1
|
Santacroce L, Topi S, Bottalico L, Charitos IA, Jirillo E. Current Knowledge about Gastric Microbiota with Special Emphasis on Helicobacter pylori-Related Gastric Conditions. Curr Issues Mol Biol 2024; 46:4991-5009. [PMID: 38785567 PMCID: PMC11119845 DOI: 10.3390/cimb46050299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The gastric milieu, because of its very low acidic pH, is very harsh for bacterial growth. The discovery of Helicobacter pylori (H.p.) has opened a new avenue for studies on the gastric microbiota, thus indicating that the stomach is not a sterile environment. Nowadays, new technologies of bacterial identification have demonstrated the existence of other microorganisms in the gastric habitat, which play an important role in health and disease. This bacterium possesses an arsenal of compounds which enable its survival but, at the same time, damage the gastric mucosa. Toxins, such as cytotoxin-associated gene A, vacuolar cytotoxin A, lipopolysaccharides, and adhesins, determine an inflammatory status of the gastric mucosa which may become chronic, ultimately leading to a gastric carcinoma. In the initial stage, H.p. persistence alters the gastric microbiota with a condition of dysbiosis, predisposing to inflammation. Probiotics and prebiotics exhibit beneficial effects on H.p. infection, and, among them, anti-inflammatory, antioxidant, and antibacterial activities are the major ones. Moreover, the association of probiotics with prebiotics (synbiotics) to conventional anti-H.p. therapy contributes to a more efficacious eradication of the bacterium. Also, polyphenols, largely present in the vegetal kingdom, have been demonstrated to alleviate H.p.-dependent pathologies, even including the inhibition of tumorigenesis. The gastric microbiota composition in health and disease is described. Then, cellular and molecular mechanisms of H.p.-mediated damage are clarified. Finally, the use of probiotics, prebiotics, and polyphenols in experimental models and in patients infected with H.p. is discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Skender Topi
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, University ‘Alexander Xhuvani’ of Elbasan, 3001 Elbasan, Albania; (S.T.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| |
Collapse
|
2
|
Zheng H, Xia P, Fu W, Ding S. Helicobacter pylori infection and inflammasomes. Helicobacter 2024; 29. [DOI: 10.1111/hel.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/15/2025]
Abstract
AbstractHelicobacter pylori (H. pylori) causes the most prevalent bacterial infection worldwide, and more than half of the world's population is infected with H. pylori. Classified as a group 1 carcinogen of gastric cancer, H. pylori infection causes the most common chronic gastritis, which is able to progress to chronic atrophic gastritis, dysplasia, and even gastric cancer. The inflammasomes are important cytosolic multiprotein complexes to coordinate the host defense against foreign microorganisms and control the inflammatory response. It is also well‐known that inflammasome plays an important role in the occurrence of H. pylori‐induced gastric inflammation. During infection and inflammation, the activation process of inflammasome is tightly regulated by host immune system. However, excessive activation of inflammasome is closely related to the production of excessive cytokines that cause the body injury and resulting in various inflammatory diseases. In this review, we elaborate the activation and assembly mechanisms of inflammasome, the structure of different inflammasome complexes, host factors in vivo and drugs in vitro that regulate inflammasome signaling during H. pylori infection, aiming to provide novel insights and strategies for identifying new therapeutic targets for the treatment of H. pylori‐associated gastric mucosal diseases.
Collapse
Affiliation(s)
- Huiling Zheng
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences Peking University Beijing China
| | - Weiwei Fu
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| | - Shigang Ding
- Department of Gastroenterology Peking University Third Hospital Beijing China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371) Beijing China
| |
Collapse
|
3
|
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Front Immunol 2023; 14:1134785. [PMID: 37063848 PMCID: PMC10102473 DOI: 10.3389/fimmu.2023.1134785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Upper gastrointestinal endoscopy is considered the gold standard for gastric lesions detection and surveillance, but it is still associated with a non-negligible rate of missing conditions. In the Era of Personalized Medicine, biomarkers could be the key to overcome missed lesions or to better predict recurrence, pushing the frontier of endoscopy to functional endoscopy. In the last decade, microbiota in gastric cancer has been extensively explored, with gastric carcinogenesis being associated with progressive dysbiosis. Helicobacter pylori infection has been considered the main causative agent of gastritis due to its interference in disrupting the acidic environment of the stomach through inflammatory mediators. Thus, does inflammation bridge the gap between gastric dysbiosis and the gastric carcinogenesis cascade and could the microbiota-inflammation axis-derived biomarkers be the answer to the unmet challenge of functional upper endoscopy? To address this question, in this review, the available evidence on the role of gastric dysbiosis and chronic inflammation in precancerous conditions of the stomach is summarized, particularly targeting the nuclear factor-κB (NF-κB), toll-like receptors (TLRs) and cyclooxygenase-2 (COX-2) pathways. Additionally, the potential of liquid biopsies as a non-invasive source and the clinical utility of studied biomarkers is also explored. Overall, and although most studies offer a mechanistic perspective linking a strong proinflammatory Th1 cell response associated with, but not limited to, chronic infection with Helicobacter pylori, promising data recently published highlights not only the diagnostic value of microbial biomarkers but also the potential of gastric juice as a liquid biopsy pushing forward the concept of functional endoscopy and personalized care in gastric cancer early diagnosis and surveillance.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- ICBAS-UP – Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Tatiana C. Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Pedro Pimentel-Nunes
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- Department of Gastroenterology, Unilabs, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI‐IPOP)/Rise@CI‐IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- CINTESIS – Center for Health Technology and Services Research, University of Porto, Porto, Portugal
- *Correspondence: Carina Pereira,
| |
Collapse
|
4
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
5
|
Fehri E, Ennaifer E, Bel Haj Rhouma R, Ardhaoui M, Boubaker S. TLR9 and Glioma: Friends or Foes? Cells 2022; 12:cells12010152. [PMID: 36611945 PMCID: PMC9818384 DOI: 10.3390/cells12010152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 9 (TLR9) is an intracellular innate immunity receptor that plays a vital role in chronic inflammation and in recognizing pathogenic and self-DNA in immune complexes. This activation of intracellular signaling leads to the transcription of either immune-related or malignancy genes through specific transcription factors. Thus, it has been hypothesized that TLR9 may cause glioma. This article reviews the roles of TLR9 in the pathogenesis of glioma and its related signaling molecules in either defending or promoting glioma. TLR9 mediates the invasion-induced hypoxia of brain cancer cells by the activation of matrix metalloproteinases (2, 9, and 13) in brain tissues. In contrast, the combination of the TLR9 agonist CpG ODN to radiotherapy boosts the role of T cells in antitumor effects. The TLR9 agonist CpG ODN 107 also enhances the radiosensitivity of human glioma U87 cells by blocking tumor angiogenesis. CpG enhances apoptosis in vitro and in vivo. Furthermore, it can enhance the antigen-presenting capacity of microglia, switch immune response toward CD8 T cells, and reduce the number of CD4CD25 Treg cells. CpG ODN shows promise as a potent immunotherapeutic drug against cancer, but specific cautions should be taken when activating TLR9, especially in the case of glioblastoma.
Collapse
Affiliation(s)
- Emna Fehri
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Correspondence:
| | - Emna Ennaifer
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Rahima Bel Haj Rhouma
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Monia Ardhaoui
- HPV Unit Research, Laboratory of Molecular Epidemiology and Experimental Pathology Applied to Infectious Diseases, Pasteur Institute of Tunis, Tunis 1002, Tunisia
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| | - Samir Boubaker
- Department of Human and Experimental Pathology, Pasteur Institute of Tunis, Tunis 1002, Tunisia
| |
Collapse
|
6
|
Eroğlu Güneş C, Seçer Çelik F, Seçme M, Elmas L, Dodurga Y, Kurar E. Glycoside oleandrin downregulates toll-like receptor pathway genes and associated miRNAs in human melanoma cells. Gene X 2022; 843:146805. [PMID: 35964872 DOI: 10.1016/j.gene.2022.146805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/01/2022] Open
Abstract
Melanoma accounts for the majority of skin cancer-related deaths. Nerium oleander is a plant known to be toxic and consumed due to the cardiac glycosides it contains. Oleandrin is a cardiac glycoside obtained from of N. oleander. Beside capable of inhibiting proliferation and metastasis of cancer cells, cardiac glycoside derivative compounds cause cardiovascular side effects. Because of cardiovascular toxicity of clinically used cardiac glycosides, it is necessary to investigate cardiac glycoside derivative compounds capable of inhibiting proliferation and metastasis of cancer cells. It is known that oleandrin has anticarcinogenic effects in other cancers. Previous studies have shown that toll-like receptors (TLRs) and their related microRNAs (miRNAs) are associated with cancer. Therefore, aim was to investigate the effect of oleandrin on genes and miRNAs associated with TLRs in A375 melanoma cells in this study. The effects of oleandrin on cell viability, cytokines, apoptosis were evaluated using XTT, ELISA and TUNEL analyses, respectively. The effect of oleandrin on expression of TLR genes and 5 associated miRNAs in A375 cells has been determined by qRT-PCR. In addition, the levels of MyD88, TLR2 and TLR4 proteins were analyzed by western blot method. ELISA indicated that oleandrin treatment (47 nM at 48 h) reduced the level of proinflammatory cytokine IFNG. TUNEL analysis showed that apoptosis rate was significantly increased in the oleandrin dose group. According to qRT-PCR results, there was a significant decrease in IRAK1, IRAK4, MyD88, TLR2-TLR7 and TRAF3 expressions in the oleandrin treated group compared to the control (untreated cell). Also, a significant decrease in TLR4 protein expression has been observed. In addition, oleandrin significantly downregulated the levels of hsa-miRNA-146a-5p and hsa-miRNA-21-5p. In conclusion, it has been observed that oleandrin has an effect on TLR pathway-related genes and miRNAs in melanoma cells. We show that TLRs pathways and hsa-miR-146a-5p and hsa-miR-21-5p can participate in the oleandrin molecular mechanism of action.
Collapse
Affiliation(s)
- Canan Eroğlu Güneş
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey.
| | - Fatma Seçer Çelik
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey
| | - Mücahit Seçme
- Department of Medical Biology, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Levent Elmas
- Department of Medical Biology, Faculty of Medicine, Bakırçay University, Izmir, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ercan Kurar
- Department of Medical Biology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
7
|
Yang H, Hu B. Immunological Perspective: Helicobacter pylori Infection and Gastritis. Mediators Inflamm 2022; 2022:2944156. [PMID: 35300405 PMCID: PMC8923794 DOI: 10.1155/2022/2944156] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a spiral-shaped gram-negative bacterium. Its infection is mainly transmitted via oral-oral and fecal-oral routes usually during early childhood. It can achieve persistent colonization by manipulating the host immune responses, which also causes mucosal damage and inflammation. H. pylori gastritis is an infectious disease and results in chronic gastritis of different severity in near all patients with infection. It may develop from acute/chronic inflammation, chronic atrophic gastritis, intestinal metaplasia, dysplasia, and intraepithelial neoplasia, eventually to gastric cancer. This review attempts to cover recent studies which provide important insights into how H. pylori causes chronic inflammation and what the characteristic is, which will immunologically explain H. pylori gastritis.
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Abdi E, Latifi-Navid S, Abedi Sarvestani F, Esmailnejad MH. Emerging therapeutic targets for gastric cancer from a host- Helicobacter pylori interaction perspective. Expert Opin Ther Targets 2021; 25:685-699. [PMID: 34410200 DOI: 10.1080/14728222.2021.1971195] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has the higher genetic, cytologic, and architectural heterogeneity compared to other gastrointestinal cancers. By inducing gastric inflammation, Helicobacter pylori (HP) may lead to GC through combining bacterial factors with host factors. In this regard, identification of the major therapeutic targets against the host-HP interactions plays a critical role in GC prevention, diagnosis, and treatment. AREAS COVERED This study offers new insights into the promising therapeutic targets against the angiogenesis, invasion, or metastasis of GC from a host-HP interaction perspective. To this end, MEDLINE, EMBASE, LILACS, AIM, and IndMed databases were searched for relevant articles since 1992. EXPERT OPINION Wnt signaling and COX pathway have a well-documented history in the genesis of GC by HP and might be considered as the most promising targets for early GC treatment. Destroying HP may decrease the risk of GC, but it cannot fully hinder the GC development induced by HP infection. Therefore, targeting HP-activated pathways, especially COX-2/Wnt/beta-catenin/VEGF, TLR2/TLR9/COX-2, COX2-PGE2, and NF-κB/COX-2, as well as EPHA2, MMPs, and miR-543/SIRT1 axis, can be an effective measure in the early treatment of GC. However, different clinical trials and large, multi-center cohorts are required to validate these potentially effective targets for GC therapy.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | | |
Collapse
|
9
|
Ji XK, Madhurapantula SV, He G, Wang KY, Song CH, Zhang JY, Wang KJ. Genetic variant of cyclooxygenase-2 in gastric cancer: More inflammation and susceptibility. World J Gastroenterol 2021; 27:4653-4666. [PMID: 34366627 PMCID: PMC8326261 DOI: 10.3748/wjg.v27.i28.4653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer accounts for the majority cancer-related deaths worldwide. Although various methods have considerably improved the screening, diagnosis, and treatment of gastric cancer, its incidence is still high in Asia, and the 5-year survival rate of advanced gastric cancer patients is only 10%-20%. Therefore, more effective drugs and better screening strategies are needed for reducing the incidence and mortality of gastric cancer. Cyclooxygenase-2 (COX-2) is considered to be the key inducible enzyme in prostaglandins (PGs) synthesis, which is involved in multiple pathways in the inflammatory response. For example, inflammatory cytokines stimulate innate immune responses via Toll-like receptors and nuclear factor-kappa B to induce COX-2/PGE2 pathway. In these processes, the production of an inflammatory microenvironment promotes the occurrence of gastric cancer. Epidemiological studies have also indicated that non-steroidal anti-inflammatory drugs can reduce the risk of malignant tumors of the digestive system by blocking the effect of COX-2. However, clinical use of COX-2 inhibitors to prevent or treat gastric cancer may be limited because of potential side effects, especially in the cardiovascular system. Given these side effects and low treatment efficacy, new therapeutic approaches and early screening strategies are urgently needed. Some studies have shown that genetic variation in COX-2 also play an important role in carcinogenesis. However, the genetic variation analysis in these studies is incomplete and isolated, pointing out only a few single nucleotide polymorphisms (SNPs) and the risk of gastric cancer, and no comprehensive study covering the whole gene region has been carried out. In addition, copy number variation (CNV) is not mentioned. In this review, we summarize the SNPs in the whole COX-2 gene sequence, including exons, introns, and both the 5' and 3' untranslated regions. Results suggest that COX-2 does not increase its expression through the CNV and the SNPs in COX-2 may serve as the potential marker to establish risk stratification in the general population. This review synthesizes emerging insights of COX-2 as a biomarker in multiple studies, summarizes the association between whole COX-2 sequence variation and susceptibility to gastric cancer, and discusses the future prospect of therapeutic intervention, which will be helpful for early screening and further research to find new approaches to gastric cancer treatment.
Collapse
Affiliation(s)
- Xuan-Ke Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sailaja Vatsalya Madhurapantula
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Gui He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun-Yan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Chun-Hua Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jian-Ying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kai-Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
10
|
A Novel Design of Multi-epitope Vaccine Against Helicobacter pylori by Immunoinformatics Approach. Int J Pept Res Ther 2021; 27:1027-1042. [PMID: 33424523 PMCID: PMC7778422 DOI: 10.1007/s10989-020-10148-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative spiral bacterium that caused infections in half of the world’s population and had been identified as type I carcinogen by the World Health Organization. Compared with antibiotic treatment which could result in drug resistance, the vaccine therapy is becoming a promising immunotherapy option against H. pylori. Further, the multi-epitope vaccine could provoke a wider immune protection to control H. pylori infection. In this study, the in-silico immunogenicity calculations on 381 protein sequences of H. pylori were performed, and the immunogenicity of selected proteins with top-ranked score were tested. The B cell epitopes and T cell epitopes from three well performed proteins UreB, PLA1, and Omp6 were assembled into six constructs of multi-epitope vaccines with random orders. In order to select the optimal constructs, the stability of the vaccine structure and the exposure of B cell epitopes on the vaccine surface were evaluated based on structure prediction and solvent accessible surface area analysis. Finally Construct S1 was selected and molecular docking showed that it had the potential of binding TLR2, TLR4, and TLR9 to stimulate strong immune response. In particular, this study provides good suggestions for epitope assembly in the construction of multi-epitope vaccines and it may be helpful to control H. pylori infection in the future.
Collapse
|
11
|
Céspedes-Acuña CL, Xiao J, Wei ZJ, Chen L, Bastias JM, Avila JG, Alarcon-Enos J, Werner-Navarrete E, Kubo I. Antioxidant and anti-inflammatory effects of extracts from Maqui berry Aristotelia chilensis in human colon cancer cells. JOURNAL OF BERRY RESEARCH 2018; 8:275-296. [DOI: 10.3233/jbr-180356] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Carlos L. Céspedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, Universidad del Bio Bio. Chillan, Chile
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| | - Zhao-Jun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, People’s Republic of China
| | - Longsheng Chen
- Anhui Academy of Science and Technology, Hefei, P.R. China
| | - Jose M. Bastias
- Departamento de Ingeniería en Alimentos, Grupo de Investigación Calidad, Toxicología e Inocuidad Alimentaria, Facultad de Ciencias de la Salud y los Alimentos, Universidad del Bio Bio, Chillan, Chile
| | - José G. Avila
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México. Avenida de Los Barrios 1, Tlalnepantla 54090, Estado de México, México
| | - Julio Alarcon-Enos
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, Universidad del Bio Bio. Chillan, Chile
| | - Enrique Werner-Navarrete
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, Universidad del Bio Bio. Chillan, Chile
| | - Isao Kubo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Phull AR, Hassan M, Abbas Q, Raza H, Haq IU, Seo SY, Kim SJ. In Vitro, In Silico Elucidation of Antiurease Activity, Kinetic Mechanism and COX-2 Inhibitory Efficacy of Coagulansin A of Withania coagulans. Chem Biodivers 2018; 15. [PMID: 29121447 DOI: 10.1002/cbdv.201700427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/06/2017] [Indexed: 11/08/2022]
Abstract
Urease enzyme plays a crucial role in the survival of Helicobacter pylori that contributes to different diseases, including peptic ulcer (gastric and duodenal ulcers). Coagulansin A is the steroidal lactone (withanolide) found in plants of solanaceae family such Withania coagulans. The current study was carried out to examine the in vitro urease, COX-2 inhibitory activity and effect on type II collagen expression of coagulansin A. Moreover, we investigated cytotoxic effects on rabbit articular chondrocytes through MTT assay. COX-2 and type II collagen expressions were determined through a Western blot method. Molecular docking and simulation studies of urease (PDBID 4H9M) and COX-2 (PDBID 5F1A) proteins were also performed as an in silico approach. Results showed that COX-2 expression was decreased dose dependably, significantly higher expression of type II collagen was observed at higher doses. In the current study, coagulansin A was found as non-toxic, and showed notable urease inhibitory activity in non-competitive manner with IC50 23.14 μm in comparison to reference drug thiourea 17.81 μm. Significant decrease in COX-2 expression (40%) and increase in type II collagen (20%) were observed as compared to control. In silico results unveiled the strong binding affinities of coagulansin A with both of these urease and COX-2 proteins. Therefore, herein we proposed the significant antiurease potential of this compound that could be used in treating different diseases such as ulcers. Moreover, detailed in vivo studies and molecular mechanism based studies are suggested.
Collapse
Affiliation(s)
- Abdul Rehman Phull
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
| | - Mubshir Hassan
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
| | - Qamar Abbas
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
- Department of Physiology, University of Sindh, Jamshoro, 76080, Pakistan
| | - Hussain Raza
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sung Yum Seo
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of National Sciences, Kongju National University, 56 Gongju daehak-Ro, Gongju, 32588, Korea
| |
Collapse
|
13
|
Khajeh Alizadeh Attar M, Anwar MA, Eskian M, Keshavarz-Fathi M, Choi S, Rezaei N. Basic understanding and therapeutic approaches to target toll-like receptors in cancerous microenvironment and metastasis. Med Res Rev 2017; 38:1469-1484. [PMID: 29283184 DOI: 10.1002/med.21480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are transmembrane components that sense danger signals, like damage- and pathogen-associated molecular pattern molecules, as receptors, and maintain homeostasis in tissues. They are mainly involved in immune system activation through a variety of mediators, which either carry out (1) elimination of pathogenic threats and redressing homeostatic imbalances or (2) contribution to the initiation and worsening of pathological conditions, including cancers. Under physiological conditions, TLRs coordinate the innate and adaptive immunity, and inhibit autoimmune disorders. In pathological conditions, such as cancer, they can present both tumor and receptor-specific roles. Although the roles of individual TLRs in various cancers have been described, the effects of targeting TLRs to treat cancer and prevent metastasis are still controversial. A growing body of literature has suggested contribution of both activators and inhibitors of TLR signaling pathway for cancer treatment, dependent on several context-specific factors. In short, TLRs can play dual roles with contradictory outcomes in neoplastic conditions. This hampers the development of TLR-based therapeutic interventions. A better understanding of the interwoven TLR pathways in cancerous microenvironment is necessary to design TLR-based therapies. In this review, we consider the molecular mechanisms of TLRs signaling and their involvement in tumor progression. Therapeutic modalities targeting TLRs for cancer treatment are discussed as well.
Collapse
Affiliation(s)
- Mojtaba Khajeh Alizadeh Attar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, United Kingdom
| |
Collapse
|
14
|
Lee YC, Lin JT. Screening and treating Helicobacter pylori infection for gastric cancer prevention on the population level. J Gastroenterol Hepatol 2017; 32:1160-1169. [PMID: 28087975 DOI: 10.1111/jgh.13726] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori infection is the major cause of gastric cancer, and removal of H. pylori infection from a population could theoretically decrease the number of cases by about 89%. However, in real-life settings, few studies have reported the effect of screening and treating this pathogen in population-based programs. This is mainly because of the lack of an adequate infrastructure for delivery of systematic screening services to asymptomatic individuals, the lack of standardization to ensure that each subject receives the correct diagnostic testing and antibiotic treatment, and limited resources. We illustrate our method of implementing two population-based screen-and-treat programs in Taiwan, where the epidemiological characteristics of disease burden have changed from the traditionally Eastern pattern towards that of the Western countries. Our first example is a high-risk population that resides on an offshore island, in which a strategy of mass eradication of H. pylori was applied. The other example is an intermediate-risk population, which is representative of the general average-risk population, in which there is integration of the screen-and-treat method with the established framework of colorectal cancer screening using the fecal-occult blood test. The information provided here may be useful for integration of gastric cancer prevention measures into the healthcare priorities of populations with different gastric cancer risks, such as those with limited resources.
Collapse
Affiliation(s)
- Yi-Chia Lee
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan
| | - Jaw-Town Lin
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan.,School of Medicine and Big Data Research Centre, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
15
|
Varga MG, Piazuelo MB, Romero-Gallo J, Delgado AG, Suarez G, Whitaker ME, Krishna US, Patel RV, Skaar EP, Wilson KT, Algood HMS, Peek RM. TLR9 activation suppresses inflammation in response to Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 2016; 311:G852-G858. [PMID: 27758771 PMCID: PMC5130555 DOI: 10.1152/ajpgi.00175.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori (H. pylori) induces chronic gastritis in humans, and infection can persist for decades. One H. pylori strain-specific constituent that augments disease risk is the cag pathogenicity island. The cag island encodes a type IV secretion system (T4SS) that translocates DNA into host cells. Toll-like receptor 9 (TLR9) is an innate immune receptor that detects hypo-methylated CpG DNA motifs. In this study, we sought to define the role of the H. pylori cag T4SS on TLR9-mediated responses in vivo. H. pylori strain PMSS1 or its cagE- mutant, which fails to assemble a T4SS, were used to infect wild-type or Tlr9-/- C57BL/6 mice. PMSS1-infected Tlr9-/- mice developed significantly higher levels of inflammation, despite similar levels of colonization density, compared with PMSS1-infected wild-type mice. These changes were cag dependent, as both mouse genotypes infected with the cagE- mutant only developed minimal inflammation. Tlr9-/- genotypes did not alter the microbial phenotypes of in vivo-adapted H. pylori strains; therefore, we examined host immunological responses. There were no differences in levels of TH1 or TH2 cytokines in infected mice when stratified by host genotype. However, gastric mucosal levels of IL-17 were significantly increased in infected Tlr9-/- mice compared with infected wild-type mice, and H. pylori infection of IL-17A-/- mice concordantly led to significantly decreased levels of gastritis. Thus loss of Tlr9 selectively augments the intensity of IL-17-driven immune responses to H. pylori in a cag T4SS-dependent manner. These results suggest that H. pylori utilizes the cag T4SS to manipulate the intensity of the host immune response.
Collapse
Affiliation(s)
- Matthew G. Varga
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - M. Blanca Piazuelo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Judith Romero-Gallo
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Alberto G. Delgado
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Giovanni Suarez
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Morgan E. Whitaker
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Uma S. Krishna
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - Rachna V. Patel
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Eric P. Skaar
- 3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Keith T. Wilson
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Holly M. S. Algood
- 2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and ,4Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M. Peek
- 1Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; ,2Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; ,3Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|
16
|
Hu Y, Liu JP, Zhu Y, Lu NH. The Importance of Toll-like Receptors in NF-κB Signaling Pathway Activation by Helicobacter pylori Infection and the Regulators of this Response. Helicobacter 2016; 21:428-40. [PMID: 26763943 DOI: 10.1111/hel.12292] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron-deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF-κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll-like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF-κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori-related diseases.
Collapse
Affiliation(s)
- Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Ping Liu
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Zhou X, Ramke M, Chintakuntlawar AV, Lee JY, Rajaiya J, Chodosh J. Role of MyD88 in adenovirus keratitis. Immunol Cell Biol 2016; 95:108-116. [PMID: 27528076 PMCID: PMC5791738 DOI: 10.1038/icb.2016.73] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 12/29/2022]
Abstract
Pattern recognition receptors (PRRs) are critical to the early detection and innate immune responses to pathogens. In particular, the TLR system and its associated adaptor proteins play essential roles in early host responses to infection. Epidemic keratoconjunctivitis, caused by the human adenovirus, is a severe ocular surface infection associated with corneal inflammation (stromal keratitis). We previously showed that adenovirus capsid was a key molecular pattern in adenovirus keratitis, with viral DNA playing a lesser role. We have now investigated the role of the adaptor molecule MyD88 in a mouse model of adenovirus keratitis in which there is no viral replication. In MyD88−/− mice infected with human adenovirus type 37, clinical keratitis was markedly reduced, along with infiltration of CD45+ cells, and expression of inflammatory cytokines. Reduction of inflammatory cytokines was also observed in infected primary human corneal fibroblasts pretreated with a MyD88 inhibitory peptide. Keratitis similar to wild type mice was observed in TLR2, TLR9, and IL-1R knockout mice, but was reduced in TLR2/9 double knockout mice, consistent with synergy of TLR2 and TLR9 in the response to adenovirus infection. MyD88 co-immunoprecipitated with Src kinase in mice corneas and in human corneal fibroblasts infected with adenovirus, and MyD88 inhibitory peptide reduced Src phosphorylation, linking MyD88 activation to inflammatory gene expression through a signaling cascade previously shown to be directed by Src. Our findings reveal a critical role for the PRRs TLR2 and 9, and their adaptor protein MyD88, in corneal inflammation upon adenovirus infection.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mirja Ramke
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ashish V Chintakuntlawar
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jeong Yoon Lee
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jaya Rajaiya
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Howe Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Kosik-Bogacka DI, Baranowska-Bosiacka I, Kolasa-Wołosiuk A, Lanocha-Arendarczyk N, Gutowska I, Korbecki J, Namięta H, Rotter I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp Parasitol 2016; 169:69-76. [PMID: 27466058 DOI: 10.1016/j.exppara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to determine whether Hymenolepis diminuta may affect the expression and activity of cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), resulting in the altered levels of their main products - prostaglandins (PGE2) and thromboxane B2 (TXB2). The study used the same experimental model as in our previous studies in which we had observed changes in the transepithelial ion transport, tight junctions and in the indicators of oxidative stress, in both small and large intestines of rats infected with H. diminuta. In this paper, we investigated not only the site of immediate presence of the tapeworm (jejunum), but also a distant site (colon). Inflammation related to H. diminuta infection is associated with the increased expression and activation of cyclooxygenase (COX), enzyme responsible for the synthesis of PGE2 and TXB2, local hormones contributing to the enhanced inflammatory reaction in the jejunum and colon in the infected rats. The increased COX expression and activity is probably caused by the increased levels of free radicals and the weakening of the host's antioxidant defense induced by the presence of the parasite. Our immunohistochemical analysis showed that H. diminuta infection affected not only the intensity of the immunodetection of COX but also the enzyme protein localization within intestinal epithelial cells - from the entire cytoplasm to apical/basal regions of cells, or even to the nucleus.
Collapse
Affiliation(s)
- D I Kosik-Bogacka
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland.
| | - I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - A Kolasa-Wołosiuk
- Department of Histology and Embryology, Pomeranian Medical University, Szczecin, Poland
| | - N Lanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Szczecin, Poland
| | - J Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - H Namięta
- Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland
| | - I Rotter
- Independent Laboratory of Medical Rehabilitation, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
19
|
The contribution of toll-like receptor 2 on Helicobacter pylori activation of the nuclear factor-kappa B signaling pathway in gastric epithelial cells. Microb Pathog 2016; 98:63-8. [PMID: 27364547 DOI: 10.1016/j.micpath.2016.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/16/2016] [Accepted: 06/24/2016] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori (H. pylori) is a spiral shaped gram-negative bacterium that induces immune responses in the gastric mucosa. Toll-like receptors (TLRs) play important roles in mediating inflammatory cytokines by recognition of conserved molecular patterns on bacteria. Changes in the expression of toll-like receptor (TLR) 2, TLR4 and the relative inflammatory cytokines were analyzed in normal gastric epithelial GES-1 cells following treatment with H. pylori or Escherichia coli lipopolysaccharide (E. coli LPS) in order to investigate the contribution of TLRs in recognizing and mediating the inflammatory response to H. pylori, and study the differences in TLRs' performance between H. pylori and E. coli. Specific inhibitors for the declines in TLR2 and TLR4 were also employed. The results showed that H. pylori infection increased TLR2 expression in GES-1 cells, but TLR4 remained unchanged regardless of H. pylori or TLR2 small interfering RNA treatment. Furthermore, the secretion of cyclooxygenase-2 (COX-2) induced by H. pylori was inhibited by declines in TLR2, but not in TLR4. In conclusion, TLR2 plays an even more important role than TLR4 not only in recognizing H. pylori, but also in the induction of inflammatory cytokines initiated by H. pylori. However, both TLR2 and TLR4 are necessary in mediating the inflammatory response to E. coli LPS.
Collapse
|
20
|
Varga MG, Shaffer CL, Sierra JC, Suarez G, Piazuelo MB, Whitaker ME, Romero-Gallo J, Krishna US, Delgado A, Gomez MA, Good JAD, Almqvist F, Skaar EP, Correa P, Wilson KT, Hadjifrangiskou M, Peek RM. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene 2016; 35:6262-6269. [PMID: 27157617 PMCID: PMC5102820 DOI: 10.1038/onc.2016.158] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 12/14/2022]
Abstract
Helicobacter pylori is the strongest identified risk factor for gastric cancer, the third most common cause of cancer-related death worldwide. An H. pylori constituent that augments cancer risk is the strain-specific cag pathogenicity island, which encodes a type IV secretion system (T4SS) that translocates a pro-inflammatory and oncogenic protein, CagA, into epithelial cells. However, the majority of persons colonized with CagA+H. pylori strains do not develop cancer, suggesting that other microbial effectors also play a role in carcinogenesis. Toll-like receptor 9 (TLR9) is an endosome bound, innate immune receptor that detects and responds to hypo-methylated CpG DNA motifs that are most commonly found in microbial genomes. High expression tlr9 polymorphisms have been linked to the development of premalignant lesions in the stomach. We now demonstrate that levels of H. pylori-mediated TLR9 activation and expression are directly related to gastric cancer risk in human populations. Mechanistically, we show for the first time that the H. pylori cancer-associated cag T4SS is required for TLR9 activation and that H. pylori DNA is actively translocated by the cag T4SS to engage this host receptor. Activation of TLR9 occurs through a contact-dependent mechanism between pathogen and host, and involves transfer of microbial DNA that is both protected as well as exposed during transport. These results indicate that TLR9 activation via the cag island may modify the risk for malignancy within the context of H. pylori infection and provide an important framework for future studies investigating the microbial-epithelial interface in gastric carcinogenesis.
Collapse
Affiliation(s)
- M G Varga
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - C L Shaffer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J C Sierra
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - G Suarez
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M B Piazuelo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M E Whitaker
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - J Romero-Gallo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - U S Krishna
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - A Delgado
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M A Gomez
- Department of Internal Medicine, Unit of Gastroenterology, National University of Colombia School of Medicine, Bogota, Colombia
| | - J A D Good
- Department of Chemistry, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - F Almqvist
- Department of Chemistry, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - E P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - P Correa
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - K T Wilson
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - M Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R M Peek
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
21
|
Lien GS, Lin CH, Yang YL, Wu MS, Chen BC. Ghrelin induces colon cancer cell proliferation through the GHS-R, Ras, PI3K, Akt, and mTOR signaling pathways. Eur J Pharmacol 2016; 776:124-31. [PMID: 26879868 DOI: 10.1016/j.ejphar.2016.02.044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/16/2022]
Abstract
Colon cancer is the third most common malignancy worldwide. Recently, some interesting associations between ghrelin and cancer were reported, and it may participate in colon cancer development. In the present report, we explored the role of the growth hormone secretagogue receptor (GHS-R), Ras, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) pathways in the ghrelin-induced proliferation of human colon cancer cells. Ghrelin-caused HT-29 proliferation was reduced by [D-Lys3]-GHRP-6 (a GHS-R inhibitor). We also found that a dominant negative mutant of Ras (Ras DN), a PI3K inhibitor (LY 294002), an Akt DN, and an mTOR inhibitor (rapamycin) attenuated ghrelin-caused colon cancer cell proliferation. We found that ghrelin induced time-dependent increases in Ras activity. Moreover, ghrelin-mediated Akt Ser473 phosphorylation was attenuated by a Ras DN and LY 294002. Furthermore, a Ras DN, LY 294002, and an Akt DN all inhibited ghrelin-caused mTOR Ser2448 phosphorylation. These results indicate that the Ras/PI3K/Akt/mTOR cascade plays a critical role in ghrelin-induced colon cancer cell proliferation.
Collapse
Affiliation(s)
- Gi-Shih Lien
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - You-Lan Yang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Shun Wu
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
22
|
Zahlten J, Herta T, Kabus C, Steinfeldt M, Kershaw O, García P, Hocke AC, Gruber AD, Hübner RH, Steinicke R, Doehn JM, Suttorp N, Hippenstiel S. Role of Pneumococcal Autolysin for KLF4 Expression and Chemokine Secretion in Lung Epithelium. Am J Respir Cell Mol Biol 2015; 53:544-54. [PMID: 25756955 DOI: 10.1165/rcmb.2014-0024oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In severe pneumococcal pneumonia, the delicate balance between a robust inflammatory response necessary to kill bacteria and the loss of organ function determines the outcome of disease. In this study, we tested the hypothesis that Krueppel-like factor (KLF) 4 may counter-regulate Streptococcus pneumoniae-related human lung epithelial cell activation using the potent proinflammatory chemokine IL-8 as a model molecule. Pneumococci induced KLF4 expression in human lung, in primary human bronchial epithelial cells, and in the lung epithelial cell line BEAS-2B. Whereas proinflammatory cell activation depends mainly on the classical Toll-like receptor 2-mitogen-activated protein kinase or phosphatidylinositide 3-kinase and NF-κB pathways, the induction of KLF4 occurred independently of these molecules but relied, in general, on tyrosine kinase activation and, in part, on the src kinase family member yamaguchi sarcoma viral oncogene homolog (yes) 1. The up-regulation of KLF4 depended on the activity of the main pneumococcal autolysin LytA. KLF4 overexpression suppressed S. pneumoniae-induced NF-κB and IL-8 reporter gene activation and release, whereas small interfering RNA-mediated silencing of KLF4 or yes1 kinase led to an increase in IL-8 release. The KLF4-dependent down-regulation of NF-κB luciferase activity could be rescued by the overexpression of the histone acetylase p300/cAMP response element-binding protein-associated factor. In conclusion, KLF4 acts as a counter-regulatory transcription factor in pneumococci-related proinflammatory activation of lung epithelial cells, thereby potentially preventing lung hyperinflammation and subsequent organ failure.
Collapse
Affiliation(s)
- Janine Zahlten
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Toni Herta
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christin Kabus
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Magdalena Steinfeldt
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Kershaw
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Pedro García
- 3 Departamento de Microbiología Molecular, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; and.,4 CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Andreas C Hocke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D Gruber
- 2 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ralf-Harto Hübner
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Steinicke
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Moritz Doehn
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- 1 Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Interplay of the Gastric Pathogen Helicobacter pylori with Toll-Like Receptors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:192420. [PMID: 25945326 PMCID: PMC4402485 DOI: 10.1155/2015/192420] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/29/2014] [Indexed: 12/18/2022]
Abstract
Toll-like receptors (TLRs) are crucial for pathogen recognition and downstream signaling to induce effective immunity. The gastric pathogen Helicobacter pylori is a paradigm of persistent bacterial infections and chronic inflammation in humans. The chronicity of inflammation during H. pylori infection is related to the manipulation of regulatory cytokines. In general, the early detection of H. pylori by TLRs and other pattern recognition receptors (PRRs) is believed to induce a regulatory cytokine or chemokine profile that eventually blocks the resolution of inflammation. H. pylori factors such as LPS, HSP-60, NapA, DNA, and RNA are reported in various studies to be recognized by specific TLRs. However, H. pylori flagellin evades the recognition of TLR5 by possessing a conserved N-terminal motif. Activation of TLRs and resulting signal transduction events lead to the production of pro- and anti-inflammatory mediators through activation of NF-κB, MAP kinases, and IRF signaling pathways. The genetic polymorphisms of these important PRRs are also implicated in the varied outcome and disease progression. Hence, the interplay of TLRs and bacterial factors highlight the complexity of innate immune recognition and immune evasion as well as regulated processes in the progression of associated pathologies. Here we will review this important aspect of H. pylori infection.
Collapse
|
24
|
Su YL, Yang JC, Lee H, Sheu F, Hsu CH, Lin SL, Chow LP. The C-terminal disulfide bonds of Helicobacter pylori GroES are critical for IL-8 secretion via the TLR4-dependent pathway in gastric epithelial cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3997-4007. [PMID: 25769921 DOI: 10.4049/jimmunol.1401852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori GroES (HpGroES), a potent immunogen, is a secreted virulence factor that stimulates production of proinflammatory cytokines and may contribute to gastric carcinogenesis. HpGroES is larger than other bacterial orthologs because of an additional C-terminal region, known as domain B. We found that the HpGroES-induced IL-8 release by human gastric epithelial cells was dependent on activation of the MAPK and NF-κB pathways. HpGroES lacking domain B was unable to induce IL-8 release. Additionally, a TLR4 inhibitor significantly inhibited IL-8 secretion and reduced HpGroES-induced activation of MAPKs. Furthermore, HpGroES-induced IL-8 release by primary gastric epithelial cells from TLR4(-/-) mice was significantly lower than from wild-type mice. We also found that HpGroES bound to TLR4 in cell lysates and colocalized with TLR4 on the cell membrane only when domain B was present. We then constructed two deletion mutants lacking C-terminal regions and mutants with point mutations of two of the four cysteine residues, C111 and C112, in domain B and found that the deletion mutants and a double mutant lacking the C94-C111 and C95-C112 disulfide bonds were unable to interact with TLR4 or induce IL-8 release. We conclude that HpGroES, in which a unique conformational structure, domain B, is generated by these two disulfide bonds, induces IL-8 secretion via a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Yu-Lin Su
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Haur Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fuu Sheu
- Department of Horticulture, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; and
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
25
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. J Transl Med 2015; 95:296-307. [PMID: 25545478 DOI: 10.1038/labinvest.2014.161] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
26
|
Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. LABORATORY INVESTIGATION; A JOURNAL OF TECHNICAL METHODS AND PATHOLOGY 2014. [PMID: 25545478 DOI: 10.1038/labinvest.2014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intestinal dysbiosis has been reported in patients with colorectal cancer, and there is a high prevalence of Escherichia coli belonging to B2 phylogroup and producing a genotoxin, termed colibactin. Macrophages are one of the predominant tumor-infiltrating immune cells supporting key processes in tumor progression by producing protumoral factors such as cyclooxygenase-2 (COX-2). Here, we investigated whether B2 E. coli colonizing colon tumors could influence protumoral activities of macrophages. In contrast to commensal or nonpathogenic E. coli strains that were efficiently and rapidly degraded by macrophages at 24 h after infection, colon cancer-associated E. coli were able to resist killing by human THP-1 macrophages, to replicate intracellularly, and to persist inside host cells until at least 72 h after infection. Significant increases in COX-2 expression were observed in macrophages infected with colon cancer E. coli compared with macrophages infected with commensal and nonpathogenic E. coli strains or uninfected cells at 72 h after infection. Induction of COX-2 expression required live bacteria and was not due to colibactin production, as similar COX-2 levels were observed in macrophages infected with the wild-type colon cancer-associated E. coli 11G5 strain or a clbQ mutant unable to produce colibactin. Treatment of macrophages with ofloxacin, an antibiotic with intracellular tropism, efficiently decreased the number of intracellular bacteria and suppressed bacteria-induced COX-2 expression. This study provides new insights into the understanding of how tumor- infiltrating bacteria could influence cancer progression through their interaction with immune cells. Manipulation of microbes associated with tumors could have a deep influence on the secretion of protumoral molecules by infiltrating macrophages.
Collapse
|
27
|
Shao Y, Sun K, Xu W, Li XL, Shen H, Sun WH. Helicobacter pylori infection, gastrin and cyclooxygenase-2 in gastric carcinogenesis. World J Gastroenterol 2014; 20:12860-12873. [PMID: 25278683 PMCID: PMC4177468 DOI: 10.3748/wjg.v20.i36.12860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/12/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent neoplasms and a main cause of death worldwide, especially in China and Japan. Numerous epidemiological, animal and experimental studies support a positive association between chronic Helicobacter pylori (H. pylori) infection and the development of gastric cancer. However, the exact mechanism whereby H. pylori causes gastric carcinogenesis remains unclear. It has been demonstrated that expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. In this review, we present the latest clinical and experimental evidence showing the role of gastrin and COX-2 in H. pylori-infected patients and their possible association with gastric cancer risk.
Collapse
|
28
|
Castaño-Rodríguez N, Kaakoush NO, Mitchell HM. Pattern-recognition receptors and gastric cancer. Front Immunol 2014; 5:336. [PMID: 25101079 PMCID: PMC4105827 DOI: 10.3389/fimmu.2014.00336] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy.
Collapse
Affiliation(s)
- Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
29
|
Matsuo K, Hotokezaka H, Ohara N, Fujimura Y, Yoshimura A, Okada Y, Hara Y, Yoshida N, Nakayama K. Analysis of Amphotericin B-Induced Cell Signaling with Chemical Inhibitors of Signaling Molecules. Microbiol Immunol 2013; 50:337-47. [PMID: 16625056 DOI: 10.1111/j.1348-0421.2006.tb03792.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although amphotericin B (AmB) is a major polyene antibiotic against invasive fungal infection, administration to patients sometimes causes inflammatory side effects, which limits the usage of the antibiotic. We studied the intracellular signaling that was induced by AmB. p65 (RelA) of nuclear factor-kappaB (NF-kappaB), a well-known signaling molecule as an inducer of proinflammatory cytokines, was phosphorylated by AmB in RAW264.7 cells, a monocyte-like cell line. Among chemical inhibitors of signaling molecules, U-73122 (phospholipase C (PLC) inhibitor), Gö6976 (protein kinase C (PKC) inhibitor), BAPTA-AM (calcium chelator), LFM-A13 (Bruton's tyrosine kinase (Btk)-specific inhibitor), and PP2 (c-Src kinase inhibitor) suppressed AmB-induced phosphorylation of p65 and translocation of p65 into the nucleus. U-73122 and Gö6976 reduced AmB-mediated induction of proinflammatory cytokines (tumor necrosis factor (TNF)-alpha and interleukin (IL)-6) in RAW264.7 cells. Furthermore, AmB-induced activation of NF-kappaB was observed in toll-like receptor (TLR) 2-expressed cells, and the activation of NF-kappaB was inhibited by U-73122, whereas peptidoglycan-induced NF-kappaB activation, which was also dependent on TLR2, was not inhibited by U-73122. Finally, U-73122 partially suppressed in vivo production of TNF-alpha and IL-6 induced by AmB administration in BALB/c mice. These results suggested that the signaling from AmB stimulation to proinflammatory cytokine production is mediated by TLR2, Btk, PLC, PKC, c-Src and NF-kappaB. These signaling molecules may become a target for chemotherapy suppressing AmB-induced proinflammatory cytokine production.
Collapse
Affiliation(s)
- Kenichiro Matsuo
- Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.
Collapse
Affiliation(s)
- Roopma Wadhwa
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D.
Anderson Cancer Center, Houston, Texas, 77030
| | - Yixin Yao
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, Houston, Texas, 77030
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of
Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
- Department of Epidemiology, The University of Texas M. D. Anderson
Cancer Center, Houston, Texas, 77030
| |
Collapse
|
31
|
The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol 2013; 91:601-10. [PMID: 24100386 DOI: 10.1038/icb.2013.58] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
There is increasing evidence of a close link between inflammation and cancer, and at the core of inflammation there are both pathogen-associated molecular patterns (PAMPs) and danger (or damage)-associated molecular patterns (DAMPs). Microorganisms harbor molecules structurally conserved within groups called PAMPs that are recognized by specific receptors present on immune cells, such as monocytes and dendritic cells (DCs); these are the pattern recognition receptors (PRRs). Activation through different PRRs leads to production of pro-inflammatory cytokines. A robust immune response also requires the presence of endogenous molecules that pose 'danger' to self-tissues and are produced by damaged or stressed cells; these are the DAMPs, which act also as inducers of inflammation. PAMPs and DAMPs are each recognized by a limited set of receptors that in number probably do not exceed 100. PAMPs and DAMPs interact with each other, and a single PRR can bind to a PAMP as well as a DAMP. Within this framework, we propose that PAMPs and DAMPs act in synchrony, modifying the activation threshold of one another. Thus, the range of PAMP-DAMP partnerships defines the course of inflammation, in a predictable manner, in an 'inflammatory code'. The definition of relevant PAMP-DAMP complexes is important for the understanding of inflammatory disorders in general, and of cancer in particular. Here, we review relevant findings that support the notion of a PAMP-DAMP-based inflammatory code, with emphasis on cancer immunology and immunotherapy.
Collapse
|
32
|
Abstract
Gastric cancer imposes a considerable health burden around the globe despite its declining incidence. The disease is often diagnosed in advanced stages and is associated with a poor prognosis for patients. An in-depth understanding of the molecular underpinnings of gastric cancer has lagged behind many other cancers of similar incidence and morbidity, owing to our limited knowledge of germline susceptibility traits for risk and somatic drivers of progression (to identify novel therapeutic targets). A few germline (PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1 and MET) alterations are emerging and some are being pursued clinically. Novel somatic gene targets (ARID1A, FAT4, MLL and KMT2C) have also been identified and are of interest. Variations in the therapeutic approaches dependent on geographical region are evident for localized gastric cancer-differences that are driven by preferences for the adjuvant strategies and the extent of surgery coupled with philosophical divides. However, greater uniformity in approach has been noted in the metastatic cancer setting, an incurable condition. Having realized only modest successes, momentum is building for carrying out more phase III comparative trials, with some using biomarker-based patient selection strategies. Overall, rapid progress in biotechnology is improving our molecular understanding and can help with new drug discovery. The future prospects are excellent for defining biomarker-based subsets of patients and application of specific therapeutics. However, many challenges remain to be tackled. Here, we review representative molecular and clinical dimensions of gastric cancer.
Collapse
|
33
|
Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil. Tumour Biol 2013; 35:1107-11. [PMID: 24014049 DOI: 10.1007/s13277-013-1148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/26/2013] [Indexed: 12/28/2022] Open
Abstract
To verify the methylation status of THBS1, GPX3, and COX2 genes and to evaluate their association with Helicobacter pylori in gastric adenocarcinomas. Methylation-sensitive restriction enzyme PCR assay was performed in 16 diffuse type gastric cancer samples, 23 intestinal type, and 15 normal stomach tissue. The presence of H. pylori was performed by amplification of the fragment of the 16S rRNA. Statistical analyses were performed using Fisher's exact test. The hypermethylation of GPX3, THBS1, and COX2 occurred in 18 (n = 7), 5 (n = 2), and 36 % (n = 14) of gastric cancer samples, respectively, whereas in normal samples, it was found in 13, 7, and 67 %. The presence of H. pylori was detected in 67 % of gastric cancer samples and 67 % in normal gastric samples. The methylation of THBS1 and GPX3 was not significantly different between the types of tumors, normal sample, the presence of H. pylori, or clinicopathological variables studied (P > 0.05). However, the methylation status of the gene COX2 is significantly different between normal tissue and intestinal type gastric cancer (P = 0.02). Therefore, our results suggest that the methylation status of the gene COX2 is associated with the intestinal type of gastric cancer.
Collapse
|
34
|
Zhao L, Sha YY, Zhao Q, Yao J, Zhu BB, Lu ZJ, You QD, Guo QL. Enhanced 5-fluorouracil cytotoxicity in high COX-2 expressing hepatocellular carcinoma cells by wogonin via the PI3K/Akt pathway. Biochem Cell Biol 2013; 91:221-9. [DOI: 10.1139/bcb-2012-0077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combination therapies may increase the antitumor effects and reduce the adverse effects for the treatment of hepatocellular carcinoma. In this study, we determined the effects of 5-fluorouracil alone or in combination with wogonin in vitro and in vivo, and we investigated the possible mechanisms. The combination of these 2 drugs led to a decrease in survival and a significant synergistic inhibitory effect on high COX-2 expression in SMMC-7721 hepatocellular carcinoma (HCC) cells. Furthermore, the results show that this combination inhibits COX-2 expression and increases sensitivity to chemotherapeutic agents partly through regulating the PI3K/Akt signaling pathway. Moreover, the combination treatment caused a significant growth inhibition of human tumor xenografts in vivo. In conclusion, wogonin may increase the cytotoxicity of some antineoplastic agents and it can be used in combination with these agents as a novel therapeutic regimen for HCC treatment.
Collapse
Affiliation(s)
- Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yun-Ying Sha
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qing Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Bin-Bin Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Zhi-Jian Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qi-Dong You
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P.R. China
| | - Qing-Long Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
35
|
Sierra JC, Hobbs S, Chaturvedi R, Yan F, Wilson KT, Peek RM, Brent Polk D. Induction of COX-2 expression by Helicobacter pylori is mediated by activation of epidermal growth factor receptor in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G196-203. [PMID: 23681474 PMCID: PMC3725681 DOI: 10.1152/ajpgi.00495.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic infection of the gastric mucosa by Helicobacter pylori is associated with an increased risk of developing gastric cancer; however, the vast majority of infected individuals never develop this disease. One H. pylori virulence factor that increases gastric cancer risk is the cag pathogenicity island, which encodes a bacterial type IV secretion system. Cyclooxygenase-2 (COX-2) expression is induced by proinflammatory stimuli, leading to increased prostaglandin E₂ (PGE₂) secretion by gastric epithelial cells. COX-2 expression is increased in gastric tissue from H. pylori-infected persons. H. pylori also activates the epidermal growth factor receptor (EGFR) in gastric epithelial cells. We now demonstrate that H. pylori-induced activation of COX-2 in gastric cells is dependent upon EGFR activation, and that a functional cag type IV secretion system and direct bacterial contact are necessary for full induction of COX-2 by gastric epithelial cells. PGE₂ secretion is increased in cells infected with H. pylori, and this induction is dependent on a functional EGFR. Increased apoptosis in response to H. pylori occurs in cells treated with a COX-2 inhibitor, as well as COX-2-/- cells, indicating that COX-2 expression promotes cell survival. In vivo, COX-2 induction by H. pylori is significantly reduced in mice deficient for EGFR activation compared with wild-type mice with a fully functional receptor. Collectively, these findings indicate that aberrant activation of the EGFR-COX-2 axis may lower the threshold for carcinogenesis associated with chronic H. pylori infection.
Collapse
Affiliation(s)
- Johanna C. Sierra
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Stuart Hobbs
- 2Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Rupesh Chaturvedi
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee;
| | - Fang Yan
- 2Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Keith T. Wilson
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee;
| | - Richard M. Peek
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - D. Brent Polk
- 4Department of Pediatrics, University of Southern California and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
36
|
Epigenetic modifications induced by Helicobacter pylori infection through a direct microbe–gastric epithelial cells cross-talk. Med Microbiol Immunol 2013; 202:327-37. [DOI: 10.1007/s00430-013-0301-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023]
|
37
|
The role of Src kinase in macrophage-mediated inflammatory responses. Mediators Inflamm 2012; 2012:512926. [PMID: 23209344 PMCID: PMC3504478 DOI: 10.1155/2012/512926] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
Src kinase (Src) is a tyrosine protein kinase that regulates cellular metabolism, survival, and proliferation. Many studies have shown that Src plays multiple roles in macrophage-mediated innate immunity, such as phagocytosis, the production of inflammatory cytokines/mediators, and the induction of cellular migration, which strongly implies that Src plays a pivotal role in the functional activation of macrophages. Macrophages are involved in a variety of immune responses and in inflammatory diseases including rheumatoid arthritis, atherosclerosis, diabetes, obesity, cancer, and osteoporosis. Previous studies have suggested roles for Src in macrophage-mediated inflammatory responses; however, recently, new functions for Src have been reported, implying that Src functions in macrophage-mediated inflammatory responses that have not been described. In this paper, we discuss recent studies regarding a number of these newly defined functions of Src in macrophage-mediated inflammatory responses. Moreover, we discuss the feasibility of Src as a target for the development of new pharmaceutical drugs to treat macrophage-mediated inflammatory diseases. We provide insights into recent reports regarding new functions for Src that are related to macrophage-related inflammatory responses and the development of novel Src inhibitors with strong immunosuppressive and anti-inflammatory properties, which could be applied to various macrophage-mediated inflammatory diseases.
Collapse
|
38
|
Kauppila JH, Karttunen TJ, Saarnio J, Nyberg P, Salo T, Graves DE, Lehenkari PP, Selander KS. Short DNA sequences and bacterial DNA induce esophageal, gastric, and colorectal cancer cell invasion. APMIS 2012; 121:511-22. [PMID: 23082743 DOI: 10.1111/apm.12016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
Toll-like receptor 9 (TLR9) recognizes both bacterial and self-DNA and it is abundantly expressed in the gastrointestinal tract. In this study, we investigated the influences of both bacterial DNA and specific short DNA sequences on TLR9-mediated gastrointestinal cancer cell invasion. We assessed the effect of various DNA ligands on cellular invasion and on TLR9 and matrix metalloproteinase expression of three gastrointestinal cancer cell lines. DNA-ligands described in this study include CpG-ODN M362, 9-mer (hairpin), human telomeric sequence h-Tel22 G-quadruplex, and bacterial DNAs from Escherichia coli and Helicobacter pylori. All of the DNAs studied were demonstrated to induce invasion in the studied cells. The DNA-induced invasion was inhibited with a broad-spectrum MMP inhibitor and partly also with chloroquine suggesting that it could be mediated via MMP activation, endosomal signaling, and TLR9. Interestingly, H. pylori DNA was shown to induce a more pronounced invasion in a gastric cancer cell line than in the other cell lines. Our results suggest that bacterial DNA as well as deoxynucleotides having stable secondary structures (i.e. hairpins or G-quadruplex structures) may serve as endogenous, invasion-inducing TLR9-ligands and promote local progression and metastasis of cancers in the alimentary tract.
Collapse
Affiliation(s)
- Joonas H Kauppila
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
40
|
Abstract
Gastric cancer remains a leading cause of cancer-related deaths worldwide, although its incidence has been steadily declining during recent decades. Expression of cyclooxygenase-2 (COX-2) is elevated in gastric carcinomas and in their precursor lesions. COX-2 expression associates with reduced survival in gastric cancer patients, and it has also been shown to be an independent factor of poor prognosis. Several molecular mechanisms are involved in the regulation of COX-2 expression in gastric cancer cell lines, including signal transduction pathways activated by Helicobacter pylori. In gastric tumor models in vivo the role of COX-2 seems to be predominantly to facilitate tumor promotion and growth.
Collapse
Affiliation(s)
- Alexandra Thiel
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
41
|
Wu BN, Chen HY, Liu CP, Hsu LY, Chen IJ. KMUP-1 inhibits H441 lung epithelial cell growth, migration and proinflammation via increased NO/CGMP and inhibited RHO kinase/VEGF signaling pathways. Int J Immunopathol Pharmacol 2012; 24:925-39. [PMID: 22230399 DOI: 10.1177/039463201102400411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigates whether KMUP-1 protects soluble guanylate cyclase (sGC) and inhibits vascular endothelial growth factor (VEGF) expression in lung epithelial cells in hypoxia, therapeutically targeting epithelial proinflammation. H441 cells were used as a representative epithelial cell line to examine the role of sGC and VEGF in hypoxia and the anti-proinflammatory activity of KMUP-1 in normoxia. Human H441 cells were grown in hypoxia for 24-72 h. KMUP-1 (1, 10, 100 microM) arrested cells at the G0/G1 phase of the cell cycle, reduced cell survival and migration, increased p21/p27, restored eNOS, increased soluble guanylate cyclase (sGC) and PKG and inhibited Rho kinase II (ROCK-II). KMUP-1 (0.001-0.1 microM) concentration dependently increased eNOS in normoxia and did not inhibit phosphodiesterase-5A (PDE-5A) in hypoxic cells. Hypoxia-induced factor-1alpha (HIF-1alpha) and VEGF were suppressed by KMUP-1 but not by L-NAME (100 microM). The PKG inhibitor Rp-8-CPT-cGMPS (10 microM) blunted the inhibition of ROCK-II by KMUP-1. KMUP-1 inhibited thromboxane A2-mimetic agonist U46619-induced PDE-5A, TNF-alpha (100 ng/ml)-induced iNOS, and ROCK-II and associated phospho-p38 MAPK, suggesting multiple anti-proinflammatory activities. In addition, increased p21/p27 by KMUP-1 at higher concentrations might contribute to an increased Bax/Bcl-2 and active caspase-3/procaspase-3 ratio, concomitantly causing apoptosis. KMUP-1 inhibited ROCK-II/VEGF in hypoxia, indicating its anti-neoplastic and anti-inflammatory properties. KMUP-1 inhibited TNF-alpha-induced iNOS and U46619-induced PDE-5A and phospho-p38 MAPK in normoxia, confirming its anti-proinflammatory action. KMUP-1 could be used as an anti-proinflammatory to reduce epithelial inflammation.
Collapse
Affiliation(s)
- B N Wu
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
42
|
Shiota S, Watada M, Matsunari O, Iwatani S, Suzuki R, Yamaoka Y. Helicobacter pylori iceA, clinical outcomes, and correlation with cagA: a meta-analysis. PLoS One 2012; 7:e30354. [PMID: 22279585 PMCID: PMC3261200 DOI: 10.1371/journal.pone.0030354] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/14/2011] [Indexed: 01/05/2023] Open
Abstract
Background Although the iceA (induced by contact with epithelium) allelic types of Helicobacter pylori have been reported to be associated with peptic ulcer, the importance of iceA on clinical outcomes based on subsequent studies is controversial. The aim of this study was to estimate the magnitude of the risk for clinical outcomes associated with iceA. Methods A literature search was performed using the PubMed and EMBASE databases for articles published through April 2011. Published case-control studies examining the relationship between iceA and clinical outcomes (gastritis, peptic ulcer, including gastric ulcer and duodenal ulcer, and gastric cancer) were included. Results Fifty studies with a total of 5,357 patients were identified in the search. Infection with iceA1-positive H. pylori increased the overall risk for peptic ulcer by 1.26-fold (95% confidence interval [CI], 1.09–1.45). However, the test for heterogeneity was significant among these studies. Sensitivity analysis showed that the presence of iceA1 was significantly associated with peptic ulcer (odds ratio [OR] = 1.25, 95% CI = 1.08–1.44). The presence of iceA2 was inversely associated with peptic ulcer (OR = 0.76, 95% CI = 0.65–0.89). The presence of iceA was not associated with gastric cancer. Most studies examined the cagA status; however, only 15 studies examined the correlation and only 2 showed a positive correlation between the presence of cagA and iceA1. Conclusion Our meta-analysis confirmed the importance of the presence of iceA for peptic ulcer, although the significance was marginal.
Collapse
Affiliation(s)
- Seiji Shiota
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
- Department of General Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
| | - Masahide Watada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
- Department of General Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
| | - Osamu Matsunari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
- Department of General Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
| | - Shun Iwatani
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
| | - Rumiko Suzuki
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Hasama-machi, Yufu-City, Oita, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
43
|
Angrisano T, Lembo F, Peluso S, Keller S, Chiariotti L, Pero R. Helicobacter pylori regulates iNOS promoter by histone modifications in human gastric epithelial cells. Med Microbiol Immunol 2012; 201:249-57. [DOI: 10.1007/s00430-011-0227-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Indexed: 12/12/2022]
|
44
|
Yang M, Wang C, Zhu X, Tang S, Shi L, Cao X, Chen T. E3 ubiquitin ligase CHIP facilitates Toll-like receptor signaling by recruiting and polyubiquitinating Src and atypical PKC{zeta}. ACTA ACUST UNITED AC 2011; 208:2099-112. [PMID: 21911421 PMCID: PMC3182058 DOI: 10.1084/jem.20102667] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In mouse macrophages and dendritic cells, the CHIP E3 ubiquitin ligase is needed for transduction of signals initiated by TLR4 and TLR9 stimulation. The carboxyl terminus of constitutive heat shock cognate 70 (HSC70)–interacting protein (CHIP, also known as Stub1) is a U box–containing E3 ubiquitin ligase that is important for protein quality control. The role of CHIP in innate immunity is not known. Here, we report that CHIP knockdown inhibits Toll-like receptor (TLR) 4– and TLR9-driven signaling, but not TLR3-driven signaling; proinflammatory cytokine and type 1 interferon (IFN) production; and maturation of antigen-presenting cells, including macrophages and dendritic cells. We demonstrate that CHIP can recruit the tyrosine kinase Src and atypical protein kinase C ζ (PKCζ) to the TLR complex, thereby leading to activation of IL-1 receptor–associated kinase 1, TANK-binding kinase 1, and IFN regulatory factors 3 and 7. CHIP acts as an E3 ligase for Src and PKCζ during TLR signaling. CHIP-mediated enhancement of TLR signaling is inhibited by IFNAR deficiency or expression of ubiquitination resistant mutant forms of Src or PKCζ. These findings suggest that CHIP facilitates the formation of a TLR signaling complex by recruiting, ubiquitinating, and activating Src and PKCζ.
Collapse
Affiliation(s)
- Mingjin Yang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China; National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai200433, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Takala H, Kauppila JH, Soini Y, Selander KS, Vuopala KS, Lehenkari PP, Saarnio J, Karttunen TJ. Toll-like receptor 9 is a novel biomarker for esophageal squamous cell dysplasia and squamous cell carcinoma progression. J Innate Immun 2011; 3:631-8. [PMID: 21876325 DOI: 10.1159/000329115] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/04/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stimulation of Toll-like receptor 9 (TLR9) has been linked to invasion in various cancer cells in vitro. We investigated TLR9 expression in normal, dysplastic and malignant esophageal squamous epithelium. METHODS TLR9 expression was analyzed by immunohistochemistry in 46 cases of esophageal squamous cell carcinoma, including 12 cases with adjacent squamous dysplasia and 24 cases with normal esophageal epithelium. TLR9 expression was compared with tumor grade, stage, proliferation, apoptosis and vascular density. RESULTS In normal esophageal squamous epithelium, TLR9 staining intensity decreased linearly from the basal layers to the superficial layers (p < 0.001). Strong TLR9 expression was detected across full thickness of high-grade dysplasia, the intensity clearly differing from the normal squamous epithelium and squamous cell carcinoma (p < 0.001). All squamous cell carcinomas exhibited TLR9 expression that was positively associated with a high grade (p < 0.05), the presence of lymph node metastases (p < 0.05) and previously undetected distant metastases (p < 0.05). CONCLUSIONS Expression of TLR9 in the basal parts of normal esophageal epithelium suggests a role related to cell proliferation and differentation. TLR9 upregulation detected in dysplastic epithelium and in disseminated carcinomas indicates that this protein may serve as a novel marker for esophageal squamous dysplasia and carcinoma with metastatic potential.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Surgery, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alves MKS, Ferrasi AC, Lima VP, Ferreira MVP, de Moura Campos Pardini MI, Rabenhorst SHB. Inactivation of COX-2, HMLH1 and CDKN2A gene by promoter methylation in gastric cancer: relationship with histological subtype, tumor location and Helicobacter pylori genotype. Pathobiology 2011; 78:266-76. [PMID: 21849808 DOI: 10.1159/000329475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/10/2011] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the inactivation of COX-2, HMLH1 and CDKN2A by promoter methylation and its relationship with the infection by different Helicobacter pylori strains in gastric cancer. METHODS DNA extracted from 76 H. pylori-positive gastric tumor samples was available for promoter methylation identification by methylation-specific PCR and H. pylori subtyping by PCR. Immunohistochemistry was used to determine COX-2, p16(INK4A) and HMLH1 expression. RESULTS A strong negative correlation was found between the expression of these markers and the presence of promoter methylation in their genes. Among cardia tumors, negativity of p16(INK4A) was a significant finding. On the other hand, in noncardia tumors, the histological subtypes had different gene expression patterns. In the intestinal subtype, a significant finding was HMLH1 inactivation by methylation, while in the diffuse subtype, CDKN2A inactivation by methylation was the significant finding. Tumors with methylated COX-2 and HMLH1 genes were associated with H. pylori vacA s1 (p = 0.025 and 0.047, respectively), and the nonmethylated tumors were associated with the presence of the gene flaA. CONCLUSIONS These data suggest that the inactivation of these genes by methylation occurs by distinct pathways according to the histological subtype and tumor location and depends on the H. pylori genotype.
Collapse
|
47
|
Kutikhin AG. Association of polymorphisms in TLR genes and in genes of the Toll-like receptor signaling pathway with cancer risk. Hum Immunol 2011; 72:1095-116. [PMID: 21872627 DOI: 10.1016/j.humimm.2011.07.307] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 12/15/2022]
Abstract
Toll-like receptors (TLRs) constitute a family of receptors directly recognizing a wide spectrum of exogenous and endogenous ligands playing the key role in realization of innate and adaptive immune response, and participating in the processes of cell proliferation, survival, apoptosis, angiogenesis, tissue remodeling and repair. Polymorphisms in TLR genes may shift balance between pro- and anti-inflammatory cytokines, modulating the risk of infection, chronic inflammation and cancer. The short list of TLR polymorphisms perspective for oncogenomic investigations can include rs10008492, rs4833103, rs5743815, rs11466657, rs7696175 (TLR1-TLR6-TLR10 gene cluster); rs3804100, rs4696480, -196 - -174 del (Delta22), GT-microsatellite polymorphism (TLR2); 829A/C (TLR3); rs5743836, rs352140 (TLR9). The extended list can additionally include rs4833095 rs5743551, rs5743618 (TLR1); rs5743704, rs62323857, rs1219178642 (TLR2); rs5743305, rs3775291, rs121434431, rs5743316 (TLR3); rs5744168 (TLR5); rs179008 (TLR7); rs3764880, rs2407992 (TLR8); rs352139, rs187084, rs41308230, rs5743844 (TLR9); rs4129009 (TLR10). General reasons for discrepancies between studies are insufficiency of sample size, age/gender/BMI/ethnic/racial differences, differences in prevalence of infectious agent in case and control groups, differences in immune response caused by specific ligand, differences in stratification, methods of diagnostics of cancer or chronic inflammatory conditions, genotyping methods, and chance. Future well-designed studies on large samples should shed light on the significance of TLR polymorphisms for cancer prevention.
Collapse
Affiliation(s)
- Anton G Kutikhin
- Department of Epidemiology and Central Research Laboratory, Kemerovo State Medical Academy, Kemerovo, Russian Federation.
| |
Collapse
|
48
|
Chung TH, Yen-Ping Kuo M, Chen JK, Huang DM. YC-1 rescues cancer cachexia by affecting lipolysis and adipogenesis. Int J Cancer 2011; 129:2274-83. [PMID: 21557215 DOI: 10.1002/ijc.26174] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/27/2011] [Indexed: 12/29/2022]
Abstract
Loss of adipose tissue, primarily due to increased lipolysis but also to an impairment of adipogenesis, is a key feature of weight loss in cancer cachexia. Because of the myriad pathogenic signaling pathways essential for atrophy of adipose tissue, effective therapeutic agents for cachectic adipose loss are lacking and urgently needed. The authors evaluated the effects of YC-1 on adipogenesis of 3T3-L1 preadipocytes, TNF-α- and tumor-cell-induced lipolysis in 3T3-L1 adipocytes, and cachectic weight loss in colon-26 adenocarcinoma-bearing mice because YC-1 has been shown to possess versatile pharmacological actions, including anticancer activity. It was found that YC-1 promotes the differentiation of 3T3-L1 preadipocytes into adipocytes through activation of Akt and extracellular signal-regulated kinase (ERK) signaling pathways as well as activation of several adipogenic mediators, such as peroxisome proliferator-activated receptor γ (PPARγ), insulin receptor α (IRα), insulin receptor substrate-3 (IRS-3) and glucose transporter-4 (GLUT-4). In the in vitro lipolysis models, YC-1 attenuates TNF-α-induced lipolysis of adipocytes by antagonizing TNF-α-mediated activation of ERK and downregulation of perilipin (PLIN). It was also found that YC-1 inhibits colon-26 adenocarcinoma cell-induced lipolysis of 3T3-L1 adipocytes. Moreover, YC-1 effectively rescues cachectic weight loss in colon-26 adenocarcinoma-bearing mice by blocking lipolysis, involving insulin. Taken together the results show that YC-1 with its anticancer and anticachexia talents is highly worth developing as a novel agent for cancer therapy.
Collapse
Affiliation(s)
- Tsai-Hua Chung
- Center for Nanomedicine Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | | | | | | |
Collapse
|
49
|
Brady RRW, Loveridge CJ, Dunlop MG, Stark LA. c-Src dependency of NSAID-induced effects on NF-κB-mediated apoptosis in colorectal cancer cells. Carcinogenesis 2011; 32:1069-77. [PMID: 21551129 DOI: 10.1093/carcin/bgr077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Long-term aspirin or related non-steroidal anti-inflammatory drugs (NSAIDs) ingestion can protect against colorectal cancer (CRC). NSAIDs have a pro-apoptotic activity and we have shown that stimulation of the nuclear factor-kappaB (NF-κB) pathway is a key component of this pro-apoptotic effect. However, the upstream pathways have yet to be fully elucidated. Here, we demonstrate that aspirin activates the c-Src tyrosine kinase pathway in CRC cells. We show that c-Src activation occurs in a time- and dose-dependent manner, preceding aspirin-mediated degradation of IκBα, nuclear/nucleolar translocation of NF-κB/RelA and induction of apoptosis. Furthermore, inhibition of c-Src activity, by chemical inhibition or expression of a kinase dead form of the protein abrogates aspirin-mediated degradation of IκBα, nuclear translocation of RelA and apoptosis, suggesting a causal link. Expression of constitutively active c-Src mimics aspirin-induced stimulation of the NF-κB pathway. The NSAIDs sulindac, sulindac sulphone and indomethacin all similarly activate a c-Src-dependent NF-κB and apoptotic response. These data provide compelling evidence that c-Src is an upstream mediator of aspirin/NSAID effects on NF-κB signalling and apoptosis in CRC cells and have relevance to the development of future chemotherapeutic/chemopreventative agents.
Collapse
Affiliation(s)
- Richard R W Brady
- Colon Cancer Genetics Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | |
Collapse
|
50
|
Zhang X, Zhong R, Zhang Z, Yuan J, Liu L, Wang Y, Kadlubar S, Feng F, Miao X. Interaction of cyclooxygenase-2 promoter polymorphisms with Helicobacter pylori infection and risk of gastric cancer. Mol Carcinog 2011; 50:876-83. [PMID: 21538574 DOI: 10.1002/mc.20784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/24/2011] [Accepted: 03/27/2011] [Indexed: 12/23/2022]
Abstract
Overexpression of cyclooxygenase (COX)-2 has been implicated in the development of cancer. This study aimed to evaluate the relationship between genetic variants in COX-2 promoter interacting with Helicobacter pylori and the susceptibility to gastric cancer (GC). Three COX-2 polymorphisms -1290A>G (rs689465), -1195G>A (rs689466), and -765G>C (rs20417) were genotyped in 323 GC patients and 944 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression model. In GC patients, the ORs were 2.33 (95% CI = 1.50-3.63) and 2.70 (95% CI = 1.68-4.33) for -1195AA and -765CG genotype carriers, respectively. Haplotype analysis showed all -1195A allele-containing haplotypes, except G(-1290)-A(-1195)-G(-765), were associated with increased risk for GC, compared with the A(-1290)-G(-1195)-G(-765) haplotype. Moreover, significant multiplicative and additive interactions were observed between H. pylori infection and all these three polymorphisms, and H. pylori-infected subjects carrying the variant allele of -1290A>G, -1195G>A, or -765G>C had increased risk of GC compared with non-H. pylori-infected subjects with wild-type allele (OR = 4.10, 95% CI = 1.90-8.83; OR = 3.46, 95% CI = 1.31-9.11; and OR = 3.32, 95% = 1.27-8.73, respectively). Our results suggested that the COX-2 promoter polymorphisms were associated with increased risk of GC, especially interacting with H. pylori infection.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Molecular biology, College of Life Sciences, Hebei United University, Tangshan, China
| | | | | | | | | | | | | | | | | |
Collapse
|