1
|
Münz C, Campbell GR, Esclatine A, Faure M, Labonte P, Lussignol M, Orvedahl A, Altan-Bonnet N, Bartenschlager R, Beale R, Cirone M, Espert L, Jung J, Leib D, Reggiori F, Sanyal S, Spector SA, Thiel V, Viret C, Wei Y, Wileman T, Wodrich H. Autophagy machinery as exploited by viruses. AUTOPHAGY REPORTS 2025; 4:27694127.2025.2464986. [PMID: 40201908 PMCID: PMC11921968 DOI: 10.1080/27694127.2025.2464986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 04/10/2025]
Abstract
Viruses adapt and modulate cellular pathways to allow their replication in host cells. The catabolic pathway of macroautophagy, for simplicity referred to as autophagy, is no exception. In this review, we discuss anti-viral functions of both autophagy and select components of the autophagy machinery, and how viruses have evaded them. Some viruses use the membrane remodeling ability of the autophagy machinery to build their replication compartments in the cytosol or efficiently egress from cells in a non-lytic fashion. Some of the autophagy machinery components and their remodeled membranes can even be found in viral particles as envelopes or single membranes around virus packages that protect them during spreading and transmission. Therefore, studies on autophagy regulation by viral infections can reveal functions of the autophagy machinery beyond lysosomal degradation of cytosolic constituents. Furthermore, they can also pinpoint molecular interactions with which the autophagy machinery can most efficiently be manipulated, and this may be relevant to develop effective disease treatments based on autophagy modulation.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, ZürichSwitzerland
| | - Grant R Campbell
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of SD, Vermillion, SD, USA
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Patrick Labonte
- eINRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Canada
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, 10 Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anthony Orvedahl
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division Virus-Associated Carcinogenesis, Heidelberg, Germany
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany
| | - Rupert Beale
- Cell Biology of Infection Laboratory, The Francis Crick Institute, London, UK
- Division of Medicine, University College London, London, UK
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucile Espert
- University of Montpellier, Montpellier, France
- CNRS, Institut de Recherche enInfectiologie deMontpellier (IRIM), Montpellier, France
| | - Jae Jung
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David Leib
- Guarini School of Graduate and Advanced Studies at Dartmouth, Hanover, NH, USA
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Aarhus C, Denmark
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, UK
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Rady Children’s Hospital, San Diego, CA, USA
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Universite Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007Lyon, France
| | - Yu Wei
- Institut Pasteur-Theravectys Joint Laboratory, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Harald Wodrich
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
2
|
Krchlikova V, Lu Y, Sauter D. Viral influencers: deciphering the role of endogenous retroviral LTR12 repeats in cellular gene expression. J Virol 2025; 99:e0135124. [PMID: 39887236 PMCID: PMC11853044 DOI: 10.1128/jvi.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
The human genome is like a museum of ancient retroviral infections. It contains a large number of endogenous retroviruses (ERVs) that bear witness to past integration events. About 5,000 of them are so-called long terminal repeat 12 (LTR12) elements. Compared with 20,000 human genes, this is a remarkable number. Although LTR12 elements can act as promoters or enhancers of cellular genes, the function of most of these retroviral elements has remained unclear. In our mini-review, we show that different LTR12 elements share many similarities, including common transcription factor binding sites. Furthermore, we summarize novel insights into the epigenetic mechanisms governing their silencing and activation. Specific examples of genes and pathways that are regulated by LTR12 loci are used to illustrate the regulatory network built by these repetitive elements. A particular focus is on their role in the regulation of antiviral immune responses, tumor cell proliferation, and senescence. Finally, we describe how a targeted activation of this fascinating ERV family could be used for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Veronika Krchlikova
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Yueshuang Lu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Guo N, Xia Y, He N, Zhang L, Liu J. IRGM Inhibits the AKT/mTOR Signaling Pathway by Interacting with TRIM21 to Alleviate Sepsis-Induced Acute Lung Injury. Inflammation 2025:10.1007/s10753-025-02265-w. [PMID: 39994091 DOI: 10.1007/s10753-025-02265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
Acute lung injury (ALI) is a severe complication of sepsis, and its underlying pathological mechanisms remain poorly understood. This study aims to investigate the role and mechanisms by which IRGM mediates autophagy through the regulation of the AKT/mTOR signaling pathway in sepsis-induced ALI. Initially, a sepsis-induced ALI mouse model was established using cecal ligation and puncture (CLP). Our results demonstrated that Irgm1 expression was significantly upregulated in the ALI model. Subsequently, Irgm1 was knocked down in vivo using AAV vectors, and changes in ALI symptoms were assessed. In vitro, a sepsis-induced ALI cell model was generated by stimulating A549 cells with lipopolysaccharide (LPS). The effects of IRGM overexpression on autophagy and apoptosis were evaluated, and its impact on the AKT/mTOR signaling pathway was analyzed. Furthermore, mass spectrometry and co-immunoprecipitation (COIP) experiments were conducted to explore the interaction between IRGM and TRIM21. In vivo results showed that Irgm1 knockout exacerbated CLP-induced ALI, as evidenced by a significant reduction in autophagic activity, increased apoptosis, and aberrant activation of the AKT/mTOR pathway. Further cellular experiments suggested that IRGM may enhance autophagy by inhibiting the AKT/mTOR signaling pathway, thereby attenuating LPS-induced cell damage. Additionally, COIP experiments revealed that IRGM interacts with TRIM21 to inhibit AKT/mTOR pathway activation, thereby promoting autophagy and mitigating sepsis-induced ALI. In conclusion, IRGM regulates autophagy through the AKT/mTOR signaling pathway and exerts protective effects in sepsis-induced ALI, suggesting that it may serve as a potential therapeutic target for sepsis-related ALI.
Collapse
Affiliation(s)
- Na Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yu Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Nannan He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, China.
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, China.
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, China.
| |
Collapse
|
4
|
Luo T, Shen S, Sun Y, El-Ashram S, Zhang X, Liu K, Cao C, Alajmi RA, Deng S, Wu J, Zhang W, Zhang H. Identification and Analysis of Autophagy-Related Genes as Diagnostic Markers and Potential Therapeutic Targets for Tuberculosis Through Bioinformatics. DNA Cell Biol 2025; 44:82-98. [PMID: 39618249 DOI: 10.1089/dna.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
According to the World Health Organization, Mycobacterium tuberculosis infections affect approximately 25% of the world's population. There is mounting evidence linking autophagy and immunological dysregulation to tuberculosis (TB). As a result, this research set out to discover TB-related autophagy-related biomarkers and prospective treatment targets. We used five autophagy databases to get genes linked to autophagy and Gene Expression Omnibus databases to get genes connected to TB. Then, functional modules associated with autophagy were obtained by analyzing them using weighted gene co-expression network analysis. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to examine the autophagy-related genes (ATGs) of important modules. Limma was used to identify differentially expressed ATGs (DE-ATGs), and the external datasets were used to further confirm their identification. We used DE-ATGs and a protein-protein interaction network to search the hub genes. CIBERSORT was used to estimate the kinds and amounts of immune cells. After that, we built a drug-gene interaction network and a network that included messenger RNA, small RNA, and DNA. At last, the differential expression of hub ATGs was confirmed by RT-qPCR, immunohistochemistry, and western blotting. The diagnostic usefulness of hub ATGs was evaluated using receiver operating characteristic curve analysis. Including 508 ATGs, four of the nine modules strongly linked with TB were deemed essential. Interleukin 1B (IL1B), CAPS1, and signal transducer and activator of transcription 1 (STAT1) were identified by intersection out of 22 DE-ATGs discovered by differential expression analysis. Research into immune cell infiltration found that patients with TB had an increased proportion of plasma cells, CD8 T cells, and M0 macrophages. A competitive endogenous RNA network utilized 10 long non-coding RNAs and 2 miRNAs. Then, the IL1B-targeted drug Cankinumad was assessed using this network. During bioinformatics analysis, three hub genes were validated in mouse and macrophage infection models. We found that IL1B, CASP1, and STAT1 are important biomarkers for TB. As a result, these crucial hub genes may hold promise as TB treatment targets.
Collapse
Affiliation(s)
- Tingting Luo
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Shijie Shen
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Yufei Sun
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Xia Zhang
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Keyu Liu
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Chengzhang Cao
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Reem Atalla Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Siqi Deng
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Jiangdong Wu
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Wanjiang Zhang
- Key Laboratory of Xinjiang Endicand Ethnic Diseases Cooperated By Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Hongying Zhang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhou Y, Zhang Y, Li Y, Liu L, Zhuang M, Xiao Y. IL-27 attenuated macrophage injury and inflammation induced by Mycobacterium tuberculosis by activating autophagy. In Vitro Cell Dev Biol Anim 2025; 61:245-256. [PMID: 39455490 DOI: 10.1007/s11626-024-00989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Interleukin-27 (IL-27) is a cytokine that is reported to be highly expressed in the peripheral blood of patients with pulmonary tuberculosis (PTB). IL-27-mediated signaling pathways, which exhibit anti- Mycobacterium tuberculosis (Mtb) properties, have also been demonstrated in macrophages infected with Mtb. However, the exact mechanism remains unclear. This study aimed to clarify the potential molecular mechanisms through which IL-27 enhances macrophage resistance to Mtb infection. Both normal and PTB patients provided bronchoalveolar lavage fluid (BALF). Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and stimulated with 50 ng/mL macrophage-colony stimulating factor (M-CSF) to obtain monocyte-derived macrophages (MDMs). Using 100 ng/mL phorbol 12-myristate 13-acetate (PMA), THP-1 cells were induced to differentiate into THP-1-derived macrophage-like cells (TDMs). Both MDMs and TDMs were subsequently infected with the Mtb strain H37Rv and treated with 50 ng/mL IL-27 prior to infection. The damage and inflammation of macrophages were examined using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting. Patients with PTB had elevated levels of IL-27 in their BALF. Preconditioning with IL-27 was shown to reduce H37Rv-induced MDMs and TDMs apoptosis while also decreasing the levels of Cleaved Caspase-3, Bax and the proinflammatory cytokines TNF-α, IL-1β, and IL-6, promoting the expression of Bcl-2 and the anti-inflammatory factors IL-10 and IL-4. Silencing of the IL-27 receptor IL-27Ra increased macrophage damage and inflammation triggered by H37Rv. Mechanistically, IL-27 activates autophagy by inhibiting TLR4/NF-κB signaling and activating the PI3K/AKT signaling pathway, thereby inhibiting H37Rv-induced macrophage apoptosis and the inflammatory response. Our study suggests that IL-27 alleviates H37Rv-induced macrophage injury and the inflammatory response by activating autophagy and that IL-27 may be a new target for the treatment of PTB.
Collapse
Affiliation(s)
- Yushan Zhou
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yuxuan Zhang
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yanli Li
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Liqiong Liu
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Min Zhuang
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Yi Xiao
- Respiratory and Critical Care Medicine Ward 1, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China.
| |
Collapse
|
6
|
Hu Y, Schnabl B, Stärkel P. Origin, Function, and Implications of Intestinal and Hepatic Macrophages in the Pathogenesis of Alcohol-Associated Liver Disease. Cells 2025; 14:207. [PMID: 39936998 PMCID: PMC11816606 DOI: 10.3390/cells14030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
Macrophages are members of the human innate immune system, and the majority reside in the liver. In recent years, they have been recognized as essential players in the maintenance of liver and intestinal homeostasis as well as key guardians of their respective immune systems, and they are increasingly being recognized as such. Paradoxically, they are also likely involved in chronic pathologies of the gastrointestinal tract and potentially in the alteration of the gut-liver axis in alcohol use disorder (AUD) and alcohol-associated liver disease (ALD). To date, the causal relationship between macrophages, the pathogenesis of ALD, and the immune dysregulation of the gut remains unclear. In this review, we will discuss our current understanding of the heterogeneity of intestinal and hepatic macrophages, their ontogeny, the potential factors that regulate their origin, and the evidence of how they are associated with the manifestation of chronic inflammation. We will also illustrate how the micro-environment of the intestine shapes the phenotypes and functionality of the macrophage compartment in both the intestines and liver and how they change during chronic alcohol abuse. Finally, we highlight the obstacles to current research and the prospects for this field.
Collapse
Affiliation(s)
- Yifan Hu
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Clinical and Experimental Research, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Huang M, Yang B, Yang X, Hou J, Li X. Guanylate-binding protein 5-mediated autophagy can promote the clearance of intracellular F. nucleatum in dental pulp cells during pulpitis. BMC Oral Health 2024; 24:1510. [PMID: 39702141 DOI: 10.1186/s12903-024-05295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND IFN-γ is crucial in induction of inducible cell-autonomous immunity, and IFN-γ signaling pathway is activated in pulpitis. Guanylate-binding proteins (GBPs) are a family of IFN-inducible GTPases and could utilize autophagy or pyroptosis to mitigate infection. GBP5 is abundantly expressed in inflamed pulp and human dental pulp cells (HDPCs). Therefore, we hypothesize that GBP5 in HDPCs exerts an immune-regulatory role in defending against bacterium infection. METHODS Fusobacterium nucleatum (F. nucleatum) was used to infect HDPCs, and immunoblotting and qRT-PCR were used to detect pyroptosis and autophagy. Pharmacological or genetic approaches were used to enhance or knock down GBP5 expression in HDPCs. Blood agar plate counting and immunoblotting were used to observe bacteria clearance effect and activation of autophagy. Student's t-test and one-way ANOVA were individually used for comparisons between two and multiple groups. Statistical significance was set at P < 0.05. RESULTS Following F. nucleatum infection in HDPCs, the autophagy marker LC3B was significantly upregulated while the mRNA and protein expression levels of p62 were increased. IFN-γ priming significantly inhibited the intracellular survival of F. nucleatum and enhanced the autophagic activity of HDPCs. GBP5 overexpression significantly increased the efficiency of HDPCs in clearing intracellular F. nucleatum and activated autophagic flux in HDPCs, while downregulating GBP5 in HDPCs suppressed autophagic flux. CONCLUSION IFN-γ-mediated GBP5 overexpression in HDPCs during F. nucleatum infection exerts an anti-microbial function through autophagy activation.
Collapse
Affiliation(s)
- Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xinzhu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Chin J, Abeydeera N, Repasy T, Rivera-Lugo R, Mitchell G, Nguyen VQ, Zheng W, Richards A, Swaney DL, Krogan NJ, Ernst JD, Cox JS, Budzik JM. Tax1bp1 enhances bacterial virulence and promotes inflammatory responses during Mycobacterium tuberculosis infection of alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628616. [PMID: 39763950 PMCID: PMC11702572 DOI: 10.1101/2024.12.16.628616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Crosstalk between autophagy, host cell death, and inflammatory host responses to bacterial pathogens enables effective innate immune responses that limit bacterial growth while minimizing coincidental host damage. Mycobacterium tuberculosis (Mtb) thwarts innate immune defense mechanisms in alveolar macrophages (AMs) during the initial stages of infection and in recruited bone marrow-derived cells during later stages of infection. However, how protective inflammatory responses are achieved during Mtb infection and the variation of the response in different macrophage subtypes remain obscure. Here, we show that the autophagy receptor Tax1bp1 plays a critical role in enhancing inflammatory cytokine production and increasing the susceptibility of mice to Mtb infection. Surprisingly, although Tax1bp1 restricts Mtb growth during infection of bone marrow-derived macrophages (BMDMs) (Budzik et al. 2020) and terminates cytokine production in response to cytokine stimulation or viral infection, Tax1bp1 instead promotes Mtb growth in AMs, neutrophils, and a subset of recruited monocyte-derived cells from the bone marrow. Tax1bp1 also leads to increases in bacterial growth and inflammatory responses during infection of mice with Listeria monocytogenes, an intracellular pathogen that is not effectively targeted to canonical autophagy. In Mtb-infected AMs but not BMDMs, Tax1bp1 enhances necrotic-like cell death early after infection, reprogramming the mode of host cell death to favor Mtb replication in AMs. Tax1bp1's impact on host cell death is a mechanism that explains Tax1bp1's cell type-specific role in the control of Mtb growth. Similar to Tax1bp1-deficiency in AMs, the expression of phosphosite-deficient Tax1bp1 restricts Mtb growth. Together, these results show that Tax1bp1 plays a crucial role in linking the regulation of autophagy, cell death, and pro-inflammatory host responses and enhancing susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Jeffrey Chin
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nalin Abeydeera
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa Repasy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Seattle Children's Hospital, Seattle, WA, USA
| | - Rafael Rivera-Lugo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Department of Biology, Stanford University, Stanford, CA, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Present address: Open Innovation at Global Health Disease Area for Biomedical Research, Novartis, Emeryville, CA, USA
| | - Vinh Q Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Weihao Zheng
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA USA
- J. David Gladstone Institutes, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Joel D Ernst
- Division of Experiment Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeffery S Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan M Budzik
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
9
|
Herhaus L, Gestal-Mato U, Eapen VV, Mačinković I, Bailey HJ, Prieto-Garcia C, Misra M, Jacomin AC, Ammanath AV, Bagarić I, Michaelis J, Vollrath J, Bhaskara RM, Bündgen G, Covarrubias-Pinto A, Husnjak K, Zöller J, Gikandi A, Ribičić S, Bopp T, van der Heden van Noort GJ, Langer JD, Weigert A, Harper JW, Mancias JD, Dikic I. IRGQ-mediated autophagy in MHC class I quality control promotes tumor immune evasion. Cell 2024; 187:7285-7302.e29. [PMID: 39481378 DOI: 10.1016/j.cell.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Uxía Gestal-Mato
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Vinay V Eapen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Igor Mačinković
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Institute of Biochemistry I, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Henry J Bailey
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Cristian Prieto-Garcia
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Mohit Misra
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Anne-Claire Jacomin
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Aparna Viswanathan Ammanath
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Bagarić
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jolina Michaelis
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Joshua Vollrath
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Ramachandra M Bhaskara
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Georg Bündgen
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adriana Covarrubias-Pinto
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jonathan Zöller
- Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Ajami Gikandi
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sara Ribičić
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Julian D Langer
- Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Institutes of Medicine, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt, Medical Faculty, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Guo N, Xia Y, He N, Cheng H, Zhang L, Liu J. IRGM Deficiency Exacerbates Sepsis-Induced Acute Lung Injury by Inhibiting Autophagy Through the AKT/mTOR Signaling Pathway. J Inflamm Res 2024; 17:10255-10272. [PMID: 39654860 PMCID: PMC11626208 DOI: 10.2147/jir.s496687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Background Sepsis is a life-threatening condition characterized by organ dysfunction due to an impaired immune response to infection. The lungs are highly susceptible to infection, often resulting in acute lung injury (ALI). The immune-related GTPase M (IRGM) and its murine homolog Irgm1 mediate autophagy and are implicated in inflammatory diseases, yet their roles in sepsis-induced ALI remain unclear. Methods We used RNA sequencing and bioinformatics to explore IRGM regulation. Sepsis-induced ALI was modeled in mice using cecal ligation and puncture (CLP). An in vitro model was created by stimulating A549 cells with lipopolysaccharide (LPS). Results In A549 cells, LPS treatment induced upregulation of IRGM expression and enhanced autophagy levels. IRGM knockdown exacerbated LPS-induced ALI, characterized by suppressed autophagy and increased apoptosis, along with significantly elevated levels of p-AKT and p-mTOR. Further investigation revealed that treatment with the AKT inhibitor MK2206 effectively reversed the autophagy inhibition caused by IRGM knockdown and reduced apoptosis. These findings suggest that the AKT/mTOR signaling pathway plays a crucial role in IRGM-mediated protection against sepsis-related ALI. Conclusion This study identifies the protective role of IRGM in sepsis-induced ALI and reveals that IRGM mitigates ALI by promoting autophagy through inhibition of the AKT/mTOR pathway. These findings provide insights into the pathogenesis of sepsis-related ALI and highlight IRGM as a potential therapeutic target.
Collapse
Affiliation(s)
- Na Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Yu Xia
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Nannan He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Huixin Cheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
| | - Lei Zhang
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| | - Jian Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu Province, People’s Republic of China
- Gansu Provincial Maternity and Child-Care Hospital (Gansu Provincial Center Hospital), Lanzhou, Gansu Province, People’s Republic of China
| |
Collapse
|
11
|
Vats D, Rani G, Arora A, Sharma V, Rathore I, Mubeen SA, Singh A. Tuberculosis and T cells: Impact of T cell diversity in tuberculosis infection. Tuberculosis (Edinb) 2024; 149:102567. [PMID: 39305817 DOI: 10.1016/j.tube.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 11/30/2024]
Abstract
Tuberculosis is a global threat and is still a leading cause of death due to an infectious agent. The infection is spread through inhalation of M. tb containing aerosol droplets. Bacteria after reaching the lung alveoli are engulfed by alveolar macrophages, leading to an immune response. Then, pro-inflammatory cytokines are released by these macrophages, recruiting other antigen-presenting cells like dendritic cells. These cells phagocytose the bacteria and present mycobacterial antigens to naïve T cells. After activation by DCs, T cells differentiate into various T cells subsets, viz. CD4+, CD8+, Th17, Treg, Tfh cells and others display enormous diversification in their characteristics and functions. This review comprises a comprehensive literature on conventional and unconventional T cells, highlighting the polyfunctional T cells as well, their role in controlling TB infection, and their implications in the spectrum of TB infection. While some subsets such as CD4+ T cells are extensively studied, some T cell subsets such as gamma delta T cells and Tfh cells remain poorly understood in the pathophysiology of tuberculosis, despite having significant potential implications. The goal of TB eradication can be assisted by development of better vaccines against TB, which can effectively induce a robust and long-term T cells memory. The same has been discussed in the latter part of this review. BCG being the standalone commercialised TB vaccine so far has its limitations. Strategies for the enhancement of BCG along with novel studies in vaccine development, has also been discussed in great detail. Lastly, T cells display a complex interplay of an adaptive immune response against TB, with activation and enhancement of the innate immune responses. Therefore, it is critical to fully understand the role of various T cells subsets in pathophysiology of tuberculosis to provide better therapeutic inventions and improve patient care.
Collapse
Affiliation(s)
- Deepak Vats
- All India Institute of Medical Sciences, New Delhi, India
| | - Geeta Rani
- All India Institute of Medical Sciences, New Delhi, India
| | - Alisha Arora
- All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Isha Rathore
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Archana Singh
- All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Kanmani S, Song XM, Kanmani P, Wu XJ, Xiao-Di-Tan, Liu J, Wang JP, Minshall RD, Hu G. Enhancement of Autophagy in Macrophages via the p120-Catenin-Mediated mTOR Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1666-1675. [PMID: 39423222 PMCID: PMC11610512 DOI: 10.4049/jimmunol.2400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Autophagy serves as a critical regulator of immune responses in sepsis. Macrophages are vital constituents of both innate and adaptive immunity. In this study, we delved into the intricate role of p120-catenin (p120) in orchestrating autophagy in macrophages in response to endotoxin stimulation. Depletion of p120 effectively suppressed LPS-induced autophagy in both J774A.1 macrophages and murine bone marrow-derived macrophages. LPS not only elevated the interaction between p120 and L chain 3 (LC3) I/II but also facilitated the association of p120 with mammalian target of rapamycin (mTOR). p120 depletion in macrophages by small interfering RNA reduced LPS-induced dissociation of mTOR and Unc-51-like kinase 1 (ULK1), leading to an increase in the phosphorylation of ULK1. p120 depletion also enhanced LPS-triggered macrophage apoptosis, as evidenced by increased levels of cleaved caspase 3, 7-aminoactinomycin D staining, and TUNEL assay. Notably, inhibiting autophagy reversed the decrease in apoptosis caused by LPS stimulation in macrophages overexpressing p120. Additionally, the ablation of p120 inhibited autophagy and accentuated apoptosis in alveolar macrophages in LPS-challenged mice. Collectively, our findings strongly suggest that p120 plays a pivotal role in fostering autophagy while concurrently hindering apoptosis in macrophages, achieved through modulation of the mTOR/ULK1 signaling pathway in sepsis. This underscores the potential of targeting macrophage p120 as an innovative therapeutic avenue for treating inflammatory disorders.
Collapse
Affiliation(s)
- Suganya Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xue-Min Song
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Wuchang, 125 Donghu Road, Hubei Province, China
| | - Paulraj Kanmani
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xiao-Jing Wu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Xiao-Di-Tan
- Department Pediatrics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jing Liu
- Department of Surgery/Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Ji-Ping Wang
- Departments of Statistics and Data Science, Northwestern University, Evanston, Illinois, United States of America
| | - Richard D. Minshall
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, 60612, United States of America
| |
Collapse
|
13
|
Chowdhury S, Sadhukhan P, Mahata N. Immunoinformatics investigation on pathogenic Escherichia coli proteome to develop an epitope-based peptide vaccine candidate. Mol Divers 2024:10.1007/s11030-024-11034-0. [PMID: 39516450 DOI: 10.1007/s11030-024-11034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli), a gram-negative bacterium, quickly colonizes in the human gastrointestinal tract after birth and typically sustains a long-term, symbiotic relationship with the host. However, certain virulent strains of E. coli can cause diseases such as urinary tract infections, meningitis, and enteric disorders. The rising antibiotic resistance among these strains has heightened the urgency for an effective vaccine. This study employs immunoinformatics and a reverse vaccinology technique to identify prospective antigens and create an efficient vaccine construct. In this study, we reported the "Attaching and Effacing Protein" a novel outer-membrane protein conserved in all pathogenic E. coli strains, based on proteome screening. We developed an in silico multi-epitope vaccine that includes helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), B cell lymphocyte (BCL), and pan HLA DR-binding reactive epitope (PADRE) sequences, along with appropriate linkers and adjuvants. Machine Learning algorithms were used to evaluate antigenicity, solubility, stability, and non-allergenicity of the vaccine construct. Additionally, molecular docking analysis revealed that vaccine construct has a strong predicted binding affinity for human toll-like receptors on the cell surface. In this context, laboratory validations are necessary to demonstrate the effectiveness of the possible vaccine design that showed encouraging findings through computational validation.
Collapse
Affiliation(s)
- Soham Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Pinkan Sadhukhan
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
14
|
Fee BE, Fee LR, Menechella M, Affeldt B, Sprouse AR, Bounini A, Alwarawrah Y, Molloy CT, Ilkayeva OR, Prinz JA, Lenz DS, MacIver NJ, Rai P, Fessler MB, Coers J, Taylor GA. Type I interferon signaling and peroxisomal dysfunction contribute to enhanced inflammatory cytokine production in IRGM1-deficient macrophages. J Biol Chem 2024; 300:107883. [PMID: 39395806 DOI: 10.1016/j.jbc.2024.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024] Open
Abstract
The human IRGM gene has been linked to inflammatory diseases including sepsis and Crohn's disease. Decreased expression of human IRGM, or the mouse orthologues Irgm1 and Irgm2, leads to increased production of a number of inflammatory chemokines and cytokines in vivo and/or in cultured macrophages. Prior work has indicated that increased cytokine production is instigated by metabolic alterations and changes in mitochondrial homeostasis; however, a comprehensive mechanism has not been elucidated. In the studies presented here, RNA deep sequencing and quantitative PCR were used to show that increases in cytokine production, as well as most changes in the transcriptional profile of Irgm1-/- bone marrow-derived macrophages (BMM), are dependent on increased type I IFN production seen in those cells. Metabolic alterations that drive increased cytokines in Irgm1-/- BMM - specifically increases in glycolysis and increased accumulation of acyl-carnitines - were unaffected by quenching type I IFN signaling. Dysregulation of peroxisomal homeostasis was identified as a novel upstream pathway that governs type I IFN production and inflammatory cytokine production. Collectively, these results enhance our understanding of the complex biochemical changes that are triggered by lack of Irgm1 and contribute to inflammatory disease seen with Irgm1-deficiency.
Collapse
Affiliation(s)
- Brian E Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Lanette R Fee
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Mark Menechella
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Bethann Affeldt
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Aemilia R Sprouse
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Amina Bounini
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA
| | - Yazan Alwarawrah
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlyn T Molloy
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina, USA; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Joseph A Prinz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA
| | - Devi Swain Lenz
- Duke University School of Medicine, Sequencing and Genomic Technologies, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, and Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Prashant Rai
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A Taylor
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development; Duke University Medical Center, Durham, North Carolina, USA; Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunobiology; Duke University Medical Center, Durham, North Carolina, USA; Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA.
| |
Collapse
|
15
|
Ko EM, Min J, Kim H, Jeong JA, Lee S, Kim S. Molecular characteristics of drug-susceptible Mycobacterium tuberculosis clinical isolates based on treatment duration. Osong Public Health Res Perspect 2024; 15:385-394. [PMID: 39511960 PMCID: PMC11563727 DOI: 10.24171/j.phrp.2024.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 08/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND In this study, we performed comparative genomic and transcriptomic analysis of clinical isolates of Mycobacterium tuberculosis collected from patients with drug-susceptible tuberculosis (DS-TB). The clinical isolates were categorized based on treatment duration: standard 6 months or >6 months. METHODS Study participants were recruited from a 2016 to 2018 tuberculosis cohort, and clinical M. tuberculosis isolates were collected from the sputum of patients with tuberculosis. We analyzed the genome and transcriptome of the isolated M. tuberculosis. RESULTS Genomic analysis revealed a specific non-synonymous single-nucleotide polymorphism in pe_pgrs9 and ppe34, exclusive to the group treated for >6 months. Transcriptomic analysis revealed increased expression of various virulence-associated protein family genes and decreased expression of ribosomal protein genes and ppe38 genes in the group treated for >6 months. CONCLUSION The identified genetic variation and gene expression patterns may influence treatment outcomes by modulating host immune responses, increasing virulence, and potentially contributing to persister cell formation in M. tuberculosis. This study provides insights into the genetic and transcriptomic factors associated with prolonged DS-TB treatment. However, our study identified molecular characteristics using a small sample size, and further detailed studies are warranted.
Collapse
Affiliation(s)
- Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jinsoo Min
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyungjun Kim
- Division of Infectious Disease Control, Bureau of Infectious Disease Policy, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sungkyoung Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Seonghan Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| |
Collapse
|
16
|
Naik SK, McNehlan ME, Mreyoud Y, Kinsella RL, Smirnov A, Sur Chowdhury C, McKee SR, Dubey N, Woodson R, Kreamalmeyer D, Stallings CL. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. Mucosal Immunol 2024; 17:1114-1127. [PMID: 39038752 DOI: 10.1016/j.mucimm.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1-/- mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.
Collapse
Affiliation(s)
- Sumanta K Naik
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael E McNehlan
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L Kinsella
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
18
|
Wei J, Ning H, Ramos‐Espinosa O, Eickhoff CS, Hou R, Wang Q, Fu M, Liu EY, Fan D, Hoft DF, Liu J. Tristetraprolin mediates immune evasion of mycobacterial infection in macrophages. FASEB Bioadv 2024; 6:249-262. [PMID: 39114448 PMCID: PMC11301268 DOI: 10.1096/fba.2024-00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 08/10/2024] Open
Abstract
Immune evasion of Mycobacterium tuberculosis (Mtb) facilitates intracellular bacterial growth. The mechanisms of immune evasion, however, are still not fully understood. In this study, we reveal that tristetraprolin (TTP), one of the best characterized RNA-binding proteins controlling the stability of targeted mRNAs, mediates innate immune evasion of mycobacteria. We found that TTP knockout mice displayed reduced bacterial burden in the early stage after Mtb aerosol challenge. Macrophages deficient in TTP also showed an inhibition in intracellular mycobacterial growth. Live mycobacteria induced TTP protein expression in macrophages, which was blocked by the mTOR inhibitor rapamycin. Rapamycin and AZD8055 specifically blocked 4EBP1 phosphorylation in infected macrophages and suppressed intracellular BCG growth. Rapamycin promoted TTP protein degradation through the ubiquitination pathway, whereas the proteasome inhibitor MG-132 blocked rapamycin function and thus stabilized TTP protein. TTP induction suppressed the expression of iNOS/TNF-α/IL-12/IL-23, and weakened protective immune responses in macrophages, whereas rapamycin enhanced the bactericidal effects through TTP inhibition. Moreover, blocking TTP binding increased the expression of TNF-α and iNOS and suppressed intracellular mycobacterial growth. Overall, our study reveals a novel role for RNA-binding protein TTP in Mtb immune evasion mechanisms and provides a potential target for host-directed therapy against tuberculosis (TB).
Collapse
Affiliation(s)
- Jiawei Wei
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Octavio Ramos‐Espinosa
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Christopher S. Eickhoff
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Basic Medical Science, School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Ethan Y. Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Daping Fan
- Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal MedicineSaint Louis University School of Medicine, Saint Louis UniversitySt. LouisMissouriUSA
| |
Collapse
|
19
|
Zhang X, Hu Y, Wang W, Ji R, Li Z, Yu W, Wu Z, Xiao Y, Guo T, Qi Z, Wang Y, Zhao C. IRGM/Irgm1 increases autophagy to inhibit activation of NLRP3 inflammasome in inflammatory injury induced acute liver failure. Cell Death Discov 2024; 10:272. [PMID: 38849356 PMCID: PMC11161524 DOI: 10.1038/s41420-024-02052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Immune-related GTPase M (IRGM) induces autophagy and suppresses inflammation, but its putative role and signaling mechanism remain undefined in the pathogenesis of liver failure. This study aimed to address how IRGM attenuates inflammatory injury by regulating autophagy in liver failure. In this study, a total of 10 patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) and 10 healthy controls were prospectively enrolled. Intrahepatic expression of IRGM/Irgm1, NLRP3 inflammasome (NLRP3, ASC, and caspase-1), autophagy-related proteins (LC3II, P62), and inflammatory cytokines (IL-1β, TNF-α) were measured. Autophagy was activated by rapamycin (4 mg/kg) in an acute liver failure (ALF) mouse model, which was used to further study the expression of Irgm1, NLRP3 inflammasome, autophagy-related proteins, and inflammatory cytokines using both qRT-PCR and Western blot analyses. Irgm1 expression was knocked down using Irgm1 short hairpin RNA (shRNA) in lipopolysaccharide (LPS)-induced AML12 cells to investigate the effects of Irgm1 deletion on autophagy and inflammation. We found that the expression of IRGM and autophagy-related proteins was significantly downregulated while the NLRP3 inflammasome was significantly upregulated in the livers of HBV-ACLF patients and the ALF mouse model (all P < 0.05). Rapamycin-induced autophagy ameliorated intrahepatic NLRP3 inflammasome activation and decreased inflammation and necrosis in the ALF mice. Irgm1 knockdown decreased autophagy and significantly upregulated NLRP3 inflammasome activation in AML12 cells (all P < 0.05). Rapamycin-induced autophagy also protected against hepatocyte injury following LPS stimulation in vitro by inhibiting NLRP3 inflammasome activation. Thus, IRGM/Irgm1 alleviates inflammation-mediated hepatocyte injury by regulating autophagy. This study provides new insight into potential molecular targets to treat liver failure.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Yangyang Hu
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Wei Wang
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Ru Ji
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Ziyue Li
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Weiyan Yu
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Zhinian Wu
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Ying Xiao
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Tingyu Guo
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Zeqiang Qi
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| | - Yadong Wang
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China.
| | - Caiyan Zhao
- Department of Infectious Diseases, the Hebei Medical University Third Hospital, Shijiazhuang, 050051, China
| |
Collapse
|
20
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
21
|
Yu X, Chen Y, Chen J, Fan Y, Lu H, Wu D, Xu Y. Shared genetic architecture between autoimmune disorders and B-cell acute lymphoblastic leukemia: insights from large-scale genome-wide cross-trait analysis. BMC Med 2024; 22:161. [PMID: 38616254 PMCID: PMC11017616 DOI: 10.1186/s12916-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND To study the shared genetic structure between autoimmune diseases and B-cell acute lymphoblastic leukemia (B-ALL) and identify the shared risk loci and genes and genetic mechanisms involved. METHODS Based on large-scale genome-wide association study (GWAS) summary-level data sets, we observed genetic overlaps between autoimmune diseases and B-ALL, and cross-trait pleiotropic analysis was performed to detect shared pleiotropic loci and genes. A series of functional annotation and tissue-specific analysis were performed to determine the influence of pleiotropic genes. The heritability enrichment analysis was used to detect crucial immune cells and tissues. Finally, bidirectional Mendelian randomization (MR) methods were utilized to investigate the casual associations. RESULTS Our research highlighted shared genetic mechanisms between seven autoimmune disorders and B-ALL. A total of 73 pleiotropic loci were identified at the genome-wide significance level (P < 5 × 10-8), 16 of which had strong evidence of colocalization. We demonstrated that several loci have been previously reported (e.g., 17q21) and discovered some novel loci (e.g., 10p12, 5p13). Further gene-level identified 194 unique pleiotropic genes, for example IKZF1, GATA3, IKZF3, GSDMB, and ORMDL3. Pathway analysis determined the key role of cellular response to cytokine stimulus, B cell activation, and JAK-STAT signaling pathways. SNP-level and gene-level tissue enrichment suggested that crucial role pleiotropic mechanisms involved in the spleen, whole blood, and EBV-transformed lymphocytes. Also, hyprcoloc and stratified LD score regression analyses revealed that B cells at different developmental stages may be involved in mechanisms shared between two different diseases. Finally, two-sample MR analysis determined causal effects of asthma and rheumatoid arthritis on B-ALL. CONCLUSIONS Our research proved shared genetic architecture between autoimmune disorders and B-ALL and shed light on the potential mechanism that might involve in.
Collapse
Affiliation(s)
- Xinghao Yu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Yiyin Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Fan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huimin Lu
- Department of Outpatient and Emergency, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China.
| |
Collapse
|
22
|
He P, Dai M, Li Z, Wang X, Liu H, He Y, Jiang H. Effect of connexin 43 in LPS/IL-4-induced macrophage M1/M2 polarization: An observational study. Medicine (Baltimore) 2024; 103:e37811. [PMID: 38608055 PMCID: PMC11018209 DOI: 10.1097/md.0000000000037811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Lipopolysaccharide (LPS) and interleukin-4 (IL-4) play important roles in inducing M1 and M2 macrophage polarization. Studies have shown that LPS can promote the polarization of macrophages to M1-type and produce many pro-inflammatory cytokines, while IL-4 can promote the polarization of macrophages to M2-type and produce many anti-inflammatory cytokines. Moreover, Connexin 43 (Cx43) is widely expressed in macrophages and has various regulatory functions. However, whether Cx43 is involved in the regulation of macrophage M1/M2 polarization has not been fully studied. This study examined the role of Cx43 and M2 polarization markers using Western blot, immunofluorescence, flow cytometry. Cx43 overexpression was induced using Cx43 overexpressing lentivirus. The statistical software SPSS 20.0 (IBM Corp.) and GraphPad Prism 8.0 (GraphPad Software, La Jolla, CA, United States) were used to analyze the results. P values < .05 were considered to indicate statistically significant differences. Our results showed that LPS promotes the polarization of macrophages to M1-type, which is accompanied by an increase in Cx43 expression from 0 to 24 hours. Moreover, the application of the Cx43-specific blockers Gap19 and Gap26 reduces the expression of macrophage M1-type polarization markers. Thus, the expression of Cx43 increases first, and then, due to the initiation of intracellular autophagy during LPS-induced macrophage M1 polarization. Cx43 is degraded and the expression of Cx43 decreases from 24 hours to 48 hours. IL-4 decreases the expression of Cx43 from 24 hours to 48 hours and promotes the transformation of macrophages to M2-type. The application of Cx43 overexpression lentivirus leads to a reduction in the expression of M2 polarization markers. IL-4-induced M2 polarization of macrophages inhibits cell autophagy, reducing Cx43 degradation and leading to an increase in Cx43 from 24 hours to 48 hours. Thus, Cx43 expression in M2-type polarization experiences a reduction at first and then an increase from 24 hours to 48 hours. The direction of macrophage polarization can be controlled by regulating the expression of Cx43, thus providing a theoretical basis for treating atherosclerosis, tumors, and other diseases associated with macrophage polarization.
Collapse
Affiliation(s)
- Pengchen He
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Mingxing Dai
- Department of Rehabilitation Therapy, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Zongpin Li
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Xiaoyi Wang
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Hongyuan Liu
- Department of Neurosurgery, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Yixiao He
- Department of Pathology, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| | - Han Jiang
- Department of Rehabilitation Therapy, Mianyang Central Hospital Affiliated to University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
23
|
Dockterman J, Reitano JR, Everitt JI, Wallace GD, Hendrix M, Taylor GA, Coers J. Irgm proteins attenuate inflammatory disease in mouse models of genital Chlamydia infection. mBio 2024; 15:e0030324. [PMID: 38501887 PMCID: PMC11005385 DOI: 10.1128/mbio.00303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024] Open
Abstract
Chlamydiae are obligate intracellular bacterial pathogens that may cause genital pathology via induction of destructive host immune responses. Human-adapted Chlamydia trachomatis causes inflammatory disease in human hosts but is easily cleared in mice, and mouse-adapted Chlamydia muridarum establishes a productive and pathogenic infection in murine hosts. While numerous anti-chlamydial host resistance factors have been discovered in mice and humans alike, little is known about host factors promoting host fitness independent of host resistance. Here, we show that interferon-inducible immunity-related GTPase M (Irgm) proteins function as such host factors ameliorating infection-associated sequalae in the murine female genital tract, thus characterizing Irgm proteins as mediators of disease tolerance. Specifically, we demonstrate that mice deficient for all three murine Irgm paralogs (pan-Irgm-/-) are defective for cell-autonomous immunity to C. trachomatis, which correlates with an early and transient increase in bacterial burden and sustained hyperinflammation in vivo. In contrast, upon infection of pan-Irgm-/- mice with C. muridarum, bacterial burden is unaffected, yet genital inflammation and scarring pathology are nonetheless increased, demonstrating that Irgm proteins can promote host fitness without altering bacterial burden. Additionally, pan-Irgm-/- mice display increased granulomatous inflammation in genital Chlamydia infection, implicating Irgm proteins in the regulation of granuloma formation and maintenance. These findings demonstrate that Irgm proteins regulate pathogenic immune responses to Chlamydia infection in vivo, establishing an effective infection model to examine the immunoregulatory functions and mechanisms of Irgm proteins. IMPORTANCE In response to genital Chlamydia infection, the immune system mounts a proinflammatory response to resist the pathogen, yet inflammation must be tightly controlled to avoid collateral damage and scarring to host genital tissue. Variation in the human IRGM gene is associated with susceptibility to autoinflammatory diseases but its role in ameliorating inflammatory diseases caused by infections is poorly defined. Here, we use mice deficient for all three murine Irgm paralogs to demonstrate that Irgm proteins not only provide host resistance to Chlamydia infections but also limit associated inflammation in the female genital tract. In particular, we find that murine Irgm expression prevents granulomatous inflammation, which parallels inflammatory diseases associated with variants in human IRGM. Our findings therefore establish genital Chlamydia infection as a useful model to study the roles for Irgm proteins in both promoting protective immunity and limiting pathogenic inflammation.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey R. Reitano
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey I. Everitt
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Graham D. Wallace
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Meghan Hendrix
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gregory A. Taylor
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke Universitygrid.26009.3d Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
24
|
Fu Y, Li J, Cai W, Huang Y, Liu X, Ma Z, Tang Z, Bian X, Zheng J, Jiang J, Li C. The emerging tumor microbe microenvironment: From delineation to multidisciplinary approach-based interventions. Acta Pharm Sin B 2024; 14:1560-1591. [PMID: 38572104 PMCID: PMC10985043 DOI: 10.1016/j.apsb.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 04/05/2024] Open
Abstract
Intratumoral microbiota has become research hotspots, and emerges as a non-negligent new component of tumor microenvironments (TME), due to its powerful influence on tumor initiation, metastasis, immunosurveillance and prognosis despite in low-biomass. The accumulations of microbes, and their related components and metabolites within tumor tissues, endow TME with additional pluralistic features which are distinct from the conventional one. Therefore, it's definitely necessary to comprehensively delineate the sophisticated landscapes of tumor microbe microenvironment, as well as their functions and related underlying mechanisms. Herein, in this review, we focused on the fields of tumor microbe microenvironment, including the heterogeneity of intratumor microbiota in different types of tumors, the controversial roles of intratumoral microbiota, the basic features of tumor microbe microenvironment (i.e., pathogen-associated molecular patterns (PAMPs), typical microbial metabolites, autophagy, inflammation, multi-faceted immunomodulation and chemoresistance), as well as the multidisciplinary approach-based intervention of tumor microbiome for cancer therapy by applying wild-type or engineered live microbes, microbiota metabolites, antibiotics, synthetic biology and rationally designed biomaterials. We hope our work will provide valuable insight to deeply understand the interplay of cancer-immune-microbial, and facilitate the development of microbes-based tumor-specific treatments.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jia Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Wenyun Cai
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
25
|
Aguilera MO, Delgui LR, Reggiori F, Romano PS, Colombo MI. Autophagy as an innate immunity response against pathogens: a Tango dance. FEBS Lett 2024; 598:140-166. [PMID: 38101809 DOI: 10.1002/1873-3468.14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023]
Abstract
Intracellular infections as well as changes in the cell nutritional environment are main events that trigger cellular stress responses. One crucial cell response to stress conditions is autophagy. During the last 30 years, several scenarios involving autophagy induction or inhibition over the course of an intracellular invasion by pathogens have been uncovered. In this review, we will present how this knowledge was gained by studying different microorganisms. We intend to discuss how the cell, via autophagy, tries to repel these attacks with the objective of destroying the intruder, but also how some pathogens have developed strategies to subvert this. These two fates can be compared with a Tango, a dance originated in Buenos Aires, Argentina, in which the partner dancers are in close connection. One of them is the leader, embracing and involving the partner, but the follower may respond escaping from the leader. This joint dance is indeed highly synchronized and controlled, perfectly reflecting the interaction between autophagy and microorganism.
Collapse
Affiliation(s)
- Milton O Aguilera
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Microbiología, Parasitología e Inmunología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Laura R Delgui
- Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Denmark
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - María I Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia-Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Centro Universitario M5502JMA, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| |
Collapse
|
26
|
Chen B, Guo G, Wang G, Zhu Q, Wang L, Shi W, Wang S, Chen Y, Chi X, Wen F, Maarouf M, Huang S, Yang Z, Chen JL. ATG7/GAPLINC/IRF3 axis plays a critical role in regulating pathogenesis of influenza A virus. PLoS Pathog 2024; 20:e1011958. [PMID: 38227600 PMCID: PMC10817227 DOI: 10.1371/journal.ppat.1011958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/26/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.
Collapse
Affiliation(s)
- Biao Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guoqing Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qianwen Zhu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Wenhao Shi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Faxin Wen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Zhou Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
27
|
Gao S, Yuan D, Gao L, Yang F, Lin X, van der Veen S. Epithelial Cell NOD1/IRGM Recruits STX17 to Neisseria gonorrhoeae-Containing Endosomes to Initiate Lysosomal Degradation. J Infect Dis 2023; 228:1776-1788. [PMID: 37926090 DOI: 10.1093/infdis/jiad478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Neisseria gonorrhoeae establishes tight interactions with mucosal epithelia through activity of its type IV pilus, while pilus retraction forces activate autophagic responses toward invading gonococci. Here we studied pilus-independent epithelial cell responses and showed that pilus-negative gonococci residing in early and late endosomes are detected and targeted by nucleotide-binding oligomerization domain 1 (NOD1). NOD1 subsequently forms a complex with immunity-related guanosine triphosphatase M (IRGM) and autophagy-related 16-like 1 (ATG16L1) to activate autophagy and recruit microtubule-associated protein light chain 3 (LC3) to the intracellular bacteria. IRGM furthermore directly recruits syntaxin 17 (STX17), which is able to form tethering complexes with the lysosome. Importantly, IRGM-STX17 interactions are enhanced by LC3 but were still observed at lower levels in an LC3 knockout cell line. These findings demonstrate key roles for NOD1 and IRGM in the sensing of intracellular N gonorrhoeae and subsequent directing of the bacterium to the lysosome for degradation.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Dailin Yuan
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, People's Republic of China
| | - Lingyu Gao
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fan Yang
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xu'ai Lin
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Stijn van der Veen
- Department of Microbiology, and Department of Dermatology of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
28
|
Kazemi S, Mirzaei R, Karampoor S, Hosseini-Fard SR, Ahmadyousefi Y, Soltanian AR, Keramat F, Saidijam M, Alikhani MY. Circular RNAs in tuberculosis: From mechanism of action to potential diagnostic biomarker. Microb Pathog 2023; 185:106459. [PMID: 37995882 DOI: 10.1016/j.micpath.2023.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), continues to be a major global health concern. Understanding the molecular intricacies of TB pathogenesis is crucial for developing effective diagnostic and therapeutic approaches. Circular RNAs (circRNAs), a class of single-stranded RNA molecules characterized by covalently closed loops, have recently emerged as potential diagnostic biomarkers in various diseases. CircRNAs have been demonstrated to modulate the host's immunological responses against TB, specifically by reducing monocyte apoptosis, augmenting autophagy, and facilitating macrophage polarization. This review comprehensively explores the roles and mechanisms of circRNAs in TB pathogenesis. We also discuss the growing body of evidence supporting their utility as promising diagnostic biomarkers for TB. By bridging the gap between fundamental circRNA biology and TB diagnostics, this review offers insights into the exciting potential of circRNAs in combatting this infectious disease.
Collapse
Affiliation(s)
- Sima Kazemi
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Reza Soltanian
- Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Iran
| | - Fariba Keramat
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
29
|
Zhang W, Wei P, Liu L, Ding T, Yang Y, Jin P, Zhang L, Zhao Z, Wang M, Hu B, Jin X, Xu Z, Zhang H, Song Y, Wang L, Zhong S, Chen J, Yang Z, Chen Z, Wu Y, Ye Z, Xu Y, Zhang Y, Wen LP. AIE-enabled transfection-free identification and isolation of viable cell subpopulations differing in the level of autophagy. Autophagy 2023; 19:3062-3078. [PMID: 37533292 PMCID: PMC10621245 DOI: 10.1080/15548627.2023.2235197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
ABBREVIATIONS 3-MA, 3-methyladenine; AIE, aggregation-induced emission; AIEgens, aggregation-induced emission luminogens; ATG5, autophagy related 5; BMDM, bone marrow-derived macrophage; CQ, chloroquine; DiD, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate; DiO, 3,3'-dioctadecyloxacarbocyanine perchlorate; DMSO, dimethyl sulfoxide; d-THP-1, differentiated THP-1; FACS, fluorescence activated cell sorting; FBS, fetal bovine serum; FCCP, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; GABARAP, GABA type A receptor-associated protein; GFP, green fluorescent protein; HBSS, Hanks' balanced salt solution; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; IL1B, interleukin 1 beta; KT, an AIE probe composed of a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LC3-II, lipidated LC3; LDH, lactate dehydrogenase; LIR, LC3-interacting region; LKR, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and a non-AIE fluorescent molecule rhodamine; LKT, engineered molecular probe composed of an LC3-interacting peptide, a cell-penetrating peptide and an AIEgen tetraphenyl ethylene; LPS, lipopolysaccharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MEF, mouse embryonic fibroblast; mRFP, monomeric red fluorescent protein; NHS, N-hydroxysuccinimide; NLRP3, NLR family pyrin domain containing 3; PBS, phosphate-buffered saline; PCC, pearson's correlation coefficient; PL, photoluminescence; PMA, phorbol 12-myristate 13-acetate; RAP, rapamycin; RIM, restriction of intramolecular motions; s.e.m., standard error of the mean; SPR, surface plasmon resonance; SQSTM1/p62, sequestosome 1; TAX1BP1, Tax1 binding protein 1; TPE, tetraphenylethylene; TPE-yne, 1-(4-ethynylphenyl)-1,2,2-triphenylethene; Tre, trehalose; u-THP-1: undifferentiated THP-1; UV-Vis, ultraviolet visible.
Collapse
Affiliation(s)
- Wenbin Zhang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Pengfei Wei
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, Shandong, China
| | - Liu Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Ding
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Yinyin Yang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peipei Jin
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhibin Zhao
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Meimei Wang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Bochuan Hu
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Xin Jin
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Zeng Xu
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, China
| | - Han Zhang
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, China
| | - Yang Song
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Liansheng Wang
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Suqin Zhong
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhenyu Yang
- China-Singapore International Joint Research Institute, Guangzhou, Guangdong, China
| | - Ziying Chen
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu Wu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Ye
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Youcui Xu
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjiao Zhang
- School of Medicine, School of Biomedical Sciences and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong, China
| | - Long-Ping Wen
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
T A JP, Karunakaran C, Nath A, Kappalli S. Transcriptomic Variation of Amphiprion Percula (Lacepède, 1802) in Response to Infection with Cryptocaryon Irritans Brown, 1951. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:858-890. [PMID: 37695540 DOI: 10.1007/s10126-023-10246-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Cryptocaryon irritans (Brown 1951) frequently infect the Pomacentridae fishes causing severe economic losses. However, the anti-C. irritans' molecular mechanism in these fishes remains largely unknown. To address this issue, we conducted RNA-Seq for C. irrtians-infected gills of the clownfish Amphiprion percula (Lacepède 1802) at the early (day 1) and late (day 3) stages of infection. A total of 1655 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs showed a vast genetic variation related to the following aspects: ECM-receptor interaction, P13K-Akt signalling, cytokine-cytokine receptor interaction, and endocytosis. During the early phase of infection, key genes involved in ATP production, energy homeostasis, and stress control were abruptly increased. In the late phase, however, acute response molecules of the peripheral nervous system (synaptic transmission and local immunity), metabolic system triggering glycogen synthesis, energy maintenance, and osmoregulation were found to be critical. The highest number of upregulated genes (URGs) recovered during the early phase was included under the 'biological process' category, which primarily functions as response to stimuli, signalling, and biological regulation. In the late phase, most of the URGs were related to gene regulation and immune system processes under 'molecular function' category. The immune-related URGs of early infection include major histocompatibility complex (MHC) class-II molecules apparently triggering CD4+ T-cell-activated Th responses, and that of late infection include MHC class-1 molecules for the possible culmination of CD8+ T-cell triggered cytotoxicity. The high level of genic single nucleotide polymorphisms (SNPs) identified during the late phase of infection is likely to influence their susceptibility to secondary infection. In summary, the identified DEGs and their related metabolic and immune-related pathways and the SNPs may provide new insights into coordinating the immunological events and improving resistance in Pomacentridae fishes against C. irritans.
Collapse
Affiliation(s)
- Jose Priya T A
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| | - Charutha Karunakaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Aishwarya Nath
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India
| | - Sudha Kappalli
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, India.
| |
Collapse
|
31
|
Fu J, Luo X, Lin M, Xiao Z, Huang L, Wang J, Zhu Y, Liu Y, Tao H. Marine-Fungi-Derived Gliotoxin Promotes Autophagy to Suppress Mycobacteria tuberculosis Infection in Macrophage. Mar Drugs 2023; 21:616. [PMID: 38132937 PMCID: PMC10745037 DOI: 10.3390/md21120616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The Mycobacterium tuberculosis (MTB) infection causes tuberculosis (TB) and has been a long-standing public-health threat. It is urgent that we discover novel antitubercular agents to manage the increased incidence of multidrug-resistant (MDR) or extensively drug-resistant (XDR) strains of MTB and tackle the adverse effects of the first- and second-line antitubercular drugs. We previously found that gliotoxin (1), 12, 13-dihydroxy-fumitremorgin C (2), and helvolic acid (3) from the cultures of a deep-sea-derived fungus, Aspergillus sp. SCSIO Ind09F01, showed direct anti-TB effects. As macrophages represent the first line of the host defense system against a mycobacteria infection, here we showed that the gliotoxin exerted potent anti-tuberculosis effects in human THP-1-derived macrophages and mouse-macrophage-leukemia cell line RAW 264.7, using CFU assay and laser confocal scanning microscope analysis. Mechanistically, gliotoxin apparently increased the ratio of LC3-II/LC3-I and Atg5 expression, but did not influence macrophage polarization, IL-1β, TNF-a, IL-10 production upon MTB infection, or ROS generation. Further study revealed that 3-MA could suppress gliotoxin-promoted autophagy and restore gliotoxin-inhibited MTB infection, indicating that gliotoxin-inhibited MTB infection can be treated through autophagy in macrophages. Therefore, we propose that marine fungi-derived gliotoxin holds the promise for the development of novel drugs for TB therapy.
Collapse
Affiliation(s)
- Jun Fu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Xiaowei Luo
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zimin Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Lishan Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Jiaxi Wang
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Huaming Tao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; (J.F.)
| |
Collapse
|
32
|
Naik SK, McNehlan ME, Mreyoud Y, Kinsella RL, Smirnov A, Chowdhury CS, McKee SR, Dubey N, Woodson R, Kreamalmeyer D, Stallings CL. Type I IFN signaling in the absence of IRGM1 promotes M. tuberculosis replication in immune cells by suppressing T cell responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560720. [PMID: 37873329 PMCID: PMC10592944 DOI: 10.1101/2023.10.03.560720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Polymorphisms in the IRGM gene are associated with susceptibility to tuberculosis in humans. A murine ortholog of Irgm, Irgm1, is also essential for controlling Mycobacterium tuberculosis (Mtb) infection in mice. Multiple processes have been associated with IRGM1 activity that could impact the host response to Mtb infection, including roles in autophagy-mediated pathogen clearance and expansion of activated T cells. However, what IRGM1-mediated pathway is necessary to control Mtb infection in vivo and the mechanistic basis for this control remains unknown. We dissected the contribution of IRGM1 to immune control of Mtb pathogenesis in vivo and found that Irgm1 deletion leads to higher levels of IRGM3-dependent type I interferon signaling. The increased type I interferon signaling precludes T cell expansion during Mtb infection. The absence of Mtb-specific T cell expansion in Irgm1-/- mice results in uncontrolled Mtb infection in neutrophils and alveolar macrophages, which directly contributes to susceptibility to infection. Together, our studies reveal that IRGM1 is required to promote T cell-mediated control of Mtb infection in neutrophils, which is essential for the survival of Mtb-infected mice. These studies also uncover new ways type I interferon signaling can impact TH1 immune responses.
Collapse
Affiliation(s)
- Sumanta K. Naik
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael E. McNehlan
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L. Kinsella
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chanchal Sur Chowdhury
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel R. McKee
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Neha Dubey
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly Woodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darren Kreamalmeyer
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Deretic V. Atg8ylation as a host-protective mechanism against Mycobacterium tuberculosis. FRONTIERS IN TUBERCULOSIS 2023; 1:1275882. [PMID: 37901138 PMCID: PMC10612523 DOI: 10.3389/ftubr.2023.1275882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nearly two decades have passed since the first report on autophagy acting as a cell-autonomous defense against Mycobacterium tuberculosis. This helped usher a new area of research within the field of host-pathogen interactions and led to the recognition of autophagy as an immunological mechanism. Interest grew in the fundamental mechanisms of antimicrobial autophagy and in the prophylactic and therapeutic potential for tuberculosis. However, puzzling in vivo data have begun to emerge in murine models of M. tuberculosis infection. The control of infection in mice affirmed the effects of certain autophagy genes, specifically ATG5, but not of other ATGs. Recent studies with a more complete inactivation of ATG genes now show that multiple ATG genes are indeed necessary for protection against M. tuberculosis. These particular ATG genes are involved in the process of membrane atg8ylation. Atg8ylation in mammalian cells is a broad response to membrane stress, damage and remodeling of which canonical autophagy is one of the multiple downstream outputs. The current developments clarify the controversies and open new avenues for both fundamental and translational studies.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| |
Collapse
|
34
|
Quan H, Chung H, Je S, Hong JJ, Kim BJ, Na YR, Seok SH. Pyruvate dehydrogenase kinase inhibitor dichloroacetate augments autophagy mediated constraining the replication of Mycobacteroides massiliense in macrophages. Microbes Infect 2023; 25:105139. [PMID: 37085043 DOI: 10.1016/j.micinf.2023.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Increasing evidence indicates a strong interaction between cellular metabolism and innate macrophage immunity. Here, we show that the intracellular replication of Mycobacteroides massiliense in macrophages depends on host pyruvate dehydrogenase kinase (PDK) activity. Infection with M. massiliense induced a metabolic switch in macrophages by increasing glycolysis and decreasing oxidative phosphorylation. Treatment with dichloroacetate (DCA), a PDK inhibitor, converts this switch in M. massiliense-infected macrophages and restricts intracellular bacterial replication. Mechanistically, DCA resulted in AMPKα1 activation via increased AMP/ATP ratio, consequently inducing autophagy to constrain bacterial proliferation in the phagolysosome. This study suggests that the pharmacological inhibition of PDK could be a strategy for host-directed therapy to control virulent M. massiliense infections.
Collapse
Affiliation(s)
- Hailian Quan
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Bio-MAX Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungmo Je
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, South Korea; KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Ajayi T, Rai P, Shi M, Gabor KA, Karmaus PWF, Meacham JM, Katen K, Madenspacher JH, Schurman SH, Fessler MB. Race-specific association of an IRGM risk allele with cytokine expression in human subjects. Sci Rep 2023; 13:12911. [PMID: 37558924 PMCID: PMC10412543 DOI: 10.1038/s41598-023-40313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
Immunity-related GTPase family M (IRGM), located on human chromosome 5q33.1, encodes a protein that promotes autophagy and suppresses the innate immune response. The minor allele of rs13361189 (-4299T>C), a single nucleotide polymorphism in the IRGM promoter, has been associated with several diseases, including Crohn's disease and tuberculosis. Although patterns of linkage disequilibrium and minor allele frequency for this polymorphism differ dramatically between subjects of European and African descent, studies of rs13361189 have predominantly been conducted in Europeans and the mechanism of association is poorly understood. We recruited a cohort of 68 individuals (30 White, 34 African American, 4 other race) with varying rs13361189 genotypes and assessed a panel of immune response measures including whole blood cytokine induction following ex vivo stimulation with Toll-like Receptor ligands. Minor allele carriers were found to have increased serum immunoglobulin M, C-reactive protein, and circulating CD8+ T cells. No differences in whole blood cytokines were observed between minor allele carriers and non-carriers in the overall study population; however, minor allele status was associated with increased induction of a subset of cytokines among African American subjects, and decreased induction among White subjects. These findings underline the importance of broad racial inclusion in genetic studies of immunity.
Collapse
Affiliation(s)
- Teminioluwa Ajayi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Prashant Rai
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Kristin A Gabor
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Peer W F Karmaus
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Julie M Meacham
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Kevin Katen
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Clinical Research Unit, National Institute on Aging, Baltimore, MD, 21225, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, MD D2-01, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
36
|
Demir E, Kacew S. Drosophila as a Robust Model System for Assessing Autophagy: A Review. TOXICS 2023; 11:682. [PMID: 37624187 PMCID: PMC10458868 DOI: 10.3390/toxics11080682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Autophagy is the process through which a body breaks down and recycles its own cellular components, primarily inside lysosomes. It is a cellular response to starvation and stress, which plays decisive roles in various biological processes such as senescence, apoptosis, carcinoma, and immune response. Autophagy, which was first discovered as a survival mechanism during starvation in yeast, is now known to serve a wide range of functions in more advanced organisms. It plays a vital role in how cells respond to stress, starvation, and infection. While research on yeast has led to the identification of many key components of the autophagy process, more research into autophagy in more complex systems is still warranted. This review article focuses on the use of the fruit fly Drosophila melanogaster as a robust testing model in further research on autophagy. Drosophila provides an ideal environment for exploring autophagy in a living organism during its development. Additionally, Drosophila is a well-suited compact tool for genetic analysis in that it serves as an intermediate between yeast and mammals because evolution conserved the molecular machinery required for autophagy in this species. Experimental tractability of host-pathogen interactions in Drosophila also affords great convenience in modeling human diseases on analogous structures and tissues.
Collapse
Affiliation(s)
- Esref Demir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Medical Laboratory Techniques Program, Department of Medical Services and Techniques, Vocational School of Health Services, Antalya Bilim University, 07190 Antalya, Turkey
| | - Sam Kacew
- R. Samuel McLaughllin Center for Population Health Risk Assessment, Institute of Population Health, University of Ottawa, 1 Stewart (320), Ottawa, ON K1N 6N5, Canada;
| |
Collapse
|
37
|
Muñoz-Sánchez S, Varela M, van der Vaart M, Meijer AH. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. BIOLOGY 2023; 12:817. [PMID: 37372102 DOI: 10.3390/biology12060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Existing drug treatment against tuberculosis is no match against the increasing number of multi-drug resistant strains of its causative agent, Mycobacterium tuberculosis (Mtb). A better understanding of how mycobacteria subvert the host immune defenses is crucial for developing novel therapeutic strategies. A potential approach is enhancing the activity of the autophagy machinery, which can direct bacteria to autophagolysosomal degradation. However, the interplay specifics between mycobacteria and the autophagy machinery must be better understood. Here, we analyzed live imaging data from the zebrafish model of tuberculosis to characterize mycobacteria-autophagy interactions during the early stages of infection in vivo. For high-resolution imaging, we microinjected fluorescent Mycobacterium marinum (Mm) into the tail fin tissue of zebrafish larvae carrying the GFP-LC3 autophagy reporter. We detected phagocytosed Mm clusters and LC3-positive Mm-containing vesicles within the first hour of infection. LC3 associations with these vesicles were transient and heterogeneous, ranging from simple vesicles to complex compound structures, dynamically changing shape by fusions between Mm-containing and empty vesicles. LC3-Mm-vesicles could adopt elongated shapes during cell migration or alternate between spacious and compact morphologies. LC3-Mm-vesicles were also observed in cells reverse migrating from the infection site, indicating that the autophagy machinery fails to control infection before tissue dissemination.
Collapse
Affiliation(s)
- Salomé Muñoz-Sánchez
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Mónica Varela
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Michiel van der Vaart
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
38
|
Yuan W, Zhan X, Liu W, Ma R, Zhou Y, Xu G, Ge Z. Mmu-miR-25-3p promotes macrophage autophagy by targeting DUSP10 to reduce mycobacteria survival. Front Cell Infect Microbiol 2023; 13:1120570. [PMID: 37256106 PMCID: PMC10225524 DOI: 10.3389/fcimb.2023.1120570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background The present study aimed to investigate the regulation of miR-25-3p on macrophage autophagy and its effect on macrophage clearance of intracellular Mycobacterium bovis Bacillus Calmette-Guerin (BCG) retention based on the previous findings on the differential expression of exosomal miRNA in macrophages infected with BCG. Methods Through enrichment analysis and Hub gene analysis, key differentially expressed miRNA and its target genes were selected. The targeted binding ability of the screened mmu-miR-25-3p and its predicted target gene DUSP10 was determined through the TargetScan database, and this was further verified by dual luciferase reporter gene assay. mmu-miR-25-3p mimics, mmu-miR-25-3p inhibitor, si-DUSP10, miR-NC,si-NC and PD98059 (ERK Inhibitor) were used to intervene macrophages Raw264.7. Rt-qPCR was used to detect the expression levels of mmu-miR-25-3p and DUSP10 mRNA. Western blot was used to detect the expression levels of DUSP10, LC3-II, p-ERK1/2, beclin1, Atg5 and Atg7. The autophagy flux of macrophage Raw264.7 in each group was observed by confocal laser microscopy, and the expression distribution of DUSP10 and the structure of autophagosomes were observed by transmission electron microscopy. Finally, the intracellular BCG load of macrophage Raw264.7 was evaluated by colony-forming unit (CFU) assay. Results Bioinformatics analysis filtered and identified the differentially expressed exosomal miRNAs. As a result, mmu-miR-25-3p expression was significantly increased, and dual specificity phosphatase 10 (DUSP10) was predicted as its target gene that was predominantly involved in autophagy regulation. The dual luciferase reporter gene activity assay showed that mmu-miR-25-3p was targeted to the 3'-untranslated region (UTR) of DUSP10. The infection of BCG induced the upregulation of mmu-miR-25-3p and downregulation of DUSP10 in RAW264.7 cells, which further increased the expression of LC3-II and promoted autophagy. Upregulated mmu-miR-25-3p expression decreased the level of DUSP10 and enhanced the phosphorylation of ERK1/2, which in turn upregulated the expression of LC3-II, Atg5, Atg7, and Beclin1. Immuno-electron microscopy, transmission electron microscopy, and autophagic flux analysis further confirmed that the upregulation of mmu-miR-25-3p promotes the autophagy of macrophages after BCG infection. The CFU number indicated that upregulated mmu-miR-25-3p expression decreased the mycobacterial load and accelerated residual mycobacteria clearance. Conclusion mmu-miR-25-3p promotes the phosphorylation of ERK1/2 by inhibiting the expression of DUSP10, thus enhancing the BCG-induced autophagy of macrophages. These phenomena reduce the bacterial load of intracellular Mycobacterium and facilitate the clearance of residual mycobacteria. mmu-miR-25-3p has great potential as a target for anti-tuberculosis immunotherapy and can be the optimal miRNA loaded into exosomal drug delivery system in future studies.
Collapse
Affiliation(s)
- Wenqi Yuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xuehua Zhan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Liu
- Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yueyong Zhou
- Clinical Medicine School, Ningxia Medical University, Yinchuan, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
39
|
Hegarty LM, Jones GR, Bain CC. Macrophages in intestinal homeostasis and inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00769-0. [PMID: 37069320 DOI: 10.1038/s41575-023-00769-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/19/2023]
Abstract
Macrophages are essential for the maintenance of intestinal homeostasis, yet appear to be drivers of inflammation in the context of inflammatory bowel disease (IBD). How these peacekeepers become powerful aggressors in IBD is still unclear, but technological advances have revolutionized our understanding of many facets of their biology. In this Review, we discuss the progress made in understanding the heterogeneity of intestinal macrophages, the functions they perform in gut health and how the environment and origin can control the differentiation and longevity of these cells. We describe how these processes might change in the context of chronic inflammation and how aberrant macrophage behaviour contributes to IBD pathology, and discuss how therapeutic approaches might target dysregulated macrophages to dampen inflammation and promote mucosal healing. Finally, we set out key areas in the field of intestinal macrophage biology for which further investigation is warranted.
Collapse
Affiliation(s)
- Lizi M Hegarty
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Gareth-Rhys Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK
| | - Calum C Bain
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh BioQuarter, Queen's Medical Research Institute, Edinburgh, UK.
| |
Collapse
|
40
|
Wo B, Du C, Yang Y, Qi H, Liang Z, He C, Yao F, Li X. Human placental extract regulates polarization of macrophages via IRGM/NLRP3 in allergic rhinitis. Biomed Pharmacother 2023; 160:114363. [PMID: 36746096 DOI: 10.1016/j.biopha.2023.114363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Allergic rhinitis (AR) is globally prevalent and its pathogenesis remains unclear. Alternative activation of macrophages is suggested in AR and thought to be involved in natural immunoregulatory processes in AR. Aberrant activation of Nod-like receptor protein 3 (NLRP3) inflammasome is linked with AR. Human placenta extract (HPE) is widely used in clinics due to its multiple therapeutic potential carried by diverse bioactive molecules in it. We aim to investigate the effect of HPE on AR and the possible underlying mechanism. Ovalbumin (OVA)-induced AR rat model was set up and treated by HPE or cetirizine. General manifestation of AR was evaluated along with the histological and biochemical analysis performed on rat nasal mucosa. A proteomic analysis was performed on AR rat mucosa. Mouse alveolar macrophages (MH-S cells) were cultured under OVA stimulation to investigate the regulation of macrophages polarization. The morphological changes and the expression of NLRP3 inflammasome and immunity-related GTPase M (IRGM) in nasal mucosa as well as in MH-S cells were evaluated respectively. The results of our study showed the general manifestation of AR along with the histological changes in nasal mucosa of AR rats were improved by HPE. HPE suppresses NLRP3 inflammasome and the decline of IRGM in AR rats and MH-S cells. HPE regulates macrophage polarization through IRGM/NLRP3. We demonstrated that HPE had protection for AR and the protection is achieved partly through suppressing M1 while promoting M2, the process which is mediated by IRGM via inhibiting NLRP3 inflammasome in AR.
Collapse
Affiliation(s)
- Beibei Wo
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Huimin Qi
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zihui Liang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Conghui He
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China
| | - Fang Yao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China.
| | - Xiaoming Li
- Department of Otolaryngology Head and Neck Surgery, the 980th Hospital of PLA Joint Logistics Support Force, Shijiazhuang, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
41
|
Zhou Y, Li Y, Tao R, Li J, Fang L, Xiao S. Porcine Reproductive and Respiratory Syndrome Virus nsp5 Induces Incomplete Autophagy by Impairing the Interaction of STX17 and SNAP29. Microbiol Spectr 2023; 11:e0438622. [PMID: 36815765 PMCID: PMC10101144 DOI: 10.1128/spectrum.04386-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen that has devastated the worldwide swine industry for over 30 years. Autophagy is an evolutionarily conserved intracellular lysosomal degradation pathway, and previous studies have documented that PRRSV infection prompts autophagosome accumulation. However, whether PRRSV induces complete or incomplete autophagy remains controversial. Here, we demonstrated that overexpression of PRRSV nonstructural protein 5 (nsp5) induced the accumulation of autophagosomes, and a similar scenario was observed in PRRSV-infected cells. Moreover, both PRRSV infection and nsp5 overexpression activated incomplete autophagy, as evidenced by the blockage of autophagosome-lysosome fusion. Mechanistically, nsp5 overexpression, as well as PRRSV infection, inhibited the interaction of syntaxin 17 (STX17) with synaptosomal-associated protein 29 (SNAP29), two SNARE proteins that mediate autophagosome fusion with lysosomes, to impair the formation of autolysosomes. We further confirmed that nsp5 interacted with STX17, rather than SANP29, and the interacting domains of STX17 were the N-terminal motif and SNARE motif. Taken together, the findings of our study suggest a mechanism by which PRRSV induces incomplete autophagy by blocking autophagosome degradation and provide insights into the development of new therapeutics to combat PRRSV infection. IMPORTANCE A substantial number of viruses have been demonstrated to utilize or hijack autophagy to benefit their replication. In the case of porcine reproductive and respiratory syndrome virus (PRRSV), previous studies have demonstrated the proviral effects of autophagy on PRRSV proliferation. Thus, an investigation of the mechanism by which PRRSV regulates the autophagy processes can provide new insight into viral pathogenesis. Autophagic flux is a dynamic process that consists of autophagosome formation and subsequent lysosomal degradation. However, the exact effect of PRRSV infection on the autophagic flux remains disputed. In this study, we demonstrated that PRRSV infection, as well as PRRSV nsp5 overexpression, inhibited the interaction of STX17 with SNAP29 to impair the fusion of autophagosomes with lysosomes, thereby blocking autophagic flux. This information will help us to understand PRRSV-host interactions and unravel new targets for PRRS prevention and control.
Collapse
Affiliation(s)
- Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jia Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
42
|
Wilburn KM, Meade RK, Heckenberg EM, Dockterman J, Coers J, Sassetti CM, Olive AJ, Smith CM. Differential Requirement for IRGM Proteins during Tuberculosis Infection in Mice. Infect Immun 2023; 91:e0051022. [PMID: 36629440 PMCID: PMC9933630 DOI: 10.1128/iai.00510-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterium that exclusively resides in human hosts and remains a dominant cause of morbidity and mortality among infectious diseases worldwide. Host protection against Mtb infection is dependent on the function of immunity-related GTPase clade M (IRGM) proteins. Polymorphisms in human IRGM associate with altered susceptibility to mycobacterial disease, and human IRGM promotes the delivery of Mtb into degradative autolysosomes. Among the three murine IRGM orthologs, Irgm1 has been singled out as essential for host protection during Mtb infections in cultured macrophages and in vivo. However, whether the paralogous murine Irgm genes, Irgm2 and Irgm3, play roles in host defense against Mtb or exhibit functional relationships with Irgm1 during Mtb infection remains undetermined. Here, we report that Irgm1-/- mice are indeed acutely susceptible to aerosol infection with Mtb, yet the additional deletion of the paralogous Irgm3 gene restores protective immunity to Mtb infections in Irgm1-deficient animals. Mice lacking all three Irgm genes (panIrgm-/-) are characterized by shifted lung cytokine profiles at 5 and 24 weeks postinfection, but control disease until the very late stages of the infection, when panIrgm-/- mice display increased mortality compared to wild-type mice. Collectively, our data demonstrate that disruptions in the balance between Irgm isoforms is more detrimental to the Mtb-infected host than total loss of Irgm-mediated host defense, a concept that also needs to be considered in the context of human Mtb susceptibility linked to IRGM polymorphisms.
Collapse
Affiliation(s)
- Kaley M. Wilburn
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rachel K. Meade
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Emma M. Heckenberg
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
43
|
Chen SL, Li CM, Li W, Liu QS, Hu SY, Zhao MY, Hu DS, Hao YW, Zeng JH, Zhang Y. How autophagy, a potential therapeutic target, regulates intestinal inflammation. Front Immunol 2023; 14:1087677. [PMID: 37168865 PMCID: PMC10165000 DOI: 10.3389/fimmu.2023.1087677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic inflammation in the intestines, with the primary types including ulcerative colitis and Crohn's disease. The link between autophagy, a catabolic mechanism in which cells clear protein aggregates and damaged organelles, and intestinal health has been widely studied. Experimental animal studies and human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation and other aspects. However, few articles have summarized and discussed the pathways by which autophagy improves or exacerbates IBD. Here, we review how autophagy alleviates IBD through the specific genes (e.g., ATG16L1, IRGM, NOD2 and LRRK2), crosstalk of multiple phenotypes with autophagy (e.g., Interaction of autophagy with endoplasmic reticulum stress, intestinal antimicrobial defense and apoptosis) and autophagy-associated signaling pathways. Moreover, we briefly discuss the role of autophagy in colorectal cancer and current status of autophagy-based drug research for IBD. It should be emphasized that autophagy has cell-specific and environment-specific effects on the gut. One of the problems of IBD research is to understand how autophagy plays a role in intestinal tract under specific environmental factors. A better understanding of the mechanism of autophagy in the occurrence and progression of IBD will provide references for the development of therapeutic drugs and disease management for IBD in the future.
Collapse
Affiliation(s)
- Shuang-Lan Chen
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Meng Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Li
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Song Liu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang-Yuan Hu
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao-Yuan Zhao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Sen Hu
- Department of Reproductive Medicine, Chengdu Xinan Women’s Hospital, Chengdu, China
| | - Yan-Wei Hao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Hao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jin-Hao Zeng, ; Yi Zhang,
| |
Collapse
|
44
|
Wang EJ, Wu MY, Ren ZY, Zheng Y, Ye RD, TAN CSH, Wang Y, Lu JH. Targeting macrophage autophagy for inflammation resolution and tissue repair in inflammatory bowel disease. BURNS & TRAUMA 2023; 11:tkad004. [PMID: 37152076 PMCID: PMC10157272 DOI: 10.1093/burnst/tkad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific, recurrent inflammatory disease, majorly affecting the gastrointestinal tract. Due to its unclear pathogenesis, the current therapeutic strategy for IBD is focused on symptoms alleviation. Autophagy is a lysosome-mediated catabolic process for maintaining cellular homeostasis. Genome-wide association studies and subsequent functional studies have highlighted the critical role of autophagy in IBD via a number of mechanisms, including modulating macrophage function. Macrophages are the gatekeepers of intestinal immune homeostasis, especially involved in regulating inflammation remission and tissue repair. Interestingly, many autophagic proteins and IBD-related genes have been revealed to regulate macrophage function, suggesting that macrophage autophagy is a potentially important process implicated in IBD regulation. Here, we have summarized current understanding of macrophage autophagy function in pathogen and apoptotic cell clearance, inflammation remission and tissue repair regulation in IBD, and discuss how this knowledge can be used as a strategy for IBD treatment.
Collapse
Affiliation(s)
- Er-jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ming-Yue Wu
- Center for Metabolic Liver Diseases and Center for Cholestatic Liver Diseases, Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zheng-yu Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chris Soon Heng TAN
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | | |
Collapse
|
45
|
Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023; 246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages are a diverse population of phagocytic immune cells involved in the host defense mechanisms and regulation of homeostasis. Usually, macrophages maintain healthy functioning at the cellular level, but external perturbation in their balanced functions can lead to acute and chronic disease conditions. By sensing the cues from the tissue microenvironment, these phagocytes adopt a plethora of phenotypes, such as inflammatory or M1 to anti-inflammatory (immunosuppressive) or M2 subtypes, to fulfill their spectral range of functions. The existing evidence in the literature supports that in macrophages, regulation of metabolic switches and metabolic adaptations are associated with their functional behaviors under various physiological and pathological conditions. Since these macrophages play a crucial role in many disorders, therefore it is necessary to understand their heterogeneity and metabolic reprogramming. Consequently, these macrophages have also emerged as a promising target for diseases in which their role is crucial in driving the disease pathology and outcome (e.g., Cancers). In this review, we discuss the recent findings that link many metabolites with macrophage functions and highlight how this metabolic reprogramming can improve our understanding of cellular malfunction in the macrophages during inflammatory disorders. A systematic analysis of the interconnecting crosstalk between metabolic pathways with macrophages should inform the selection of immunomodulatory therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
46
|
Non-canonical NF-κB contributes to endothelial pyroptosis and atherogenesis dependent on IRF-1. Transl Res 2022; 255:1-13. [PMID: 36384204 DOI: 10.1016/j.trsl.2022.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/07/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
Cell inflammation and death are closely linked processes contributing to endothelial dysfunction, which plays a critical role in atherogenesis. Activation of the NLRP3 inflammasome causes pyroptosis, the Gasdermin D (GSDMD)-mediated inflammatory cell death. The non-canonical NF-κB pathway has been implicated in inflammation; however, its role in NLRP3 inflammasome-mediated endothelial dysfunction has not been investigated. This study investigated a role for the non-canonical NF-κB pathway in regulating endothelial pyroptosis as it relates to atherogenesis. Immunohistochemistry indicated inflammasome activation in the endothelial cells (EC) of human atherosclerotic arteries. Flow cytometry and Western blot analysis revealed that oxidized low-density lipoprotein (oxLDL) activated the NLRP3 inflammasome, concomitant with the activation of non-canonical NF-κB in primary human aortic EC. Interference of NF-κB inducing kinase (NIK), the key regulator of the non-canonical pathway, significantly attenuated oxLDL- or LPS/ATP-induced NLRP3 inflammasome activation, pyroptosis, IL-1β, and IL-18 secretion. In contrast, overexpression of NIK exacerbated these responses. Chromatin immunoprecipitation revealed that activation of the non-canonical NF-κB pathway upregulated the transcription factor IRF-1 through RelB/p52 binding to its promoter region at -782/-770. In addition to the known target CASP1, RNA sequencing further identified GSDMD as a target gene of IRF-1. IRF-1 but not RelB/p52 interacted with the GSDMD promoter at -526/-515 and the CASP1 promoter at -11/10 to promote the expression and CASP1-mediated activation of GSDMD. Consistent with the observations in cultured endothelium, endothelial-specific deficiency of NIK or IRF-1 attenuated atherosclerosis in high-fat diet-fed Apoe-null mice. These data demonstrate that the non-canonical NF-κB pathway contributes to NLRP3 inflammasome-mediated endothelial pyroptosis and the development of atherosclerosis through GSDMD activation in a manner dependent on IRF-1. Further investigation may facilitate the identification of specific therapeutic targets for atherosclerotic heart diseases.
Collapse
|
47
|
Mehto S, Jena KK, Yadav R, Priyadarsini S, Samal P, Krishna S, Dhar K, Jain A, Chauhan NR, Murmu KC, Bal R, Sahu R, Jaiswal P, Sahoo BS, Patnaik S, Kufer TA, Rusten TE, Chauhan S, Prasad P, Chauhan S. Selective autophagy of RIPosomes maintains innate immune homeostasis during bacterial infection. EMBO J 2022; 41:e111289. [PMID: 36221902 PMCID: PMC9713718 DOI: 10.15252/embj.2022111289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 01/15/2023] Open
Abstract
The NOD1/2-RIPK2 is a key cytosolic signaling complex that activates NF-κB pro-inflammatory response against invading pathogens. However, uncontrolled NF-κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs-RIPK2-NF-κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self-assembling entities that coat the bacteria to induce NF-κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF-κB activation. IRGM suppresses RIPK2-dependent pro-inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection- and DSS-induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.
Collapse
Affiliation(s)
- Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Present address:
Division of Immunology, Boston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Rina Yadav
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | | | - Pallavi Samal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Sivaram Krishna
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Kollori Dhar
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,School of BiotechnologyKIIT UniversityBhubaneswarIndia
| | - Rinku Sahu
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,Regional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Pundrik Jaiswal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia
| | | | | | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional MedicineUniversity of HohenheimStuttgartGermany
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Swati Chauhan
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Punit Prasad
- Epigenetic and Chromatin Biology UnitInstitute of Life SciencesBhubaneswarIndia
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease BiologyInstitute of Life SciencesBhubaneswarIndia,CSIR–Centre For Cellular And Molecular Biology (CCMB)HyderabadIndia
| |
Collapse
|
48
|
Pant A, Yao X, Lavedrine A, Viret C, Dockterman J, Chauhan S, Chong-Shan Shi, Manjithaya R, Cadwell K, Kufer TA, Kehrl JH, Coers J, Sibley LD, Faure M, Taylor GA, Chauhan S. Interactions of Autophagy and the Immune System in Health and Diseases. AUTOPHAGY REPORTS 2022; 1:438-515. [PMID: 37425656 PMCID: PMC10327624 DOI: 10.1080/27694127.2022.2119743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Autophagy is a highly conserved process that utilizes lysosomes to selectively degrade a variety of intracellular cargo, thus providing quality control over cellular components and maintaining cellular regulatory functions. Autophagy is triggered by multiple stimuli ranging from nutrient starvation to microbial infection. Autophagy extensively shapes and modulates the inflammatory response, the concerted action of immune cells, and secreted mediators aimed to eradicate a microbial infection or to heal sterile tissue damage. Here, we first review how autophagy affects innate immune signaling, cell-autonomous immune defense, and adaptive immunity. Then, we discuss the role of non-canonical autophagy in microbial infections and inflammation. Finally, we review how crosstalk between autophagy and inflammation influences infectious, metabolic, and autoimmune disorders.
Collapse
Affiliation(s)
- Aarti Pant
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Xiaomin Yao
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Aude Lavedrine
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Christophe Viret
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Jake Dockterman
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
| | - Swati Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
| | - Chong-Shan Shi
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Grossman School of Medicine, New York, New York, United States of America
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, United States of America
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Thomas A. Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - John H. Kehrl
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jörn Coers
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
| | - Mathias Faure
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Equipe Labellisée par la Fondation pour la Recherche Médicale, FRM
| | - Gregory A Taylor
- Department of Immunology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Medical Center, Durham, North Carolina, USA
- Department of Molecular Microbiology, Washington University Sch. Med., St Louis, MO, 63110, USA
- Geriatric Research, Education, and Clinical Center, VA Health Care Center, Durham, North Carolina, USA
- Departments of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University, Medical Center, Durham, North Carolina, USA
| | - Santosh Chauhan
- Cell biology and Infectious diseases, Institute of Life Sciences, Bhubaneswar, India
- CSIR–Centre For Cellular And Molecular Biology (CCMB), Hyderabad, Telangana
| |
Collapse
|
49
|
Dockterman J, Coers J. How did we get here? Insights into mechanisms of immunity-related GTPase targeting to intracellular pathogens. Curr Opin Microbiol 2022; 69:102189. [PMID: 35963099 PMCID: PMC9745802 DOI: 10.1016/j.mib.2022.102189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/15/2022]
Abstract
The cytokine gamma-interferon activates cell-autonomous immunity against intracellular bacterial and protozoan pathogens by inducing a slew of antimicrobial proteins, some of which hinge upon immunity-related GTPases (IRGs) for their function. Three regulatory IRG clade M (Irgm) proteins chaperone about approximately 20 effector IRGs (GKS IRGs) to localize to pathogen-containing vacuoles (PVs) within mouse cells, initiating a cascade that results in PV elimination and killing of PV-resident pathogens. However, the mechanisms that allow IRGs to identify and traffic specifically to 'non-self' PVs have remained elusive. Integrating recent findings demonstrating direct interactions between GKS IRGs and lipids with previous work, we propose that three attributes mark PVs as GKS IRG targets: the absence of membrane-bound Irgm proteins, Atg8 lipidation, and the presence of specific lipid species. Combinatorial recognition of these three distinct signals may have evolved as a mechanism to ensure safe delivery of potent host antimicrobial effectors exclusively to PVs.
Collapse
Affiliation(s)
- Jacob Dockterman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Wang Z, Pan T, Tian Y, Liao J. A near-infrared probe for the real-time detection of lysosomal pH in living cells under "wash free" conditions. J Mater Chem B 2022; 10:7045-7051. [PMID: 36044015 DOI: 10.1039/d2tb01441f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lysosomal pH is an important indicator for the physiological state of eukaryotic cells. The real-time detection of intracellular lysosomal pH is critical for understanding and studying many physiological and pathological processes of cells. Herein, we designed and synthesized a series of novel pH sensors, namely W1, W2 and W3. By comparing the spectroscopic properties of the three molecules and their ability to target lysosomes in living cells, a specific probe W1 was selected for the quantitative analysis of lysosomal pH changes in live cells. W1 shows a fast, sensitive and highly selective red fluorescence response to an acidic pH value. The pKa value of W1 is 5.84, and the fluorescence intensity ratios of I743/I680 under acidic conditions show a good linear relationship with the pH value. In addition, W1 shows a 100-fold difference in fluorescence from an extracellular environment to an intracellular environment, allowing it to be used as a "wash free" staining probe to visualize the pH change of lysosomes. W1 was further applied to detect the changes of lysosomal pH during apoptosis and mitophagy. Thus, W1 is expected to be a potentially useful tool for monitoring the changes of lysosomal pH in cell-related physiological or pathological states.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Medicine, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong, 518055, China
| | - Tingting Pan
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518038, China.
| | - Yanqing Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, No 1088 Xueyuan Blvd, Xili, Nanshan District, Shenzhen, Guangdong, 518055, China.
| | - Jianxiang Liao
- Department of Pediatric Neurology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, 518038, China.
| |
Collapse
|