1
|
Nathanailidou P, Dhakshnamoorthy J, Xiao H, Zofall M, Holla S, O’Neill M, Andresson T, Wheeler D, Grewal SIS. Specialized replication of heterochromatin domains ensures self-templated chromatin assembly and epigenetic inheritance. Proc Natl Acad Sci U S A 2024; 121:e2315596121. [PMID: 38285941 PMCID: PMC10861883 DOI: 10.1073/pnas.2315596121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Heterochromatin, defined by histone H3 lysine 9 methylation (H3K9me), spreads across large domains and can be epigenetically inherited in a self-propagating manner. Heterochromatin propagation depends upon a read-write mechanism, where the Clr4/Suv39h methyltransferase binds to preexisting trimethylated H3K9 (H3K9me3) and further deposits H3K9me. How the parental methylated histone template is preserved during DNA replication is not well understood. Here, we demonstrate using Schizosaccharomyces pombe that heterochromatic regions are specialized replication domains demarcated by their surrounding boundary elements. DNA replication throughout these domains is distinguished by an abundance of replisome components and is coordinated by Swi6/HP1. Although mutations in the replicative helicase subunit Mcm2 that affect histone binding impede the maintenance of a heterochromatin domain at an artificially targeted ectopic site, they have only a modest impact on heterochromatin propagation via the read-write mechanism at an endogenous site. Instead, our findings suggest a crucial role for the replication factor Mcl1 in retaining parental histones and promoting heterochromatin propagation via a mechanism involving the histone chaperone FACT. Engagement of FACT with heterochromatin requires boundary elements, which position the heterochromatic domain at the nuclear peripheral subdomain enriched for heterochromatin factors. Our findings highlight the importance of replisome components and boundary elements in creating a specialized environment for the retention of parental methylated histones, which facilitates epigenetic inheritance of heterochromatin.
Collapse
Affiliation(s)
- Patroula Nathanailidou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Hua Xiao
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Maura O’Neill
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - Thorkell Andresson
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD21701
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| | - Shiv I. S. Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
2
|
Campero-Basaldua C, González J, García JA, Ramírez E, Hernández H, Aguirre B, Torres-Ramírez N, Márquez D, Sánchez NS, Gómez-Hernández N, Torres-Machorro AL, Riego-Ruiz L, Scazzocchio C, González A. Neo-functionalization in Saccharomyces cerevisiae: a novel Nrg1-Rtg3 chimeric transcriptional modulator is essential to maintain mitochondrial DNA integrity. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231209. [PMID: 37920568 PMCID: PMC10618058 DOI: 10.1098/rsos.231209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
In Saccharomyces cerevisiae, the transcriptional repressor Nrg1 (Negative Regulator of Glucose-repressed genes) and the β-Zip transcription factor Rtg3 (ReTroGrade regulation) mediate glucose repression and signalling from the mitochondria to the nucleus, respectively. Here, we show a novel function of these two proteins, in which alanine promotes the formation of a chimeric Nrg1/Rtg3 regulator that represses the ALT2 gene (encoding an alanine transaminase paralog of unknown function). An NRG1/NRG2 paralogous pair, resulting from a post-wide genome small-scale duplication event, is present in the Saccharomyces genus. Neo-functionalization of only one paralog resulted in the ability of Nrg1 to interact with Rtg3. Both nrg1Δ and rtg3Δ single mutant strains were unable to use ethanol and showed a typical petite (small) phenotype on glucose. Neither of the wild-type genes complemented the petite phenotype, suggesting irreversible mitochondrial DNA damage in these mutants. Neither nrg1Δ nor rtg3Δ mutant strains expressed genes encoded by any of the five polycistronic units transcribed from mitochondrial DNA in S. cerevisiae. This, and the direct measurement of the mitochondrial DNA gene complement, confirmed that irreversible damage of the mitochondrial DNA occurred in both mutant strains, which is consistent with the essential role of the chimeric Nrg1/Rtg3 regulator in mitochondrial DNA maintenance.
Collapse
Affiliation(s)
- Carlos Campero-Basaldua
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - James González
- Laboratorio de Biología Molecular y Genómica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Janeth Alejandra García
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - Edgar Ramírez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - Hugo Hernández
- Departamento de Biología, Facultad de Química, UNAM, México City, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Beatriz Aguirre
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - Nayeli Torres-Ramírez
- Laboratorio de Microscopía Electrónica Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Dariel Márquez
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - Norma Silvia Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| | - Nicolás Gómez-Hernández
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, SLP, México
| | - Ana Lilia Torres-Machorro
- Laboratorio de Biología Celular, Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosío Villegas', Tlalpan, Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, SLP, México
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alicia González
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, Ciudad de Mexi, México
| |
Collapse
|
3
|
Norollahi SE, Vahidi S, Shams S, Keymoradzdeh A, Soleymanpour A, Solymanmanesh N, Mirzajani E, Jamkhaneh VB, Samadani AA. Analytical and therapeutic profiles of DNA methylation alterations in cancer; an overview of changes in chromatin arrangement and alterations in histone surfaces. Horm Mol Biol Clin Investig 2023; 44:337-356. [PMID: 36799246 DOI: 10.1515/hmbci-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Abstract
DNA methylation is the most important epigenetic element that activates the inhibition of gene transcription and is included in the pathogenesis of all types of malignancies. Remarkably, the effectors of DNA methylation are DNMTs (DNA methyltransferases) that catalyze de novo or keep methylation of hemimethylated DNA after the DNA replication process. DNA methylation structures in cancer are altered, with three procedures by which DNA methylation helps cancer development which are including direct mutagenesis, hypomethylation of the cancer genome, and also focal hypermethylation of the promoters of TSGs (tumor suppressor genes). Conspicuously, DNA methylation, nucleosome remodeling, RNA-mediated targeting, and histone modification balance modulate many biological activities that are essential and indispensable to the genesis of cancer and also can impact many epigenetic changes including DNA methylation and histone modifications as well as adjusting of non-coding miRNAs expression in prevention and treatment of many cancers. Epigenetics points to heritable modifications in gene expression that do not comprise alterations in the DNA sequence. The nucleosome is the basic unit of chromatin, consisting of 147 base pairs (bp) of DNA bound around a histone octamer comprised of one H3/H4 tetramer and two H2A/H2B dimers. DNA methylation is preferentially distributed over nucleosome regions and is less increased over flanking nucleosome-depleted DNA, implying a connection between nucleosome positioning and DNA methylation. In carcinogenesis, aberrations in the epigenome may also include in the progression of drug resistance. In this report, we report the rudimentary notes behind these epigenetic signaling pathways and emphasize the proofs recommending that their misregulation can conclude in cancer. These findings in conjunction with the promising preclinical and clinical consequences observed with epigenetic drugs against chromatin regulators, confirm the important role of epigenetics in cancer therapy.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shima Shams
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzdeh
- Department of Neurosurgery, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Soleymanpour
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nazanin Solymanmanesh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Vida Baloui Jamkhaneh
- Department of Veterinary Medicine, Islamic Azad University of Babol Branch, Babol, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Mathur R, Jha NK, Saini G, Jha SK, Shukla SP, Filipejová Z, Kesari KK, Iqbal D, Nand P, Upadhye VJ, Jha AK, Roychoudhury S, Slama P. Epigenetic factors in breast cancer therapy. Front Genet 2022; 13:886487. [PMID: 36212140 PMCID: PMC9539821 DOI: 10.3389/fgene.2022.886487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic modifications are inherited differences in cellular phenotypes, such as cell gene expression alterations, that occur during somatic cell divisions (also, in rare circumstances, in germ line transmission), but no alterations to the DNA sequence are involved. Histone alterations, polycomb/trithorax associated proteins, short non-coding or short RNAs, long non—coding RNAs (lncRNAs), & DNA methylation are just a few biological processes involved in epigenetic events. These various modifications are intricately linked. The transcriptional potential of genes is closely conditioned by epigenetic control, which is crucial in normal growth and development. Epigenetic mechanisms transmit genomic adaptation to an environment, resulting in a specific phenotype. The purpose of this systematic review is to glance at the roles of Estrogen signalling, polycomb/trithorax associated proteins, DNA methylation in breast cancer progression, as well as epigenetic mechanisms in breast cancer therapy, with an emphasis on functionality, regulatory factors, therapeutic value, and future challenges.
Collapse
Affiliation(s)
- Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Dr. A.P.J Abdul Kalam Technical University, Lucknow, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Gaurav Saini
- Department of Civil Engineering, Netaji Subhas University of Technology, Delhi, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
| | - Sheo Prasad Shukla
- Department of Civil Engineering, Rajkiya Engineering College, Banda, India
| | - Zita Filipejová
- Small Animal Clinic, University of Veterinary Sciences Brno, Brno, Czechia
| | | | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majma'ah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Parma Nand
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, Gujarat
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Shubhadeep Roychoudhury
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
- *Correspondence: Abhimanyu Kumar Jha, ; Shubhadeep Roychoudhury,
| | - Petr Slama
- Department of Animal Morphology, Physiology, and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
8
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
9
|
Xue MQ, Wang YL, Wang JC, Wang XD, Wang XJ, Zhang YQ. Comprehensive analysis of the PD-L1 and immune infiltrates of N6-methyladenosine related long non-coding RNAs in bladder cancer. Sci Rep 2022; 12:10082. [PMID: 35710698 PMCID: PMC9203575 DOI: 10.1038/s41598-022-14097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Bladder cancer (BLCA) is one of the most frequent genitourinary cancers, with a high rate of morbidity and mortality. The connection of m6A-related lncRNAs with PD-L1 and tumor immune microenvironment (TIME) in BLCA prognosis was extensively investigated in this study, which could suggest novel therapeutic targets for further investigation. 30 m6A-associated lncRNAs with predictive values from the TCGA data set were identified with co-expression analysis. Cluster2 was correlated with a poor prognosis, upregulated PD-L1 expression, and higher immune ratings. Cluster2 had larger amounts of resting CD4 memory-activated T cells, M2 macrophages, neutrophils, and NK cells infiltration. "CHEMOKINE SIGNALING PATHWAY" was the most significantly enriched signaling pathway according to GSEA, which may play an important role in the different immune cell infiltrates between cluster1/2. The risk model for m6A-related lncRNAs could be employed in a prognostic model to predict BLCA prognosis, regardless of other clinical features. Collectively, m6A-related lncRNAs were linked to PD-L1 and TIME, which would dynamically affect the number of tumor-infiltrating immune cells. m6A-related lncRNAs may be key mediators of PD-L1 expression and immune cells infiltration and may strongly affect the TIME of BLCA.
Collapse
Affiliation(s)
- M Q Xue
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Y L Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China. .,Henan Bioengineering Technology Reseach Center, Zhengzhou, 450010, People's Republic of China.
| | - J C Wang
- Henan Bioengineering Technology Reseach Center, Zhengzhou, 450010, People's Republic of China
| | - X D Wang
- Henan General Hospital, Zhengzhou, 450002, People's Republic of China
| | - X J Wang
- Henan General Hospital, Zhengzhou, 450002, People's Republic of China
| | - Y Q Zhang
- Zhengzhou Technical College, Zhengzhou, 450010, People's Republic of China
| |
Collapse
|
10
|
Lensch S, Herschl MH, Ludwig CH, Sinha J, Hinks MM, Mukund A, Fujimori T, Bintu L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022; 11:e75115. [PMID: 35678392 PMCID: PMC9183234 DOI: 10.7554/elife.75115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
Collapse
Affiliation(s)
- Sarah Lensch
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Michael H Herschl
- University of California, Berkeley—University of California, San Francisco Graduate Program in BioengineeringBerkeleyUnited States
| | - Connor H Ludwig
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Joydeb Sinha
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Michaela M Hinks
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Adi Mukund
- Biophysics Program, Stanford UniversityStanfordUnited States
| | - Taihei Fujimori
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
Wang D, Wang X, Huang B, Zhao Y, Tu W, Jin X, Shao Y, Zhu Y, Lu G. METTL3 promotes prostate cancer progression by regulating miR-182 maturation in m6A-dependent manner. Andrologia 2022; 54:1581-1591. [PMID: 35413135 DOI: 10.1111/and.14422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
METTL3 was known to run through the whole cycle of RNA. It relied on m6A modification in the mRNAs of cancer-related genes to regulate tumour progression. The development of prostate cancer cells could be promoted by METTL3 via hedgehog pathway. Recent studies had shown that the effect of METTL3 on non-coding RNA was mainly dependent on the modification of m6A. However, it is still unknown whether METTL3 promotes tumour development through this mechanism in prostate cancer. The expression of METTL3 in prostate cancer tissues and cells was analysed by qRT-PCR and Western blot assays. CCK-8 assay, colony formation assay, wound-healing assay and transwell assays were conducted to detect the impact of METTL3 on cell proliferation, migration and invasion. Nude mice tumour models were built to evaluate the role of METTL3 in tumorigenesis. N6-methyladenosine (m6A) RNA immunoprecipitation assay (MeRIP) and co-immunoprecipitations assays were performed to verified that METTL3 upregulated the m6A level, interacted with microprocessor protein DGCR8, recognized the m6A modification of pre-miR-182 to regulate its maturation.METTL3 was highly expressed in prostate cancer, and knockdown of METTL3 significantly inhibited cell proliferation, migration, invasion and tumorigenesis, while overexpression of METTL3 promoted cell proliferation, migration, invasion and tumorigenesis in PCa. In addition, we found that METTL3 upregulating the level of m6A, and interacted with DGCR8 to recognize the m6A modification of pre-miR-182 to regulate its splicing and maturation and promote the high expression of miRNA. Our study suggests that METTL3 could be used in targeted therapies for PCa.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baoxing Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weichao Tu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingwei Jin
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoliang Lu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Guan Q, Lin H, Miao L, Guo H, Chen Y, Zhuo Z, He J. Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 2022; 15:13. [PMID: 35115038 PMCID: PMC8812173 DOI: 10.1186/s13045-022-01231-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
RNA modification plays a crucial role in many biological functions, and its abnormal regulation is associated with the progression of cancer. Among them, N6-methyladenine (m6A) is the most abundant RNA modification. Methyltransferase-like 14 (METTL14) is the central component of the m6A methylated transferase complex, which is involved in the dynamic reversible process of m6A modification. METTL14 acts as both an oncogene and tumor suppressor gene to regulate the occurrence and development of various cancers. The abnormal m6A level induced by METTL14 is related to tumorigenesis, proliferation, metastasis, and invasion. To date, the molecular mechanism of METTL14 in various malignant tumors has not been fully studied. In this paper, we systematically summarize the latest research progress on METTL14 as a new biomarker for cancer diagnosis and its biological function in human tumors and discuss its potential clinical application. This study aims to provide new ideas for targeted therapy and improved prognoses in cancer.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Huiran Lin
- Faculty of Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yongping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
13
|
Das T, Kamle A, Kumar A, Chakravarty S. Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia. Front Genet 2022; 12:635904. [PMID: 35173759 PMCID: PMC8841817 DOI: 10.3389/fgene.2021.635904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of sex differences in neural response to acute hypoxic insult has profound implications for the effective prevention and treatment of ischemic stroke. Global hypoxic-ischemic induced neural damage has been studied recently under well-controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish prompted us to conduct a comprehensive study on the mechanisms underlying the recovery. An omics approach for studying quantitative changes in brain proteome upon hypoxia insult following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results shed light on the altered expression of many regulatory proteins in the zebrafish brain upon acute hypoxia following recovery. The sex difference in differentially expressed proteins along with the proteins expressed in a uniform direction in both the sexes was studied. Core expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in the disease function heatmap. Most of the upstream regulators obtained through IPA were validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in males, compared to females. Acute hypoxia-induced sex-specific comparison of brain proteome led us to reveal many differentially expressed proteins, which can be further studied for the development of novel targets for better therapeutic strategy.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Sumana Chakravarty,
| |
Collapse
|
14
|
Huang M, Xu S, Liu L, Zhang M, Guo J, Yuan Y, Xu J, Chen X, Zou J. m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Front Cell Dev Biol 2022; 9:783322. [PMID: 34993198 PMCID: PMC8724434 DOI: 10.3389/fcell.2021.783322] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoporosis is a prevalent bone disease of the aging population, which is characterized by a decrease in bone mass because of the imbalance of bone metabolism. Although the prevention and treatment of osteoporosis have been explored by different researchers, the mechanisms underlying osteoporosis are not clear exactly. N6 methyladenosine (m6A) is a methylated adenosine nucleotide, which functions through its interaction with the proteins called “writers,” “readers” and “erasers.” The epigenetic regulation of m6A has been demonstrated to affect mRNA processing, nuclear export, translation, and splicing. At the cellular level, m6A modification has been known to affect cell proliferation, differentiation, and apoptosis of bone-related cells, such as bone marrow mesenchymal stem cells (BMSC), osteoblasts, and osteoclasts by regulating the expression of ALP, Runx2, Osterix, VEGF, and other related genes. Furthermore, PTH/Pth1r, PI3K‐Akt, Wnt/β‐Catenin, and other signaling pathways, which play important roles in the regulation of bone homeostasis, are also regulated by m6A. Thus, m6A modification may provide a new approach for osteoporosis treatment. The key roles of m6A modification in the regulation of bone health and osteoporosis are reviewed here in this article.
Collapse
Affiliation(s)
- Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Shaozhe Xu
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
15
|
Epigenomic signatures on paralogous genes reveal underappreciated universality of active histone codes adopted across animals. Comput Struct Biotechnol J 2022; 20:353-367. [PMID: 35035788 PMCID: PMC8741409 DOI: 10.1016/j.csbj.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
|
16
|
Zhang M, Wang Y, Zhao X, Liu C, Wang B, Zhou J. Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutr Res 2021; 95:1-18. [PMID: 34757305 DOI: 10.1016/j.nutres.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/02/2023]
Abstract
A key event featured in the early stage of chronic gut inflammatory diseases is the disordered recruitment and excess accumulation of immune cells in the gut lamina propria. This process is followed by the over-secretion of pro-inflammatory factors and the prolonged overactive inflammatory responses. Growing evidence has suggested that gut inflammatory diseases may be mitigated by butyric acid (BA) or butyrate sodium (NaB). Laboratory studies show that BA and NaB can enhance gut innate immune function through G-protein-mediated signaling pathways while mitigating the overactive inflammatory responses by inhibiting histone deacetylase. The regulatory effects may occur in both epithelial enterocytes and the immune cells in the lamina propria. Prior to further clinical trials, comprehensive literature reviews and rigid examination concerning the underlying mechanism are necessary. To this end, we collected and reviewed 197 published reports regarding the mechanisms, bioactivities, and clinical effects of BA and NaB to modulate gut inflammatory diseases. Our review found insufficient evidence to guarantee the safety of clinical practice of BA and NaB, either by anal enema or oral administration of capsule or tablet. The safety of clinical use of BA and NaB should be further evaluated. Alternatively, dietary patterns rich in "fruits, vegetables and beans" may be an effective and safe approach to prevent gut inflammatory disease, which elevates gut microbiota-dependent production of BA. Our review provides a comprehensive reference to future clinical trials of BA and NaB to treat gut inflammatory diseases.
Collapse
Affiliation(s)
- Mingbao Zhang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Yanan Wang
- Department of Gastroenterology and Hepatology, Second Hospital of Shandong University, Shandong University, 250012 China
| | - Xianqi Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Chang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China
| | - Baozhen Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012 China.
| |
Collapse
|
17
|
Jingjing W, Zhikai W, Xingyi Z, Peixuan L, Yiwu F, Xia W, Youpeng S, Ershun Z, Zhengtao Y. Lysine-specific demethylase 1 (LSD1) serves as an potential epigenetic determinant to regulate inflammatory responses in mastitis. Int Immunopharmacol 2021; 91:107324. [PMID: 33385711 DOI: 10.1016/j.intimp.2020.107324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
It is well-established that lysine-specific demethylase 1 (LSD1) is the first identified histone demethylase. Based on its demethylase enzymatic activity, LSD1 plays a pivotal role in vast range of cellular processes and cancers, but the understanding of its effects on inflammation is relatively limited. Using in vivo models of lipopolysaccharide (LPS)-induced inflammation and in vitro assays in mouse mammary epithelial cells, we identified the novel regulatory roles and underlying mechanisms of LSD1 on LPS-induced mastitis. Mammary gland and cells were collected for the following experiments after treatment. Histological changes were determined by H&E. Western blot analysis was used to detect the protein expression. ELISA and real-time PCR were used to evaluate protein and mRNA expression of inflammatory genes. Our results showed that LPS treatment resulted in a significant increase in LSD1 protein expression. GSK-LSD1 is a selective inhibitor of LSD1 enzyme activity. Treatment of mice with GSK-LSD1 inhibited LSD1 activity, reduced inflammatory cells recruitment to tissues and attenuated LPS-induced damage in mammary gland. Mechanistic investigations suggested that LSD1 inhibition led to the increase of histone H3K4me2 and H3K9me2. Furthermore, GSK-LSD1 inhibition of LSD1 further inhibited nuclear factor κ-B (NF-κB) signaling cascades, and subsequently inhibited the production of cytokines (TNF-α, IL-6 and IL-1β) in mammary gland. Taken together, our data reveal LSD1 as a potential regulator of inflammation and improve our understanding of epigenetic control on inflammation.
Collapse
Affiliation(s)
- Wang Jingjing
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China; College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wu Zhikai
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Zhu Xingyi
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Li Peixuan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Fu Yiwu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Wang Xia
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Sun Youpeng
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Zhou Ershun
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China
| | - Yang Zhengtao
- College of Veterinary Medicine, Jilin University, Jilin, Changchun 130062, People's Republic of China; College of Life Science and Engineering, Foshan University, Foshan, Guangdong 528231, People's Republic of China.
| |
Collapse
|
18
|
Vo TV, Dhakshnamoorthy J, Larkin M, Zofall M, Thillainadesan G, Balachandran V, Holla S, Wheeler D, Grewal SIS. CPF Recruitment to Non-canonical Transcription Termination Sites Triggers Heterochromatin Assembly and Gene Silencing. Cell Rep 2020; 28:267-281.e5. [PMID: 31269446 DOI: 10.1016/j.celrep.2019.05.107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/16/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
In eukaryotic genomes, heterochromatin is targeted by RNAi machinery and/or by pathways requiring RNA elimination and transcription termination factors. However, a direct connection between termination machinery and RNA polymerase II (RNAPII) transcriptional activity at heterochromatic loci has remained elusive. Here, we show that, in fission yeast, the conserved cleavage and polyadenylation factor (CPF) is a key component involved in RNAi-independent assembly of constitutive and facultative heterochromatin domains and that CPF is broadly required to silence genes regulated by Clr4SUV39H. Remarkably, CPF is recruited to non-canonical termination sites within the body of genes by the YTH family RNA-binding protein Mmi1 and is required for RNAPII transcription termination and facultative heterochromatin assembly. CPF loading by Mmi1 also promotes the selective termination of long non-coding RNAs that regulate gene expression in cis. These analyses delineate a mechanism in which CPF loaded onto non-canonical termination sites specifies targets of heterochromatin assembly and gene silencing.
Collapse
Affiliation(s)
- Tommy V Vo
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Madeline Larkin
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sahana Holla
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
From R-Loops to G-Quadruplexes: Emerging New Threats for the Replication Fork. Int J Mol Sci 2020; 21:ijms21041506. [PMID: 32098397 PMCID: PMC7073102 DOI: 10.3390/ijms21041506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Replicating the entire genome is one of the most complex tasks for all organisms. Research carried out in the last few years has provided us with a clearer picture on how cells preserve genomic information from the numerous insults that may endanger its stability. Different DNA repair pathways, coping with exogenous or endogenous threat, have been dissected at the molecular level. More recently, there has been an increasing interest towards intrinsic obstacles to genome replication, paving the way to a novel view on genomic stability. Indeed, in some cases, the movement of the replication fork can be hindered by the presence of stable DNA: RNA hybrids (R-loops), the folding of G-rich sequences into G-quadruplex structures (G4s) or repetitive elements present at Common Fragile Sites (CFS). Although differing in their nature and in the way they affect the replication fork, all of these obstacles are a source of replication stress. Replication stress is one of the main hallmarks of cancer and its prevention is becoming increasingly important as a target for future chemotherapeutics. Here we will try to summarize how these three obstacles are generated and how the cells handle replication stress upon their encounter. Finally, we will consider their role in cancer and their exploitation in current chemotherapeutic approaches.
Collapse
|
20
|
Greenstein RA, Barrales RR, Sanchez NA, Bisanz JE, Braun S, Al-Sady B. Set1/COMPASS repels heterochromatin invasion at euchromatic sites by disrupting Suv39/Clr4 activity and nucleosome stability. Genes Dev 2020; 34:99-117. [PMID: 31805521 PMCID: PMC6938669 DOI: 10.1101/gad.328468.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022]
Abstract
Protection of euchromatin from invasion by gene-repressive heterochromatin is critical for cellular health and viability. In addition to constitutive loci such as pericentromeres and subtelomeres, heterochromatin can be found interspersed in gene-rich euchromatin, where it regulates gene expression pertinent to cell fate. While heterochromatin and euchromatin are globally poised for mutual antagonism, the mechanisms underlying precise spatial encoding of heterochromatin containment within euchromatic sites remain opaque. We investigated ectopic heterochromatin invasion by manipulating the fission yeast mating type locus boundary using a single-cell spreading reporter system. We found that heterochromatin repulsion is locally encoded by Set1/COMPASS on certain actively transcribed genes and that this protective role is most prominent at heterochromatin islands, small domains interspersed in euchromatin that regulate cell fate specifiers. Sensitivity to invasion by heterochromatin, surprisingly, is not dependent on Set1 altering overall gene expression levels. Rather, the gene-protective effect is strictly dependent on Set1's catalytic activity. H3K4 methylation, the Set1 product, antagonizes spreading in two ways: directly inhibiting catalysis by Suv39/Clr4 and locally disrupting nucleosome stability. Taken together, these results describe a mechanism for spatial encoding of euchromatic signals that repel heterochromatin invasion.
Collapse
Affiliation(s)
- R A Greenstein
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Ramon R Barrales
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Nicholas A Sanchez
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
- TETRAD Graduate Program, University of California at San Francisco, San Francisco, California 94143, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| | - Sigurd Braun
- Department of Physiological Chemistry, Biomedical Center (BMC), Ludwig Maximilians University of Munich, 82152 Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, 82152 Martinsried, Germany
| | - Bassem Al-Sady
- Department of Microbiology and Immunology, George Williams Hooper Foundation, University of California at San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
21
|
Khalid M, Abdollahi M. Epigenetic modifications associated with pathophysiological effects of lead exposure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:235-287. [PMID: 31402779 DOI: 10.1080/10590501.2019.1640581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead (Pb) exposure during different stages of development has demonstrated dose, duration, sex, and tissue-specific pathophysiological outcomes due to altered epigenetic regulation via (a) DNA methylation, (b) histone modifications, (c) miRNAs, and (d) chromatin accessibility. Pb-induced alteration of epigenetic regulation causes neurotoxic and extra-neurotoxic pathophysiological outcomes. Neurotoxic effects of Pb include dysfunction of memory and learning, behavioral disorder, attention deficit hyperactivity disorder, autism spectrum disorder, aging, Alzheimer's disease, tauopathy, and neurodegeneration. Extra-neurotoxic effects of Pb include altered body weight, metabolic disorder, cardiovascular disorders, hematopoietic disorder, and reproductive impairment. Pb exposure either early in life or at any stage of development results in undesirable pathophysiological outcomes that tends to sustain and maintain for a lifetime.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, Wei JF, Yang H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 2019; 18:110. [PMID: 31228940 PMCID: PMC6588935 DOI: 10.1186/s12943-019-1036-9] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/06/2019] [Indexed: 01/17/2023] Open
Abstract
Background METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Recently, METTL3 was also found to affect the m6A modification in non-coding RNAs including miRNAs, lincRNAs and circRNAs. However, whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet. Methods Quantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of METTL3 in bladder cancer. The survival analysis was adopted to explore the association between METTL3 expression and the prognosis of bladder cancer. Bladder cancer cells were stably transfected with lentivirus and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of METTL3 in bladder cancer. RNA immunoprecipitation (RIP), co-immunoprecipitations and RNA m6A dot blot assays were conducted to confirm that METTL3 interacted with the microprocessor protein DGCR8 and modulated the pri-miR221/222 process in an m6A-dependent manner. Luciferase reporter assay was employed to identify the direct binding sites of miR221/222 with PTEN. Colony formation assay and CCK8 assays were conducted to confirm the function of miR-221/222 in METTL3-induced cell growth in bladder cancer. Results We confirmed the oncogenic role of METTL3 in bladder cancer by accelerating the maturation of pri-miR221/222, resulting in the reduction of PTEN, which ultimately leads to the proliferation of bladder cancer. Moreover, we found that METTL3 was significantly increased in bladder cancer and correlated with poor prognosis of bladder cancer patients. Conclusions Our findings suggested that METTL3 may have an oncogenic role in bladder cancer through interacting with the microprocessor protein DGCR8 and positively modulating the pri-miR221/222 process in an m6A-dependent manner. To our knowledge, this is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12943-019-1036-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jing-Zi Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Rui Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hong-Cheng Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Bo Yuan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jian-Chen Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Zi-Jian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
23
|
Rowe EM, Xing V, Biggar KK. Lysine methylation: Implications in neurodegenerative disease. Brain Res 2019; 1707:164-171. [DOI: 10.1016/j.brainres.2018.11.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
|
24
|
Iarovaia OV, Kovina AP, Petrova NV, Razin SV, Ioudinkova ES, Vassetzky YS, Ulianov SV. Genetic and Epigenetic Mechanisms of β-Globin Gene Switching. BIOCHEMISTRY (MOSCOW) 2018; 83:381-392. [PMID: 29626925 DOI: 10.1134/s0006297918040090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and β-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and β-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult β-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with β-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the β-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of β-globin genes.
Collapse
Affiliation(s)
- O V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Pan Y, Ma P, Liu Y, Li W, Shu Y. Multiple functions of m 6A RNA methylation in cancer. J Hematol Oncol 2018; 11:48. [PMID: 29587823 PMCID: PMC5870302 DOI: 10.1186/s13045-018-0590-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
First identified in 1974, m6A RNA methylation, which serves as a predominant internal modification of RNA in higher eukaryotes, has gained prodigious interest in recent years. Modifications of m6A are dynamic and reversible in mammalian cells, which have been proposed as another layer of epigenetic regulation similar to DNA and histone modifications. m6A RNA methylation is involved in all stages in the life cycle of RNA, ranging from RNA processing, through nuclear export, translation modulation to RNA degradation, which suggests its potential of influencing a plurality of aspects of RNA metabolism. All of the recent studies have pointed to a complicated regulation network of m6A modification in different tissues, cell lines, and space–time models. m6A methylation has been found to have an impact on tumor initiation and progression through various mechanisms. Furthermore, m6A RNA methylation has provided new opportunities for early stage diagnosis and treatment of cancers. Herein, we review the chemical basis of m6A RNA methylation, its multiple functions and potential significance in cancer.
Collapse
Affiliation(s)
- Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Liu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Oncology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
26
|
Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:143-167. [PMID: 29243873 DOI: 10.1002/ajmg.b.32616] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a mood disorder that affects behavior and impairs cognition. A gene potentially important to this disorder is the brain derived neurotrophic factor (BDNF) as it is involved in processes controlling neuroplasticity. Various mechanisms exist to regulate BDNF's expression level, subcellular localization, and sorting to appropriate secretory pathways. Alterations to these processes by genetic factors and negative stressors can dysregulate its expression, with possible implications for MDD. Here, we review the mechanisms governing the regulation of BDNF expression, and discuss how disease-associated single nucleotide polymorphisms (SNPs) can alter these mechanisms, and influence MDD. As negative stressors increase the likelihood of MDD, we will also discuss the impact of these stressors on BDNF expression, the cellular effect of such a change, and its impact on behavior in animal models of stress. We will also describe epigenetic processes that mediate this change in BDNF expression. Similarities in BDNF expression between animal models of stress and those in MDD will be highlighted. We will also contrast epigenetic patterns at the BDNF locus between animal models of stress, and MDD patients, and address limitations to current clinical studies. Future work should focus on validating current genetic and epigenetic findings in tightly controlled clinical studies. Regions outside of BDNF promoters should also be explored, as should other epigenetic marks, to improve identification of biomarkers for MDD.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leela Sathyaputri
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
27
|
Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae. Genetics 2017; 207:975-991. [PMID: 28912343 DOI: 10.1534/genetics.117.300290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2.
Collapse
|
28
|
Molecular cloning of chicken TET family genes and role of chicken TET1 in erythropoiesis. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
How does chromatin package DNA within nucleus and regulate gene expression? Int J Biol Macromol 2017; 101:862-881. [PMID: 28366861 DOI: 10.1016/j.ijbiomac.2017.03.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 01/26/2023]
Abstract
The human body is made up of 60 trillion cells, each cell containing 2 millions of genomic DNA in its nucleus. How is this genomic deoxyribonucleic acid [DNA] organised into nuclei? Around 1880, W. Flemming discovered a nuclear substance that was clearly visible on staining under primitive light microscopes and named it 'chromatin'; this is now thought to be the basic unit of genomic DNA organization. Since long before DNA was known to carry genetic information, chromatin has fascinated biologists. DNA has a negatively charged phosphate backbone that produces electrostatic repulsion between adjacent DNA regions, making it difficult for DNA to fold upon itself. In this article, we will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression?
Collapse
|
30
|
Taneja N, Zofall M, Balachandran V, Thillainadesan G, Sugiyama T, Wheeler D, Zhou M, Grewal SIS. SNF2 Family Protein Fft3 Suppresses Nucleosome Turnover to Promote Epigenetic Inheritance and Proper Replication. Mol Cell 2017; 66:50-62.e6. [PMID: 28318821 DOI: 10.1016/j.molcel.2017.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 02/08/2017] [Indexed: 02/05/2023]
Abstract
Heterochromatin can be epigenetically inherited in cis, leading to stable gene silencing. However, the mechanisms underlying heterochromatin inheritance remain unclear. Here, we identify Fft3, a fission yeast homolog of the mammalian SMARCAD1 SNF2 chromatin remodeler, as a factor uniquely required for heterochromatin inheritance, rather than for de novo assembly. Importantly, we find that Fft3 suppresses turnover of histones at heterochromatic loci to facilitate epigenetic transmission of heterochromatin in cycling cells. Moreover, Fft3 also precludes nucleosome turnover at several euchromatic loci to prevent R-loop formation, ensuring proper replication progression. Our analyses show that overexpression of Clr4/Suv39h, which is also required for efficient replication through these loci, suppresses phenotypes associated with the loss of Fft3. This work uncovers a conserved factor critical for epigenetic inheritance of heterochromatin and describes a mechanism in which suppression of nucleosome turnover prevents formation of structural barriers that impede replication at fragile regions in the genome.
Collapse
Affiliation(s)
- Nitika Taneja
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vanivilasini Balachandran
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gobi Thillainadesan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoyasu Sugiyama
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ming Zhou
- Laboratory of Proteomics and Analytical Technologies, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci Rep 2016; 6:36328. [PMID: 27808254 PMCID: PMC5093762 DOI: 10.1038/srep36328] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022] Open
Abstract
α-Synuclein (αS) is a protein linked to Parkinson’s disease (PD) and related neurodegenerative disorders. It is mostly localized within synapses, but αS has also been suggested to play a role in the nucleus. We used transgenic Drosophila and inducible SH-SY5Y neuroblastoma cells to investigate the effects of αS on chromatin with a particular focus on histone modifications. Overexpression of αS in male flies as well as in retinoic acid pre-treated neuroblastoma cells led to an elevation of histone H3K9 methylations, mostly mono- (H3K9me1) and di- (H3K9me2). The transient increase of H3K9 methylation in αS-induced SH-SY5Y cells was preceded by mRNA induction of the euchromatic histone lysine N-methyltransferase 2 (EHMT2). EHMT2 and H3K9me2 can function within the REST complex. Chromatin immunoprecipitation (ChIP) analyses of selected candidate, REST regulated genes showed significantly increased H3K9me2 promoter occupancy of genes encoding the L1CAM cell adhesion molecule and the synaptosomal-associated protein SNAP25, whose reduced expression levels were confirmed by RT-qPCR in αS induced cells. Treatment with EHMT inhibitor UNC0638 restored the mRNA levels of L1CAM and SNAP25. Thus, αS overexpression enhances H3K9 methylations via ΕΗΜΤ2 resulting in elevated H3K9me2 at the SNAP25 promoter, possibly affecting SNARE complex assembly and hence synaptic vesicle fusion events regulated by αS.
Collapse
|
32
|
Lau AC, Zhu KP, Brouhard EA, Davis MB, Csankovszki G. An H4K16 histone acetyltransferase mediates decondensation of the X chromosome in C. elegans males. Epigenetics Chromatin 2016; 9:44. [PMID: 27777629 PMCID: PMC5070013 DOI: 10.1186/s13072-016-0097-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 02/08/2023] Open
Abstract
Background In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. Results To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. Conclusion These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes. Electronic supplementary material The online version of this article (doi:10.1186/s13072-016-0097-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alyssa C Lau
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA ; Genome Technologies, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kevin P Zhu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Elizabeth A Brouhard
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Michael B Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University Ave., Ann Arbor, MI 48109-1048 USA
| |
Collapse
|
33
|
Khandekar A, Springer S, Wang W, Hicks S, Weinheimer C, Diaz-Trelles R, Nerbonne JM, Rentschler S. Notch-Mediated Epigenetic Regulation of Voltage-Gated Potassium Currents. Circ Res 2016; 119:1324-1338. [PMID: 27697822 DOI: 10.1161/circresaha.116.309877] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
RATIONALE Ventricular arrhythmias often arise from the Purkinje-myocyte junction and are a leading cause of sudden cardiac death. Notch activation reprograms cardiac myocytes to an induced Purkinje-like state characterized by prolonged action potential duration and expression of Purkinje-enriched genes. OBJECTIVE To understand the mechanism by which canonical Notch signaling causes action potential prolongation. METHODS AND RESULTS We find that endogenous Purkinje cells have reduced peak K+ current, Ito, and IK,slow when compared with ventricular myocytes. Consistent with partial reprogramming toward a Purkinje-like phenotype, Notch activation decreases peak outward K+ current density, as well as the outward K+ current components Ito,f and IK,slow. Gene expression studies in Notch-activated ventricles demonstrate upregulation of Purkinje-enriched genes Contactin-2 and Scn5a and downregulation of K+ channel subunit genes that contribute to Ito,f and IK,slow. In contrast, inactivation of Notch signaling results in increased cell size commensurate with increased K+ current amplitudes and mimics physiological hypertrophy. Notch-induced changes in K+ current density are regulated at least in part via transcriptional changes. Chromatin immunoprecipitation demonstrates dynamic RBP-J (recombination signal binding protein for immunoglobulin kappa J region) binding and loss of active histone marks on K+ channel subunit promoters with Notch activation, and similar transcriptional and epigenetic changes occur in a heart failure model. Interestingly, there is a differential response in Notch target gene expression and cellular electrophysiology in left versus right ventricular cardiac myocytes. CONCLUSIONS In summary, these findings demonstrate a novel mechanism for regulation of voltage-gated potassium currents in the setting of cardiac pathology and may provide a novel target for arrhythmia drug design.
Collapse
Affiliation(s)
- Aditi Khandekar
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Steven Springer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wei Wang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephanie Hicks
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Carla Weinheimer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stacey Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
34
|
Gibeault RL, Conn KL, Bildersheim MD, Schang LM. An Essential Viral Transcription Activator Modulates Chromatin Dynamics. PLoS Pathog 2016; 12:e1005842. [PMID: 27575707 PMCID: PMC5004865 DOI: 10.1371/journal.ppat.1005842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/02/2022] Open
Abstract
Although ICP4 is the only essential transcription activator of herpes simplex virus 1 (HSV-1), its mechanisms of action are still only partially understood. We and others propose a model in which HSV-1 genomes are chromatinized as a cellular defense to inhibit HSV-1 transcription. To counteract silencing, HSV-1 would have evolved proteins that prevent or destabilize chromatinization to activate transcription. These proteins should act as HSV-1 transcription activators. We have shown that HSV-1 genomes are organized in highly dynamic nucleosomes and that histone dynamics increase in cells infected with wild type HSV-1. We now show that whereas HSV-1 mutants encoding no functional ICP0 or VP16 partially enhanced histone dynamics, mutants encoding no functional ICP4 did so only minimally. Transient expression of ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or HSV-1 DNA. The dynamics of H3.1 were increased in cells expressing ICP4 to a greater extent than those of H3.3. The dynamics of H2B were increased in cells expressing ICP4, whereas those of canonical H2A were not. ICP4 preferentially targets silencing H3.1 and may also target the silencing H2A variants. In infected cells, histone dynamics were increased in the viral replication compartments, where ICP4 localizes. These results suggest a mechanism whereby ICP4 activates transcription by disrupting, or preventing the formation of, stable silencing nucleosomes on HSV-1 genomes. The nuclear-replicating DNA viruses of the family herpesviridae cause a variety of diseases. Eight herpesviruses infect humans. Three of them, including herpes simplex virus 1 (HSV-1), belong to the alpha-herpesvirus sub-family. Viruses in this family have the fastest replication cycles of all herpesviruses, producing acute symptoms. During lytic infection, the genomes of HSV-1 associate with histones in more dynamic chromatin than those of the beta- and gamma- herpesviruses. The transcription activator ICP4 is conserved only among alpha-herpesviruses. Although ICP4 is essential, relatively little is known about its mechanisms of action. We have shown that histone dynamics are enhanced in HSV-1 lytically infected cells. Here we show that HSV-1 mutants in ICP4 are deficient in their ability to enhance histone dynamics. ICP4 was sufficient to enhance histone dynamics in the absence of other HSV-1 proteins or DNA. The dynamics of histones were greater in the viral replication compartments, where ICP4 localizes, than in the cellular chromatin. ICP4 may thus mobilize histones away from HSV-1 genomes to activate transcription. Such a mechanism of transcription activation would result in the highly dynamic nature of the viral chromatin and the fast replication cycles, and the acute pathologies, of the alpha-herpesviruses.
Collapse
Affiliation(s)
- Rebecca L. Gibeault
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kristen L. Conn
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Luis M. Schang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
35
|
Abstract
Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.
Collapse
Affiliation(s)
- C David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York 10065, New York, USA
| | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, Freiburg D-79108, Germany
| |
Collapse
|
36
|
Ghirlando R, Felsenfeld G. Physical chemistry of nucleic acids and their complexes. Biopolymers 2016; 99:910-5. [PMID: 23765314 DOI: 10.1002/bip.22311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/30/2013] [Indexed: 01/12/2023]
Abstract
Studies of the physical properties of nucleic acids began almost immediately following the discovery of the DNA structure. Early investigations focused on the stability and specificity of multi-strand polynucleotide complexes, then gradually on their interaction with other molecules, particularly proteins. As molecular and structural biology expanded to provide detailed information about biochemical mechanisms, physical studies eventually acquired the additional constraint that they should be relevant to functioning biological systems. We describe work in our laboratory that began with investigations of relatively simple questions about the role of electrostatic interactions in the stabilization of multi-strand nucleic acid structures, and evolved to studies of chromatin structure in vitro and within the nucleus.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892
| | | |
Collapse
|
37
|
Ghirlando R, Felsenfeld G. Chromatin structure outside and inside the nucleus. Biopolymers 2016; 99:225-32. [PMID: 23348669 DOI: 10.1002/bip.22157] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/07/2012] [Indexed: 11/09/2022]
Abstract
The structure of the 30-nm chromatin fiber has provided, over the years, an important reference in chromatin studies. Originally derived from electron microscopic studies of soluble chromatin fibers released by restriction digestion, the gross structural features of such fragments have been supported by biophysical methods such as low angle X-ray and neutron scattering, sedimentation, light scattering, and electric dichroism. Electron microscopy and sedimentation velocity measurements demonstrated that reconstituted chromatin fibers, prepared from repeating arrays of high affinity nucleosome positioning sequences, retain the same overall features as observed for native chromatin fibers. It had been suggested that the 30 nm fiber might be the form assumed in vivo by transcriptionally silent chromatin, but individual gene or genome-wide studies of chromatin released from nuclei do not reveal any such simple correlation. Furthermore, even though the 30 nm fiber has been thought to represent an intermediate in the hierarchical folding of DNA into chromosomes, most analyses of chromatin folding within the nucleus do not detect any regular extended compact structures. However, there are important exceptions in chicken erythroid cell nuclei as well as in transcribed regions that form extended loops. Localized domains within the nucleus, either at the surface of chromosome domains or constrained as a specialized kind of constitutive heterochromatin by specific DNA binding proteins, may adopt 30 nm fiber-like structures.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540
| | | |
Collapse
|
38
|
Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, Ni B, Sklar J, Przytycka TM, Childs R, Levens D, Zhao K. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 2016; 528:142-6. [PMID: 26605532 PMCID: PMC4697938 DOI: 10.1038/nature15740] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
DNase I hypersensitive sites (DHSs) provide important information on the presence of transcriptional regulatory elements and the state of chromatin in mammalian cells. Conventional DNase sequencing (DNase-seq) for genome-wide DHSs profiling is limited by the requirement of millions of cells. Here we report an ultrasensitive strategy, called single-cell DNase sequencing (scDNase-seq) for detection of genome-wide DHSs in single cells. We show that DHS patterns at the single-cell level are highly reproducible among individual cells. Among different single cells, highly expressed gene promoters and enhancers associated with multiple active histone modifications display constitutive DHS whereas chromatin regions with fewer histone modifications exhibit high variation of DHS. Furthermore, the single-cell DHSs predict enhancers that regulate cell-specific gene expression programs and the cell-to-cell variations of DHS are predictive of gene expression. Finally, we apply scDNase-seq to pools of tumour cells and pools of normal cells, dissected from formalin-fixed paraffin-embedded tissue slides from patients with thyroid cancer, and detect thousands of tumour-specific DHSs. Many of these DHSs are associated with promoters and enhancers critically involved in cancer development. Analysis of the DHS sequences uncovers one mutation (chr18: 52417839G>C) in the tumour cells of a patient with follicular thyroid carcinoma, which affects the binding of the tumour suppressor protein p53 and correlates with decreased expression of its target gene TXNL1. In conclusion, scDNase-seq can reliably detect DHSs in single cells, greatly extending the range of applications of DHS analysis both for basic and for translational research, and may provide critical information for personalized medicine.
Collapse
Affiliation(s)
- Wenfei Jin
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qingsong Tang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mimi Wan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Kairong Cui
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yi Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,Institute of Immunology, Third Military Medical University of the People's Liberation Army, Chongqing 400038, China
| | - Gang Ren
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.,College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bing Ni
- Institute of Immunology, Third Military Medical University of the People's Liberation Army, Chongqing 400038, China
| | - Jeffrey Sklar
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Teresa M Przytycka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Richard Childs
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Keji Zhao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
39
|
Li J, Li R, Wang Y, Hu X, Zhao Y, Li L, Feng C, Gu X, Liang F, Lamont SJ, Hu S, Zhou H, Li N. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq. BMC Genomics 2015; 16:851. [PMID: 26497311 PMCID: PMC4619007 DOI: 10.1186/s12864-015-2098-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/15/2015] [Indexed: 12/30/2022] Open
Abstract
Background DNA cytosine methylation is an important epigenetic modification that has significant effects on a variety of biological processes in animals. Avian species hold a crucial position in evolutionary history. In this study, we used whole-genome bisulfite sequencing (MethylC-seq) to generate single base methylation profiles of lungs in two genetically distinct and highly inbred chicken lines (Fayoumi and Leghorn) that differ in genetic resistance to multiple pathogens, and we explored the potential regulatory role of DNA methylation associated with immune response differences between the two chicken lines. Methods The MethylC-seq was used to generate single base DNA methylation profiles of Fayoumi and Leghorn birds. In addition, transcriptome profiling using RNA–seq from the same chickens and tissues were obtained to interrogate how DNA methylation regulates gene transcription on a genome-wide scale. Results The general DNA methylation pattern across different regions of genes was conserved compared to other species except for hyper-methylation of repeat elements, which was not observed in chicken. The methylation level of miRNA and pseudogene promoters was high, which indicates that silencing of these genes may be partially due to promoter hyper-methylation. Interestingly, the promoter regions of more recently evolved genes tended to be more highly methylated, whereas the gene body regions of evolutionarily conserved genes were more highly methylated than those of more recently evolved genes. Immune-related GO (Gene Ontology) terms were significantly enriched from genes within the differentially methylated regions (DMR) between Fayoumi and Leghorn, which implicates DNA methylation as one of the regulatory mechanisms modulating immune response differences between these lines. Conclusions This study establishes a single-base resolution DNA methylation profile of chicken lung and suggests a regulatory role of DNA methylation in controlling gene expression and maintaining genome transcription stability. Furthermore, profiling the DNA methylomes of two genetic lines that differ in disease resistance provides a unique opportunity to investigate the potential role of DNA methylation in host disease resistance. Our study provides a foundation for future studies on epigenetic modulation of host immune response to pathogens in chickens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinxiu Li
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rujiao Li
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Xiaoxiang Hu
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China
| | - Li Li
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China
| | - Chungang Feng
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Gu
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fang Liang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA, 95616, USA. .,Department of Poultry Science, Texas A&M University, College Station, TX, 77845, USA.
| | - Ning Li
- The State Key Laboratory for Agro-biotechnology, China Agricultural University, Beijing, 100193, China. .,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, 100193, China. .,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
40
|
Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, Stein N, Houben A. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:385-394. [PMID: 26332657 DOI: 10.1111/tpj.13006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 06/05/2023]
Abstract
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.
Collapse
Affiliation(s)
- Lala Aliyeva-Schnorr
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Sebastian Beier
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Miroslava Karafiátová
- Institute of Experimental Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Thomas Schmutzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Jaroslav Doležel
- Institute of Experimental Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany
| |
Collapse
|
41
|
Contreras-Leal E, Hernández-Oliveras A, Flores-Peredo L, Zarain-Herzberg Á, Santiago-García J. Histone deacetylase inhibitors promote the expression of ATP2A3
gene in breast cancer cell lines. Mol Carcinog 2015; 55:1477-85. [DOI: 10.1002/mc.22402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/26/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Erika Contreras-Leal
- Programa de Doctorado en Ciencias Biomédicas; Universidad Veracruzana; Veracruz México
- Instituto de Investigaciones Biol; ó; gicas; Universidad Veracruzana; Xalapa Veracruz México
| | | | - Lucía Flores-Peredo
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Juan Santiago-García
- Instituto de Investigaciones Biol; ó; gicas; Universidad Veracruzana; Xalapa Veracruz México
| |
Collapse
|
42
|
The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Dev Biol 2015; 405:260-8. [DOI: 10.1016/j.ydbio.2015.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/12/2015] [Accepted: 07/12/2015] [Indexed: 01/08/2023]
|
43
|
Razin SV, Gavrilov AA, Ulyanov SV. Transcription-controlling regulatory elements of the eukaryotic genome. Mol Biol 2015. [DOI: 10.1134/s0026893315020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Nyborg AC, Zacco A, Ettinger R, Jack Borrok M, Zhu J, Martin T, Woods R, Kiefer C, Bowen MA, Suzanne Cohen E, Herbst R, Wu H, Coats S. Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells. Cell Mol Immunol 2015; 13:391-400. [PMID: 25942513 PMCID: PMC4856805 DOI: 10.1038/cmi.2015.19] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/26/2022] Open
Abstract
Immunoglobulin E (IgE) plays a key role in allergic asthma and is a clinically validated target for monoclonal antibodies. Therapeutic anti-IgE antibodies block the interaction between IgE and the Fc epsilon (Fcε) receptor, which eliminates or minimizes the allergic phenotype but does not typically curtail the ongoing production of IgE by B cells. We generated high-affinity anti-IgE antibodies (MEDI4212) that have the potential to both neutralize soluble IgE and eliminate IgE-expressing B-cells through antibody-dependent cell-mediated cytotoxicity. MEDI4212 variants were generated that contain mutations in the Fc region of the antibody or alterations in fucosylation in order to enhance the antibody's affinity for FcγRIIIa. All MEDI4212 variants bound to human IgE with affinities comparable to the wild-type (WT) antibody. Each variant was shown to inhibit the interaction between IgE and FcεRI, which translated into potent inhibition of FcγRI-mediated function responses. Importantly, all variants bound similarly to IgE at the surface of membrane IgE expressing cells. However, MEDI4212 variants demonstrated enhanced affinity for FcγRIIIa including the polymorphic variants at position 158. The improvement in FcγRIIIa binding led to increased effector function in cell based assays using both engineered cell lines and class switched human IgE B cells. Through its superior suppression of IgE, we anticipate that effector function enhanced MEDI4212 may be able to neutralize high levels of soluble IgE and provide increased long-term benefit by eliminating the IgE expressing B cells before they differentiate and become IgE secreting plasma cells.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhu
- MedImmune LLC, Gaithersburg, MD, USA
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, MD, USA
| | | | | | - E Suzanne Cohen
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, UK
| | | | - Herren Wu
- MedImmune LLC, Gaithersburg, MD, USA
| | | |
Collapse
|
45
|
Pazin MJ. Using the ENCODE Resource for Functional Annotation of Genetic Variants. Cold Spring Harb Protoc 2015; 2015:522-36. [PMID: 25762420 DOI: 10.1101/pdb.top084988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article illustrates the use of the Encyclopedia of DNA Elements (ENCODE) resource to generate or refine hypotheses from genomic data on disease and other phenotypic traits. First, the goals and history of ENCODE and related epigenomics projects are reviewed. Second, the rationale for ENCODE and the major data types used by ENCODE are briefly described, as are some standard heuristics for their interpretation. Third, the use of the ENCODE resource is examined. Standard use cases for ENCODE, accessing the ENCODE resource, and accessing data from related projects are discussed. Although the focus of this article is the use of ENCODE data, some of the same approaches can be used with data from other projects.
Collapse
Affiliation(s)
- Michael J Pazin
- Division of Genome Sciences, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Han T, Wan Y, Wang J, Zhao P, Yuan Y, Wang L, She Y, Broering R, Lu M, Ye L, Zhu Y. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway. THE JOURNAL OF IMMUNOLOGY 2015; 194:2757-68. [PMID: 25681344 DOI: 10.4049/jimmunol.1400583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, usually resulting in persistent infection involving hepatic steatosis, cirrhosis, and hepatocellular carcinoma via escape of the host's immune response. Set7 is a lysine-specific methyltransferase that is involved in gene regulation and virus replication. However, the mechanism underlying the immune evasion between HCV and Set7 is not well understood. In this study, we observed that the expression of Set7 in Huh7.5.1 cells was upregulated by HCV infection, and high levels of Set7 expression were also found in the sera, PBMCs, and liver tissue of HCV patients relative to healthy individuals. Further investigation showed that Set7 enhanced HCV replication in an enzymatic activity-dependent manner. Moreover, our data showed that Set7 decreased the expression of virus-induced IFN and IFN-related effectors, such as dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase. Further investigation suggested that Set7 suppressed the endogenous IFN expression by reducing the nuclear translocation of IFN regulatory factor 3/7 and the p65 subunit of NF-κB and reduced IFN-induced dsRNA-activated protein kinase and 2',5'-oligoadenylate synthetase via attenuation of the phosphorylation of STAT1 and STAT2. Additionally, IFN receptors, including IFNAR1 and IFNAR2, which are located upstream of the JAK/STAT pathway, were reduced by Set7. Taken together, our results reveal that Set7 facilitates HCV replication through the attenuation of IFN signaling pathways and IFN-related effectors.
Collapse
Affiliation(s)
- Tao Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yushun Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yue Yuan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Li Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yinglong She
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ruth Broering
- Medical Faculty, Department of Gastroenterology and Hepatology, University of Duisburg-Essen, 45127 Essen, Germany; and
| | - Mengji Lu
- Institute of Virology, University of Duisburg-Essen, 45127 Essen, Germany
| | - Linbai Ye
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China;
| |
Collapse
|
47
|
Lorenz DR, Meyer LF, Grady PJR, Meyer MM, Cam HP. Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase. eLife 2014; 3:e04506. [PMID: 25497836 PMCID: PMC4383021 DOI: 10.7554/elife.04506] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/12/2014] [Indexed: 12/20/2022] Open
Abstract
Histone modifiers play essential roles in controlling transcription and organizing
eukaryotic genomes into functional domains. Here, we show that Set1, the catalytic
subunit of the highly conserved Set1C/COMPASS complex responsible for histone H3K4
methylation (H3K4me), behaves as a repressor of the transcriptome largely independent
of Set1C and H3K4me in the fission yeast Schizosaccharomyces pombe.
Intriguingly, while Set1 is enriched at highly expressed and repressed loci, Set1
binding levels do not generally correlate with the levels of transcription. We show
that Set1 is recruited by the ATF/CREB homolog Atf1 to heterochromatic loci and
promoters of stress-response genes. Moreover, we demonstrate that Set1 coordinates
with the class II histone deacetylase Clr3 in heterochromatin assembly at prominent
chromosomal landmarks and repression of the transcriptome that includes
Tf2 retrotransposons, noncoding RNAs, and regulators of
development and stress-responses. Our study delineates a molecular framework for
elucidating the functional links between transcriptome control and chromatin
organization. DOI:http://dx.doi.org/10.7554/eLife.04506.001 Genes can be turned on or off at different times in an organism's life. In humans,
yeast and other eukaryotes, this is mainly controlled by the way DNA is packaged with
proteins—known as histones—in a structure called chromatin. Genes that
are switched on, or only temporarily switched off, are associated with areas of the
genome where the chromatin is loosely packed. In contrast, genes that remain switched
off for long periods of time are found in regions—known as
heterochromatin—where the chromatin is tightly packed. There are many enzymes that can modify histones to change the structure of chromatin.
One enzyme—called Set1—adds a methyl tag to chromatin, which is known
to be associated with genes being switched on. However, Lorenz et al. found that Set1
also has other roles in modifying chromatin in the yeast Schizosaccharomyces
pombe. The experiments found that Set1 helps to keep genes switched off and that this role
is largely independent of its ability to add the methyl tag to chromatin. Set1 is
recruited to many sites across the genome by another protein called Atf1, which is
involved in the cell's response to environmental stresses. Lorenz et al. believe that
this helps to put these genes in a ‘poised’ off state so that they are
ready to be switched on rapidly if needed. Set1 also works with another protein that removes acetyl tags—which encourage
chromatin to be less tightly packed—from histones. Together, both proteins
contribute to the assembly of heterochromatin and keep genes involved in development
and stress responses switched off when they are not required. Collectively, these experiments reveal unexpected and important insights into how
Set1—which plays critical roles in many aspects of human health including
aging and cancer—works in cells. DOI:http://dx.doi.org/10.7554/eLife.04506.002
Collapse
Affiliation(s)
- David R Lorenz
- Department of Biology, Boston College, Chestnut Hill, United States
| | - Lauren F Meyer
- Department of Biology, Boston College, Chestnut Hill, United States
| | | | - Michelle M Meyer
- Department of Biology, Boston College, Chestnut Hill, United States
| | - Hugh P Cam
- Department of Biology, Boston College, Chestnut Hill, United States
| |
Collapse
|
48
|
Mikheyeva IV, Grady PJR, Tamburini FB, Lorenz DR, Cam HP. Multifaceted genome control by Set1 Dependent and Independent of H3K4 methylation and the Set1C/COMPASS complex. PLoS Genet 2014; 10:e1004740. [PMID: 25356590 PMCID: PMC4214589 DOI: 10.1371/journal.pgen.1004740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
Histone modifiers are critical regulators of chromatin-based processes in eukaryotes. The histone methyltransferase Set1, a component of the Set1C/COMPASS complex, catalyzes the methylation at lysine 4 of histone H3 (H3K4me), a hallmark of euchromatin. Here, we show that the fission yeast Schizosaccharomyces pombe Set1 utilizes distinct domain modules to regulate disparate classes of repetitive elements associated with euchromatin and heterochromatin via H3K4me-dependent and -independent pathways. Set1 employs its RNA-binding RRM2 and catalytic SET domains to repress Tf2 retrotransposons and pericentromeric repeats while relying on its H3K4me function to maintain transcriptional repression at the silent mating type (mat) locus and subtelomeric regions. These repressive functions of Set1 correlate with the requirement of Set1C components to maintain repression at the mat locus and subtelomeres while dispensing Set1C in repressing Tf2s and pericentromeric repeats. We show that the contributions of several Set1C subunits to the states of H3K4me diverge considerably from those of Saccharomyces cerevisiae orthologs. Moreover, unlike S. cerevisiae, the regulation of Set1 protein level is not coupled to the status of H3K4me or histone H2B ubiquitination by the HULC complex. Intriguingly, we uncover a genome organization role for Set1C and H3K4me in mediating the clustering of Tf2s into Tf bodies by antagonizing the acetyltransferase Mst1-mediated H3K4 acetylation. Our study provides unexpected insights into the regulatory intricacies of a highly conserved chromatin-modifying complex with diverse roles in genome control. Methylation of histone H3 at lysine 4 (H3K4me) is a well-documented mark associated with euchromatin. In this study, we investigate the contributions of the histone methyltransferase Set1 (KMT2) and its associated Set1C/COMPASS complex in the fission yeast Schizosaccharomyces pombe to histone H3 lysine 4 methylation (H3K4me), transcriptional repression, and genome organization. We show that Set1 exhibits multiple modes of transcriptional repression at different types of repetitive elements, requiring distinct domains of Set1 and other Set1C subunits. Despite high conservation of subunits between the S. pombe and S. cerevisiae Set1C complexes, there are considerable differences in contributions to H3K4me by several individual subunits. Furthermore, unlike a recent report in S. cerevisiae, the abundance of Set1 proteins in S. pombe is generally not coupled to either the status of H3K4 methylation or H2B ubiquitination, further highlighting critical differences in Set1 regulation between the two yeast species. We describe a role for the Set1C complex in the nuclear organization of dispersed retrotransposons into Tf bodies. Set1C maintains Tf body integrity by employing H3K4me to antagonize the activities of the H3K4 acetyltransferase Mst1. Collectively, our findings dramatically expand the regulatory landscape controlled by the Set1C complex, an important and highly conserved chromatin-modifying complex with diverse roles in genome control and development.
Collapse
Affiliation(s)
- Irina V. Mikheyeva
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick J. R. Grady
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Fiona B. Tamburini
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - David R. Lorenz
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Hugh P. Cam
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Weth O, Paprotka C, Günther K, Schulte A, Baierl M, Leers J, Galjart N, Renkawitz R. CTCF induces histone variant incorporation, erases the H3K27me3 histone mark and opens chromatin. Nucleic Acids Res 2014; 42:11941-51. [PMID: 25294833 PMCID: PMC4231773 DOI: 10.1093/nar/gku937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
Insulators functionally separate active chromatin domains from inactive ones. The insulator factor, CTCF, has been found to bind to boundaries and to mediate insulator function. CTCF binding sites are depleted for the histone modification H3K27me3 and are enriched for the histone variant H3.3. In order to determine whether demethylation of H3K27me3 and H3.3 incorporation are a requirement for CTCF binding at domain boundaries or whether CTCF causes these changes, we made use of the LacI DNA binding domain to control CTCF binding by the Lac inducer IPTG. Here we show that, in contrast to the related factor CTCFL, the N-terminus plus zinc finger domain of CTCF is sufficient to open compact chromatin rapidly. This is preceded by incorporation of the histone variant H3.3, which thereby removes the H3K27me3 mark. This demonstrates the causal role for CTCF in generating the chromatin features found at insulators. Thereby, spreading of a histone modification from one domain through the insulator into the neighbouring domain is inhibited.
Collapse
Affiliation(s)
- Oliver Weth
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Christine Paprotka
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Katharina Günther
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Astrid Schulte
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Manuel Baierl
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Joerg Leers
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
50
|
Cebrià-Costa JP, Millanes-Romero A, de Herreros AG, Peiró S. The Epithelial-to-Mesenchymal Transition (EMT), a Particular Case. Mol Cell Oncol 2014; 1:e960770. [PMID: 27308335 PMCID: PMC4905179 DOI: 10.4161/23723548.2014.960770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 01/05/2023]
Abstract
Constitutive heterochromatin, an essential structure that has been conserved throughout evolution, is required to maintain genome stability. Although heterochromatin is enriched for repressive traits, it can be actively transcribed to generate thousands of noncoding RNAs that are required for correct chromatin assembly. Despite the importance of this structure, how and why heterochromatin transcription is regulated, and the proteins responsible for this regulation, remain poorly understood. Here, we summarize recent findings in heterochromatin transcription regulation during different cellular processes with a focus on the epithelial–mesenchymal transition (EMT), which elicits important changes in cell behavior, has a key role in early development, and is involved in cancer progression.
Collapse
Affiliation(s)
- Joan Pau Cebrià-Costa
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques) ; Barcelona, Spain
| | | | - Antonio García de Herreros
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques); Barcelona, Spain; Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer; IMIM (Institut Hospital del Mar d'Investigacions Mèdiques) ; Barcelona, Spain
| |
Collapse
|