1
|
Singson S, Shastry S, Sudheesh N, Chawla K, Madiyal M, Kandasamy D, Mukhopadhyay C. Assessment of Hepatitis E virus transmission risks: a comprehensive review of cases among blood transfusion recipients and blood donors. Infect Ecol Epidemiol 2024; 14:2406834. [PMID: 39421644 PMCID: PMC11486055 DOI: 10.1080/20008686.2024.2406834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Background Hepatitis E Virus is a major cause of acute and fulminant hepatitis, particularly in developing countries. While the virus is commonly spread through the fecal-oral route, numerous cases of transfusion transmitted Hepatitis E Virus (TT-HEV) have been reported, raising concerns about its transmission via blood transfusions, especially in industrialized countries. The high prevalence of antibodies and viremia among asymptomatic blood donors further heightens the risk of transfusion-related transmission. However, there is still debate about the best strategy to minimize TT-HEV. Objective The review was conducted to Summarize the literature on TT-HEV infection cases and the prevalence of HEV among blood donors. Methods The databases PubMed, Scopus, Web of Science, Embase, and CINAHL were searched for relevant studies from 2000 to 2022.Serological and molecular screening data of HEV in blood donors were used to gather prevalence and incidence rates.TT-HEV cases were reviewed by examining evidence of HEV infection before and after transfusion. Results A total of 121 manuscripts reports the prevalence and incidence of HEV among blood donors and cases of TT-HEV. Twenty-six articles reported confirmed cases of TT-HEV and 101 articles reported on HEV prevalence or incidence among blood donors. Conclusion TT-HEV transmission through blood products is a real concern, especially for immunocompromised patients.The risk and severity of infection could vary between immunocompetent and immunosuppressed patients.To increase transfusion safety, the evaluation recommends HEV screening protocols, especially in endemic region.
Collapse
Affiliation(s)
- Sangthang Singson
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, Karnatka, India
| | - Shamee Shastry
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, Karnatka, India
| | - N. Sudheesh
- Department of Microbiology, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kiran Chawla
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Mridula Madiyal
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| | - Dhivya Kandasamy
- Department of Immunohematology and Blood Transfusion, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, Karnatka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal, Karnataka, India
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Higher Risk of HEV Transmission and Exposure among Blood Donors in Europe and Asia in Comparison to North America: A Meta-Analysis. Pathogens 2023; 12:pathogens12030425. [PMID: 36986347 PMCID: PMC10059948 DOI: 10.3390/pathogens12030425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
Background and aims: The increasing number of diagnosed hepatitis E virus (HEV) infections in Europe has led to the implementation of the testing of blood products in various countries. Many nations have not yet implemented such screening. To assess the need for HEV screening in blood products worldwide, we conducted a systematic review and meta-analysis assessing HEV RNA positivity and anti-HEV seroprevalence in blood donors. Methods: Studies reporting anti-HEV IgG/IgM or HEV RNA positivity rates among blood donors worldwide were identified via predefined search terms in PubMed and Scopus. Estimates were calculated by pooling study data with multivariable linear mixed-effects metaregression analysis. Results: A total of 157 (14%) of 1144 studies were included in the final analysis. The estimated HEV PCR positivity rate ranged from 0.01 to 0.14% worldwide, with strikingly higher rates in Asia (0.14%) and Europe (0.10%) in comparison to North America (0.01%). In line with this, anti-HEV IgG seroprevalence in North America (13%) was lower than that in Europe (19%). Conclusions: Our data demonstrate large regional differences regarding the risk of HEV exposure and blood-borne HEV transmission. Considering the cost–benefit ratio, this supports blood product screening in high endemic areas, such as Europe and Asia, in contrast to low endemic regions, such as the U.S.
Collapse
|
3
|
Cheung CKM, Wong SH, Law AWH, Law MF. Transfusion-transmitted hepatitis E: What we know so far? World J Gastroenterol 2022; 28:47-75. [PMID: 35125819 PMCID: PMC8793017 DOI: 10.3748/wjg.v28.i1.47] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/16/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is a major cause of viral hepatitis globally. There is growing concern about transfusion-transmitted HEV (TT-HEV) as an emerging global health problem. HEV can potentially result in chronic infection in immunocompromised patients, leading to a higher risk of liver cirrhosis and even death. Between 0.0013% and 0.281% of asymptomatic blood donors around the world have HEV viremia, and 0.27% to 60.5% have anti-HEV immunoglobulin G. HEV is infectious even at very low blood concentrations of the virus. Immunosuppressed patients who develop persistent hepatitis E infection should have their immunosuppressant regimen reduced; ribavirin may be considered as treatment. Pegylated interferon can be considered in those who are refractory or intolerant to ribavirin. Sofosbuvir, a nucleotide analog, showed modest antiviral activity in some clinical studies but sustained viral response was not achieved. Therefore, rescue treatment remains an unmet need. The need for HEV screening of all blood donations remains controversial. Universal screening has been adopted in some countries after consideration of risk and resource availability. Various pathogen reduction methods have also been proposed to reduce the risk of TT-HEV. Future studies are needed to define the incidence of transmission through transfusion, their clinical features, outcomes and prognosis.
Collapse
Affiliation(s)
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, the Chinese University of Hong Kong, Hong Kong 852, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
| | | | - Man Fai Law
- Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
4
|
Development and Optimization of an Enzyme Immunoassay to Detect Serum Antibodies against the Hepatitis E Virus in Pigs, Using Plant-Derived ORF2 Recombinant Protein. Vaccines (Basel) 2021; 9:vaccines9090991. [PMID: 34579228 PMCID: PMC8473109 DOI: 10.3390/vaccines9090991] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E is an emerging global disease, mainly transmitted via the fecal-oral route in developing countries, and in a zoonotic manner in the developed world. Pigs and wild boar constitute the primary Hepatitis E virus (HEV) zoonotic reservoir. Consumption of undercooked animal meat or direct contact with infected animals is the most common source of HEV infection in European countries. The purpose of this study is to develop an enzyme immunoassay (EIA) for the detection of anti-hepatitis E virus IgG in pig serum, using plant-produced recombinant HEV-3 ORF2 as an antigenic coating protein, and also to evaluate the sensitivity and specificity of this assay. A recombinant HEV-3 ORF2 110-610_6his capsid protein, transiently expressed by pEff vector in Nicotiana benthamiana plants was used to develop an in-house HEV EIA. The plant-derived HEV-3 ORF2 110-610_6his protein proved to be antigenically similar to the HEV ORF2 capsid protein and it can self-assemble into heterogeneous particulate structures. The optimal conditions for the in-house EIA (iEIA) were determined as follows: HEV-3 ORF2 110-610_6his antigen concentration (4 µg/mL), serum dilution (1:50), 3% BSA as a blocking agent, and secondary antibody dilution (1:20 000). The iEIA developed for this study showed a sensitivity of 97.1% (95% Cl: 89.9-99.65) and a specificity of 98.6% (95% Cl: 92.5-99.96) with a Youden index of 0.9571. A comparison between our iEIA and a commercial assay (PrioCHECK™ Porcine HEV Ab ELISA Kit, ThermoFisher Scientific, MA, USA) showed 97.8% agreement with a kappa index of 0.9399. The plant-based HEV-3 ORF2 iEIA assay was able to detect anti-HEV IgG in pig serum with a very good agreement compared to the commercially available kit.
Collapse
|
5
|
Al Dossary RA, Alnafie AN, Aljaroodi SA, Rahman JU, Hunasemarada BC, Alkharsah KR. Prevalence of Hepatitis E Virus Infection Among Blood Donors in the Eastern Province of Saudi Arabia. J Multidiscip Healthc 2021; 14:2381-2390. [PMID: 34475765 PMCID: PMC8407670 DOI: 10.2147/jmdh.s328029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Hepatitis E virus (HEV) causes acute hepatitis in humans and constitutes a major problem for immunocompromised patients, patients with hematological diseases, and pregnant women. It is transmitted mainly through fecal oral route; however, transmission through blood and blood products is reported globally and becoming a health concern. We sought to determine the prevalence of HEV among blood donors in the Eastern Province of Saudi Arabia using molecular as well as serological assays to assess the safety of blood transfusion and the need for HEV screening among blood donors. PATIENTS AND METHODS A total of 806 whole blood samples were collected from blood donors between May and November 2020 and tested for anti-HEV IgG and IgM antibodies by ELISA and for HEV RNA by RT-PCR. RESULTS The overall seroprevalence of HEV IgG antibodies was 3.2% with no statistically significant difference between the non-Saudis (3.28%) and Saudis (3.17%) (p value 0.929) or between males (3.14%) and females (4.88%) (p value 0.527). None of the IgG positive individuals had IgM antibodies. HEV RNA was not detected in any of the blood donors. CONCLUSION HEV seroprevalence is low among blood donors in the Eastern Province of Saudi Arabia and may constitute minimal risk for transfusion associated infections.
Collapse
Affiliation(s)
- Reem A Al Dossary
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Awatif N Alnafie
- Department of Pathology, College of Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Salma Ali Aljaroodi
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Jawad Ur Rahman
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Basavaraj C Hunasemarada
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Khaled R Alkharsah
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| |
Collapse
|
6
|
McCullough J. Transfusion‐Transmitted Diseases. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
O’Keefe J, Tracy L, Yuen L, Bonanzinga S, Li X, Chong B, Nicholson S, Jackson K. Autochthonous and Travel Acquired Hepatitis E Virus in Australia. Front Microbiol 2021; 12:640325. [PMID: 33633719 PMCID: PMC7901960 DOI: 10.3389/fmicb.2021.640325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis E virus (HEV) is a common cause of acute viral hepatitis with significant morbidity and mortality, particularly in pregnant women. There are four major genotypes which can cause disease in humans. Genotypes 1 and 2 are usually associated with outbreaks and spread via facal/oral route or contaminated water. Genotypes 3 and 4 are zoonotic and usually associated with handling of pigs or consumption of contaminated pork. The strains circulating in Australia have never been characterized. RATIONALE/AIMS The aims for this project are to identify the HEV genotypes found in Australia and link them to possible sources of transmission by phylogenetic analysis. MATERIALS AND METHODS Between 2015 and 2020, 91 HEV isolates were sequenced and genotyped using an in-house PCR. Sixty-six of these were also sequenced by using the international HEVnet primers. Genotypes were determined using the BLASTn program. Relatedness to other strains in Australia was determined by phylogenetic analyses of the HEVnet sequences. Isolates were also stratified by state of origin, gender, age, predisposing factors and travel history (if known). RESULTS Of the 91 HEV isolates sequenced, 55 (60.4%) were genotype 1. There were 34 (37.4%) genotype 3 strains and two genotype 4 (2.2%). At least 20 of the genotype 1 strains have been linked to travel in India, and another three with Pakistan. Five of the "Indian" strains were closely related and are suspected to have originated in Gujarat. Phylogenetic analysis also showed that 12 genotype 3 strains were genetically related and potentially acquired in/from New South Wales, Australia. The two genotype 4 strains may have originated in China. DISCUSSION This is the first study to describe the HEV isolates identified in Australia. The results infer that HEV may be acquired during overseas travel as well as locally, presumably from consumption of pork or pork-related products. The phylogenetic analyses also reveal clusters of infection originating from India and Pakistan. This study provides some insight into the source and epidemiology of HEV infection in Australia which may be used to guide public health procedure and enable the implementation of measures to deal with potential outbreaks of infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Abstract
While the majority of worldwide hepatitis E viral (HEV) infections that occur in people are from contaminated water or food sources, there has also been a steadily rising number of reported cases of transfusion-transmitted HEV (TT-HEV) in blood donation recipients. For most, HEV infection is acute, self-limiting and asymptomatic. However, patients that are immunocompromised, especially transplant patients, are at much higher risk for developing chronic infections, which can progress to cirrhosis and liver failure, along with overall increased mortality. Because of the rising trend of HEV serological prevalence among the global population, and the fact that TT-HEV infection can cause serious clinical consequences among those patients most at need for blood donation, the need for screening for TT-HEV has been gaining in prominence as an important public health concern for both developing and developed countries. In the review, we summarise evidence for and notable cases of TT-HEV infections, the various aspects of HEV screening protocols and recent trends in the implementation of TT-HEV broad-based blood screening programmes.
Collapse
|
9
|
Goel A, Vijay HJ, Katiyar H, Aggarwal R. Prevalence of hepatitis E viraemia among blood donors: a systematic review. Vox Sang 2020; 115:120-132. [PMID: 32030767 DOI: 10.1111/vox.12887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is usually transmitted by faecal-oral route. Recent reports have documented HEV viraemia in donated blood units and HEV transmission through blood transfusion. This systematic review summarizes the available data on prevalence of HEV viraemia in blood donors. METHODS Electronic databases were searched on 17 December 2018 to identify full-text English papers reporting original data on prevalence of HEV RNA in donated blood units. Two authors independently extracted the relevant data, which were pooled using simple aggregation as well as a random-effects meta-analysis; heterogeneity was assessed using the I2 method. RESULTS In all, 59 data sets from 28 countries were identified. The available data showed marked heterogeneity. Of a total of 2 127 832 units studied, 561 (263·6 [95% confidence intervals = 242·7-286·4] per million units) tested positive for HEV RNA. On random-effects meta-analysis, the pooled prevalence was 60·9 [6·7-155·4] per million units. In the viraemic units, HEV RNA titre varied by nearly one million-fold, and most had genotype 3 HEV. The prevalence was higher in blood units with anti-HEV antibodies or elevated alanine aminotransferase. Only nearly one-fourth of viraemic units had anti-HEV antibodies. CONCLUSIONS The prevalence of HEV viraemia among healthy blood donors is low, though the available data had limited geographical representation and marked heterogeneity. There is a need for further data on HEV viraemia in blood donors from areas with non-3 HEV genotype preponderance.
Collapse
Affiliation(s)
- Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | - Harshita Katiyar
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
10
|
Tsoi WC, Zhu X, To APC, Holmberg J. Hepatitis E virus infection in Hong Kong blood donors. Vox Sang 2019; 115:11-17. [PMID: 31709559 DOI: 10.1111/vox.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES In Hong Kong, the dominant circulating hepatitis E virus (HEV) genotype is type 4, which can cause more severe clinical consequences than type 3. The aim of this study was to determine the HEV prevalence in Hong Kong blood donors. MATERIALS AND METHODS Unlinked donation samples (n = 10 000) collected in March to May 2015 were tested for HEV RNA using the Procleix HEV assay in an individual donation format (IDT). A subset of 2000 samples were tested for IgG and IgM anti-HEV using the Wantai enzyme-linked immunosorbent assay (ELISA). Nucleic acid testing (NAT) initial reactive results were retested once, and repeatedly reactive donations were subjected to alternative molecular procedures as confirmation tests. RESULTS One in 5000 Hong Kong blood donors was positive for HEV RNA (0·02%). The two RNA positive samples were also IgG and IgM anti-HEV positive. One of the two RNA positive donors could be sequenced revealing genotype type 4. Anti-HEV seroprevalence was estimated as 15·5% among all donors. IgG anti-HEV positive rate for age group 16-20 was 3·1%, and it increased with age to 43·1% for age group 51-60. Sero-positivity was higher in males (male donors 18·1% vs. female donors 13·2%), but it was mostly due to the difference in a specific age group (41-50). CONCLUSION Hepatitis E virus RNA positive rate of 0·02% was within the reported range of HEV RNA frequency in developed countries. One donor was confirmed to be genotype 4, which is the dominant genotype in circulation in Hong Kong.
Collapse
Affiliation(s)
- Wai-Chiu Tsoi
- Hong Kong Red Cross Blood Transfusion Service, Hong Kong, China
| | - Xiaomei Zhu
- Grifols Diagnostic Solutions Inc, Emeryville, CA, USA
| | - Amanda Pui-Chi To
- Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong, China
| | | |
Collapse
|
11
|
Lhomme S, Legrand-Abravanel F, Kamar N, Izopet J. Screening, diagnosis and risks associated with Hepatitis E virus infection. Expert Rev Anti Infect Ther 2019; 17:403-418. [DOI: 10.1080/14787210.2019.1613889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sébastien Lhomme
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Florence Legrand-Abravanel
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Nassim Kamar
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
- Department of Nephrology and Organs Transplantation, CHU Rangueil, Toulouse, France
| | - Jacques Izopet
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| |
Collapse
|
12
|
Intharasongkroh D, Thongmee T, Sa-Nguanmoo P, Klinfueng S, Duang-In A, Wasitthankasem R, Theamboonlers A, Charoonruangrit U, Oota S, Payungporn S, Vongpunsawad S, Chirathaworn C, Poovorawan Y. Hepatitis E virus infection in Thai blood donors. Transfusion 2019; 59:1035-1043. [PMID: 30443992 DOI: 10.1111/trf.15041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) infection in several industrialized and developing countries is associated with the consumption of pork and other meat products, an exposure risk among the majority of blood donors. We aimed to evaluate the prevalence of HEV in plasma from healthy blood donors in Thailand. STUDY DESIGN AND METHODS We screened blood samples collected between October and December 2015, from 30,115 individual blood donors in 5020 pools of six, for HEV RNA using in-house real-time reverse-transcription polymerase chain reaction (RT-PCR). Thrice-reactive samples were subjected to a commercial real-time RT-PCR (cobas HEV test) and evaluated for anti-HEV immunoglobulin M and immunoglobulin G antibodies. Genotyping using nested RT-PCR, nucleotide sequencing, and phylogenetic analysis was performed. RESULTS Twenty-six donors were positive for HEV RNA by the in-house assay, nine of whom were also positive by cobas test. None of the latter were reactive for anti-HEV immunoglobulin M or immunoglobulin G antibodies. Six samples were successfully genotyped and found to be HEV genotype 3. Thus, the frequency of HEV infection among healthy Thai blood donors is 1 in 1158. CONCLUSION The presence of HEV RNA in the Thai blood supply was comparable to the rates reported in western European countries, but higher than in North America and Australia.
Collapse
Affiliation(s)
- Duangnapa Intharasongkroh
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanunrat Thongmee
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pattaratida Sa-Nguanmoo
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ausanee Duang-In
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rujipat Wasitthankasem
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chintana Chirathaworn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Vollmer T, Diekmann J, Knabbe C, Dreier J. Hepatitis E virus blood donor NAT screening: as much as possible or as much as needed? Transfusion 2018; 59:612-622. [PMID: 30548866 DOI: 10.1111/trf.15058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The cost-benefit question of general screening of blood products for the hepatitis E virus (HEV) is currently being discussed. One central question is the need for individual nucleic acid amplification techniques (NAT) screening (ID-NAT) versus minipool NAT screening (MP-NAT) approaches to identify all relevant viremias in blood donors. Here, the findings of ID-NAT versus MP-NAT in pools of 96 samples were compared. STUDY DESIGN AND METHODS From November 2017 to January 2018, a total of 10,141 allogenic blood donations from 7650 individual German blood donors were screened for the presence of HEV RNA using MP-NAT (96 samples) (RealStar HEV RT-PCR Kit) compared to ID-NAT (cobas HEV assay) on the fully automated cobas 6800 platform. RESULTS Parallel screening of MP (n = 122, 96 samples/MP) using both methods detected seven reactive pools. After pool resolution, 8 HEV RNA-positive donations were identified by the in-house detection method, whereas 17 HEV RNA-positive donations were identified by ID-NAT with the cobas HEV assay. This resulted in an incidence of 1:1268 donations (0.079%) for MP-NAT screening and 1:597 donations (0.168%) for ID-NAT screening. CONCLUSIONS The detection frequency of HEV RNA was approximately 50% higher if ID-NAT was used compared to MP-NAT. However, viral loads of ID-NAT-only samples were below 25 IU/mL and will often not result in transfusion-transmitted HEV (TT-HEV) infection, taking into account the currently known infectious dose of 5.0E + 04 IU inevitably resulting in TT-HEV infection. The clinical relevance and need for identification of these low-level HEV-positive donors still require further investigation.
Collapse
Affiliation(s)
- T Vollmer
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein- Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - J Diekmann
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein- Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - C Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein- Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - J Dreier
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein- Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
14
|
Hepatitis E prevalence in French Polynesian blood donors. PLoS One 2018; 13:e0208934. [PMID: 30532225 PMCID: PMC6286134 DOI: 10.1371/journal.pone.0208934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/26/2018] [Indexed: 12/13/2022] Open
Abstract
The HEV seroprevalence in mainland France is elevated (22.4%). In contrast, anti-HEV seroprevalence appears to be lower in Oceania. However, none is available for French Polynesia. We assessed the anti-HEV IgG and IgM prevalence on samples from 300 consecutive blood donors living on Tahiti and Moorea islands. Epidemiological information was collected using a specific questionnaire. Overall IgM seroprevalence was 0.6% and overall IgG seroprevalence was 7.7%. The presence of anti-HEV IgG was associated with increasing age (p = 0.01), eating chicken offal (p = 0.01) and cooked rabbit (p = 0.02). Conversely, eating fafaru—traditional Polynesian condiment—was associated with a lower rate of anti-HEV IgG (p<0.01).). All donors who surfed or practiced va’a (traditional outrigger canoë) were HEV seronegative. The Polynesian lifestyle and the particular food consumption patterns—especially the very well cooked pork—may be the key to understand the low HEV seroprevalence in French Polynesia.
Collapse
|
15
|
Dalton HR, Izopet J. Transmission and Epidemiology of Hepatitis E Virus Genotype 3 and 4 Infections. Cold Spring Harb Perspect Med 2018. [PMID: 29530946 DOI: 10.1101/cshperspect.a032144] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Following the introduction of robust serological and molecular tools, our understanding of the epidemiology of zoonotic hepatitis E virus (HEV) has improved considerably in recent years. Current thinking suggests that consumption of pork meat products is the key route of infection in humans, but it is certainly not the only one. Other routes of infection include environmental spread, contaminated water, and via the human blood supply. The epidemiology of HEV genotype (gt)3 and gt4 is complex, as there are several sources and routes of infection, and it is likely that these vary between and within countries and over time.
Collapse
Affiliation(s)
- Harry R Dalton
- Royal Cornwall Hospital, Truro TR1 3LJ, United Kingdom.,European Centre for Environment and Human Health, University of Exeter, Truro TR1 3LJ, United Kingdom
| | - Jacques Izopet
- Department of Virology, Hepatitis E Virus National Reference Centre, Toulouse University Hospital, 31059 Toulouse, France.,Toulouse-Purpan Centre for Pathophysiology, INSERM UMR1043/CNRS UMR 5282, CPTP, Toulouse University Paul Sabatier, 31024 Toulouse, France
| |
Collapse
|
16
|
King NJ, Hewitt J, Perchec-Merien AM. Hiding in Plain Sight? It's Time to Investigate Other Possible Transmission Routes for Hepatitis E Virus (HEV) in Developed Countries. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:225-252. [PMID: 29623595 DOI: 10.1007/s12560-018-9342-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Historically in developed countries, reported hepatitis E cases were typically travellers returning from countries where hepatitis E virus (HEV) is endemic, but now there are increasing numbers of non-travel-related ("autochthonous") cases being reported. Data for HEV in New Zealand remain limited and the transmission routes unproven. We critically reviewed the scientific evidence supporting HEV transmission routes in other developed countries to inform how people in New Zealand may be exposed to this virus. A substantial body of indirect evidence shows domesticated pigs are a source of zoonotic human HEV infection, but there is an information bias towards this established reservoir. The increasing range of animals in which HEV has been detected makes it important to consider other possible animal reservoirs of HEV genotypes that can or could infect humans. Foodborne transmission of HEV from swine and deer products has been proven, and a large body of indirect evidence (e.g. food surveys, epidemiological studies and phylogenetic analyses) support pig products as vehicles of HEV infection. Scarce data from other foods suggest we are neglecting other potential sources of foodborne HEV infection. Moreover, other transmission routes are scarcely investigated in developed countries; the role of infected food handlers, person-to-person transmission via the faecal-oral route, and waterborne transmission from recreational contact or drinking untreated or inadequately treated water. People have become symptomatic after receiving transfusions of HEV-contaminated blood, but it is unclear how important this is in the overall hepatitis E disease burden. There is need for broader research efforts to support establishing risk-based controls.
Collapse
Affiliation(s)
- Nicola J King
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, 5022, New Zealand.
| | - Anne-Marie Perchec-Merien
- New Zealand Ministry for Primary Industries, Pastoral House, 25 The Terrace, Wellington, New Zealand
| |
Collapse
|
17
|
Hoad VC, Gibbs T, Ravikumara M, Nash M, Levy A, Tracy SL, Mews C, Perkowska-Guse Z, Faddy HM, Bowden S. First confirmed case of transfusion-transmitted hepatitis E in Australia. Med J Aust 2018; 206:289-290. [PMID: 28403756 DOI: 10.5694/mja16.01090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Monica Nash
- Australian Red Cross Blood Service, Sydney, NSW
| | - Avram Levy
- PathWest Laboratory Medicine WA, Perth, WA
| | - Samantha L Tracy
- Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC
| | | | | | | | - Scott Bowden
- Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC
| |
Collapse
|
18
|
Hepatitis E in High-Income Countries: What Do We Know? And What Are the Knowledge Gaps? Viruses 2018; 10:v10060285. [PMID: 29799485 PMCID: PMC6024799 DOI: 10.3390/v10060285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis E virus (HEV) is a positive-strand RNA virus transmitted by the fecal–oral route. HEV genotypes 1 and 2 infect only humans and cause mainly waterborne outbreaks. HEV genotypes 3 and 4 are widely represented in the animal kingdom, and are mainly transmitted as a zoonosis. For the past 20 years, HEV infection has been considered an imported disease in developed countries, but now there is evidence that HEV is an underrecognized pathogen in high-income countries, and that the incidence of confirmed cases has been steadily increasing over the last decade. In this review, we describe current knowledge about the molecular biology of HEV, its clinical features, its main routes of transmission, and possible therapeutic strategies in developed countries.
Collapse
|
19
|
Al-Sadeq DW, Majdalawieh AF, Mesleh AG, Abdalla OM, Nasrallah GK. Laboratory challenges in the diagnosis of hepatitis E virus. J Med Microbiol 2018; 67:466-480. [PMID: 29485390 DOI: 10.1099/jmm.0.000706] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis E virus (HEV) is an RNA virus that is an important cause of both acute and chronic hepatitis worldwide. To date, there are eight HEV genotypes that can infect mammals. HEV-1 and HEV-2 infect exclusively humans, while HEV-3 and HEV-4 infect humans and various animals, mainly pigs and deer. Additionally, two new genotypes (HEV-5 and HEV-6) infect mainly wild boar. Recently, newly discovered genotypes HEV-7 and HEV-8 were found to infect camels and possibly humans. Nevertheless, the epidemiological distribution of HEV-7 is not well established. HEV-8 is another newly discovered genotype that was identified in 2016 in Chinese Bactrian camels. Although faecal-oral transmission is the most common route of HEV transmission, HEV can be vertically transmitted from infected mothers to their fetuses. HEV may also spread by zoonotic transmission from infected animals to humans and through person-to-person contact. Nowadays, since the number of reported cases linked to blood donations is increasing annually, HEV is recognized as a transfusion-transmitted virus. Laboratory diagnostic techniques vary in their specificity and sensitivity for HEV detection. Direct techniques allow for detection of the viral proteins, antigens and viral nucleic acid, while HEV-specific IgG and IgM antibodies can help establish a diagnosis in acute and chronic infections. In this review, we will discuss recent technologies in the laboratory diagnosis of HEV, including serological and molecular methods to assess the specificity and sensitivity of currently available HEV commercial assays.
Collapse
Affiliation(s)
- Duaa W Al-Sadeq
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| | - Areej G Mesleh
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Omnya M Abdalla
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Izopet J. [HEV and transfusion-recipient risk]. ANNALES PHARMACEUTIQUES FRANÇAISES 2018; 76:89-96. [PMID: 29395014 DOI: 10.1016/j.pharma.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/18/2017] [Indexed: 02/06/2023]
Abstract
HEV infections are mainly food- and water-borne but transfusion-transmission has occurred in both developing and developed countries. The infection is usually asymptomatic but it can lead to fulminant hepatitis in patients with underlying liver disease and pregnant women living in developing countries. It also causes chronic hepatitis E, with progressive fibrosis and cirrhosis, in approximately 60 % of immunocompromised patients infected with HEV genotype 3. Extra-hepatic manifestations such as neurological and renal manifestations have been reported. The risk of a transfusion-transmitted HEV infection is linked to the frequency of viremia in blood donors, the donor virus load and the volume of plasma in the final transfused blood component. Several developed countries have adopted measures to improve blood safety based on the epidemiology of HEV.
Collapse
Affiliation(s)
- J Izopet
- Laboratoire de virologie, centre national de référence virus des hépatites à transmission entérique (hépatites A et E), institut fédératif de biologie, CHU de Purpan, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm U1043/CNRS 5282, université Paul-Sabatier, centre de physiopathologie de Toulouse-Purpan, 31024 Toulouse cedex 03, France.
| |
Collapse
|
21
|
Abstract
Hepatitis E virus (HEV) infection can lead to acute and chronic hepatitis as well as to extrahepatic manifestations such as neurological and renal disease; it is the most common cause of acute viral hepatitis worldwide. Four genotypes are responsible for most infection in humans, of which HEV genotypes 1 and 2 are obligate human pathogens and HEV genotypes 3 and 4 are mostly zoonotic. Until quite recently, HEV was considered to be mainly responsible for epidemics of acute hepatitis in developing regions owing to contamination of drinking water supplies with human faeces. However, HEV is increasingly being recognized as endemic in some developed regions. In this setting, infections occur through zoonotic transmission or contaminated blood products and can cause chronic hepatitis in immunocompromised individuals. HEV infections can be diagnosed by measuring anti-HEV antibodies, HEV RNA or viral capsid antigen in blood or stool. Although an effective HEV vaccine exists, it is only licensed for use in China. Acute hepatitis E is usually self-limiting and does not require specific treatment. Management of immunocompromised individuals involves lowering the dose of immunosuppressive drugs and/or treatment with the antiviral agent ribavirin.
Collapse
|
22
|
Al-Sadeq DW, Majdalawieh AF, Nasrallah GK. Seroprevalence and incidence of hepatitis E virus among blood donors: A review. Rev Med Virol 2017; 27:e1937. [PMID: 28876496 DOI: 10.1002/rmv.1937] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/16/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is an RNA virus with 4 main genotypes. HEV-1 and HEV-2 infect solely humans, while HEV-3 and HEV-4 infect humans and various animals such as pigs, deer, and rabbits. HEV-5 and HEV-6 infect mainly wild boar. Recently, new genotypes, known as HEV-7 and HEV-8, were found to infect camels and humans. HEV is globally distributed into different epidemiological patterns based on socioeconomic factors and ecology. Although HEV is mainly transmitted through the fecal-oral route, it was also recognized as a transfusion-transmitted virus. Transmission through blood donation was documented worldwide with rising annual observations, accounting for more than 2.5% of all transmissions. HEV infection is usually asymptomatic or subclinical in immunocompetent individuals, so it remains questionable whether there is an urgent need to screen for HEV prior to blood transfusion. Moreover, recent studies conducted in the Middle East and North Africa (MENA) region indicate that HEV is highly endemic. Here, we provide a review on HEV epidemiology, transmission, and laboratory diagnosis, giving special emphasis to the newly discovered genotypes, HEV-7 and HEV-8. Furthermore, we underscore the findings of recent HEV seroprevalence and viremia studies among blood donors worldwide. We also shed light on similar studies performed among blood donors in the MENA region.
Collapse
Affiliation(s)
- Duaa W Al-Sadeq
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Amin F Majdalawieh
- Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
23
|
Mauceri C, Grazia Clemente M, Castiglia P, Antonucci R, Schwarz KB. Hepatitis E in Italy: A silent presence. J Infect Public Health 2017; 11:1-8. [PMID: 28864359 DOI: 10.1016/j.jiph.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 01/18/2023] Open
Abstract
Hepatitis E virus (HEV) was discovered in the 1980s and has been considered as being confined to developing countries. The purpose of this critical review was to determine the reported HEV seroprevalence rates in Italy, to identify predisposing factors and individuals at risk and to assess possible importation of HEV by immigrants. A critical review of 159 articles published in PubMed from 1994 to date was done. Only 27 original reports of 50 or more subjects, written in the English or Italian language, were included. Over three decades, the HEV seroprevalence varied from 0.12% to 49%, with the highest rates being reported from the central region of Italy. Risk factors included ingestion of raw pork or potentially contaminated food. The seroprevalence among immigrants ranged from 15.3% to 19.7% in Apulia. Italy has a population of 60656000; the total number of individuals surveyed was only 21.882 (0.036%). A national epidemiological survey program is needed to capture more comprehensive seroprevalence data.
Collapse
Affiliation(s)
- Carlo Mauceri
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Paolo Castiglia
- Department of Biomedical Sciences-Hygiene and Preventive Medicine Unit, University-AOU of Sassari, 07100 Sassari, Italy.
| | - Roberto Antonucci
- Pediatric Clinic, Department of Surgical, Microsurgical and Medical Sciences, University of Sassari Medical School, 07100 Sassari, Italy.
| | - Kathleen B Schwarz
- Pediatric Liver Center, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| |
Collapse
|
24
|
Hoad VC, Seed CR, Fryk JJ, Harley R, Flower RLP, Hogema BM, Kiely P, Faddy HM. Hepatitis E virus RNA in Australian blood donors: prevalence and risk assessment. Vox Sang 2017; 112:614-621. [PMID: 28833229 DOI: 10.1111/vox.12559] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/30/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Hepatitis E virus (HEV) is a known transfusion-transmissible agent. HEV infection has increased in prevalence in many developed nations with RNA detection in donors as high as 1 in 600. A high proportion of HEV infections are asymptomatic and therefore not interdicted by donor exclusion criteria. To manage the HEV transfusion-transmission (TT) risk some developed nations have implemented HEV RNA screening. In Australia, HEV is rarely notified; although locally acquired infections have been reported, and the burden of disease is unknown. The purpose of this study was to determine the frequency of HEV infection in Australian donors and associated TT risk. MATERIALS AND METHODS Plasma samples (n = 74 131) were collected from whole blood donors during 2016 and screened for HEV RNA by transcription-mediated amplification (TMA) in pools of six. Individual TMA reactive samples were confirmed by RT-PCR and, if positive, viral load determined. Prevalence data from the study were used to model the HEV-TT risk. RESULTS One sample in 74 131 (95% CI: 1 in 1 481 781 to 1 in 15 031) was confirmed positive for HEV RNA, with an estimated viral load of 180 IU/ml, which is below that typically associated with TT. Using a transmission-risk model, we estimated the risk of an adverse outcome associated with TT-HEV of approximately 1 in 3·5 million components transfused. CONCLUSION Hepatitis E virus viremia is rare in Australia and lower than the published RNA prevalence estimates of other developed countries. The risk of TT-HEV adverse outcomes is negligible, and HEV RNA donor screening is not currently indicated.
Collapse
Affiliation(s)
- V C Hoad
- Clinical Services and Research, Australian Red Cross Blood Service, Perth, WA, Australia
| | - C R Seed
- Clinical Services and Research, Australian Red Cross Blood Service, Perth, WA, Australia
| | - J J Fryk
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - R Harley
- Clinical Services and Research, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - R L P Flower
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| | - B M Hogema
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, The Netherlands
| | - P Kiely
- Clinical Services and Research, Australian Red Cross Blood Service, Melbourne, Vic., Australia
| | - H M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Izopet J, Lhomme S, Chapuy-Regaud S, Mansuy JM, Kamar N, Abravanel F. HEV and transfusion-recipient risk. Transfus Clin Biol 2017; 24:176-181. [PMID: 28690036 DOI: 10.1016/j.tracli.2017.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/14/2023]
Abstract
HEV infections are mainly food- and water-borne but transfusion-transmission has occurred in both developing and developed countries. The infection is usually asymptomatic but it can lead to fulminant hepatitis in patients with underlying liver disease and pregnant women living in developing countries. It also causes chronic hepatitis E, with progressive fibrosis and cirrhosis, in approximately 60% of immunocompromised patients infected with HEV genotype 3. The risk of a transfusion-transmitted HEV infection is linked to the frequency of viremia in blood donors, the donor virus load and the volume of plasma in the final transfused blood component. Several developed countries have adopted measures to improve blood safety based on the epidemiology of HEV.
Collapse
Affiliation(s)
- J Izopet
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France.
| | - S Lhomme
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| | - S Chapuy-Regaud
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| | - J-M Mansuy
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France
| | - N Kamar
- Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France; Department of nephrology and organ transplantation, CHU Rangueil, 31059 Toulouse, France
| | - F Abravanel
- Department of virology, National reference center for hepatitis E virus, CHU Purpan, IFB, 330, avenue de Grande-Bretagne, TSA 40031, 31059 Toulouse, France; Inserm UMR 1043/CNRS UMR 5282, CPTP, center for pathophysiology of toulouse-Purpan, Toulouse university Paul-Sabatier, 31024 Toulouse, France
| |
Collapse
|