1
|
Fu H, Sun W, Xu Y, Zhang H. Advances in cytokine gene polymorphisms in tuberculosis. mSphere 2025; 10:e0094424. [PMID: 40162798 PMCID: PMC12039272 DOI: 10.1128/msphere.00944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Tuberculosis (TB), especially pulmonary tuberculosis (PTB), is a prevalent infectious disease affecting the respiratory system and is characterized by high morbidity, disability, and mortality rates that significantly impact the quality of life of patients and their families. Host genetic susceptibility plays a crucial role in the infection process of Mycobacterium tuberculosis (M. tuberculosis) with single nucleotide polymorphisms (SNPs) identified as key factors in the genetic loci associated with tuberculosis occurrence and progression. Research indicates that polymorphisms in cytokine genes-including interferons, interleukins, tumor necrosis factors, and chemokines-are closely linked to the onset, progression, and treatment outcomes of pulmonary tuberculosis. Investigating cytokine gene polymorphisms in PTB patients is essential for understanding disease mechanisms and prognosis. This review summarizes the role of cytokine polymorphisms in tuberculosis morbidity, elucidates the biological genetic mechanisms involved at the molecular level, and provides insights into clinical treatment strategies for TB.
Collapse
Affiliation(s)
- Haiyang Fu
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Jiangsu, China
| | - Wenqiang Sun
- Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Jiangsu, China
| | - Ye Xu
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haiyun Zhang
- Department of Laboratory, Dalian Municipal Women and Children’s Medical Center, Dalian, Liaoning, China
| |
Collapse
|
2
|
Ma Y, Li Y, Yin Z, Huang JJ, Ye Z, Chen X, Du J, Huang Z. Gadd45γ alleviates collagen-induced arthritis by increasing IL-10 level and suppressing JNK activity. Int Immunopharmacol 2025; 151:114329. [PMID: 40007379 DOI: 10.1016/j.intimp.2025.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
It has been shown that Gadd45β alleviated K/BxN serum-induced arthritis, but in collagen-induced arthritis (CIA), it exacerbated joint inflammatory response, clinical signs, and symptoms. So far, the function of Gadd45γ in arthritis remains to be explored. This study aimed to investigate the role and immune regulatory mechanism of Gadd45γ in arthritis by intra-articular injection of a lentiviral vector encoding the Gadd45γ gene (LV-Gadd45γ) or lentiviral vectors (LV). The experiments showed that CIA increased the level of Gadd45γ, overexpression of Gadd45γ inhibited the symptoms and articular destruction of CIA, reduced the pro-inflammatory cytokine IL-1β, IL-6, and matrix metalloproteinases-13 (MMP-13), and increased the anti-inflammatory cytokine IL-10. In turn, high levels of IL-10 elevated Gadd45γ in CIA mice, human rheumatoid synovial fibroblasts (HRSF), and RAW cell lines. Furthermore, the increasing expression of Gadd45γ dramatically raised IL-10 and diminished the phosphorylation of c-Jun N-terminal kinase (JNK) in CIA mice and HRSF. Mechanistic analysis showed that the attenuating effect of Gadd45γ on CIA may be attributed to the mutual enhancement of the expression of Gadd45γ and IL-10 and the inhibition of JNK activity through downregulating IL-1β and IL-6. The results indicate that Gadd45γ can act as an inflammatory suppressor and joint damage attenuator in CIA mice. Increased IL-10 levels through a positive feedback circuit between Gadd45γ and IL-10 and the inhibitory effect of Gadd45γ on JNK activity endows this protein with the ability to inhibit CIA.
Collapse
Affiliation(s)
- Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China; Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen 518060, China; Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518060, China
| | - Yanqun Li
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China; Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518060, China
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway Norman, OK 73019-5251, USA
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China; Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518060, China
| | - Xinpeng Chen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518040, China; Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518060, China.
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen 518060, China; Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen 518060, China.
| |
Collapse
|
3
|
Liao KL, Watt KD. Adaptive Immunity Determines the Cancer Treatment Outcome of Oncolytic Virus and Anti-PD-1. Bull Math Biol 2025; 87:36. [PMID: 39878909 DOI: 10.1007/s11538-025-01413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome. Global sensitivity analysis indicates that adaptive immunity has more control on the treatment outcome than innate immunity, and whether anti-PD-1 cancels out the OV treatment efficacy depends on the OV dosage and the balance between clearance of infected tumor cells and OV by T cells. The optimal OV infection rate and dosage suggest that OV treatment is more sensitive to adaptive immunity than innate immunity. Our model prediction also indicates that tumor reduction is more sensitive to anti-PD-1 efficacy as adaptive immunity becomes stronger, and anti-PD-1 trends to cancel out the OV treatment efficacy as innate immunity becomes stronger. Based on these results, the recommended treatment protocol for patients with different immunity strength can be determined.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.
| | - Kenton D Watt
- Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
4
|
Palmieri TL, Heard J. Biomarkers of sepsis in burn injury: an update. BURNS & TRAUMA 2025; 13:tkae080. [PMID: 39822649 PMCID: PMC11736899 DOI: 10.1093/burnst/tkae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/16/2024] [Indexed: 01/19/2025]
Abstract
Sepsis, a dysregulated response to infection, is a leading cause of death after burn injury. Changes in the immune response as well as the loss of the skin, the primary barrier to infection, contribute to the increased risk for infection and sepsis in burn patients. This higher risk is further compounded by the development of the systemic inflammatory response and hypermetabolic state, which limit the utility of commonly used infection markers. As such, the development of sepsis biomarkers after burn injury is an imperative. A sepsis biomarker would facilitate earlier diagnosis and treatment of sepsis, thus decreasing length of stay, morbidity, and mortality after burn injury. Numerous different biomarkers, ranging from acute phase reactants, cytokines, and inflammatory markers to omics analyses and extracellular vesicles have been assessed as potential biomarkers in burn sepsis. To date no single biomarker has proven useful as the sole indicator for sepsis. The future of burn sepsis biomarkers will likely require a panel of biomarkers from all categories. The purpose of this review article is to list the various biomarkers that have been studied in burn sepsis and describe their clinical utility and future use in patients with burn injury.
Collapse
Affiliation(s)
- Tina L Palmieri
- University of California Davis, Shriners Children’s Northern California, Burn Division, Department of Surgery, University of California, Davis, 2335 Stockton Blvd, Sacramento, CA 95817, United States
| | - Jason Heard
- University of California Davis, Shriners Children’s Northern California, Burn Division, Department of Surgery, University of California, Davis, 2335 Stockton Blvd, Sacramento, CA 95817, United States
| |
Collapse
|
5
|
Zhang JJ, Rizk R, Li X, Lee BG, Matthies ML, Bietz KA, Kim K, Huard J, Wang Y, Chen WCW. Interleukin-10 exhibit dose-dependent effects on macrophage phenotypes and cardiac remodeling after myocardial infarction. Front Physiol 2025; 15:1481460. [PMID: 39882328 PMCID: PMC11774956 DOI: 10.3389/fphys.2024.1481460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Interleukin-10 (IL-10) is a potent immunomodulatory cytokine widely explored as a therapeutic agent for diseases, including myocardial infarction (MI). High-dose IL-10 treatment may not achieve expected outcomes, raising the question of whether IL-10 has dose-dependency, or even uncharted side-effects from overdosing. We hypothesized that IL-10 has dose-dependent effects on macrophage (Mφ) phenotypic transition and cardiac remodeling after MI. Methods Using RAW264.7 monocyte models, we examined whether administering differential doses of exogenous IL-10 (0-1,000 ng/mL) perturbs classic M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes of polarized Mφ or even alters the phenotypic transition of prospective M1 and M2 polarization. We then investigated the impact of single intramyocardial IL-10 administration on cardiac function, structure, and inflammation post-MI, using a mouse MI model. Results Compared with 0-ng/mL control, 250-ng/mL IL-10 had the strongest overall effects in decreasing M1 and increasing M2 phenotypes on polarized Mφ while ≥500-ng/mL IL-10 dampened M1 polarization and augmented native IL-10 secretion more effectively than low doses in vitro. Echocardiography revealed that the 250-ng group had consistently higher contractile function and lower left ventricular (LV) dilatation than the saline control over 6 weeks while ≥1,000-ng groups exhibited transient lower LV ejection fraction at 5 days post-MI in vivo. Moreover, different doses of IL-10 differentially modulated myocardial gene expression, phagocytic cell infiltration at the infarct, LV fibrosis, and revascularization post-MI, with some, but not all, doses exerting beneficial effects. Discussion Our study suggested that IL-10 has an effective dose range on Mφ phenotypes, and intramyocardial IL-10 treatment may trigger cardioprotective or unwanted effects post-MI in a dose-dependent manner.
Collapse
Affiliation(s)
- Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - Xiaoping Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Brandon G. Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mason L. Matthies
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kennedy A. Bietz
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kang Kim
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Johnny Huard
- The Linda & Mitch Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Yadong Wang
- The Biofoundry, Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
6
|
Kamergrauzis A, Pilmane M, Junga A. Human Defence Factors in Different Gestational Week Placenta: A Pilot Study. Life (Basel) 2025; 15:86. [PMID: 39860026 PMCID: PMC11767239 DOI: 10.3390/life15010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Numerous studies have shown the presence of multiple defence factors in placental tissue, although their role is partially understood; therefore, the aim of this study was to evaluate the expression of nuclear factor-kappa B (NF-κB); human beta-defensin 2, 3, and 4 (HBD-2,3,4); cathelicidine (LL-37); heat shock protein 60 (HSP60); and interleukin 10 (IL-10) in dissimilar gestational week placental tissue and display correlations between immunoreactive cells. METHODS A total of 15 human placental tissue samples were acquired from mothers with different gestational weeks: 28, 31, and 40. Routine staining and immunohistochemistry for the samples were executed. The evaluation of data was performed with semi-quantitative methods, and, for statistical analysis, the Kruskal-Wallis test was used. Spearman's rank correlation was used for calculating correlations. RESULTS NF-κB, HBD- 2,3,4, HSP60, and IL-10 expression were discovered in every examined placental tissue cell type. LL-37 expression was found only in Hofbauer cells. A rise in expression with higher gestational weeks was noted in LL-37-positive Hofbauer cells (p = 0.03), HBD-3-positive cytotrophoblasts (p = 0.007), endothelial cells (p = 0.024), extraembryonic mesodermal cells (p = 0.004), and HBD-4-positive endothelial cells (p = 0.001). Numerous statistically significant moderate and strong positive correlations between defence factors were discovered. CONCLUSIONS The persistence of Hofbauer cell accumulations underlines the growing significance of placental macrophages in placental protection. The expression of positive defence factors and a rise in expression in tissue protection factors (HBD-3, LL-37, HBD-4) in higher gestational weeks may indicate these factors as the most significant protectors of the placenta in ontogenetic aspects. The high number of statistically significant positive and negative correlations between positive cells show a strong network to sustain distressed placental growth and therefore pregnancy.
Collapse
Affiliation(s)
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University, Kronvalda Boulevard 9, LV-1010 Riga, Latvia; (A.K.); (A.J.)
| | | |
Collapse
|
7
|
Wang M, Zhou S, Hu Y, Tong W, Zhou H, Ma M, Cai X, Zhang Z, Zhang L, Chen Y. Macrophages overexpressing interleukin-10 target and prevent atherosclerosis: Regression of plaque formation and reduction in necrotic core. Bioeng Transl Med 2025; 10:e10717. [PMID: 39801756 PMCID: PMC11711221 DOI: 10.1002/btm2.10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 01/16/2025] Open
Abstract
Atherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte-derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)-10 is widely acknowledged for its anti-inflammatory effects, systemic administration of IL-10 has limitations due to its short half-life and significant systemic side effects. In this study, we aimed to investigate the effectiveness of an approach designed to overexpress IL-10 in macrophages and subsequently introduce these genetically modified cells into ApoE-/- mice to promote atherosclerosis regression. We engineered RAW264.7 cells to overexpress IL-10 (referred to as IL-10M) using lentivirus vectors. The IL-10M exhibited robust IL-10 secretion, maintained phagocytic function, improved mitochondrial membrane potentials, reduced superoxide production and showed a tendency toward the M2 phenotype when exposed to inflammatory stimuli. IL-10M can selectively target plaques in ApoE-/- mice and has the potential to reduce plaque area and necrotic core at both early and late stages of plaque progression. Moreover, there was a significant reduction in MMP9, a biomarker associated with plaque rupture, in IL-10M-treated plaques from both the early and late intervention groups. Additionally, the administration of IL-10M showed no obvious side effects. This study serves as proof that cell therapy based on anti-inflammatory macrophages might be a promising strategy for the intervention of atherosclerosis.
Collapse
Affiliation(s)
- Mingyi Wang
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Shanshan Zhou
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| | - Yingyun Hu
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- The Medical School of Nankai UniversityTianjinChina
| | - Wei Tong
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| | - Hao Zhou
- Department of CardiologyNo. 966 Hospital of Joint Logisties ForceDandongChina
| | - Mingrui Ma
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Xingxuan Cai
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- The Second Medical School of Southern Medical UniversityGuangzhouChina
| | - Zhengbin Zhang
- Medical School of Chinese PLABeijingChina
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
| | - Luo Zhang
- Medical School of Chinese PLABeijingChina
- Research Center of BioengineeringThe Medical Innovation Research Division of PLA General HospitalBeijingChina
| | - Yundai Chen
- Senior Department of CardiologyThe Sixth Medical Center of PLA General HospitalBeijingChina
- Department of CardiologyThe First Medical Center of PLA General HospitalBeijingChina
| |
Collapse
|
8
|
Gonzalo R, Minguet C, Ortiz AM, Bravo MI, López OL, Boada M, Ruiz A, Costa M. Plasma exchange with albumin replacement for Alzheimer's disease treatment induced changes in serum and cerebrospinal fluid inflammatory mediator levels. Ann Clin Transl Neurol 2024; 11:3280-3291. [PMID: 39476248 DOI: 10.1002/acn3.52235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVE There is extensive literature indicating that inflammatory pathways are affected in Alzheimer's disease (AD). We examined whether plasma exchange with albumin replacement (PE-Alb) can impact the inflammatory status of AD patients and alter the relationship between inflammatory mediators and cognitive measures. METHODS Serum and cerebrospinal fluid (CSF) samples from 142 AD patients participating in the AMBAR trial (14-month schedule of PE-Alb treatment vs. placebo [sham PE-Alb]) were analyzed for changes from baseline for 19 inflammatory mediators (6 inflammatory cytokines, 9 chemokines, and 4 vascular injury indicators) at representative time points across the AMBAR study (lasting effects) as well as in pre- versus post-PE-Alb procedure (acute effects). Association between mediator changes and clinical outcomes reported in the AMBAR study (cognitive, functional, behavioral function, and global change tests) was assessed. RESULTS PE-Alb significantly reduced IFN-γ, eotaxin, MIP-1α and ICAM-1 levels in serum, and eotaxin-3 and MIP-1β levels in CSF, at various time points during treatment (p < 0.05; false discovery rate-corrected). Vascular injury indicators were the mediators mostly affected by post- versus pre-PE-Alb level reduction. Increased serum MIP-1α levels were associated with worsening in ADAS-Cog, CDR-sb, and ADCS-CGIC scores in the placebo group, but not in the PE-Alb-treated group. INTERPRETATION Peripheral intervention could affect AD by reducing inflammatory mediators in both peripheral and central compartments. Changes in MIP-1α due to PE-Alb were associated with changes in clinical outcomes.
Collapse
Affiliation(s)
- Ricardo Gonzalo
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Carla Minguet
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Ana María Ortiz
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - María Isabel Bravo
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| | - Oscar L López
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, 15213, Pennsylvania, USA
| | - Mercè Boada
- ACE Alzheimer Centre Barcelona - Universitat Internacional de Catalunya, Gran Via de Carles III, 85 BIS, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro 3, Fuencarral-El Pardo, Madrid, 28029, Spain
| | - Agustín Ruiz
- ACE Alzheimer Centre Barcelona - Universitat Internacional de Catalunya, Gran Via de Carles III, 85 BIS, Barcelona, 08028, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro 3, Fuencarral-El Pardo, Madrid, 28029, Spain
| | - Montserrat Costa
- Grifols Scientific Innovation Office, Avinguda de la Generalitat 152-158, Sant Cugat del Vallès, 08174, Barcelona, Spain
| |
Collapse
|
9
|
Muhammad Ridho F, Julyanto Syachputra A, Dias Nur'aini A, Ulfah K, Faqih M, Nurhuda A. Pre-clinical and clinical efficacy of curcumin as an anti-inflammatory agent for periodontitis. A systematic review. REVISTA CIENTÍFICA ODONTOLÓGICA 2024; 12:e222. [PMID: 39912085 PMCID: PMC11792608 DOI: 10.21142/2523-2754-1204-2024-222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction There is ongoing exploration into herbal treatments to identify adjunct therapies with minimal side effects. One such treatment involves curcumin from turmeric (Curcuma longa). This study aims to review the efficacy of curcumin as an anti-inflammatory agent for periodontitis along with the mechanisms of action involved. Methods A systematic review of pre-clinical and clinical studies published on Scopus, PubMed, ScienceDirect, and Google Scholar up to May 2024 was employed following the PRISMA guidelines. Three tools were used for risk of bias assessment, namely the QUIN tool for in vitro studies, the SYRCLE's RoB for in vivo studies, and the Cochrane RoB 2 for RCTs. Finally, nineteen studies were included for review. Results This study highlights curcumin's efficacy in addressing periodontitis through diverse mechanisms. Curcumin demonstrated efficacy in attenuating inflammation within periodontal tissue by inhibiting several pro-inflammatory cytokines and mediators such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α, matrix metalloproteinases (MMPs), prostaglandin E2 (PGE2), cyclooxygenase (COX)-2, while concurrently increasing IL-4 and IL-10. In addition, several transcription factors such as nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 1 (STAT1) were also inhibited by curcumin. Administration of curcumin has additionally been demonstrated to reduce other biomarkers of periodontitis, including C-reactive protein (CRP), alkaline phosphatase (ALP), and procalcitonin (PCT). Conclusion Curcumin has been shown to be effective as an adjunct therapeutic agent for periodontitis due to its anti-inflammatory effects by reducing the inflammatory response through a diverse range of mechanisms of action.
Collapse
Affiliation(s)
- Fiki Muhammad Ridho
- Dental Profession Program, Faculty of Dental Medicine, Universitas Airlangga. Surabaya, Indonesia. Dental Profession Program Faculty of Dental Medicine Universitas Airlangga Surabaya Indonesia
| | - Andika Julyanto Syachputra
- Department of Biology, Faculty of Biology, Universitas Gadjah Mada. Yogyakarta, Indonesia. Department of Biology Faculty of Biology Universitas Gadjah Mada Yogyakarta Indonesia
| | - Anisa Dias Nur'aini
- Pharmacist Profession Program, Faculty of Pharmacy, Universitas Ahmad Dahlan. Yogyakarta, Indonesia. Pharmacist Profession Program Faculty of Pharmacy Universitas Ahmad Dahlan Yogyakarta Indonesia
| | - Kamailiya Ulfah
- Veterinarian Profession Program, Faculty of Veterinary Medicine, Universitas Airlangga. Surabaya, Indonesia. Veterinarian Profession Program Faculty of Veterinary Medicine Universitas Airlangga Surabaya Indonesia
| | - Muhamad Faqih
- Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia. Johor Bahru, Malaysia. Department of Bioprocess Engineering Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia Johor Bahru Malaysia
| | - Andang Nurhuda
- Undergraduate Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya. Surabaya, Indonesia. Undergraduate Program Faculty of Mathematics and Natural Sciences Universitas Negeri Surabaya Surabaya Indonesia
| |
Collapse
|
10
|
Lee D, Jo MG, Min KY, Choi MY, Kim YM, Kim HS, Choi WS. IL-10 + regulatory B cells mitigate atopic dermatitis by suppressing eosinophil activation. Sci Rep 2024; 14:18164. [PMID: 39107352 PMCID: PMC11303538 DOI: 10.1038/s41598-024-68660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Atopic dermatitis (AD) presents significant therapeutic challenges due to its poorly understood etiology. Eosinophilia, a hallmark of allergic inflammation, is implicated in AD pathogenesis. Interleukin-10 (IL-10)-producing regulatory B (Breg) cells exhibit potent anti-inflammatory effects. However, their role in controlling AD-related eosinophilia is not well understood. To investigate the impact of eosinophils on AD, we employed IL-5Rα-deficient (Il5ra-/-) mice, which lack functional eosinophils. Induction of AD in these mice resulted in attenuated disease symptoms, underscoring the critical role of eosinophils in AD development. Additionally, the adoptive transfer of purified Breg cells into mice with AD significantly alleviated disease severity. Mechanistic studies revealed that IL-10 produced by Breg cells directly inhibits eosinophil activation and infiltration into the skin. In vitro experiments further confirmed that Breg cells inhibited eosinophil peroxidase secretion in an IL-10-dependent manner. Our collective findings demonstrate that IL-10 from Breg cells alleviates AD by suppressing eosinophil activation and tissue infiltration. This study elucidates a novel regulatory mechanism of Breg cells, providing a foundation for future Breg-mediated therapeutic strategies for AD.
Collapse
Affiliation(s)
- Dajeong Lee
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Geun Jo
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Min Yeong Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Korea.
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju, 27478, Korea.
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
11
|
Al-Hunaiti A, Zihlif M, Abu Thiab T, Al-Awaida W, Al-Ameer HJ, Imraish A. Magnetic nanoparticle-based combination therapy: Synthesis and in vitro proof of concept of CrFe2O4- rosmarinic acid nanoparticles for anti-inflammatory and antioxidant therapy. PLoS One 2024; 19:e0297716. [PMID: 39106290 DOI: 10.1371/journal.pone.0297716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/03/2024] [Indexed: 08/09/2024] Open
Abstract
Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52μg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1β, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.
Collapse
Affiliation(s)
- Afnan Al-Hunaiti
- Department of Chemistry, School of Science, The University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, Jordan
| | - Tuqa Abu Thiab
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Hamzeh J Al-Ameer
- Department of Biotechnology, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| |
Collapse
|
12
|
Liao KL, Wieler AJ, Gascon PML. Mathematical modeling and analysis of cancer treatment with radiation and anti-PD-L1. Math Biosci 2024; 374:109218. [PMID: 38797473 DOI: 10.1016/j.mbs.2024.109218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
In cancer treatment, radiation therapy (RT) induces direct tumor cell death due to DNA damage, but it also enhances the deaths of radiosensitive immune cells and is followed by local relapse and up-regulation of immune checkpoint ligand PD-L1. Since the binding between PD-1 and PD-L1 curtails anti-tumor immunities, combining RT and PD-L1 inhibitor, anti-PD-L1, is a potential method to improve the treatment efficacy by RT. Some experiments support this hypothesis by showing that the combination of ionizing irradiation (IR) and anti-PD-L1 improves tumor reduction comparing to the monotherapy of IR or anti-PD-L1. In this work, we create a simplified ODE model to study the order of tumor growths under treatments of IR and anti-PD-L1. Our synergy analysis indicates that both IR and anti-PD-L1 improve the tumor reduction of each other, when IR and anti-PD-L1 are given simultaneously. When giving IR and anti-PD-L1 separately, a high dosage of IR should be given first to efficiently reduce tumor load and then followed by anti-PD-L1 with strong efficacy to maintain the tumor reduction and slow down the relapse. Increasing the duration of anti-PD-L1 improves the tumor reduction, but it cannot prolong the duration that tumor relapses to the level of the control case. Under some simplification, we also prove that the model has an unstable tumor free equilibrium and a locally asymptotically stable tumor persistent equilibrium. Our bifurcation diagram reveals a transition from tumor elimination to tumor persistence, as the tumor growth rate increases. In the tumor persistent case, both anti-PD-L1 and IR can reduce tumor amount in the long term.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Adam J Wieler
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Pedro M Lopez Gascon
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
13
|
Lee S, Lee CH, Lee J, Jeong Y, Park JH, Nam IJ, Lee DS, Lee HM, Ahn SY, Kim E, Jeong S, Yu SS, Lee W. Botanical formulation HX110B ameliorates PPE-induced emphysema in mice via regulation of PPAR/RXR signaling pathway. PLoS One 2024; 19:e0305911. [PMID: 39052574 PMCID: PMC11271920 DOI: 10.1371/journal.pone.0305911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/04/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), an inflammatory lung disease, causes approximately 3 million deaths each year; however, its pathological mechanisms are not fully understood. In this study, we examined whether HX110B, a mixture of Taraxacum officinale, Dioscorea batatas, and Schizonepeta tenuifolia extracts, could suppress porcine pancreatic elastase (PPE)-induced emphysema in mice and its mechanism of action. The therapeutic efficacy of HX110B was tested using a PPE-induced emphysema mouse model and human bronchial epithelial cell line BEAS-2B. In vivo data showed that the alveolar wall and air space expansion damaged by PPE were improved by HX110B administration. HX110B also effectively suppresses the expression levels of pro-inflammatory mediators including IL-6, IL-1β, MIP-2, and iNOS, while stimulating the expression of lung protective factors such as IL-10, CC16, SP-D, and sRAGE. Moreover, HX110B improved the impaired OXPHOS subunit gene expression. In vitro analysis revealed that HX110B exerted its effects by activating the PPAR-RXR signaling pathways. Overall, our data demonstrated that HX110B could be a promising therapeutic option for COPD treatment.
Collapse
Affiliation(s)
- Soojin Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Chang Hyung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jungkyu Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Yoonseon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Jong-Hyung Park
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - In-Jeong Nam
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Doo Suk Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Hyun Myung Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Soo-Yeon Ahn
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Eujung Kim
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seungyeon Jeong
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Seung-Shin Yu
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| | - Wonwoo Lee
- R&D Center for Innovative Medicines, Helixmith Co., Ltd., Seoul, Korea
| |
Collapse
|
14
|
Li B, Zhang M, Chen S, Zhao C, Li X, Zhang X. Small extracellular vesicle-based delivery of interleukin-10 improves treatment of experimental autoimmune uveitis. Exp Eye Res 2024; 244:109936. [PMID: 38763351 DOI: 10.1016/j.exer.2024.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Non-infectious uveitis is an intraocular autoimmune disease mainly characterized by immune dysregulation of the eye, which may cause blindness if not well treated. Interleukin 10 (IL-10) is a potent cytokine with multiple immunoregulatory functions. However, it's in vivo activity is unstable owing to its inherent protein instability and short plasma half-life. Therefore, our previous research tried to establish IL-10-overexpressing MSC-sEVs (sEVs-IL10) using lentiviral transfection. While this approach indeed improved drug delivery, it also suffered from tedious procedures and limited loading efficiency. Accordingly, we constructed a novel MSC-sEVs-based delivery system for IL-10 (IL-10@sEVs) by sonication. The obtained formulation (IL-10@sEVs) had relatively higher loading efficiency and exerted a more profound immunomodulatory effect than sEVs-IL10 in vitro. Furthermore, IL-10@sEVs had significant therapeutic effects in a mouse model of experimental autoimmune uveitis (EAU) by decreasing the percentage of Th17 cells, increasing regulatory T cells in the eye, and draining lymph nodes. In summary, sonication outperforms conventional transfection methods for loading IL-10 into MSC-sEVs.
Collapse
Affiliation(s)
- Baiyi Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Mi Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Shuang Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Chuan Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
15
|
Skrypnyk M, Yatsenko T, Riabets O, Salama Y, Skikevych M, Osada T, Tobita M, Takahashi S, Hattori K, Heissig B. Interleukin-10 induces TNF-driven apoptosis and ROS production in salivary gland cancer cells. Heliyon 2024; 10:e31777. [PMID: 38882335 PMCID: PMC11176751 DOI: 10.1016/j.heliyon.2024.e31777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Treatment resistance after chemo-/immunotherapy occurs in patients with head and neck squamous cell cancers (HNSCs), including salivary gland cancers (SGCs). Interleukin-10 (IL-10), a cytokine with pro- and anti-cancer effects, has an unclear impact on HNSC/SGC cells. We show that HNSC patients exhibiting high expression of IL-10 and its receptor IL-10Rα experience have prolonged overall survival. Immunoreactive IL-10 was low in ductal cells of human SGC biopsies. Human (A253) and murine WR21-SGC cells expressed IL-10Rβ, but only A253 cells expressed IL-10 and IL-10Rα. The addition of recombinant IL-10 impaired SGC cell proliferation and induced apoptosis in vitro. N-acetylcysteine restored IL-10-induced reactive oxygen species (ROS) production but did not prevent IL-10-mediated viability loss. Mechanistically, recIL-10 delayed cell cycle progression from G0/G1 to the S phase with cyclin D downregulation and upregulation of NF-kB. IL-10 increased tumor necrosis factor-α (TNF-α) in A253 and WR21 and FasL in WR21 cells. Neutralizing antibodies against TNF-α and NF-kB inhibition restored SGC proliferation after IL-10 treatment, emphasizing the critical role of TNF-α and NF-kB in IL-10-mediated anti-tumor effects. These findings underscore the potential of IL-10 to impede SGC cell growth through apoptosis induction, unraveling potential therapeutic targets for intervention in salivary gland carcinomas.
Collapse
Affiliation(s)
- Maksym Skrypnyk
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Tetiana Yatsenko
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Oleksandra Riabets
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 99900800, Palestine
| | - Margarita Skikevych
- Department of Surgical Dentistry and Maxillofacial Surgery with Plastic and Reconstructive Surgery of Head and Neck, Poltava State Medical University, 23 Shevchenko Street. Poltava, Ukraine
| | - Taro Osada
- Department of Gastroenterology Juntendo University Urayasu Hospital, Japan
| | - Morikuni Tobita
- Department of Oral and Maxillofacial Surgery, Juntendo University School of Medicine, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koichi Hattori
- Center for Genome and Regenerative Medicine, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Beate Heissig
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Jian C, Wu T, Wang L, Gao C, Fu Z, Zhang Q, Shi C. Biomimetic Nanoplatform for Dual-Targeted Clearance of Activated and Senescent Cancer-Associated Fibroblasts to Improve Radiation Resistance in Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309279. [PMID: 38214439 DOI: 10.1002/smll.202309279] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Radiation resistance in breast cancer resulting in residual lesions or recurrence is a significant cause to radiotherapy failure. Cancer-associated fibroblasts (CAFs) and radiotherapy-induced senescent CAFs can further lead to radiation resistance and tumor immunosuppressive microenvironment. Here, an engineering cancer-cell-biomimetic nanoplatform is constructed for dual-targeted clearance of CAFs as well as senescent CAFs. The nanoplatform is prepared by 4T1 cell membrane vesicles chimerized with FAP single-chain fragment variable as the biomimetic shell for targeting of CAFs and senescent CAFs, and PLGA nanoparticles (NPs) co-encapsulated with nintedanib and ABT-263 as the core for clearance of CAFs and senescent CAFs, which are noted as FAP-CAR-CM@PLGA-AB NPs. It is evidenced that FAP-CAR-CM@PLGA-AB NPs directly suppressed the tumor-promoting effect of senescent CAFs. It also exhibits prolonged blood circulation and enhanced tumor accumulation, dual-cleared CAFs and senescent CAFs, improved radiation resistance in both acquired and patient-derived radioresistant tumor cells, and effective antitumor effect with the tumor suppression rate of 86.7%. In addition, FAP-CAR-CM@PLGA-AB NPs reverse the tumor immunosuppressive microenvironment and enhance systemic antitumor immunity. The biomimetic system for dual-targeted clearance of CAFs and senescent CAFs provides a potential strategy for enhancing the radio-sensitization of breast cancer.
Collapse
Affiliation(s)
- Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Qian Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| |
Collapse
|
17
|
Drzeniek NM, Kahwaji N, Picht S, Dimitriou IM, Schlickeiser S, Moradian H, Geissler S, Schmueck-Henneresse M, Gossen M, Volk HD. In Vitro Transcribed mRNA Immunogenicity Induces Chemokine-Mediated Lymphocyte Recruitment and Can Be Gradually Tailored by Uridine Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308447. [PMID: 38491873 DOI: 10.1002/advs.202308447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Samira Picht
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioanna Maria Dimitriou
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
18
|
Reis M, Teixeira A, Cardoso J, Borges T, Caldas Afonso A, Correia-Costa L. Association between proinflammatory cytokines and arterial stiffness in type 1 diabetic adolescents. J Pediatr Endocrinol Metab 2024; 37:405-412. [PMID: 38592062 DOI: 10.1515/jpem-2023-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES Type 1 diabetes mellitus is considered a state of chronic low-grade inflammation and activation of the innate immune system, which is regulated by several proinflammatory cytokines and other acute-phase reactants. Arterial stiffness, a dynamic property of the vessels evaluated by the determination of pulse wave velocity (PWV), is increased in diabetic patients and is associated with microvascular and macrovascular complications of diabetes and higher cardiovascular risk. In the present study, we aimed to compare the proinflammatory state and arterial stiffness in diabetic and non-diabetic adolescents, and to characterize the association between these two parameters. METHODS Twenty-three type 1 diabetic patients, aged 12-16 years, followed at a tertiary center, and 23 adolescents nonoverweighted healthy controls, from a Portuguese birth-cohort, were included in the present analysis. Anthropometry, blood pressure, glycemic control data, and lipid parameters were collected. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity. Proinflammatory cytokines' concentrations (TNF-α, IL-1β, IL-6, IL-10, IFN-γ, and GM-CSF) were quantified by multiplex immunoassays using a Luminex 200 analyzer. RESULTS There were no statistically significant differences between the proinflammatory cytokines' concentrations in the two groups. PWV [6.63 (6.23-7.07) vs. 6.07 (5.15-6.65) m/s, p=0.015] was significantly higher in the diabetic group. PWV was negatively correlated with GM-CSF (ρ=-0.437, p=0.037) in the diabetic group. A linear association was found between diabetes duration and PWV (with PWV increasing by 0.094 m/s (95 % confidence interval, 0.019 to 0.169) per month of disease duration). In the diabetic group, HbA1c was negatively correlated with IL-10 (ρ=-0.473, p=0.026). Negative correlations were also found between IL-10 and total, HDL, and LDL cholesterol only in the diabetic group. CONCLUSIONS Diabetic adolescent patients present higher PWV, when compared to their healthy counterparts, even though we could not find differences in the levels of several proinflammatory cytokines between the two groups. The negative correlation found between IL-10 and HbA1c might translate a protective counterbalance effect of this anti-inflammatory cytokine, which might also explain the negative correlations found with blood lipids. Further studies are needed to better clarify the association between arterial stiffness and the proinflammatory milieu of diabetes.
Collapse
Affiliation(s)
- Mónica Reis
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- 522166 Centro Hospitalar Universitário de Santo António , Porto, Portugal
| | - Ana Teixeira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
| | - Juliana Cardoso
- Division of Pediatrics, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Teresa Borges
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- Division of Pediatric Endocrinology, Centro Materno-Infantil do Norte, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Alberto Caldas Afonso
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, 89239 Universidade do Porto , Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Division of Pediatric Nephrology, Centro Materno-Infantil do Norte, 522166 Centro Hospitalar Universitário do Porto , Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| |
Collapse
|
19
|
Chaiyabutr N, Noiprom J, Promruangreang K, Vasaruchapong T, Laoungbua P, Khow O, Chanhome L, Sitprija V. Acute phase reactions in Daboia siamensis venom and fraction-induced acute kidney injury: the role of oxidative stress and inflammatory pathways in in vivo rabbit and ex vivo rabbit kidney models. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20230070. [PMID: 38808074 PMCID: PMC11131233 DOI: 10.1590/1678-9199-jvatitd-2023-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Background This study examines the direct nephrotoxic effects of Daboia siamensis venom (RVV) and venom fractions in in vivo and isolated perfused kidneys (IPK) to understand the role of inflammation pathways and susceptibility to oxidative stress in venom or fraction-induced acute renal failure. Methods We administered RVV and its venom fractions (PLA2, MP, LAAO, and PDE) to rabbits in vivo and in the IPK model. We measured oxidative stress biomarkers (SOD, CAT, GSH, and MDA) in kidney tissue, as well as inflammatory cytokines (TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10), MDA and GSH levels in plasma and urine. We also calculated fractional excretion (FE) for pro-/anti-inflammatory cytokines and oxidative stress biomarkers, including the ratios of pro-/anti-inflammatory cytokines in urine after envenomation. Results In both kidney models, significant increases in MDA, SOD, CAT, and GSH levels were observed in kidney tissues, along with elevated concentrations of MDA and GSH in plasma and urine after injecting RVV and venom fractions. Moreover, RVV injections led to progressive increases in FEMDA and decreases in FEGSH. The concentrations of IL-4, IL-5, IL-10, IFN-γ, and TNF-α in plasma increased in vivo, as well as in the urine of the IPK model, but not for IL-1β in both plasma and urine after RVV administrations. Urinary fractional excretion of TNF-α, IL-1β, IFN-γ, IL-4, IL-5, and IL-10 tended to decrease in vivo but showed elevated levels in the IPK model. A single RVV injection in vivo disrupted the balance of urinary cytokines, significantly reducing either the TNF-α/IL-10 ratio or the IFN-γ/IL-10 ratio. Conclusion RVV induces renal tubular toxicity by increasing oxidative stress production and elevating inflammatory cytokines in urine. During the acute phase of acute kidney injury, the balance of urine cytokines shifts toward anti-inflammatory dominance within the first two hours post-RVV and venom fractions.
Collapse
Affiliation(s)
- Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| | - Jureeporn Noiprom
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Kanyanat Promruangreang
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Panithi Laoungbua
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Orawan Khow
- Department of Research and Development, Queen Saovabha Memorial
Institute, The Thai Red Cross Society, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, The Thai Red Cross
Society, Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, The Thai Red Cross Society,
Pathumwan, Bangkok, Thailand
| |
Collapse
|
20
|
He K, Meng X, Su J, Jiang S, Chu M, Huang B. Oleanolic acid inhibits the tumor progression by regulating Lactobacillus through the cytokine-cytokine receptor interaction pathway in 4T1-induced mice breast cancer model. Heliyon 2024; 10:e27028. [PMID: 38449659 PMCID: PMC10915379 DOI: 10.1016/j.heliyon.2024.e27028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
The therapeutic mechanism of oleanolic acid (OA) in breast cancer has been widely reported, but little has been known about the combined effects of transcriptome and gut microbiome. In this study, the phenotypic effect of oleanolic acid on mice was tested at the end of the administration cycle, and RNA sequencing on murine tumor tissue and 16S-rRNA sequencing on intestinal contents were conducted to analyze gene expression profiles and microbial diversity between the control group and OA treated group using 4T1-induced mice breast cancer model. As a result, it has been confirmed that oleanolic acid would play a significant inhibitory effect on the development of breast tumors in mice. Based on the integrative analysis of the transcriptomic and metagenomic data, it was found that the abundance of Lactobacillus in the intestinal flora of mice significantly increased in the OA group. Moreover, the up-regulation of Il10 had a significant effect on inhibiting the tumor progression, which played a role through cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
21
|
Wyczanska M, Thalmeier F, Keller U, Klaus R, Narasimhan H, Ji X, Schraml BU, Wackerbarth LM, Lange-Sperandio B. Interleukin-10 enhances recruitment of immune cells in the neonatal mouse model of obstructive nephropathy. Sci Rep 2024; 14:5495. [PMID: 38448513 PMCID: PMC10917785 DOI: 10.1038/s41598-024-55469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Urinary tract obstruction during renal development leads to inflammation, leukocyte infiltration, tubular cell death, and interstitial fibrosis. Interleukin-10 (IL-10) is an anti-inflammatory cytokine, produced mainly by monocytes/macrophages and regulatory T-cells. IL-10 inhibits innate and adaptive immune responses. IL-10 has a protective role in the adult model of obstructive uropathy. However, its role in neonatal obstructive uropathy is still unclear which led us to study the role of IL-10 in neonatal mice with unilateral ureteral obstruction (UUO). UUO serves as a model for congenital obstructive nephropathies, a leading cause of kidney failure in children. Newborn Il-10-/- and C57BL/6 wildtype-mice (WT) were subjected to complete UUO or sham-operation on the 2nd day of life. Neonatal kidneys were harvested at day 3, 7, and 14 of life and analyzed for different leukocyte subpopulations by FACS, for cytokines and chemokines by Luminex assay and ELISA, and for inflammation, programmed cell death, and fibrosis by immunohistochemistry and western blot. Compared to WT mice, Il-10-/- mice showed reduced infiltration of neutrophils, CD11bhi cells, conventional type 1 dendritic cells, and T-cells following UUO. Il-10-/- mice with UUO also showed a reduction in pro-inflammatory cytokine and chemokine release compared to WT with UUO, mainly of IP-10, IL-1α, MIP-2α and IL-17A. In addition, Il-10-/- mice showed less necroptosis after UUO while the rate of apoptosis was not different. Finally, α-SMA and collagen abundance as readout for fibrosis were similar in Il-10-/- and WT with UUO. Surprisingly and in contrast to adult Il-10-/- mice undergoing UUO, neonatal Il-10-/- mice with UUO showed a reduced inflammatory response compared to respective WT control mice with UUO. Notably, long term changes such as renal fibrosis were not different between neonatal Il-10-/- and neonatal WT mice with UUO suggesting that IL-10 signaling is different in neonates and adults with UUO.
Collapse
Affiliation(s)
- Maja Wyczanska
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Franziska Thalmeier
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Ursula Keller
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Richard Klaus
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany
| | - Hamsa Narasimhan
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Xingqi Ji
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Barbara U Schraml
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Lou M Wackerbarth
- Biomedical Center, Institute for Cardiovascular Physiology and Pathophysiology, Faculty of Medicine, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Bärbel Lange-Sperandio
- Department of Pediatrics, Dr. v. Hauner Children's Hospital, University Hospital, LMU Munich, Lindwurmstraße 4, 80337, Munich, Germany.
| |
Collapse
|
22
|
Mukherjee M, Chakraborty SB. Pathogenicity of Aeromonas sobria Infecting Hill Stream Loach Botia rostrata (Günther, 1868) from North-East India. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2024; 77:35-46. [DOI: 10.1007/s12595-023-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/17/2023] [Accepted: 10/18/2023] [Indexed: 01/03/2025]
|
23
|
Huang Y, Zou K, Jiang H, Li Z. The complex role of IL-10 in malignant ascites: a review. Cancer Immunol Immunother 2024; 73:32. [PMID: 38279997 PMCID: PMC10821842 DOI: 10.1007/s00262-023-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/05/2023] [Indexed: 01/29/2024]
Abstract
The emergence of malignant ascites (MA) indicates poor prognoses in patients with ovarian, gastrointestinal, breast, and pancreatic cancer. Interleukin-10 (IL-10) is a pleiotropic cytokine with immunoregulatory effects in tumor microenvironment. The level of IL-10 in MA varied across cancer types and patients, influencing cancer progression and outcomes. Originating from various immune and cancer cells, IL-10 contributes to complex signaling pathways in MA. Systemic IL-10 administration, although the evidence of its efficacy on MA is limited, still emerges as a promising therapeutic strategy because it can increase CD8+ T cells cytotoxicity and invigorate exhausted CD8+ tumor infiltration lymphocytes (TILs) directly. IL-10 signaling blockade also demonstrates great potential when combined with other immunotherapies in MA treatment. We reviewed the levels, origins, and functions of IL-10 in malignant ascites and overviewed the current IL-10 signaling targeting therapies, aiming to provide insights for MA treatment.
Collapse
Affiliation(s)
- Yue Huang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Kangni Zou
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China
| | - Heng Jiang
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
24
|
Patilas C, Varsamos I, Galanis A, Vavourakis M, Zachariou D, Marougklianis V, Kolovos I, Tsalimas G, Karampinas P, Kaspiris A, Vlamis J, Pneumaticos S. The Role of Interleukin-10 in the Pathogenesis and Treatment of a Spinal Cord Injury. Diagnostics (Basel) 2024; 14:151. [PMID: 38248028 PMCID: PMC10814517 DOI: 10.3390/diagnostics14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that often leads to severe and permanent neurological deficits. The complex pathophysiology of an SCI involves a cascade of events, including inflammation, oxidative stress, and secondary injury processes. Among the myriad of molecular players involved, interleukin-10 (IL-10) emerges as a key regulator with the potential to modulate both the inflammatory response and promote neuroprotection. This comprehensive review delves into the intricate interplay of IL-10 in the pathogenesis of an SCI and explores its therapeutic implications in the quest for effective treatments. IL-10 has been found to regulate inflammation, oxidative stress, neuronal apoptosis, and glial scars after an SCI. Its neuroprotective properties have been evaluated in a plethora of animal studies. IL-10 administration, either isolated or in combination with other molecules or biomaterials, has shown neuroprotective effects through a reduction in inflammation, the promotion of tissue repair and regeneration, the modulation of glial scar formation, and improved functional outcomes. In conclusion, IL-10 emerges as a pivotal player in the pathogenesis and treatment of SCIs. Its multifaceted role in modulating inflammation, oxidative stress, neuronal apoptosis, glial scars, and neuroprotection positions IL-10 as a promising therapeutic target. The ongoing research exploring various strategies for harnessing the potential of IL-10 offers hope for the development of effective treatments that could significantly improve outcomes for individuals suffering from spinal cord injuries. As our understanding of IL-10's intricacies deepens, it opens new avenues for innovative and targeted therapeutic interventions, bringing us closer to the goal of alleviating the profound impact of SCIs on patients' lives.
Collapse
Affiliation(s)
| | | | | | - Michail Vavourakis
- 3rd Department of Orthopaedic Surgery, National & Kapodistrian University of Athens, KAT General Hospital, 14561 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ter Mors B, Spieler V, Merino Asumendi E, Gantert B, Lühmann T, Meinel L. Bioresponsive Cytokine Delivery Responding to Matrix Metalloproteinases. ACS Biomater Sci Eng 2024; 10:29-37. [PMID: 37102329 DOI: 10.1021/acsbiomaterials.2c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cytokines are regulated in acute and chronic inflammation, including rheumatoid arthritis (RA) and myocardial infarction (MI). However, the dynamic windows within which cytokine activity/inhibition is desirable in RA and MI change timely and locally during the disease. Therefore, traditional, static delivery regimens are unlikely to meet the idiosyncrasy of these highly dynamic pathophysiological and individual processes. Responsive delivery systems and biomaterials, sensing surrogate markers of inflammation (i.e., matrix metalloproteinases - MMPs) and answering with drug release, may present drug activity at the right time, manner, and place. This article discusses MMPs as surrogate markers for disease activity in RA and MI to clock drug discharge to MMP concentration profiles from MMP-responsive drug delivery systems and biomaterials.
Collapse
Affiliation(s)
- Björn Ter Mors
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valerie Spieler
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Merino Asumendi
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Benedikt Gantert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| |
Collapse
|
26
|
Elemam NM, Mekky RY, Rashid G, Braoudaki M, Youness RA. Pharmacogenomic and epigenomic approaches to untangle the enigma of IL-10 blockade in oncology. Expert Rev Mol Med 2024; 26:e1. [PMID: 38186186 PMCID: PMC10941350 DOI: 10.1017/erm.2023.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 01/09/2024]
Abstract
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Collapse
Affiliation(s)
- Noha M. Elemam
- Research Instiute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Radwa Y. Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo 12622, Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University, Gurugram (Manesar) 122413, Haryana, India
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rana A. Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo 11835, Egypt
| |
Collapse
|
27
|
Georgieva-Kotetarova M, Kandilarov I, Vilmosh N, Zlatanova H, Yanchev N, Delev D, Dermendzhiev T, Murdjeva M, Kostadinova I, Kostadinov I. Cannabidiol improves memory and decreases IL-1β serum levels in rats with lipopolysaccharide-induced inflammation. Folia Med (Plovdiv) 2023; 65:940-949. [PMID: 38351784 DOI: 10.3897/folmed.65.e107259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 02/16/2024] Open
Abstract
AIM Memory improving and anti-inflammatory properties of cannabidiol (CBD) were investigated in an experimental model of lipopolysaccharide (LPS)-induced inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Delian Delev
- Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | | | | | | |
Collapse
|
28
|
Cheng T, You Y, Jia B, Wang H, Lv M, Zhu X, Hu Y. Knowledge mapping of B cell and atherosclerosis over the past 20 years: A bibliometric analysis. Hum Vaccin Immunother 2023; 19:2277567. [PMID: 37953301 PMCID: PMC10760366 DOI: 10.1080/21645515.2023.2277567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Atherosclerosis (AS) is the main underlying cause of cardiovascular disease, and B cells are considered a key immune cell type to regulate AS. So far, there is no bibliometric study on B cell and AS. This study aims to comprehensively analyze the scientific output about B cell and AS, summarize the literature characteristics, explore research hotspots, and point out emerging trends. We searched the literature from 2003 to 2022 from the Web of Science Core Collection (WoSCC) database. CiteSpace, VOSviewer, and the R package "Bibliometrix" were used for literature analysis and visualization. A total of 1,062 articles and reviews were identified. The number of annual publications generally showed an upward trend. The United States and China were the most productive countries. Medical University of Vienna was the most productive research institution, and Binder Christoph J. was the most productive author, who was also from Medical University of Vienna. "Arteriosclerosis Thrombosis and Vascular Biology" was the most published journal and the most frequently cited journal. The most cited reference was written by Caligiuri G (2002) in "Journal of Clinical Investigation." The most frequent keywords were "inflammation," "macrophages," "cardiovascular disease," "T cells," "apoptosis," "immunity," "cytokines," "lymphocytes," etc. The trend topics were mainly focused on "immune infiltration," "immunoglobulins," and "biomarkers." The complex role of B cell subtypes and a variety of B cell mediators is the main research direction at present. In-depth analysis of B cell-specific targets can provide new ideas and methods for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Yaping You
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Bochao Jia
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- Clinical Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Huan Wang
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Meng Lv
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xueping Zhu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of Cardiological Medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
29
|
Shih LJ, Yang CC, Liao MT, Lu KC, Hu WC, Lin CP. An important call: Suggestion of using IL-10 as therapeutic agent for COVID-19 with ARDS and other complications. Virulence 2023; 14:2190650. [PMID: 36914565 PMCID: PMC10026935 DOI: 10.1080/21505594.2023.2190650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic has a detrimental impact on public health. COVID-19 usually manifests as pneumonia, which can progress into acute respiratory distress syndrome (ARDS) related to uncontrolled TH17 immune reaction. Currently, there is no effective therapeutic agent to manage COVID-19 with complications. The currently available anti-viral drug remdesivir has an effectiveness of 30% in SARS-CoV-2-induced severe complications. Thus, there is a need to identify effective agents to treat COVID-19 and the associated acute lung injury and other complications. The host immunological pathway against this virus typically involves the THαβ immune response. THαβ immunity is triggered by type 1 interferon and interleukin-27 (IL-27), and the main effector cells of the THαβ immune response are IL10-CD4 T cells, CD8 T cells, NK cells, and IgG1-producing B cells. In particular, IL-10 exerts a potent immunomodulatory or anti-inflammatory effect and is an anti-fibrotic agent for pulmonary fibrosis. Concurrently, IL-10 can ameliorate acute lung injury or ARDS, especially those caused by viruses. Owing to its anti-viral activity and anti-pro-inflammatory effects, in this review, IL-10 is suggested as a possible treatment agent for COVID-19.
Collapse
Affiliation(s)
- Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan City, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei City, Taiwan
| | - Chun-Chun Yang
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
- National Defense Medical Center, Department of Pediatrics, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chih-Pei Lin
- Department of Laboratory Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- h Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
| |
Collapse
|
30
|
Liu J, Ren H, Zhang C, Li J, Qiu Q, Zhang N, Jiang N, Lovell JF, Zhang Y. Orally-Delivered, Cytokine-Engineered Extracellular Vesicles for Targeted Treatment of Inflammatory Bowel Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304023. [PMID: 37728188 DOI: 10.1002/smll.202304023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
The use of orally-administered therapeutic proteins for treatment of inflammatory bowel disease (IBD) has been limited due to the harsh gastrointestinal environment and low bioavailability that affects delivery to diseased sites. Here, a nested delivery system, termed Gal-IL10-EVs (C/A) that protects interleukin 10 (IL-10) from degradation in the stomach and enables targeted delivery of IL-10 to inflammatory macrophages infiltrating the colonic lamina propria, is reported. Extracellular vesicles (EVs) carrying IL-10 are designed to be secreted from genetically engineered mammalian cells by a plasmid system, and EVs are subsequently modified with galactose, endowing the targeted IL-10 delivery to inflammatory macrophages. Chitosan/alginate (C/A) hydrogel coating on Gal-IL10-EVs enables protection from harsh conditions in the gastrointestinal tract and favorable delivery to the colonic lumen, where the C/A hydrogel coating is removed at the diseased sites. Gal-IL10-EVs control the production of reactive oxygen species (ROS) and inhibit the expression of proinflammatory cytokines. In a murine model of colitis, Gal-IL10-EVs (C/A) alleviate IBD symptoms including inflammatory responses and disrupt colonic barriers. Taken together, Gal-IL10-EVs (C/A) features biocompatibility, pH-responsive drug release, and macrophage-targeting as a therapeutic platform for oral delivery of bioactive proteins for treating intestinal diseases.
Collapse
Affiliation(s)
- Jingang Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chen Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Qian Qiu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Nan Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Ning Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
31
|
Liao KL, Watt KD, Protin T. Different mechanisms of CD200-CD200R induce diverse outcomes in cancer treatment. Math Biosci 2023; 365:109072. [PMID: 37734537 DOI: 10.1016/j.mbs.2023.109072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023]
Abstract
The CD200 is a cell membrane protein expressed by tumor cells, and its receptor CD200 receptor (CD200R) is expressed by immune cells including macrophages and dendritic cells. The formation of CD200-CD200R inhibits the cellular functions of the targeted immune cells, so CD200 is one type of the immune checkpoint and blockade CD200-CD200R formation is a potential cancer treatment. However, the CD200 blockade has opposite treatment outcomes in different types of cancers. For instance, the CD200R deficient mice have a higher tumor load than the wild type (WT) mice in melanoma suggesting that CD200-CD200R inhibits melanoma. On the other hand, the antibody anti-CD200 treatment in pancreatic ductal adenocarcinoma (PDAC) and head and neck squamous cell carcinoma (HNSCC) significantly reduces the tumor load indicating that CD200-CD200R promotes PDAC and HNSCC. In this work, we hypothesize that different mechanisms of CD200-CD200R in tumor microenvironment could be one of the reasons for the diverse treatment outcomes of CD200 blockade in different types of cancers. We create one Ordinary Differential Equations (ODEs) model for melanoma including the inhibition of CCL8 and regulatory T cells and the switching from M2 to M1 macrophages by CD200-CD200R to capture the tumor inhibition by CD200-CD200R. We also create another ODEs model for PDAC and HNSCC including the promotion of the polarization and suppressive activities of M2 macrophages by CD200-CD200R to generate the tumor promotion by CD200-CD200R. Furthermore, we use these two models to investigate the treatment efficacy of the combination treatment between the CD200-CD200R blockade and the other immune checkpoint inhibitor, anti-PD-1. Our result shows that different mechanisms of CD200-CD200R can induce different treatment outcomes in combination treatments, namely, only the CD200-CD200R blockade reduces tumor load in melanoma and only the anti-PD-1 and CD200 knockout decrease tumor load in PDAC and HNSCC. Moreover, in melanoma, the CD200-CD200R mainly utilizes the inhibitions on M1 macrophages and dendritic cells to inhibit tumor growth, instead of M2 macrophages.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | - Kenton D Watt
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tom Protin
- Department of Applied Mathematics, INSA Rennes, France
| |
Collapse
|
32
|
Li F, Rong Z, Chen T, Wang P, Di X, Ni L, Liu C. Glycosylation-Engineered Platelet Membrane-Coated Interleukin 10 Nanoparticles for Targeted Inhibition of Vascular Restenosis. Int J Nanomedicine 2023; 18:5011-5030. [PMID: 37693888 PMCID: PMC10492561 DOI: 10.2147/ijn.s423186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose The purpose of this study was to improve the immune compatibility and targeting abilities of IL10 nanoparticles coated with platelet membrane (IL10-PNPs) by glycosylation engineering in order to effectively reduce restenosis after vascular injury. Materials and Methods In this study, we removed sialic acids and added α (1,2)-fucose and α (1,3)-fucose to platelet membrane glycoprotein, thus engineering the glycosylation of IL10-PNPs (IL10-GE-PNPs). In vitro and in vivo experiments were conducted to evaluate the targeting and regulatory effects of IL10-GE-PNPs on macrophage polarization, as well as the influence of IL10-GE-PNPs on the phenotypic transformation, proliferation, and migration of smooth muscle cells, and its potential in promoting the repair function of endothelial cells within an inflammatory environment. In order to assess the distribution of IL10-GE-PNP in different organs, in vivo imaging experiments were conducted. Results IL10-GE-PNPs were successfully constructed and demonstrated to effectively target and regulate macrophage polarization in both in vitro and in vivo settings. This regulation resulted in reduced proliferation and migration of smooth muscle cells and promoted the repair of endothelial cells in an inflammatory environment. Consequently, restenosis after vascular injury was reduced. Furthermore, the deposition of IL10-GE-PNPs in the liver and spleen was significantly reduced compared to IL10-PNPs. Conclusion IL10-GE-PNPs emerged as a promising candidate for targeting vascular injury and exhibited potential as an innovative drug delivery system for suppressing vascular restenosis. The engineered glycosylation of IL10-PNPs improved their immune compatibility and targeting abilities, making them an excellent therapeutic option.
Collapse
Affiliation(s)
- Fengshi Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Zhihua Rong
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Tianqi Chen
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Peng Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Xiao Di
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Leng Ni
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| | - Changwei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
33
|
Wu C, Mao J, Wang X, Yang R, Wang C, Li C, Zhou X. Advances in treatment strategies based on scavenging reactive oxygen species of nanoparticles for atherosclerosis. J Nanobiotechnology 2023; 21:271. [PMID: 37592345 PMCID: PMC10433664 DOI: 10.1186/s12951-023-02058-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
The development of atherosclerosis (AS) is closely linked to changes in the plaque microenvironment, which consists primarily of the cells that form plaque and the associated factors they secrete. The onset of inflammation, lipid deposition, and various pathological changes in cellular metabolism that accompany the plaque microenvironment will promote the development of AS. Numerous studies have shown that oxidative stress is an important condition that promotes AS. The accumulation of reactive oxygen species (ROS) is oxidative stress's most important pathological change. In turn, the effects of ROS on the plaque microenvironment are complex and varied, and these effects are ultimately reflected in the promotion or inhibition of AS. This article reviews the effects of ROS on the microenvironment of atherosclerotic plaques and their impact on disease progression over the past five years and focuses on the progress of treatment strategies based on scavenging ROS of nanoparticles for AS. Finally, we also discuss the prospects and challenges of AS treatment.
Collapse
Affiliation(s)
- Chengxi Wu
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Jingying Mao
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Xueqin Wang
- Department of Thyroid Surgery, people's Hospital of Deyang, Deyang, Sichuan, 618000, China
| | - Ronghao Yang
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Chenglong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, 1-1 Xianglin Road, Luzhou, Sichuan, 646000, China.
| | - Xiangyu Zhou
- Department of Thyroid and Vascular Surgery, the Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
34
|
Mongelos MA, Sosa FN, Pineda GE, Fiorentino G, Santiago A, Abelleyro MM, Rossetti LC, Exeni R, De Brasi CD, Palermo MS, Ramos MV. Assessment of interleukin-10 promoter variant (-1082A/G) and cytokine production in patients with hemolytic uremic syndrome. Front Pediatr 2023; 11:1210158. [PMID: 37425258 PMCID: PMC10327435 DOI: 10.3389/fped.2023.1210158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Hemolytic uremic syndrome (HUS) is a condition that results in acute kidney failure mainly in children, which is caused by Shiga toxin-producing Escherichia coli and inflammatory response. Although anti-inflammatory mechanisms are triggered, studies on the implication in HUS are scarce. Interleukin-10 (IL-10) regulates inflammation in vivo, and the interindividual differences in its expression are related to genetic variants. Notably, the single nucleotide polymorphism (SNP) rs1800896 -1082 (A/G), located in the IL-10 promoter, regulates cytokine expression. Methods Plasma and peripheral blood mononuclear cells (PBMC) were collected from healthy children and HUS patients exhibiting hemolytic anemia, thrombocytopenia, and kidney damage. Monocytes identified as CD14+ cells were analyzed within PBMC by flow cytometry. IL-10 levels were quantified by ELISA, and SNP -1082 (A/G) was analyzed by allele-specific PCR. Results Circulating IL-10 levels were increased in HUS patients, but PBMC from these patients exhibited a lower capacity to secrete this cytokine compared with those from healthy children. Interestingly, there was a negative association between the circulating levels of IL-10 and inflammatory cytokine IL-8. We observed that circulating IL-10 levels were threefold higher in HUS patients with -1082G allele in comparison to AA genotype. Moreover, there was relative enrichment of GG/AG genotypes in HUS patients with severe kidney failure. Discussion Our results suggest a possible contribution of SNP -1082 (A/G) to the severity of kidney failure in HUS patients that should be further evaluated in a larger cohort.
Collapse
Affiliation(s)
- Micaela Aldana Mongelos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernando Nicolás Sosa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gonzalo Ezequiel Pineda
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gabriela Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Adriana Santiago
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Miguel Martín Abelleyro
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Liliana Carmen Rossetti
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ramón Exeni
- Departamento de Nefrología, Diálisis y Trasplante, Hospital del Niño Prof. Dr. Ramón Exeni, San Justo, Argentina
| | - Carlos Daniel De Brasi
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)—Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
35
|
Guan X, Fu Y, Liu Y, Cui M, Zhang C, Zhang Q, Li C, Zhao J, Wang C, Song J, Dong J. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: a systematic review and meta-analysis. Front Immunol 2023; 14:1156039. [PMID: 37325643 PMCID: PMC10266420 DOI: 10.3389/fimmu.2023.1156039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background Pre-eclampsia (PE) is a pregnancy complication associated with maternal and fetal morbidity and mortality. Among the potential pathogenesis discussed, inflammation is considered an essential initiator of PE. Previous studies have compared the levels of various inflammatory biomarkers that indicate the existence of PE; however, the relative levels of pro-inflammatory and anti-inflammatory biomarkers and their dynamic changes during PE progression remain unclear. This knowledge is essential to explain the occurrence and progression of the disease. Objective We aimed to identify the relationship between inflammatory status and PE using inflammatory biomarkers as indicators. We also discussed the underlying mechanism by which inflammatory imbalance contributes to PE by comparing the relative levels of pro-inflammatory and anti-inflammatory biomarkers. Furthermore, we identified additional risk factors for PE. Methods We reviewed PubMed, Embase, and the Cochrane Library for articles published until 15th September 2022. Original articles that investigated inflammatory biomarkers in PE and normal pregnancy were included. We selected healthy pregnant women as controls. The inflammatory biomarkers in the case and control groups were expressed as standardized mean differences and 95% confidence intervals using a random-effects model. Study quality was assessed using the Newcastle-Ottawa Scale. Publication bias was assessed using Egger's test. Results Thirteen articles that investigated 2,549 participants were included in this meta-analysis. Patients with PE had significantly higher levels of C-reactive protein (CRP), interleukin (IL)-4, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF) than the controls. CRP and pro-inflammatory cytokine levels were higher than those of anti-inflammatory cytokines. Patients with gestational age > 34 weeks had significantly higher IL-6 and TNF levels. Patients with higher systolic blood pressure had significantly higher IL-8, IL-10, and CRP levels. Conclusion Inflammatory imbalance is an independent risk factor for PE development. Impairment of the anti-inflammatory system is a crucial initiating factor for PE development. Failed autoregulation, manifested as prolonged exposure to pro-inflammatory cytokines, leads to PE progression. Higher levels of inflammatory biomarkers suggest more severe symptoms, and pregnant women after 34 weeks of gestation are more susceptible to PE.
Collapse
Affiliation(s)
- Xiaohan Guan
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yanwen Fu
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Yixin Liu
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Mingxuan Cui
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Caishun Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Qing Zhang
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Chunmei Li
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jian Zhao
- School of Public Health, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Chaofan Wang
- School of Public Health, Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jiarun Song
- School of Basic Medicine, Clinical Medicine Department of Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jing Dong
- Special Medicine Department, Medical College, Qingdao University, Qingdao, Shandong, China
- Physiology Department, Medical College, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
36
|
Wang S, You Y, Ge M, Shao Y, Huo J, Ren X, Li X, Huang J, Zhang J, Wang M, Nie N, Jin P, Zheng Y. Interleukin-10 promoter variability is associated with the susceptibility, severity, and clinical outcomes of aplasitc anemia in Han-Chinese population. Int J Lab Hematol 2023; 45:204-212. [PMID: 36397188 DOI: 10.1111/ijlh.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Acquired aplastic anemia (AA), a heterogeneous bone marrow (BM) failure disease, is mainly mediated by the immune destruction of hematopoietic stem cells (HSCs). Given the predominant role of immunosuppressive therapy (IST) in AA, it is sensible to theorize that variants of cytokine genes might affect the outcome of IST. METHODS In this study, we analyzed three single nucleotide polymorphisms (SNPs) of interleukin (IL)-10 gene in promoter region to clarify their relationship with susceptibility, clinical efficacy and prognosis of AA. RESULTS We observed that CT genotype of IL-10 rs1800896 was associated with a decreased risk of AA (adjusted OR = 0.541 [95% CI 0.295-0.993], p = .047). Besides, the disease severity differed considerably by IL-10 gene promoter genotypes and alleles. Furthermore, IL-10 SNPs influenced efficacy of IST, with unfavorable response exhibited by rs1800871 and rs1800872 in dominant models (GG + AG vs. AA, adjusted OR = 0.409 [95% CI 0.178-0.943, p = .036] for rs1800871 and GG + GT vs. TT, adjusted OR = 0.396 [95% CI 0.173-0.909, p = .028] for rs1800872, respectively). CONCLUSION The polymorphisms of IL-10 promoter region were informatively genetic risk factors which might be conducive to the insights into the mechanisms of AA and the design of individual regimens.
Collapse
Affiliation(s)
- Shichong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahong You
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiang Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
37
|
Sana SRGL, Lv Y, Chen G, Guo L, Li E. Analysis of the volatile organic compounds of epidural analgesia-ameliorated metabolic disorder in pregnant women with gestational diabetes mellitus based on untargeted metabolomics. Front Endocrinol (Lausanne) 2023; 14:1009888. [PMID: 36864845 PMCID: PMC9970997 DOI: 10.3389/fendo.2023.1009888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disease with an increasing annual incidence. Our previous observational study found that pregnant women with gestational diabetes had mild cognitive decline, which may be related to methylglyoxal (MGO). This study aimed to investigate whether labor pain aggravates the increase in MGO and explored the protective effect of epidural analgesia on metabolism in pregnant women with GDM based on solid-phase microextraction gas chromatography/mass spectrometry (SPME/GC-MS). Pregnant women with GDM were divided into a natural birth group (ND group, n = 30) and epidural analgesia group (PD group, n = 30). After fasting for ≥ 10 h overnight, venous blood samples were collected pre- and post-delivery to detect MGO, interleukin-6 (IL-6), and 8-epi-prostaglandin F2 alpha (8-iso-PGF2α) by ELISA. Serum samples were analyzed for volatile organic compounds (VOCs) using SPME-GC-MS. MGO, IL-6, and 8-iso-PGF2α levels in the ND group increased significantly post-delivery (P < 0.05) and were significantly higher in this group than the levels in the PD group (P < 0.05). Compared to the PD group, VOCs in the ND group increased significantly post-delivery. Further results indicated that propionic acid may be associated with metabolic disorders in pregnant women with GDM. Epidural analgesia can effectively improve the metabolism and immune function in pregnant women with GDM.
Collapse
Affiliation(s)
| | | | | | - Lei Guo
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Enyou Li
- Department of Anesthesiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
38
|
Sankaranarayanan I, Tavares-Ferreira D, Mwirigi JM, Mejia GL, Burton MD, Price TJ. Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice. J Neuroinflammation 2023; 20:32. [PMID: 36774519 PMCID: PMC9922469 DOI: 10.1186/s12974-023-02719-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a primary dose-limiting side effect caused by antineoplastic agents, such as paclitaxel. A primary symptom of this neuropathy is pain. Currently, there are no effective treatments for CIPN, which can lead to long-term morbidity in cancer patients and survivors. Neuro-immune interactions occur in CIPN pain and have been implicated both in the development and progression of pain in CIPN and the resolution of pain in CIPN. We investigated the potential role of inducible co-stimulatory molecule (ICOS) in the resolution of CIPN pain-like behaviors in mice. ICOS is an immune checkpoint molecule that is expressed on the surface of activated T cells and promotes proliferation and differentiation of T cells. We found that intrathecal administration of ICOS agonist antibody (ICOSaa) alleviates mechanical hypersensitivity caused by paclitaxel and facilitates the resolution of mechanical hypersensitivity in female mice. Administration of ICOSaa reduced astrogliosis in the spinal cord and satellite cell gliosis in the DRG of mice previously treated with paclitaxel. Mechanistically, ICOSaa intrathecal treatment promoted mechanical hypersensitivity resolution by increasing interleukin 10 (IL-10) expression in the dorsal root ganglion. In line with these observations, blocking IL-10 receptor (IL-10R) activity occluded the effects of ICOSaa treatment on mechanical hypersensitivity in female mice. Suggesting a broader activity in neuropathic pain, ICOSaa also partially resolved mechanical hypersensitivity in the spared nerve injury (SNI) model. Our findings support a model wherein ICOSaa administration induces IL-10 expression to facilitate neuropathic pain relief in female mice. ICOSaa treatment is in clinical development for solid tumors and given our observation of T cells in the human DRG, ICOSaa therapy could be developed for combination chemotherapy-CIPN clinical trials.
Collapse
Affiliation(s)
- Ishwarya Sankaranarayanan
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Diana Tavares-Ferreira
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Juliet M. Mwirigi
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Galo L. Mejia
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| | - Michael D. Burton
- grid.267323.10000 0001 2151 7939Neuroimmunology and Behavior Laboratory, Department of Neuroscience, Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX USA
| | - Theodore J. Price
- grid.267323.10000 0001 2151 7939Pain Neurobiology Research Group, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080 USA
| |
Collapse
|
39
|
Stasevich EM, Zheremyan EA, Kuprash DV, Schwartz AM. Interaction Between Adipocytes and B Lymphocytes in Human Metabolic Diseases. BIOCHEMISTRY (MOSCOW) 2023; 88:280-288. [PMID: 37072333 DOI: 10.1134/s0006297923020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Diseases associated with the disorders of carbohydrate and lipid metabolism are widespread in the modern world. Interaction between the cells of adipose tissue - adipocytes - and immune system cells is an essential factor in pathogenesis of such diseases. Long-term increase in the glucose and fatty acid levels leads to adipocyte hypertrophy and increased expression of pro-inflammatory cytokines and adipokines by these cells. As a result, immune cells acquire a pro-inflammatory phenotype, and new leukocytes are recruited. Inflammation of adipose tissue leads to insulin resistance and stimulates formation of atherosclerotic plaques and development of autoimmunity. New studies show that different groups of B lymphocytes play an essential role in regulation of adipose tissue inflammation. Decrease in the number of B-2 lymphocytes suppresses development of a number of metabolic diseases, whereas decreased numbers of the regulatory B lymphocytes and B-1 lymphocytes are associated with more severe pathology. Recent studies showed that adipocytes influence B lymphocyte activity both directly and by altering activity of other immune cells. These findings provide better understanding of the molecular mechanisms of human pathologies associated with impaired carbohydrate and lipid metabolism, such as type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ekaterina M Stasevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elina A Zheremyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitriy V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anton M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Moscow Institute of Physics and Technology, Moscow, 141701, Russia
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
40
|
Akinloye OA, Sulaimon LA, Ogunbiyi OE, Odubiyi AE, Adewale AA, Toriola MA, Salami OA, Boyenle ID. Amaranthus spinosus (Spiny Pigweed) methanol leaf extract alleviates oxidative and inflammation induced by doxorubicin in male sprague dawley rats. ADVANCES IN TRADITIONAL MEDICINE 2023. [DOI: 10.1007/s13596-022-00677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Kareva EN, Fedotcheva TA, Semeikin AV, Kochina NA, Krasnoshchok EV, Shimanovskii NL. The mechanisms of anti-inflammatory action of enisamium iodide. TERAPEVT ARKH 2022; 94:1262-1267. [PMID: 37167164 DOI: 10.26442/00403660.2022.11.201961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022]
Abstract
Aim. The role of cyclooxygenases (COX-1 and/or COX-2), transcription nuclear factor NF-B, anti-inflammatory cytokines TGF1b, IL-4, IL-10 and pro-inflammatory cytokines IL-1, IL-6 were studied to substantiate the expediency of antiviral agent enisamium iodide (Nobazit) using to regulate key inflammatory components in acute respiratory infections, IL-8, TNF-alpha in the realization of the pharmacological activity of this drug.
Materials and methods. Gene expression was determined by real-time RT-PCR, the concentration of interleukins was determined by ELISA, and the viability of peripheral blood mononuclear cells (PBMC) was assessed by the MTT spectrophotometric method. The chemiluminescence method was used to assess PBMC oxidant activity.
Results. Enisamium iodide (10 M) reduced mRNA levels of COX-1, COX-2, NF-B, TGF1b, IL-1, IL-6 in stimulated PBMC of healthy donors by an average of 48% (p0.05). At 5 times higher concentration, 50 M, enisamium iodide suppressed the expression of these genes by an average of 43% (p0.05). At a concentration of 100 M, enisamium iodide reduced the expression of COX-2, TGF1b, IL-1, IL-6 by an average of 47% (p0.05). At a concentration of 10 M, enisamium iodide stimulated the secretion of IL-10 by mononuclear cells by 1.2 times, p0.05. The tested drug at a concentration of 50 M did not affected on the concentration of IL-1, IL-4, IL-8 and TNF-alpha, but significantly stimulated the production of IL-10 by 1.5 times, p0.05. The chemiluminescence method revealed that enisamium iodide in the entire concentration range (10100 M) does not reduce the viability of macrophages, but inhibits their oxidative activity (maximum value of CL intensity) by an average of 55% (p0.05).
Conclusion. The anti-inflammatory effect of enisamium iodide at a concentration of 10 M may be associated with inhibition of the expression of COX-1, 2, NF-B, IL-1, IL-6, TGF1b and an increase in the expression and production of IL-10. An additional contribution to the anti-inflammatory activity of enisamium iodide is made by its antioxidant and antiradical activity. The absence of the effect of enisamium iodide (10100 M) on the viability of PBMC indicates its safety for the cells of the immune system and the expediency of using it to suppress inflammatory reactions in acute respiratory infections, restore the quality of life of patients and the possibility of using Nobazit as an effective agent for treatment of these infections of various etiologies.
Collapse
|
42
|
Wang H, Chen H, Lin Y, Wang G, Luo Y, Li X, Wang M, Huai M, Li L, Barri A. Butyrate Glycerides Protect against Intestinal Inflammation and Barrier Dysfunction in Mice. Nutrients 2022; 14:3991. [PMID: 36235644 PMCID: PMC9570839 DOI: 10.3390/nu14193991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
This study investigates the attenuating effects of butyrate glycerides (BG) on intestinal inflammatory responses and barrier dysfunction induced by LPS stimulation. An initial dose-response test was carried out to identify the optimal dose of BG for further testing. The mice were given intragastric administration of BG at different doses followed by lipopolysaccharide (LPS) intraperitoneal injection. The small intestinal morphology and cytokine mRNA expression were measured. With 1.5 g/kg BW BG administration, it was possible to alleviate the injury of duodenal morphology, attenuate ileum villus height reduction and promote IL-10 mRNA expression. Therefore, the optimal dosage of 1.5 g/kg BW BG was selected for the main experiment. The ultrastructure image of jejunum and ileum epithelial cells, mRNA expression, the level of cytokine and immunofluorescence in the ileum were analyzed. The results showed that BG maintain the ileac brush border, tight junction structures and protein expression. BG attenuated the increased inflammatory cytokines, TLR4 and JNK mRNA expression. Taken together, 1.5 g/kg BW BG administration maintained intestinal barrier function and reduced intestinal and body inflammation responses induced by LPS in mice. The mechanism by which BG alleviated intestinal inflammatory response and maintained intestinal barrier function may be related to the JNK signaling pathway.
Collapse
Affiliation(s)
- Haidong Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haohan Chen
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueying Lin
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Geng Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqi Wang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Lily Li
- BASF SEA Pte Ltd., Singapore 038987, Singapore
| | | |
Collapse
|
43
|
Najafi-Fard S, Petruccioli E, Farroni C, Petrone L, Vanini V, Cuzzi G, Salmi A, Altera AMG, Navarra A, Alonzi T, Nicastri E, Palmieri F, Gualano G, Carlini V, Noonan DM, Albini A, Goletti D. Evaluation of the immunomodulatory effects of interleukin-10 on peripheral blood immune cells of COVID-19 patients: Implication for COVID-19 therapy. Front Immunol 2022; 13:984098. [PMID: 36148228 PMCID: PMC9486547 DOI: 10.3389/fimmu.2022.984098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Several therapies with immune-modulatory functions have been proposed to reduce the overwhelmed inflammation associated with COVID-19. Here we investigated the impact of IL-10 in COVID-19, through the ex-vivo assessment of the effects of exogenous IL-10 on SARS-CoV-2-specific-response using a whole-blood platform. Methods Two cohorts were evaluated: in “study population A”, plasma levels of 27 immune factors were measured by a multiplex (Luminex) assay in 39 hospitalized “COVID-19 patients” and 29 “NO COVID-19 controls” all unvaccinated. In “study population B”, 29 COVID-19 patients and 30 NO COVID-19-Vaccinated Controls (NO COVID-19-VCs) were prospectively enrolled for the IL-10 study. Whole-blood was stimulated overnight with SARS-COV-2 antigens and then treated with IL-10. Plasma was collected and used for ELISA and multiplex assay. In parallel, whole-blood was stimulated and used for flow cytometry analysis. Results Baseline levels of several immune factors, including IL-10, were significantly elevated in COVID-19 patients compared with NO COVID-19 subjects in “study population A”. Among them, IL-2, FGF, IFN-γ, and MCP-1 reached their highest levels within the second week of infection and then decreased. To note that, MCP-1 levels remained significantly elevated compared with controls. IL-10, GM-CSF, and IL-6 increased later and showed an increasing trend over time. Moreover, exogenous addition of IL-10 significantly downregulated IFN-γ response and several other immune factors in both COVID-19 patients and NO COVID-19-VCs evaluated by ELISA and a multiplex analysis (Luminex) in “study population B”. Importantly, IL-10 did not affect cell survival, but decreased the frequencies of T-cells producing IFN-γ, TNF-α, and IL-2 (p<0.05) and down-modulated HLA-DR expression on CD8+ and NK cells. Conclusion This study provides important insights into immune modulating effects of IL-10 in COVID-19 and may provide valuable information regarding the further in vivo investigations.
Collapse
Affiliation(s)
- Saeid Najafi-Fard
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Epidemiology and Preclinical Research, UOS Professioni Sanitarie Tecniche National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Assunta Navarra
- Clinical Epidemiology Unit, National Institute for Infectious Disease Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Valentina Carlini
- Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Douglas McClain Noonan
- Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Adriana Albini
- European Institute of Oncology IEO-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- *Correspondence: Adriana Albini, ; Delia Goletti,
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- *Correspondence: Adriana Albini, ; Delia Goletti,
| |
Collapse
|
44
|
Huschtscha Z, Young P, Parr A, Porter J, Costa R. Does intestinal epithelial integrity status in response to high-protein dairy milk beverage with or without progressive resistance training impact systemic inflammatory responses in an active aging population? PLoS One 2022; 17:e0274210. [PMID: 36054131 PMCID: PMC9439207 DOI: 10.1371/journal.pone.0274210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Increased resting systemic anti-inflammatory responses have previously been reported after a period of progressive resistance training (PRT) with daily consumption of a high-protein dairy beverage. The study aimed to investigate the independent and combined effects of consuming a high protein dairy milk beverage with or without a PRT on markers of intestinal epithelial integrity and selected systemic inflammatory responses in active older (≥50 yrs) adults. Thirty two (males n = 24, females n = 8) active older adults [mean (SD): Age 62 (7) years, weight 74.2 (14.0) kg, height 1.73 (10.0) cm, BMI 24.9 (4.0) kg/m2, and body fat mass: 25.8 (9.1)%)], that reported exercising ≥3/week (211 (91) min/week) were randomly allocated into one of four groups: dairy milk (DM), exercise and dairy milk (EX+DM), exercise alone (EX), and control (CON). Groups with EX underwent 12-weeks whole-body PRT program (x3 sessions/week), groups with DM consumed the beverage twice daily (30g protein/day), and CON was required to carry out their ad libitum dietary and exercise habits. Plasma concentrations of CRP, IL-1ß, IL-1ra, LBP, and sCD14 were determined by ELISA from samples collected at weeks 0, 6, and 12. Data were analyzed (SPSS v25.0) for group and time differences using a two-way repeated-measures ANOVA with post hoc analysis. No significant differences were observed for any of the measured plasma biomarkers. The previously observed increase in anti-inflammatory cytokine response is likely due to a muscular cellular response and not an indication of intestinal epithelial integrity disturbance and/or subsequent translocation of luminal originated pathogenic bacterial compounds.
Collapse
Affiliation(s)
- Zoya Huschtscha
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Pascale Young
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Alexandra Parr
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne Burwood Campus, Burwood, Victoria, Australia
| | - Ricardo Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, Victoria, Australia
- * E-mail:
| |
Collapse
|
45
|
Liu D, Saikam V, Skrada KA, Merlin D, Iyer SS. Inflammatory bowel disease biomarkers. Med Res Rev 2022; 42:1856-1887. [PMID: 35603998 PMCID: PMC10321231 DOI: 10.1002/med.21893] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 11/16/2021] [Accepted: 05/05/2022] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized as chronic inflammation in the gastrointestinal tract, which includes two main subtypes, Crohn's disease and ulcerative colitis. Endoscopy combined with biopsy is the most effective way to establish IBD diagnosis and disease management. Imaging techniques have also been developed to monitor IBD. Although effective, the methods are expensive and invasive, which leads to pain and discomfort. Alternative noninvasive biomarkers are being explored as tools for IBD prognosis and disease management. This review focuses on novel biomarkers that have emerged in recent years. These serological biomarkers and microRNAs could potentially be used for disease management in IBD, thereby decreasing patient discomfort and morbidity.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Varma Saikam
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Katie A Skrada
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- 790 Petit Science Center, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
- Atlanta Veterans Medical Center, Decatur, Georgia, USA
| | - Suri S Iyer
- Department of Chemistry, 788 Petit Science Center, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
46
|
McManus CM, Lucci CM, Maranhão AQ, Pimentel D, Pimentel F, Rezende Paiva S. Response to heat stress for small ruminants: Physiological and genetic aspects. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Chouhan P, Singh S, Sharma V, Prajapati VK. Anti-IL-10 Antibody Humanization by SDR Grafting with Enhanced Affinity to Neutralize the Adverse Response of Interleukin-10. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10456-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Mao XC, Yang CC, Yang YF, Yan LJ, Ding ZN, Liu H, Yan YC, Dong ZR, Wang DX, Li T. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:884592. [PMID: 36072577 PMCID: PMC9441870 DOI: 10.3389/fimmu.2022.884592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early identification of patients who will benefit from immune checkpoint inhibitors (ICIs) has recently become a hot issue in cancer immunotherapy. Peripheral cytokines are key regulators in the immune system that can induce the expression of immune checkpoint molecules; however, the association between peripheral cytokines and the efficiency of ICIs remains unclear. Methods A systematic review was conducted in several public databases from inception through 3 February 2022 to identify studies investigating the association between peripheral cytokines (i.e., IL-1β, IL-2, IL-2RA, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-15, IL-17, TNF-α, IFN-γ, and TGF-β) and ICI treatment. Survival data, including overall survival (OS) and/or progression-free survival (PFS), were extracted, and meta-analyses were performed. Results Twenty-four studies were included in this analysis. The pooled results demonstrated that the pretreatment peripheral levels of IL-6 (univariate analysis: HR = 2.53, 95% CI = 2.21–2.89, p < 0.00001; multivariate analysis: HR = 2.21, 95% CI = 1.67–2.93, p < 0.00001) and IL-8 (univariate analysis: HR = 2.17, 95% CI = 1.98–2.38, p < 0.00001; multivariate analysis: HR = 1.88, 95% CI= 1.70–2.07, p < 0.00001) were significantly associated with worse OS of cancer patients receiving ICI treatment in both univariate and multivariate analysis. However, high heterogeneity was found for IL-6, which might be attributed to region, cancer type, treatment method, sample source, and detection method. Conclusion The peripheral level of IL-8 may be used as a prognostic marker to identify patients with inferior response to ICIs. More high-quality prospective studies are warranted to assess the predictive value of peripheral cytokines for ICI treatment.
Collapse
Affiliation(s)
- Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Tao Li,
| |
Collapse
|
49
|
Fernandez NC, Shinoda K. The Role of B Lymphocyte Subsets in Adipose Tissue Development, Metabolism, and Aging. Compr Physiol 2022; 12:4133-4145. [PMID: 35950657 DOI: 10.1002/cphy.c220006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adipose tissue contains resident B lymphocytes (B cells) with varying immune functions and mechanisms, depending on the adipose depot type and location. The heterogeneity of B cells and their functions affect the immunometabolism of the adipose tissue in aging and age-associated metabolic disorders. B cells exist in categorizations of subsets that have developmental or phenotypic differences with varying functionalities. Subsets can be categorized as either protective or pathogenic depending on their secretion profile or involvement in metabolic maintenance. In this article, we summarized recent finding on the B cell heterogeneity and discuss how we can utilize our current knowledge of adipose resident B lymphocytes for potential treatment for age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 1-13, 2022.
Collapse
Affiliation(s)
- Nicole C Fernandez
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, New York, USA
- Fleischer Institute for Diabetes and Metabolism, Bronx, New York, USA
| |
Collapse
|
50
|
Aksoy N, Sen E, Sukmasari S, Özakpınar ÖB, Arıcıoğlu F, Yücel YY, Dumlu MR, Doolaanea AA, AbdulRahman MN, Olgac V, Bozkan P, Ozen B. Investigation of the protective effect of gel incorporating Eugenia jambolana leaf extract on 5-fluorouracil-induced oral mucositis: an animal study. J Cancer Res Clin Oncol 2022; 148:2153-2162. [PMID: 35622166 DOI: 10.1007/s00432-022-04065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE The study aimed to evaluate the possible preventive effect of two concentrations (3 and 5% w/w) of Eugenia jambolana (EJ) extract against 5-FU-induced mucositis. METHOD Sixteen adult rats were separated into four groups: two control and two preventive groups. Animals in Groups 1, 2, and 3 were injected intraperitoneally with 60 mg/kg/day of 5-FU on Day 1 followed by 150 mg/kg/day on Day 5. The rats in Group 4 (negative control) were given physiological saline at the same times and doses. Furthermore, on the fifth day of the study, the cheek and sublingual mucosa were irritated by external superficial scratches using the tip of an 18-G needle, followed by the application 15 µL of 20% acetic acid, after which 3 and 5% EJ w/w gels were applied topically for animals in Groups 2 and 3, respectively. RESULTS The weight and the mucositis scores were recorded. Antioxidant and anti-inflammatory markers and biochemical tests were analyzed. Significant differences were found between the study groups in weight loss, clinical mucositis scores, mortality rates, and antioxidant and anti-inflammatory parameters. CONCLUSION The preventive effect of 3% gel was significant, with no mortality rate, making it an option for preventive strategies.
Collapse
Affiliation(s)
- Nilay Aksoy
- School of Pharmacy, Department of Clinical Pharmacy, Altınbaş University, Zuhuratbaba, Incirli Cd. No:11-A, 34147, Istanbul, Turkey.
| | - Emine Sen
- School of Pharmacy, Department of Biochemistry, Altınbaş University, Istanbul, Turkey
| | - Susi Sukmasari
- Pediatric Dentistry Department and Dental Public Health Department, International Islamic University Malaysia, Kuantan, Malaysia
| | | | - Feyze Arıcıoğlu
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Yasemin Yücel Yücel
- School of Pharmacy, Department of Biochemistry, Altınbaş University, Istanbul, Turkey
| | - Muhammet Rıdvan Dumlu
- Department of Infectious Disease and Clinical Microbiology, University of Health Sciences, Prof. Dr. Cemil Taşcıoğlu City Hospital, Istanbul, Turkey
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University, Kuantan, Malaysia
| | | | - Vakur Olgac
- Institute of Oncology, Department of Tumor Pathology, Istanbul University, Istanbul, Turkey
| | - Pırıl Bozkan
- Department of Pediatric Dentistry, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey
| | - Bugra Ozen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altınbaş University, Istanbul, Turkey
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul Health and Technology University, Istanbul, Turkey
| |
Collapse
|