1
|
Chatterjee S, Paul P, Chakraborty P, Das S, Das Gupta A, Roy R, Malik M, Sarkar S, Sarker RK, Tribedi P. Combinatorial application of cuminaldehyde and gentamicin shows enhanced antimicrobial and antibiofilm action on Pseudomonas aeruginosa. Folia Microbiol (Praha) 2024; 69:823-834. [PMID: 38133854 DOI: 10.1007/s12223-023-01121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The emergence of biofilm-induced drug tolerance poses a critical challenge to public healthcare management. Pseudomonas aeruginosa, a gram-negative opportunistic bacterium, is involved in various biofilm-associated infections in human hosts. Towards this direction, in the present study, a combinatorial approach has been explored as it is a demonstrably effective strategy for managing microbial infections. Thus, P. aeruginosa has been treated with cuminaldehyde (a naturally occurring phytochemical) and gentamicin (an aminoglycoside antibiotic) in connection to the effective management of the biofilm challenges. It was also observed that the test molecules could show increased antimicrobial activity against P. aeruginosa. A fractional inhibitory concentration index (FICI) of 0.65 suggested an additive interaction between cuminaldehyde and gentamicin. Besides, a series of experiments such as crystal violet assay, estimation of extracellular polymeric substance (EPS), and microscopic images indicated that an enhanced antibiofilm activity was obtained when the selected compounds were applied together on P. aeruginosa. Furthermore, the combination of the selected compounds was found to reduce the secretion of virulence factors from P. aeruginosa. Taken together, this study suggested that the combinatorial application of cuminaldehyde and gentamicin could be considered an effective approach towards the control of biofilm-linked infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Anirban Das Gupta
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Moumita Malik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Ranojit Kumar Sarker
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Bengal-743368, Sarisha, West, India.
| |
Collapse
|
2
|
Wang TP, Yeh TH, Lo CC, Lin KH, Huang MH, Lo HR. Synergistic action of indole-3-carbinol with membrane-active agents against multidrug-resistant Gram-negative bacteria. Lett Appl Microbiol 2023; 76:ovad093. [PMID: 37580156 DOI: 10.1093/lambio/ovad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
The purpose of this study was to evaluate the antimicrobial activity of indole-3-carbinol (I3C) with membrane-active agents, namely carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and ethylenediaminetetraacetic acid (EDTA) against multidrug-resistant (MDR) Gram-negative bacteria and bacterial persisters. The determination of minimal inhibitory concentration (MIC) showed that I3C was effective against Acinetobacter baumannii (3.13‒6.25 × 10-3 mol l-1), Klebsiella pneumoniae (8 × 10-3 mol l-1), Pseudomonas aeruginosa (6.25‒12.5 × 10-3 mol l-1), and Escherichia coli (6.25‒12.5 × 10-3 mol l-1). Our study demonstrated that EDTA synergistically enhanced the bactericidal activity of I3C against most MDR Gram-negative bacteria isolates and contributed to an 8- to 64-fold MIC reduction compared with that of I3C alone, yet CCCP only displayed synergy with I3C against P. aeruginosa and A. baumannii. The EDTA-I3C combination also significantly reduced the viable number of testing bacteria (P = 7.2E-05), effectively reduced bacterial persisters, and repressed bacterial growth compared with that the use of I3C alone. Our data demonstrate that use of EDTA as adjuvant molecules can effectively improve the antibacterial activity of I3C and may help to reduce the development of antimicrobial resistance.
Collapse
Affiliation(s)
- Tso-Ping Wang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Tzu-Hui Yeh
- Department of Pathology and Laboratory Medicine, Pingtung Veterans General Hospital, Pingtung 900053, Taiwan
| | - Chung-Cheng Lo
- Department of Internal Medicine, Pingtung Veterans General Hospital Longquan Branch, Pingtung 91245, Taiwan
| | - Kuan-Hua Lin
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Mei-Han Huang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| | - Horng-Ren Lo
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan
| |
Collapse
|
3
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Chatterjee S, Das S, Paul P, Chakraborty P, Sarkar S, Das A, Tribedi P. Synergistic interaction of cuminaldehyde and tobramycin: a potential strategy for the efficient management of biofilm caused by Pseudomonas aeruginosa. Folia Microbiol (Praha) 2023; 68:151-163. [PMID: 36192618 DOI: 10.1007/s12223-022-01005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has been found to cause several chronic and acute infections in human. Moreover, it often shows drug-tolerance and poses a severe threat to public healthcare through biofilm formation. In this scenario, two molecules, namely, cuminaldehyde and tobramycin, were used separately and in combination for the efficient management of biofilm challenge. The minimum inhibitory concentration (MIC) of cuminaldehyde and tobramycin was found to be 150 µg/mL and 1 µg/mL, respectively, against Pseudomonas aeruginosa. The checkerboard assay revealed that the fractional inhibitory concentration (FIC) index of cuminaldehyde and tobramycin was 0.36 suggesting a synergistic association between them. The sub-MIC dose of cuminaldehyde (60 µg/mL) or tobramycin (0.06 µg/mL) individually did not show any effect on the microbial growth curve. However, the same combinations could affect microbial growth curve of Pseudomonas aeruginosa efficiently. In connection to biofilm management, it was observed that the synergistic interaction between cuminaldehyde and tobramycin could inhibit biofilm formation more efficiently than their single use (p < 0.01). Further investigation revealed that the combinations of cuminaldehyde and tobramycin could generate reactive oxygen species (ROS) that resulted in the increase of membrane permeability of bacterial cells leading to the efficient inhibition of microbial biofilm formation. Besides, the synergistic interaction between cuminaldehyde (20 µg/mL) and tobramycin (0.03 µg/mL) also showed significant biofilm dispersal of the test microorganism (p < 0.01). Hence, the results suggested that synergistic action of cuminaldehyde and tobramycin could be applied for the efficient management of microbial biofilm.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Payel Paul
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Poulomi Chakraborty
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Amlan Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
5
|
Maisch NA, Bereswill S, Heimesaat MM. Antibacterial effects of vanilla ingredients provide novel treatment options for infections with multidrug-resistant bacteria - A recent literature review. Eur J Microbiol Immunol (Bp) 2022; 12:53-62. [PMID: 36149764 PMCID: PMC9530676 DOI: 10.1556/1886.2022.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Due to the increasing application of antibiotics not only in healthcare settings but also in conventional agriculture and farming, multidrug-resistant (MDR) bacterial pathogens are rising worldwide. Given the increasing prevalence of infections caused by MDR bacteria such as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species (ESKAPE pathogen complex), it is pivotal to explore novel alternative or adjunct treatment options such as phytochemicals with antibiotic properties. Vanillin and vanillin acid represent biologically active ingredients in vanilla that has been known for long for its health-beneficial including antimicrobial effects besides its role as flavoring agent. Therefore, we performed a literature search from the past 10 years summarizing the knowledge regarding the effects of vanilla constituents against bacterial including MDR pathogens. Our survey revealed that vanillin and vanillic acid exerted potent effects directed against distinct Gram-positive and Gram-negative bacteria by inhibiting growth, viability, biofilm formation, quorum sensing and virulence. Remarkably, when combining vanillin or vanillic acid with defined synthetic antibiotics pronounced synergistic effects directed against distinct pathogenic including ESCAPE strains could be observed. In conclusion, vanilla ingredients constitute promising alternative or adjunct options in the combat of infections caused by MDR bacterial pathogens.
Collapse
Affiliation(s)
- Noah A. Maisch
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Uddin Mahamud AGMS, Nahar S, Ashrafudoulla M, Park SH, Ha SD. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry. Crit Rev Food Sci Nutr 2022; 64:1736-1763. [PMID: 36066482 DOI: 10.1080/10408398.2022.2119201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The recalcitrance of microbial aggregation or biofilm in the food industry underpins the emerging antimicrobial resistance among foodborne pathogens, exacerbating the phenomena of food spoilage, processing and safety management failure, and the prevalence of foodborne illnesses. The challenges of growing tolerance to current chemical and disinfectant-based antibiofilm strategies have driven the urgency in finding a less vulnerable to bacterial resistance, effective alternative antibiofilm agent. To address these issues, various novel strategies are suggested in current days to combat bacterial biofilm. Among the innovative approaches, phytochemicals have already demonstrated their excellent performance in preventing biofilm formation and bactericidal actions against resident bacteria within biofilms. However, the diverse group of phytochemicals and their different modes of action become a barrier to applying them against specific pathogenic biofilm-formers. This phenomenon mandates the need to elucidate the multi-mechanistic actions of phytochemicals to design an effective novel antibiofilm strategy. Therefore, this review critically illustrates the structure - activity relationship, functional sites of actions, and target molecules of diverse phytochemicals regarding multiple major antibiofilm mechanisms and reversal mechanisms of antimicrobial resistance. The implementation of the in-depth knowledge will hopefully aid future studies for developing phytochemical-based next-generation antimicrobials.
Collapse
Affiliation(s)
- A G M Sofi Uddin Mahamud
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Shamsun Nahar
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Md Ashrafudoulla
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Sang-Do Ha
- School of Food Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Malheiro JF, Oliveira C, Cagide F, Borges F, Simões M, Maillard JY. Surface Wiping Test to Study Biocide -Cinnamaldehyde Combination to Improve Efficiency in Surface Disinfection. Int J Mol Sci 2020; 21:ijms21217852. [PMID: 33113903 PMCID: PMC7660177 DOI: 10.3390/ijms21217852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 02/08/2023] Open
Abstract
Disinfection is crucial to control and prevent microbial pathogens on surfaces. Nonetheless, disinfectants misuse in routine disinfection has increased the concern on their impact on bacterial resistance and cross-resistance. This work aims to develop a formulation for surface disinfection based on the combination of a natural product, cinnamaldehyde, and a widely used biocide, cetyltrimethylammonium bromide. The wiping method was based on the Wiperator test (ASTM E2967−15) and the efficacy evaluation of surface disinfection wipes test (EN 16615:2015). After formulation optimization, the wiping of a contaminated surface with 6.24 log10 colony-forming units (CFU) of Escherichia coli or 7.10 log10 CFU of Staphylococcus aureus led to a reduction of 4.35 log10 CFU and 4.27 log10 CFU when the wipe was impregnated with the formulation in comparison with 2.45 log10 CFU and 1.50 log10 CFU as a result of mechanical action only for E. coli and S. aureus, respectively. Furthermore, the formulation prevented the transfer of bacteria to clean surfaces. The work presented highlights the potential of a combinatorial approach of a classic biocide with a phytochemical for the development of disinfectant formulations, with the advantage of reducing the concentration of synthetic biocides, which reduces the potentially negative environmental and public health impacts from their routine use.
Collapse
Affiliation(s)
- Joana F. Malheiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales CF10 3NB, UK
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (C.O.); (F.C.); (F.B.)
| | - Catarina Oliveira
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (C.O.); (F.C.); (F.B.)
| | - Fernando Cagide
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (C.O.); (F.C.); (F.B.)
| | - Fernanda Borges
- CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; (C.O.); (F.C.); (F.B.)
| | - Manuel Simões
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Correspondence: (M.S.); (J.-Y.M.); Tel.: +35-1225081654 (M.S.); +44-(0)29-2087-9088 or +44-(0)29-2087-4149 (J.-Y.M.)
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, Wales CF10 3NB, UK
- Correspondence: (M.S.); (J.-Y.M.); Tel.: +35-1225081654 (M.S.); +44-(0)29-2087-9088 or +44-(0)29-2087-4149 (J.-Y.M.)
| |
Collapse
|
8
|
Monteiro-Neto V, de Souza CD, Gonzaga LF, da Silveira BC, Sousa NCF, Pontes JP, Santos DM, Martins WC, Pessoa JFV, Carvalho Júnior AR, Almeida VSS, de Oliveira NMT, de Araújo TS, Maria-Ferreira D, Mendes SJF, Ferro TAF, Fernandes ES. Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS One 2020; 15:e0232987. [PMID: 32407399 PMCID: PMC7224478 DOI: 10.1371/journal.pone.0232987] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli and Staphylococcus aureus are important agents of urinary tract infections that can often evolve to severe infections. The rise of antibiotic-resistant strains has driven the search for novel therapies to replace the use or act as adjuvants of antibiotics. In this context, plant-derived compounds have been widely investigated. Cuminaldehyde is suggested as the major antimicrobial compound of the cumin seed essential oil. However, this effect is not fully understood. Herein, we investigated the in silico and in vitro activities of cuminaldehyde, as well as its ability to potentiate ciprofloxacin effects against S. aureus and E. coli. In silico analyses were performed by using different computational tools. The PASS online and SwissADME programmes were used for the prediction of biological activities and oral bioavailability of cuminaldehyde. For analysis of the possible toxic effects and the theoretical pharmacokinetic parameters of the compound, the Osiris, SwissADME and PROTOX programmes were used. Estimations of cuminaldehyde gastrointestinal absorption, blood brain barrier permeability and skin permeation by using SwissADME; and drug likeness and score by using Osiris, were also evaluated The in vitro antimicrobial effects of cuminaldehyde were determined by using microdilution, biofilm formation and time-kill assays. In silico analysis indicated that cuminaldehyde may act as an antimicrobial and as a membrane permeability enhancer. It was suggested to be highly absorbable by the gastrointestinal tract and likely to cross the blood brain barrier. Also, irritative and harmful effects were predicted for cuminaldehyde if swallowed at its LD50. Good oral bioavailability and drug score were also found for this compound. Cuminaldehyde presented antimicrobial and anti-biofilm effects against S. aureus and E. coli.. When co-incubated with ciprofloxacin, it enhanced the antibiotic antimicrobial and anti-biofilm actions. We suggest that cuminaldehyde may be useful as an adjuvant therapy to ciprofloxacin in S. aureus and E. coli-induced infections.
Collapse
Affiliation(s)
- Valério Monteiro-Neto
- Programa de Pós-graduação, Universidade Ceuma, São Luís, MA, Brazil
- Universidade Federal do Maranhão, São Luís, MA, Brazil
| | | | | | - Bruna C. da Silveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | | | - Deivid M. Santos
- Programa de Pós-graduação, Universidade Ceuma, São Luís, MA, Brazil
| | | | | | | | | | - Natália M. T. de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | | | - Thiago A. F. Ferro
- Programa de Pós-graduação, Universidade Ceuma, São Luís, MA, Brazil
- * E-mail: (ESF); (TAFF)
| | - Elizabeth S. Fernandes
- Programa de Pós-graduação, Universidade Ceuma, São Luís, MA, Brazil
- Universidade Federal do Maranhão, São Luís, MA, Brazil
- Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
- * E-mail: (ESF); (TAFF)
| |
Collapse
|
9
|
Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit Rev Food Sci Nutr 2019; 60:2277-2293. [PMID: 31257907 DOI: 10.1080/10408398.2019.1632790] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Attachment of microorganisms to food contact surfaces and the subsequent formation of biofilms may cause equipment damage, food spoilage and even diseases. Mixed-species biofilms are ubiquitous in the food industry and they generally exhibit higher resistance to disinfectants and antimicrobials compared to single-species biofilms. The physiology and metabolic activity of microorganisms in mixed-species biofilms are however rather complicated to study, and despite targeted research efforts, the potential role of mixed-species biofilms in food industry is still rather unexplored. In this review, we summarize recent studies in the context of bacterial social interactions in mixed-species biofilms, resistance to disinfectants, detection methods, and potential novel strategies to control the formation of mixed-species biofilms for enhanced food safety and food quality.
Collapse
Affiliation(s)
- Lei Yuan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|