigail Harrover
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | - Kathryn Bollinger
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | | | - Varsha Taskar
- Department of Sleep Medicine, Augusta University Medical Center, Augusta, Georgia
| | - Tae Jin Lee
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
| | - Yuhan Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qingxia Chen
- Vanderbilt Eye Institute, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dennis M. Marcus
- Department of Ophthalmology, Augusta University Medical Center, Augusta, Georgia
- Southeast Retina Center, PC, Augusta, Georgia
| |
Collapse
|
45
|
Dzhalilova DS, Makarova OV. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:995-1014. [PMID: 36180993 DOI: 10.1134/s0006297922090115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms - HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia.
| | - Olga V Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, 117418, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
46
|
Kim J, Lee H, Yi SJ, Kim K. Gene regulation by histone-modifying enzymes under hypoxic conditions: a focus on histone methylation and acetylation. Exp Mol Med 2022; 54:878-889. [PMID: 35869366 PMCID: PMC9355978 DOI: 10.1038/s12276-022-00812-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Oxygen, which is necessary for sustaining energy metabolism, is consumed in many biochemical reactions in eukaryotes. When the oxygen supply is insufficient for maintaining multiple homeostatic states at the cellular level, cells are subjected to hypoxic stress. Hypoxia induces adaptive cellular responses mainly through hypoxia-inducible factors (HIFs), which are stabilized and modulate the transcription of various hypoxia-related genes. In addition, many epigenetic regulators, such as DNA methylation, histone modification, histone variants, and adenosine triphosphate-dependent chromatin remodeling factors, play key roles in gene expression. In particular, hypoxic stress influences the activity and gene expression of histone-modifying enzymes, which controls the posttranslational modification of HIFs and histones. This review covers how histone methylation and histone acetylation enzymes modify histone and nonhistone proteins under hypoxic conditions and surveys the impact of epigenetic modifications on gene expression. In addition, future directions in this area are discussed. New sequencing technologies are revealing how cells respond to hypoxia, insufficient oxygen, by managing gene activation. In multicellular organisms, gene activation is managed by how tightly a section of DNA is wound around proteins called histones; genes in tightly packed regions are inaccessible and inactive, whereas those in looser regions can be activated. Kyunghwan Kim, Sun-Ju Yi, and co-workers at Chungbuk National University in South Korea have reviewed recent data on how cells regulate gene activity under hypoxic conditions. Advances in sequencing technology have allowed genome-wide studies of how hypoxia affects DNA structure and gene activation, revealing that gene-specific modifications may be more important than genome-wide modifications. Hypoxia is implicated in several diseases, such as cancer and chronic metabolic diseases, and a better understanding of how it affects gene activation may help identify new treatments for hypoxia-related diseases.
Collapse
|
47
|
Hirschberger C, Gillis JA. The pseudobranch of jawed vertebrates is a mandibular arch-derived gill. Development 2022; 149:275947. [PMID: 35762641 PMCID: PMC9340550 DOI: 10.1242/dev.200184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 12/16/2022]
Abstract
The pseudobranch is a gill-like epithelial elaboration that sits behind the jaw of most fishes. This structure was classically regarded as a vestige of the ancestral gill arch-like condition of the gnathostome jaw. However, more recently, hypotheses of jaw evolution by transformation of a gill arch have been challenged, and the pseudobranch has alternatively been considered a specialised derivative of the second (hyoid) pharyngeal arch. Here, we demonstrate in the skate (Leucoraja erinacea) that the pseudobranch does, in fact, derive from the mandibular arch, and that it shares gene expression features and cell types with gills. We also show that the skate mandibular arch pseudobranch is supported by a spiracular cartilage that is patterned by a shh-expressing epithelial signalling centre. This closely parallels the condition seen in the gill arches, where cartilaginous appendages called branchial rays, which support the respiratory lamellae of the gills, are patterned by a shh-expressing gill arch epithelial ridge. Together with similar discoveries in zebrafish, our findings support serial homology of the pseudobranch and gills, and an ancestral origin of gill arch-like anatomical features from the gnathostome mandibular arch. Summary: The skate pseudobranch is a gill serial homologue and reveals the ancestral gill arch-like nature of the jawed vertebrate mandibular arch.
Collapse
Affiliation(s)
- Christine Hirschberger
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
| | - J. Andrew Gillis
- University of Cambridge 1 Department of Zoology , , Downing Street, Cambridge CB2 3EJ , UK
- Marine Biological Laboratory 2 , 7 MBL Street, Woods Hole, MA 02543 , USA
| |
Collapse
|
48
|
Liu X, Deng H, Tang J, Wang Z, Zhu C, Cai X, Rong F, Chen X, Sun X, Jia S, Ouyang G, Li W, Xiao W. OTUB1 augments hypoxia signaling via its non-canonical ubiquitination inhibition of HIF-1α during hypoxia adaptation. Cell Death Dis 2022; 13:560. [PMID: 35732631 PMCID: PMC9217984 DOI: 10.1038/s41419-022-05008-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023]
Abstract
As a main regulator of cellular responses to hypoxia, the protein stability of hypoxia-inducible factor (HIF)-1α is strictly controlled by oxygen tension dependent of PHDs-catalyzed protein hydroxylation and pVHL complex-mediated proteasomal degradation. Whether HIF-1α protein stability as well as its activity can be further regulated under hypoxia is not well understood. In this study, we found that OTUB1 augments hypoxia signaling independent of PHDs/VHL and FIH. OTUB1 binds to HIF-1α and depletion of OTUB1 reduces endogenous HIF-1α protein under hypoxia. In addition, OTUB1 inhibits K48-linked polyubiquitination of HIF-1α via its non-canonical inhibition of ubiquitination activity. Furthermore, OTUB1 promotes hypoxia-induced glycolytic reprogramming for cellular metabolic adaptation. These findings define a novel regulation of HIF-1α under hypoxia and demonstrate that OTUB1-mediated HIF-1α stabilization positively regulates HIF-1α transcriptional activity and benefits cellular hypoxia adaptation.
Collapse
Affiliation(s)
- Xing Liu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| | - Hongyan Deng
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Jinhua Tang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Zixuan Wang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Chunchun Zhu
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaolian Cai
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Fangjing Rong
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xiaoyun Chen
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Xueyi Sun
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Shuke Jia
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Gang Ouyang
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China
| | - Wenhua Li
- grid.49470.3e0000 0001 2331 6153College of Life Science, Wuhan University, Wuhan, 430072 PR China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072 PR China
| | - Wuhan Xiao
- grid.429211.d0000 0004 1792 6029State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 PR China ,grid.9227.e0000000119573309The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072 PR China ,Hubei Hongshan Laboratory, Wuhan, 430070 PR China
| |
Collapse
|
49
|
Sirtuins and Hypoxia in EMT Control. Pharmaceuticals (Basel) 2022; 15:ph15060737. [PMID: 35745656 PMCID: PMC9228842 DOI: 10.3390/ph15060737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT), a physiological process during embryogenesis, can become pathological in the presence of different driving forces. Reduced oxygen tension or hypoxia is one of these forces, triggering a large number of molecular pathways with aberrant EMT induction, resulting in cancer and fibrosis onset. Both hypoxia-induced factors, HIF-1α and HIF-2α, act as master transcription factors implicated in EMT. On the other hand, hypoxia-dependent HIF-independent EMT has also been described. Recently, a new class of seven proteins with deacylase activity, called sirtuins, have been implicated in the control of both hypoxia responses, HIF-1α and HIF-2α activation, as well as EMT induction. Intriguingly, different sirtuins have different effects on hypoxia and EMT, acting as either activators or inhibitors, depending on the tissue and cell type. Interestingly, sirtuins and HIF can be activated or inhibited with natural or synthetic molecules. Moreover, recent studies have shown that these natural or synthetic molecules can be better conveyed using nanoparticles, representing a valid strategy for EMT modulation. The following review, by detailing the aspects listed above, summarizes the interplay between hypoxia, sirtuins, and EMT, as well as the possible strategies to modulate them by using a nanoparticle-based approach.
Collapse
|
50
|
Cao P, Chen Q, Shi CX, Wang LW, Gong ZJ. Sirtuin1 attenuates acute liver failure by reducing reactive oxygen species via hypoxia inducible factor 1α. World J Gastroenterol 2022; 28:1798-1813. [PMID: 35633910 PMCID: PMC9099200 DOI: 10.3748/wjg.v28.i17.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The occurrence and development of acute liver failure (ALF) is closely related to a series of inflammatory reactions, such as the production of reactive oxygen species (ROS). Hypoxia inducible factor 1α (HIF-1α) is a key factor that regulates oxygen homeostasis and redox, and the stability of HIF-1α is related to the ROS level regulated by Sirtuin (Sirt) family. The activation of Sirt1 will lead to a powerful antioxidant defense system and therapeutic effects in liver disease. However, little is known about the relationship between HIF-1α and Sirt1 in the process of ALF and the molecular mechanism.
AIM To investigate whether HIF-1α may be a target of Sirt1 deacetylation and what the effects on ALF are.
METHODS Mice were administrated lipopolysaccharide (LPS)/D-gal and exposed to hypoxic conditions as animal model, and resveratrol was used as an activator of Sirt1. The cellular model was established with L02 cells stimulated by LPS. N-acetyl-L-cysteine was used to remove ROS, and the expression of Sirt1 was inhibited by nicotinamide. Western blotting was used to detect Sirt1 and HIF-1α activity and related protein expression. The possible signaling pathways involved were analyzed by immunofluorescent staining, co-immunoprecipitation, dihydroethidium staining, and Western blotting.
RESULTS Compared with mice stimulated with LPS alone, the expression of Sirt1 decreased, the level of HIF-1α acetylation increased in hypoxic mice, and the levels of carbonic anhydrase 9 and Bcl-2-adenovirus E1B interacting protein 3 increased significantly, which was regulated by HIF-1α, indicating an increase of HIF-1α activity. Under hypoxia, the down-regulation of Sirt1 activated and acetylated HIF-1α in L02 cells. The inhibition of Sirt1 significantly aggravated this effect and the massive production of ROS. The regulation of ROS was partly through peroxisome proliferator-activated receptor alpha or AMP-activated protein kinase. Resveratrol, a Sirt1 activator, effectively relieved ALF aggravated by hypoxia, the production of ROS, and cell apoptosis. It also induced the deacetylation of HIF-1α and inhibited the activity of HIF-1α.
CONCLUSION Sirt1 may have a protective effect on ALF by inducing HIF-1α deacetylation to reduce ROS.
Collapse
Affiliation(s)
- Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|