1
|
Cheng S, Zou Y, Zhang M, Bai S, Tao K, Wu J, Shi Y, Wu Y, Lu Y, He K, Sun P, Su X, Hou S, Han B. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm (Beijing) 2023; 4:e378. [PMID: 37724132 PMCID: PMC10505372 DOI: 10.1002/mco2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023] Open
Abstract
Uncontrolled and excessive progression of liver fibrosis is thought to be the prevalent pathophysiological cause of liver cirrhosis and hepatocellular cancer, and there are currently no effective antifibrotic therapeutic options available. Intercellular communication and cellular heterogeneity in the liver are involved in the progression of liver fibrosis, but the exact nature of the cellular phenotypic changes and patterns of interregulatory remain unclear. Here, we performed single-cell RNA sequencing on nonparenchymal cells (NPCs) isolated from normal and fibrotic mouse livers. We identified eight main types of cells, including endothelial cells, hepatocytes, dendritic cells, B cells, natural killer/T (NK/T) cells, hepatic stellate cells (HSCs), cholangiocytes and macrophages, and revealed that macrophages and HSCs exhibit the most variance in transcriptional profile. Further analyses of HSCs and macrophage subpopulations and ligand-receptor interaction revealed a high heterogeneity characterization and tightly interregulated network of these two groups of cells in liver fibrosis. Finally, we uncovered a profibrotic Thbs1+ macrophage subcluster, which expands in mouse and human fibrotic livers, activating HSCs via PI3K/AKT/mTOR signaling pathway. Our findings decode unanticipated insights into the heterogeneity of HSCs and macrophages and their intercellular crosstalk at a single-cell level, and may provide potential therapeutic strategies in liver fibrosis.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunhan Zou
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Man Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shihao Bai
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Kun Tao
- Department of PathologyTongren HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Jiaoxiang Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric DisordersBio‐X InstitutesShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Yuelan Wu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinzhong Lu
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Kunyan He
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Peng Sun
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xianbin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiChina
- eHealth Program of Shanghai Anti‐Doping LaboratoryShanghai University of SportShanghaiChina
| | - Shangwei Hou
- Department of AnesthesiologyTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bo Han
- Department of General SurgeryTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal OncologyHongqiao International Institute of MedicineTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Sim BC, Kang YE, You SK, Lee SE, Nga HT, Lee HY, Nguyen TL, Moon JS, Tian J, Jang HJ, Lee JE, Yi HS. Hepatic T-cell senescence and exhaustion are implicated in the progression of fatty liver disease in patients with type 2 diabetes and mouse model with nonalcoholic steatohepatitis. Cell Death Dis 2023; 14:618. [PMID: 37735474 PMCID: PMC10514041 DOI: 10.1038/s41419-023-06146-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Immunosenescence and exhaustion are involved in the development and progression of type 2 diabetes (T2D) and metabolic liver diseases, including fatty liver, fibrosis, and cirrhosis, in humans. However, the relationships of the senescence and exhaustion of T cells with insulin resistance-associated liver diseases remain incompletely understood. To better define the relationship of T2D with nonalcoholic fatty liver disease, 59 patients (mean age 58.7 ± 11.0 years; 47.5% male) with T2D were studied. To characterize their systemic immunophenotypes, peripheral blood mononuclear cells were analyzed using flow cytometry. Magnetic resonance imaging (MRI)-based proton density fat fraction and MRI-based elastography were performed using an open-bore, vertical-field 3.0 T scanner to quantify liver fat and fibrosis, respectively. The participants with insulin resistance had a significantly larger population of CD28 - CD57+ senescent T cells among the CD4+ and CD8 + T cells than those with lower Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) values. The abundances of senescent CD4+ and CD8 + T cells and the HOMA-IR positively correlated with the severity of liver fibrosis, assessed using MRI-based elastography. Interleukin 15 from hepatic monocytes was found to be an inducer of bystander activation of T cells, which is associated with progression of liver disease in the participants with T2D. Furthermore, high expression of genes related to senescence and exhaustion was identified in CD4+ and CD8 + T cells from the participants with nonalcoholic steatohepatitis or liver cirrhosis. Finally, we have also demonstrated that hepatic T-cell senescence and exhaustion are induced in a diet or chemical-induced mouse model with nonalcoholic steatohepatitis. In conclusion, we have shown that T-cell senescence is associated with insulin resistance and metabolic liver disease in patients with T2D.
Collapse
Affiliation(s)
- Byeong Chang Sim
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sun Kyoung You
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seong Eun Lee
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jeong Eun Lee
- Department of Radiology, Chungnam National University Hospital, Daejeon, Republic of Korea.
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Dwivedi NV, Datta S, El-Kersh K, Sadikot RT, Ganti AK, Batra SK, Jain M. GPCRs and fibroblast heterogeneity in fibroblast-associated diseases. FASEB J 2023; 37:e23101. [PMID: 37486603 PMCID: PMC10916681 DOI: 10.1096/fj.202301091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.
Collapse
Affiliation(s)
- Nidhi V Dwivedi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Souvik Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Karim El-Kersh
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ruxana T Sadikot
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska Western Iowa Health Care System
| | - Apar K. Ganti
- VA Nebraska Western Iowa Health Care System
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
4
|
Oh HR, Ko MK, Son D, Ki YW, Kim SI, Lee SY, Kang KW, Cheon GJ, Hwang DW, Youn H. Activated Natural Killer Cell Inoculation Alleviates Fibrotic Liver Pathology in a Carbon Tetrachloride-Induced Liver Cirrhosis Mouse Model. Biomedicines 2023; 11:1090. [PMID: 37189708 PMCID: PMC10135902 DOI: 10.3390/biomedicines11041090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Activated hepatic stellate cells (HSCs) play a detrimental role in liver fibrosis progression. Natural killer (NK) cells are known to selectively recognize abnormal or transformed cells via their receptor activation and induce target cell apoptosis and, therefore, can be used as a potential therapeutic strategy for liver cirrhosis. In this study, we examined the therapeutic effects of NK cells in the carbon tetrachloride (CCl4)-induced liver cirrhosis mouse model. NK cells were isolated from the mouse spleen and expanded in the cytokine-stimulated culture medium. Natural killer group 2, member D (NKG2D)-positive NK cells were significantly increased after a week of expansion in culture. The intravenous injection of NK cells significantly alleviated liver cirrhosis by reducing collagen deposition, HSC marker activation, and macrophage infiltration. For in vivo imaging, NK cells were isolated from codon-optimized luciferase-expressing transgenic mice. Luciferase-expressing NK cells were expanded, activated and administrated to the mouse model to track them. Bioluminescence images showed increased accumulation of the intravenously inoculated NK cells in the cirrhotic liver of the recipient mouse. In addition, we conducted QuantSeq 3' mRNA sequencing-based transcriptomic analysis. From the transcriptomic analysis, 33 downregulated genes in the extracellular matrix (ECM) and 41 downregulated genes involved in the inflammatory response were observed in the NK cell-treated cirrhotic liver tissues from the 1532 differentially expressed genes (DEGs). This result indicated that the repetitive administration of NK cells alleviated the pathology of liver fibrosis in the CCl4-induced liver cirrhosis mouse model via anti-fibrotic and anti-inflammatory mechanisms. Taken together, our research demonstrated that NK cells could have therapeutic effects in a CCl4-induced liver cirrhosis mouse model. In particular, it was elucidated that extracellular matrix genes and inflammatory response genes, which were mainly affected after NK cell treatment, could be potential targets.
Collapse
Affiliation(s)
- Ho Rim Oh
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyung Ko
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Daehee Son
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Young Wook Ki
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Shin-Il Kim
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Seok-Yong Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Do Won Hwang
- Research & Development Center, THERABEST, Co., Ltd., Seoul 06656, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Imaging Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
| |
Collapse
|
5
|
Kim HH, Kim K, Hong SH, Jeong WI. Isolation of Hepatic Stellate Cells and Lymphocytes for Co-culture Systems. Methods Mol Biol 2023; 2669:111-128. [PMID: 37247057 DOI: 10.1007/978-1-0716-3207-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In contrast to quiescent hepatic stellate cells (HSCs), activated HSCs play crucial roles in the development of liver fibrosis by producing a huge amount of extracellular matrix such as collagen fibers. However, recent lines of evidence have also highlighted the immunoregulatory functions of HSCs, in which they interact with diverse hepatic lymphocytes to produce cytokines and chemokines, release extracellular vesicles, or express specific ligands. Therefore, to understand the exact interactions between HSCs and lymphocyte subsets in the pathogenesis of the liver disease, it is valuable to establish experimental procedures to isolate HSC and co-culture them with lymphocytes. Here, we introduce the efficient methods to isolate and purify mouse HSCs and hepatic lymphocytes using density gradient centrifugation, microscopic observation, and flow cytometry. Moreover, we provide the direct and indirect co-culturing methods of isolated mouse HSCs and hepatic lymphocytes based upon the purpose of the study.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Song Hwa Hong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Park HJ, Seo KI, Lee SU, Han BH, Yun BC, Park ET, Lee J, Hwang H, Yoon M. Clinical usefulness of Mac-2 binding protein glycosylation isomer for diagnosing liver cirrhosis and significant fibrosis in patients with chronic liver disease: A retrospective single-center study. Medicine (Baltimore) 2022; 101:e30489. [PMID: 36221351 PMCID: PMC9542736 DOI: 10.1097/md.0000000000030489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Accurate diagnosis of liver cirrhosis (LC) and significant fibrosis in patients with chronic liver disease (CLD) is important. The Mac-2 binding protein glycosylation isomer (M2BPGi) has emerged as a novel serum biomarker for liver fibrosis; however, insufficient clinical data of M2BPGi are available in patients with CLD. Therefore, we performed a retrospective cohort study to investigate the clinical usefulness of serum M2BPGi for assessing LC and significant fibrosis in CLD patients. We retrospectively reviewed the CLD patients with measured serum M2BPGi at Kosin University Gospel Hospital between January 2016 and December 2019. Multivariate logistic regression analyses were conducted to identify the independent factors associated with LC. The diagnostic power of serum M2BPGi for LC and significant fibrosis (≥F2) was evaluated and compared to that of other serum biomarkers using receiver operating characteristic curve and area under the curve (AUC). A total of 454 patients enrolled in this study. M2BPGi (adjusted odds ratio [aOR], 1.77; 95% confidence interval [CI], 1.52-2.07) and fibrosis index based on four factors (aOR, 1.23; 95% CI, 1.11-1.37) were identified as significant independent factors for LC. The AUC of M2BPGi for LC (0.866) and significant fibrosis (0.816) were comparable to those of fibrosis index based on four factors (0.860, 0.773), aspartate aminotransferase-to-platelet ratio index (0.806, 0.752), and gamma-glutamyl transpeptidase-to-platelet ratio (0.759, 0.710). The optimal cut-off values for M2BPGi for LC and significant fibrosis were 1.37 and 0.89, respectively. Serum M2BPGi levels were significantly correlated with liver stiffness measurements (ρ = 0.778). Serum M2BPGi is a reliable noninvasive method for the assessment of LC and significant fibrosis in patients with CLD.
Collapse
Affiliation(s)
- Hyun Joon Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Kwang Il Seo
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
- *Correspondence: Kwang Il Seo, MD, PhD, Department of Internal Medicine, Kosin University College of Medicine, 262 Gamcheon-ro, Seo-gu, Busan, 49267, South Korea. (e-mail: )
| | - Sang Uk Lee
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Byung Hoon Han
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Byung Cheol Yun
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Eun Taek Park
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Jinwook Lee
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
- Chang Kee-Ryo Memorial Liver Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hyunyong Hwang
- Department of Laboratory Medicine, Kosin University College of Medicine, Busan, South Korea
| | - Myunghee Yoon
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery Biomedical Research Institute, Pusan National University, College of Medicine, Busan, South Korea
| |
Collapse
|
7
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
8
|
Song BS, Moon JS, Tian J, Lee HY, Sim BC, Kim SH, Kang SG, Kim JT, Nga HT, Benfeitas R, Kim Y, Park S, Wolfe RR, Eun HS, Shong M, Lee S, Kim IY, Yi HS. Mitoribosomal defects aggravate liver cancer via aberrant glycolytic flux and T cell exhaustion. J Immunother Cancer 2022; 10:jitc-2021-004337. [PMID: 35580931 PMCID: PMC9114962 DOI: 10.1136/jitc-2021-004337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mitochondria are involved in cancer energy metabolism, although the mechanisms underlying the involvement of mitoribosomal dysfunction in hepatocellular carcinoma (HCC) remain poorly understood. Here, we investigated the effects of mitoribosomal impairment-mediated alterations on the immunometabolic characteristics of liver cancer. METHODS We used a mouse model of HCC, liver tissues from patients with HCC, and datasets from The Cancer Genome Atlas (TCGA) to elucidate the relationship between mitoribosomal proteins (MRPs) and HCC. In a mouse model, we selectively disrupted expression of the mitochondrial ribosomal protein CR6-interacting factor 1 (CRIF1) in hepatocytes to determine the impact of hepatocyte-specific impairment of mitoribosomal function on liver cancer progression. The metabolism and immunophenotype of liver cancer was assessed by glucose flux assays and flow cytometry, respectively. RESULTS Single-cell RNA-seq analysis of tumor tissue and TCGA HCC transcriptome analysis identified mitochondrial defects associated with high-MRP expression and poor survival outcomes. In the mouse model, hepatocyte-specific disruption of the mitochondrial ribosomal protein CRIF1 revealed the impact of mitoribosomal dysfunction on liver cancer progression. Crif1 deficiency promoted programmed cell death protein 1 expression by immune cells in the hepatic tumor microenvironment. A [U-13C6]-glucose tracer demonstrated enhanced glucose entry into the tricarboxylic acid cycle and lactate production in mice with mitoribosomal defects during cancer progression. Mice with hepatic mitoribosomal defects also exhibited enhanced progression of liver cancer accompanied by highly exhausted tumor-infiltrating T cells. Crif1 deficiency induced an environment unfavorable to T cells, leading to exhaustion of T cells via elevation of reactive oxygen species and lactate production. CONCLUSIONS Hepatic mitoribosomal defects promote glucose partitioning toward glycolytic flux and lactate synthesis, leading to T cell exhaustion and cancer progression. Overall, the results suggest a distinct role for mitoribosomes in regulating the immunometabolic microenvironment during HCC progression.
Collapse
Affiliation(s)
- Byong-Sop Song
- Department of Core Laboratory of Translational Research, Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon, South Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Byeong Chang Sim
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seok-Hwan Kim
- Department of Surgery, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seul Gi Kang
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jung Tae Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Stockholm, Sweden
| | - Yeongmin Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Incheon, South Korea
| | - Sanghee Park
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea
| | - Robert R Wolfe
- Department of Geriatrics, the Center for Translational Research in Aging & Longevity, Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Hyuk Soo Eun
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Minho Shong
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Il-Young Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology (GAIHST), Incheon, South Korea .,Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea
| | - Hyon-Seung Yi
- Department of Core Laboratory of Translational Research, Biomedical Convergence Research Center, Chungnam National University Hospital, Daejeon, South Korea .,Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
9
|
Noro E, Matsuda A, Kyoutou T, Sato T, Tomioka A, Nagai M, Sogabe M, Tsuruno C, Takahama Y, Kuno A, Tanaka Y, Kaji H, Narimatsu H. N-glycan structures of Wisteria floribunda agglutinin-positive Mac2 binding protein in the serum of patients with liver fibrosis†. Glycobiology 2021; 31:1268-1278. [PMID: 34192302 DOI: 10.1093/glycob/cwab060] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
The extent of liver fibrosis predicts prognosis and is important for determining treatment strategies for chronic hepatitis. During the fibrosis progression, serum levels of Mac2 binding protein (M2BP) increase and the N-glycan structure changes to enable binding to Wisteria floribunda agglutinin (WFA) lectin. As a novel diagnostic marker, glycosylation isomer of M2BP (M2BPGi) has been developed. However, its glycan structures recognized by WFA are unclear. In this study, we analyzed site-specific N-glycan structures of serum M2BP using Glyco-RIDGE (Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile) method. We evaluated five sample types: (1) M2BP immunoprecipitated from normal healthy sera (NHS-IP(+)), (2) M2BP immunoprecipitated from sera of patients with liver cirrhosis (stage 4; F4-IP(+)), (3) M2BP captured with WFA from serum of patients with liver cirrhosis (stage 4; F4-WFA(+)), (4) recombinant M2BP produced by HEK293 cells (rM2BP) and (5) WFA-captured rM2BP (rM2BP-WFA(+)). In NHS-IP(+) M2BP, bi-antennary N-glycan was the main structure, and LacNAc extended to its branches. In F4-IP(+) M2BP, many branched structures, including tri-antennary and tetra-antennary N-glycans, were found. F4-WFA(+) showed a remarkable increase in branched structures relative to the quantity before enrichment. In recombinant M2BP, both no sialylated-LacdiNAc and -branched LacNAc structures were emerged. The LacdiNAc structure was not found in serum M2BP. Glycosidase-assisted HISCL assays suggest that reactivity with WFA of both serum and recombinant M2BP depends on unsialylated and branched LacNAc and in part of recombinant depends on LacdiNAc. On M2BPGi, the highly branched LacNAc, probably dense cluster of LacNAc, would be recognized by WFA.
Collapse
Affiliation(s)
- Erika Noro
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Life Innovation Business Headquarters, Yokogawa Electric Corporation, Musashino, Tokyo 180-8750, Japan
| | - Atsushi Matsuda
- Department of Biochemistry, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Takuya Kyoutou
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Takashi Sato
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Azusa Tomioka
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Misugi Nagai
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Maki Sogabe
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | | | - Yoichi Takahama
- Engineering 1, Sysmex Corporation, Kobe, Hyogo 651-0073, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
- Molecular and Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
10
|
Yi HS. The Role of Carnitine Orotate Complex in Fatty Liver. Diabetes Metab J 2021; 45:866-867. [PMID: 34847643 PMCID: PMC8640160 DOI: 10.4093/dmj.2021.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Corresponding author: Hyon-Seung Yi https://orcid.org/0000-0002-3767-1954 Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, 282 Munhwa-ro, Jung-gu, Daejeon 35015, Korea E-mail:
| |
Collapse
|
11
|
Choi WM, Ryu T, Lee JH, Shim YR, Kim MH, Kim HH, Kim YE, Yang K, Kim K, Choi SE, Kim W, Kim SH, Eun HS, Jeong WI. Metabotropic Glutamate Receptor 5 in Natural Killer Cells Attenuates Liver Fibrosis by Exerting Cytotoxicity to Activated Stellate Cells. Hepatology 2021; 74:2170-2185. [PMID: 33932306 DOI: 10.1002/hep.31875] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The important roles of glutamate and metabotropic glutamate receptor 5 (mGluR5) in HSCs have recently been reported in various liver diseases; however, the mechanism linking the glutamine/glutamate metabolism and mGluR5 in liver fibrosis remains unclear. Here, we report that mGluR5 activation in natural killer (NK) cells attenuates liver fibrosis through increased cytotoxicity and interferon-γ (IFN-γ) production in both mice and humans. APPROACH AND RESULTS Following 2-week injection of carbon tetrachloride (CCl4 ) or 5-week methionine-deficient and choline-deficient diet, liver fibrosis was more aggravated in mGluR5 knockout mice with significantly decreased frequency of NK cells compared with wild-type mice. Consistently, NK cell-specific mGluR5 knockout mice had aggravated CCl4 -induced liver fibrosis with decreased production of IFN-γ. Conversely, in vitro activation of mGluR5 in NK cells significantly increased the expression of anti-fibrosis-related genes including Ifng, Prf1 (perforin), and Klrk1 (killer cell lectin like receptor K1) and the production of IFN-γ through the mitogen-activated extracellular signal-regulated kinase/extracellular signal-related kinase pathway, contributing to the increased cytotoxicity against activated HSCs. However, we found that the uptake of glutamate was increased in activated HSCs, resulting in shortage of extracellular glutamate and reduced stimulation of mGluR5 in NK cells. Consequently, this could enable HSCs to evade NK cell cytotoxicity in advanced liver fibrosis. In vivo, pharmacologic activation of mGluR5 accelerated CCl4 -induced liver fibrosis regression by restoring NK cell cytotoxicity. In humans, mGluR5 activation enhanced the cytotoxicity of NK cells isolated from healthy donors, but not from patients with cirrhosis with significantly reduced mGluR5 expression in NK cells. CONCLUSIONS mGluR5 plays important roles in attenuating liver fibrosis by augmenting NK cell cytotoxicity, which could be used as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Won-Mook Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.,Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun-Hee Lee
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Myung-Ho Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Ye Eun Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.,Biomedical Research Center, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Liver fibrosis regression correlates with downregulation in liver angiogenesis in chronic hepatitis C through viral eradication. Eur J Gastroenterol Hepatol 2021; 33:1209-1217. [PMID: 32658008 DOI: 10.1097/meg.0000000000001833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The impact of viral eradication on hepatic angiogenesis is unknown. This study aimed to analyze the correlations of liver angiogenesis with liver fibrosis progression or regression in chronic hepatitis C (CHC) after viral eradication. METHODS From 2003 to 2020, a cohort of 130 eligible participants underwent paired percutaneous liver biopsies (median = 48 months apart; range = 46-62) at the treatment baseline and after sustained virological response to CHC treatment at the tertiary referral center. The collagen proportionate area (CPA) of liver tissue sections was determined using picrosirius red staining through digital image analysis. CD34 and α-smooth muscle actin (α-SMA) phenotypically quantitated liver angiogenesis and myofibroblasts, respectively, through immunohistochemistry staining, to correlate the total, portal, and extraportal liver angiogenesis with fibrogenesis. RESULTS Paired histology manifested significant regressions in fibrosis stages, and necroinflammatory grades (both P < 0.001). The median of changes in CPAs (follow-up minus baseline) was -6.12% (interquartile range = -12.35 to -2.05%). The median of CPA changes per year was -1.38%/year (interquartile range = -2.98 to -0.51%/year). The significance of declines in total CD34 [coefficient (95% confidence interval), 5.577 (3.286-7.868); P < 0.001] outweighed α-SMA declines, when explaining (R2 = 0.522; adjusted R2 = 0.502) the CPA declines through multiple regression analysis adjusting for other histological variables. CONCLUSION Through viral eradication in CHC, the downregulated liver angiogenesis significantly explains the CPA regression.
Collapse
|
13
|
Moreno-Fernandez ME, Giles DA, Oates JR, Chan CC, Damen MSMA, Doll JR, Stankiewicz TE, Chen X, Chetal K, Karns R, Weirauch MT, Romick-Rosendale L, Xanthakos SA, Sheridan R, Szabo S, Shah AS, Helmrath MA, Inge TH, Deshmukh H, Salomonis N, Divanovic S. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab 2021; 33:1187-1204.e9. [PMID: 34004162 PMCID: PMC8237408 DOI: 10.1016/j.cmet.2021.04.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests a key contribution to non-alcoholic fatty liver disease (NAFLD) pathogenesis by Th17 cells. The pathogenic characteristics and mechanisms of hepatic Th17 cells, however, remain unknown. Here, we uncover and characterize a distinct population of inflammatory hepatic CXCR3+Th17 (ihTh17) cells sufficient to exacerbate NAFLD pathogenesis. Hepatic ihTh17 cell accrual was dependent on the liver microenvironment and CXCR3 axis activation. Mechanistically, the pathogenic potential of ihTh17 cells correlated with increased chromatin accessibility, glycolytic output, and concomitant production of IL-17A, IFNγ, and TNFα. Modulation of glycolysis using 2-DG or cell-specific PKM2 deletion was sufficient to reverse ihTh17-centric inflammatory vigor and NAFLD severity. Importantly, ihTh17 cell characteristics, CXCR3 axis activation, and hepatic expression of glycolytic genes were conserved in human NAFLD. Together, our data show that the steatotic liver microenvironment regulates Th17 cell accrual, metabolism, and competence toward an ihTh17 fate. Modulation of these pathways holds potential for development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel A Giles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Calvin C Chan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lindsey Romick-Rosendale
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; NMR Metabolomics Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stavra A Xanthakos
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rachel Sheridan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas H Inge
- Department of Surgery, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; The Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Fuzheng Huayu Capsule Attenuates Hepatic Fibrosis by Inhibiting Activation of Hepatic Stellate Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3468791. [PMID: 32454856 PMCID: PMC7243025 DOI: 10.1155/2020/3468791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Aim To investigate the mechanisms of Fuzheng Huayu (FZHY) Capsule in the treatment of hepatitis B (HBV)- associated fibrosis, HBV patients were divided into two groups, 50 cases were in the nucleotide analogues (NAs) group, while additional 50 cases were in the NAs + FZHY group. Methods We assessed the curative effects of antifibrosis through liver function, FibroScan test, and liver biopsy and detected the ratio of lymphocyte subsets by flow cytometry. Peripheral blood lymphocyte and CD8+T, CD4+T, and natural killer cell subsets collected from patients were cocultured with LX-2 cells. Activation of LX-2 cells, production of the extracellular matrix, apoptosis, and proliferation of LX-2 cells were determined. Chronic liver injury models were established by ConA treatment. Results It is evident that FZHY treatment significantly increased the percentage of NK cells, the rate of death, and apoptosis of LX-2 cells and decreased the FibroScan liver stiffness measurement value. The expressions of α-SMA and procollagen type I mRNA in LX-2 cells of the FZHY treatment group as downregulated when they were cocultured with lymphocytes compared to those from the NAs group. The proliferation of LX-2 cells in the FZHY treatment group was inhibited compared to that in the NAs group. In a mouse model of hepatic fibrosis, PBLs and IHLs from ConA exposure plus FZHY treatment inhibited the ability of JS-1 cells to express α-SMA. Conclusions FZHY Capsule improved the disordered cellular immunity and postponed liver fibrosis possibly through inhibiting the interaction between lymphocyte and hepatic stellate cells.
Collapse
|
15
|
Choi WM, Kim MH, Jeong WI. Functions of hepatic non-parenchymal cells in alcoholic liver disease. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Dattaroy D, Seth RK, Sarkar S, Kimono D, Albadrani M, Chandrashekaran V, Al Hasson F, Singh UP, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Sparstolonin B (SsnB) attenuates liver fibrosis via a parallel conjugate pathway involving P53-P21 axis, TGF-beta signaling and focal adhesion that is TLR4 dependent. Eur J Pharmacol 2018; 841:33-48. [PMID: 30194936 PMCID: PMC7193950 DOI: 10.1016/j.ejphar.2018.08.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023]
Abstract
SsnB previously showed a promising role to lessen liver inflammation observed in a mouse model of NAFLD. Since NAFLD can progress to fibrosis, studies were designed to unravel its role in attenuating NAFLD associated fibrosis. Using both in vivo and in vitro approaches, the study probed the possible mechanisms that underlined the role of SsnB in mitigating fibrosis. Mechanistically, SsnB, a TLR4 antagonist, decreased TLR4-PI3k akt signaling by upregulating PTEN protein expression. It also decreased MDM2 protein activation and increased p53 and p21 gene and protein expression. SsnB also downregulated pro-fibrogenic hedgehog signaling pathway, inhibited hepatic stellate cell proliferation and induced apoptosis in hepatic stellate cells, a mechanism that was LPS dependent. Further, SsnB decreased fibrosis by antagonizing TLR4 induced TGFβ signaling pathway. Alternatively, SsnB augmented BAMBI (a TGFβ pseudo-receptor) expression in mice liver by inhibiting TLR4 signaling pathway and thus reduced TGFβ signaling, resulting in decreased hepatic stellate cell activation and extracellular matrix deposition. In vitro experiments on human hepatic stellate cell line showed that SsnB increased gene and protein expression of BAMBI. It also decreased nuclear co-localization of phospho SMAD2/3 and SMAD4 protein and thus attenuated TGFβ signaling in vitro. We also observed a significant decrease in phosphorylation of SMAD2/3 protein, decreased STAT3 activation, alteration of focal adhesion protein and stress fiber disassembly upon SsnB administration in hepatic stellate cells which further confirmed the antagonistic effect of SsnB on TLR4-induced fibrogenesis.
Collapse
Affiliation(s)
- Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Sutapa Sarkar
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Diana Kimono
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Muayad Albadrani
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Firas Al Hasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Udai P. Singh
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, USC, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham 27707, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
17
|
Nath A, Molnár MA, Csighy A, Kőszegi K, Galambos I, Huszár KP, Koris A, Vatai G. Biological Activities of Lactose-Based Prebiotics and Symbiosis with Probiotics on Controlling Osteoporosis, Blood-Lipid and Glucose Levels. ACTA ACUST UNITED AC 2018; 54:medicina54060098. [PMID: 30513975 PMCID: PMC6306850 DOI: 10.3390/medicina54060098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
Lactose-based prebiotics are synthesized by enzymatic- or microbial- biotransformation of lactose and have unique functional values. In this comprehensive review article, the biochemical mechanisms of controlling osteoporosis, blood-lipid, and glucose levels by lactose-based prebiotics and symbiosis with probiotics are reported along with the results of clinical investigations. Interaction between lactose-based prebiotics and probiotics reduces osteoporosis by (a) transforming insoluble inorganic salts to soluble and increasing their absorption to gut wall; (b) maintaining and protecting mineral absorption surface in the intestine; (c) increasing the expression of calcium-binding proteins in the gut wall; (d) remodeling osteoclasts and osteoblasts formation; (e) releasing bone modulating factors; and (f) degrading mineral complexing phytic acid. Lactose-based prebiotics with probiotics control lipid level in the bloodstream and tissue by (a) suppressing the expressions of lipogenic- genes and enzymes; (b) oxidizing fatty acids in muscle, liver, and adipose tissue; (c) binding cholesterol with cell membrane of probiotics and subsequent assimilation by probiotics; (d) enzymatic-transformations of bile acids; and (e) converting cholesterol to coprostanol and its defecation. Symbiosis of lactose-based prebiotics with probiotics affect plasma glucose level by (a) increasing the synthesis of gut hormones plasma peptide-YY, glucagon-like peptide-1 and glucagon-like peptide-2 from entero-endocrine L-cells; (b) altering glucose assimilation and metabolism; (c) suppressing systematic inflammation; (d) reducing oxidative stress; and (e) producing amino acids. Clinical investigations show that lactose-based prebiotic galacto-oligosaccharide improves mineral absorption and reduces hyperlipidemia. Another lactose-based prebiotic, lactulose, improves mineral absorption, and reduces hyperlipidemia and hyperglycemia. It is expected that this review article will be of benefit to food technologists and medical practitioners.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Attila Csighy
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Kornélia Kőszegi
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Üllő út., H-3 Nagykanizsa, Hungary.
| | - Klára Pásztorné Huszár
- Department of Refrigeration and Livestock Product Technology, Faculty of Food Science, Szent István University, Ménesi st 43⁻45, HU-1118 Budapest, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, HU-1118 Budapest, Hungary.
| |
Collapse
|
18
|
Ludwig JM, Zhang Y, Chamulitrat W, Stremmel W, Pathil A. Anti-inflammatory properties of ursodeoxycholyl lysophosphatidylethanolamide in endotoxin-mediated inflammatory liver injury. PLoS One 2018; 13:e0197836. [PMID: 29795632 PMCID: PMC5967712 DOI: 10.1371/journal.pone.0197836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 01/04/2023] Open
Abstract
AIM Endotoxin-mediated liver inflammation is a key component of many acute and chronic liver diseases contributing to liver damage, fibrosis and eventually organ failure. Here, we investigated ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE), a synthetic bile acid-phospholipid conjugate regarding its anti-inflammatory and anti-fibrogenic properties. METHODS Anti-inflammatory properties of UDCA-LPE were evaluated in a mouse model of D-galactosamine/lipopolysaccharide (GalN/LPS)-induced acute liver injury, LPS treated RAW264.7 macrophages and murine primary Kupffer cells. Furthermore, anti-inflammatory and anti-fibrotic effects of UDCA-LPE were studied on primary hepatic stellate cells (HSC) incubated with supernatant from LPS±UDCA-LPE treated RAW264.7 cells. RESULTS UDCA-LPE ameliorated LPS-induced increase of IL-6, TNF-α, TGF-β, NOX-2 in the GalN/LPS model by up to 80.2% for IL-6. Similarly, UDCA-LPE markedly decreased the expression of inflammatory cytokines IL-6, TNF-α and TGF-β as well as the chemokines MCP1 and RANTES in LPS-stimulated RAW 264.7 cells. Anti-inflammatory effects were also observed in primary murine Kupffer cells. Mechanistic evaluation revealed a reversion of LPS-activated pro-inflammatory TLR4 pathway by UDCA-LPE. Moreover, UDCA-LPE inhibited iNOS and NOX-2 expression while activating eNOS via phosphorylation of AKT and pERK1/2 in RAW264.7 cells. HSC treated with conditioned medium from LPS±UDCA-LPE RAW264.7 cells showed lower fibrogenic activation due to less SMAD2/3 phosphorylation, reduced expression of profibrogenic CTGF and reduced pro-inflammatory chemokine expression. CONCLUSION In the setting of endotoxin-mediated liver inflammation, UDCA-LPE exerts profound anti-inflammatory and anti-fibrotic effect implying a promising potential for the drug candidate as an experimental approach for the treatment of acute and chronic liver diseases.
Collapse
Affiliation(s)
- Johannes Maximilian Ludwig
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Yuling Zhang
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
| | - Anita Pathil
- Department of Internal Medicine IV, Gastroenterology and Hepatology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
19
|
Vasseur P, Dion S, Filliol A, Genet V, Lucas-Clerc C, Jean-Philippe G, Silvain C, Lecron JC, Piquet-Pellorce C, Samson M. Endogenous IL-33 has no effect on the progression of fibrosis during experimental steatohepatitis. Oncotarget 2018; 8:48563-48574. [PMID: 28611297 PMCID: PMC5564708 DOI: 10.18632/oncotarget.18335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/15/2017] [Indexed: 01/01/2023] Open
Abstract
Interleukin (IL)-33 has been recently reported to be strongly pro-fibrogenic in various models of liver disease. Our aim was to study the role of endogenous IL-33 in a diet-induced model of steatohepatitis. IL-33 deficient mice and wild type (WT) littermates received a high-fat diet (HFD), or a standard diet for 12 weeks. The HFD-induced steatohepatitis was associated with an upregulation of IL-33 transcripts and protein. An insulin tolerance test revealed lower systemic insulin sensitivity in IL-33-/—HFD mice than in WT-HFD mice. Nevertheless, IL-33 deficiency did not affect the severity of liver inflammation by histological and transcriptomic analyses, nor the quantity of liver fibrosis. Livers from HFD mice had more myeloid populations, markedly fewer NKT cells and higher proportion of ST2+ Treg cells and ST2+ type 2 innate lymphoid cells (ILC2), all unaffected by IL-33 deficiency. In conclusion, deficiency of endogenous IL-33 does not affect the evolution of experimental diet-induced steatohepatitis towards liver fibrosis.
Collapse
Affiliation(s)
- Philippe Vasseur
- Service d'Hépato-Gastroentérologie, Centre Hospitalier Nord Deux-Sèvres, Thouars, France.,Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France
| | - Sarah Dion
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Aveline Filliol
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Valentine Genet
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Catherine Lucas-Clerc
- Service de Biochimie, Centre Hospitalier Universitaire, Rennes, Université de Rennes, Rennes, France
| | - Girard Jean-Philippe
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Université de Toulouse, Toulouse, France
| | - Christine Silvain
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines, Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Claire Piquet-Pellorce
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale, Institut de Recherche Santé Environnement & Travail, Université de Rennes, Rennes, France
| |
Collapse
|
20
|
Nath A, Haktanirlar G, Varga Á, Molnár MA, Albert K, Galambos I, Koris A, Vatai G. Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. ACTA ACUST UNITED AC 2018; 54:medicina54020018. [PMID: 30344249 PMCID: PMC6037253 DOI: 10.3390/medicina54020018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as ‘safe’ by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler’s diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn’s disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.
Collapse
Affiliation(s)
- Arijit Nath
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - Gokce Haktanirlar
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Áron Varga
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Máté András Molnár
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Krisztina Albert
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Ildikó Galambos
- Soós Ernő Water Technology Research Centre, Faculty of Engineering, University of Pannonia, Zrínyi M. u. 18, H-8800 Nagykanizsa, Hungary.
| | - András Koris
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| | - Gyula Vatai
- Department of Food Engineering, Faculty of Food Science, Szent István University, Ménesi st 44, H-1118 Budapest, Hungary.
| |
Collapse
|
21
|
Vasseur P, Pohin M, Jégou J, Favot L, Venisse N, Mcheik J, Morel F, Lecron J, Silvain C. Liver fibrosis is associated with cutaneous inflammation in the imiquimod-induced murine model of psoriasiform dermatitis. Br J Dermatol 2018; 179:101-109. [DOI: 10.1111/bjd.16137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/11/2022]
Affiliation(s)
- P. Vasseur
- Nord Deux-Sèvres Hospital; Thouars France
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
| | - M. Pohin
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
| | - J.F. Jégou
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
| | - L. Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
| | - N. Venisse
- University Hospital of Poitiers; Poitiers France
- INSERM; CIC1402; Poitiers France
| | - J. Mcheik
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
- University Hospital of Poitiers; Poitiers France
| | - F. Morel
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
| | - J.C. Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
- University Hospital of Poitiers; Poitiers France
| | - C. Silvain
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331; University of Poitiers; Poitiers France
- University Hospital of Poitiers; Poitiers France
| |
Collapse
|
22
|
Huang Q, Huang M, Meng F, Sun R. Activated pancreatic stellate cells inhibit NK cell function in the human pancreatic cancer microenvironment. Cell Mol Immunol 2018; 16:87-89. [PMID: 29628497 DOI: 10.1038/s41423-018-0014-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qiang Huang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
| | - Mei Huang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Futao Meng
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology, School of Life Science and Medical Center, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
23
|
Oorts M, Keemink J, Deferm N, Adriaensen R, Richert L, Augustijns P, Annaert P. Extra collagen overlay prolongs the differentiated phenotype in sandwich-cultured rat hepatocytes. J Pharmacol Toxicol Methods 2018; 90:31-38. [DOI: 10.1016/j.vascn.2017.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/16/2017] [Accepted: 10/20/2017] [Indexed: 02/03/2023]
|
24
|
Exemestane Attenuates Hepatic Fibrosis in Rats by Inhibiting Activation of Hepatic Stellate Cells and Promoting the Secretion of Interleukin 10. J Immunol Res 2017; 2017:3072745. [PMID: 29464186 PMCID: PMC5804406 DOI: 10.1155/2017/3072745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
Exemestane (EXE) is an irreversible steroidal aromatase inhibitor mainly used as an adjuvant endocrine therapy for postmenopausal women suffering from breast cancer. Besides inhibiting aromatase activity, EXE has multiple biological functions, such as antiproliferation, anti-inflammatory, and antioxidant activities which are all involved in hepatic fibrosis. Therefore, we investigated the role of EXE during the progress of hepatic fibrosis. The effect of EXE on liver injury and fibrosis were assessed in two hepatic fibrosis rat models, which were induced by either carbon tetrachloride (CCl4) or bile duct ligation (BDL). The influence of EXE treatment on activation and proliferation of primary rat hepatic stellate cells (HSCs) was observed in vitro. The results showed that EXE attenuated the liver fibrosis by decreasing the collagen deposition and α-SMA expression in vivo and inhibited the activation and proliferation of primary rat HSCs in vitro. Additionally, EXE promoted the secretion of antifibrotic and anti-inflammatory cytokine IL-10 in vivo and in HSC-T6 culture media. In conclusion, our findings reveal a new function of EXE on hepatic fibrosis and prompted its latent application in liver fibrotic-related disease.
Collapse
|
25
|
Chung HK, Kim JT, Kim HW, Kwon M, Kim SY, Shong M, Kim KS, Yi HS. GDF15 deficiency exacerbates chronic alcohol- and carbon tetrachloride-induced liver injury. Sci Rep 2017; 7:17238. [PMID: 29222479 PMCID: PMC5722931 DOI: 10.1038/s41598-017-17574-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 15 (GDF15) has recently been shown to have an important role in the regulation of mitochondrial function and in the pathogenesis of complex human diseases. Nevertheless, the role of GDF15 in alcohol-induced or fibrotic liver diseases has yet to be determined. In this study, we demonstrate that alcohol- or carbon tetrachloride (CCl4)-mediated hepatic GDF15 production ameliorates liver inflammation and fibrosis. Alcohol directly enhanced GDF15 expression in primary hepatocytes, which led to increased oxygen consumption. Moreover, GDF15 reduced the expression of pro-inflammatory cytokines in liver-resident macrophages, leading to an improvement in inflammation and fibrosis in the liver. GDF15 knockout (KO) mice had more TNF-α-producing T cells and more activated CD4+ and CD8+ T cells in the liver than wild-type mice. Liver-infiltrating monocytes and neutrophils were also increased in the GDF15 KO mice during liver fibrogenesis. These changes in hepatic immune cells were associated with increased tissue inflammation and fibrosis. Finally, recombinant GDF15 decreased the expression of pro-inflammatory cytokines and fibrotic mediators and prevented the activation of T cells in the livers of mice with CCl4-induced liver fibrosis. These results suggest that GDF15 could be a potential therapeutic target for the treatment of alcohol-induced and fibrotic liver diseases.
Collapse
Affiliation(s)
- Hyo Kyun Chung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Research Institute for Medical Sciences, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Hyeon-Woo Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Minjoo Kwon
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary program, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea.,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea
| | - Koon Soon Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University School of Medicine, 266 Munhwaro, Daejeon, 35015, Republic of Korea.
| | - Hyon-Seung Yi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, 282 Munhwaro, Daejeon, 35015, Republic of Korea. .,Department of Internal Medicine, Chungnam National University Hospital, 282 Munhwaro, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
26
|
Laufer N, Ojeda D, Polo ML, Martinez A, Pérez H, Turk G, Cahn P, Zwirner NW, Quarleri J. CD4 + T cells and natural killer cells: Biomarkers for hepatic fibrosis in human immunodeficiency virus/hepatitis C virus-coinfected patients. World J Hepatol 2017; 9:1073-1080. [PMID: 28951779 PMCID: PMC5596314 DOI: 10.4254/wjh.v9.i25.1073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize peripheral blood natural killer (NK) cells phenotypes by flow cytometry as potential biomarker of liver fibrosis in human immunodeficiency virus (HIV)/hepatitis C virus (HCV) coinfected patients. METHODS Peripheral mononuclear cells from 24 HIV/HCV (HBV negative) coinfected and 5 HIV/HCV/HBV seronegative individuals were evaluated. HIV/HCV coinfected patients were divided in to groups: G1, patients with METAVIR F0-F2 and G2, patients with METAVIR F3-F4. NK surface cell staining was performed with: Anti-CD3(APC/Cy7), anti-CD56(PE/Cy5), anti-CD57(APC), anti-CD25(PE), anti-CD69(FITC), anti-NKp30(PE), anti-NKp46(PE/Cy7), anti-NKG2D(APC), anti-DNAM(FITC); anti-CD62L (PE/Cy7), anti-CCR7(PE), anti-TRAIL(PE), anti-FasL(PE), anti CD94(FITC). Flow cytometry data acquisition was performed on BD FACSCanto, analyzed using FlowJo software. Frequency of fluorescence was analyzed for all single markers. Clinical records were reviewed, and epidemiological and clinical data were obtained. RESULTS Samples from 11 patients were included in G1 and from 13 in G2. All patients were on ARV, with undetectable HIV viral load. Liver fibrosis was evaluated by transient elastography in 90% of the patients and with biopsy in 10% of the patients. Mean HCV viral load was (6.18 ± 0.7 log10). Even though, no major significant differences were observed between G1 and G2 regarding NK surface markers, it was found that patients with higher liver fibrosis presented statistically lower percentage of NK cells than individual with low to mild fibrosis and healthy controls (G2: 5.4% ± 2.3%, G1: 12.6% ± 8.2%, P = 0.002 and healthy controls 12.2% ± 2.7%, P = 0.008). It was also found that individuals with higher liver fibrosis presented lower CD4 LT count than those from G1 (G2: 521 ± 312 cells/μL, G1: 770 ± 205 cells/μL; P = 0.035). CONCLUSION Higher levels of liver fibrosis were associated with lower percentage of NK cells and LTCD4+ count; and they may serve as noninvasive biomarkers of liver damage.
Collapse
Affiliation(s)
- Natalia Laufer
- Investigador Asistente - CONICET, Instituto Investigaciones Biomédicas en Retrovirus y SIDA INBIRS, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto INBIRS, UBA-CONICET, Buenos Aires C1121ABG, Argentina
- Hospital Juan A Fernández, Buenos Aires C1121ABG, Argentina.
| | - Diego Ojeda
- Instituto INBIRS, UBA-CONICET, Buenos Aires C1121ABG, Argentina
| | | | - Ana Martinez
- Hospital Juan A Fernández, Buenos Aires C1121ABG, Argentina
| | - Héctor Pérez
- Hospital Juan A Fernández, Buenos Aires C1121ABG, Argentina
| | - Gabriela Turk
- Instituto INBIRS, UBA-CONICET, Buenos Aires C1121ABG, Argentina
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires C1121ABG, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad, Innata Instituto de Biología y Medicina Experimental, Buenos Aires C1121ABG, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Jorge Quarleri
- Instituto INBIRS, UBA-CONICET, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
27
|
Hepatic Immune Microenvironment in Alcoholic and Nonalcoholic Liver Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6862439. [PMID: 28852648 PMCID: PMC5567444 DOI: 10.1155/2017/6862439] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023]
Abstract
Many types of innate (natural killer cells, natural killer T cells, and Kupffer cells/macrophages) and adaptive (T cells and B cells) immune cells are enriched within the liver and function in liver physiology and pathology. Liver pathology is generally induced by two types of immunologic insults: failure to eliminate antigens derived from the gastrointestinal tract which are important for host defense and an impaired tissue protective tolerance mechanism that helps reduce the negative outcomes of immunopathology. Accumulating evidence from the last several decades suggests that hepatic immune cells play an important role in the pathogenesis of alcoholic and nonalcoholic liver injury and inflammation in humans and mice. Here, we focus on the roles of innate and adaptive immune cells in the development and maintenance of alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Additionally, the pathogenesis of liver disease and new therapeutic targets for preventing and treating alcoholic liver disease and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis are discussed.
Collapse
|
28
|
Bekki Y, Yoshizumi T, Shimoda S, Itoh S, Harimoto N, Ikegami T, Kuno A, Narimatsu H, Shirabe K, Maehara Y. Hepatic stellate cells secreting WFA + -M2BP: Its role in biological interactions with Kupffer cells. J Gastroenterol Hepatol 2017; 32:1387-1393. [PMID: 28008658 DOI: 10.1111/jgh.13708] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/22/2016] [Accepted: 12/11/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Hepatic stellate cells (HSCs) play a central role in hepatic fibrosis and are regulated by Kupffer cells (KCs). Wisteria floribunda agglutinin-positive Mac-2 binding protein (WFA+ -M2BP) was recently identified as a serum marker for hepatic fibrosis. Although WFA+ -M2BP was identified as a ligand of Mac-2, the function of WFA+ -M2BP in hepatic fibrosis remains unclear. METHODS Liver specimens were obtained from five patients with cirrhosis, five with chronic hepatitis, and five without hepatic fibrosis. WFA+ -M2BP kinetics were evaluated histologically and in subpopulations of liver cells such as HSCs, KCs, endothelial cells, biliary epithelial cells, and hepatocytes in in vitro culture. The function of WFA+ -M2BP in activated HSCs was evaluated using immunoblot analysis. RESULTS Numbers of WFA+ -M2BP-positive cells in liver tissues increased with fibrosis stage. There were significant differences in WFA+ -M2BP levels between fibrosis stages F0 and F1-2 (P = 0.012) and between fibrosis stages F1-2 and F3-4 (P < 0.001). HSCs were the source of WFA+ -M2BP secretion in in vitro cultures of liver cells, as determined by sandwich immunoassay. Cells of the human HSC line LX-2 also secreted WFA+ -M2BP. Histologically, tissue sections showed that WFA+ -M2BP was located in Mac-2-expressing KCs. In vitro assays showed that exogenous WFA+ -M2BP stimulation enhanced Mac-2 expression in KCs and that HSCs co-cultured with KCs increased α-smooth muscle actin expression. Finally, Mac-2-depleted KCs with short interfering RNA had reduced α-smooth muscle actin expression following co-culturing with HSCs. CONCLUSIONS WFA+ -M2BP from HSCs induces Mac-2 expression in KCs, which in turn activates HSCs to be fibrogenic.
Collapse
Affiliation(s)
- Yuki Bekki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinji Shimoda
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Atsushi Kuno
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience (RCMG), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University, Maebashi, Gunma, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
29
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
30
|
Lee JW, Kim YI, Kim Y, Choi M, Min S, Joo YH, Yim SV, Chung N. Grape seed proanthocyanidin inhibits inflammatory responses in hepatic stellate cells by modulating the MAPK, Akt and NF-κB signaling pathways. Int J Mol Med 2017; 40:226-234. [PMID: 28534957 DOI: 10.3892/ijmm.2017.2997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/10/2017] [Indexed: 11/06/2022] Open
Abstract
In the present study, we aimed to investigate the molecular mechanisms and prophylactic effects of grape seed proanthocyanidin (GSP) on lipopolysaccharide (LPS)-stimulated human hepatic stellate cells (HSCs). Cell counting and MTT assays were used to assess cell viability in the absence or presence of GSP. Reverse transcription-quantitative PCR (RT-qPCR) was performed for several inflammation-related genes (NOD1, NOD2, TLR2, TLR4, IL-1 β, IL-6, IL-8, iNOS and COX-2). The expression of anti-inflammatory cell signaling molecules, including c-Jun N-terminal kinase (JNK), p38, extracellular signal regulated kinase (ERK), Akt, nuclear factor-κB (NF-κB), inhibitory-κBα (IκBα), iNOS and COX-2, was evaluated by western blot analysis. Finally, IL-8 levels in the culture supernatant of HSCs were measured by ELISA. Pretreatment with GSP before LPS treatment significantly suppressed the mRNA expression of pro-inflammatory cytokines such as IL-1β, IL-6 and IL-8. GSP inhibited mRNA expression of LPS-induced TLR4, NOD2 and COX-2, in addition to inhibiting the expression of iNOS. GSP also inhibited LPS-induced NF-κB activation and IκBα phosphorylation. Concomitantly, GSP dose-dependently suppressed the activation of MAP kinases (JNK, ERK and p38) and Akt in LPS-stimulated HSCs. These data suggest that GSP inhibits inflammatory responses in HSCs by inactivating the NF-κB signaling pathway via MAP kinases. Thus, GSP may be considered as a novel drug for the treatment of hepatic inflammation, infectious diseases and fibrosis.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Youngchul Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Choi
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Min
- Department of Nephrology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hoon Joo
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Vin Yim
- Department of Clinical Pharmacology, College of Medical Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Namhyun Chung
- Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
31
|
Giles DA, Moreno-Fernandez ME, Divanovic S. IL-17 Axis Driven Inflammation in Non-Alcoholic Fatty Liver Disease Progression. Curr Drug Targets 2016; 16:1315-23. [PMID: 26028039 DOI: 10.2174/1389450116666150531153627] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/25/2015] [Indexed: 02/08/2023]
Abstract
Obesity is a primary risk factor for the development of non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common chronic liver disease in the world, represents a spectrum of disorders that range from steatosis (NAFL) to steatohepatitis (NASH) to cirrhosis. It is anticipated that NAFLD will soon surpass chronic hepatitis C infection as the leading cause for needing liver transplantation. Despite its clinical and public health significance no specific therapies are available. Although the etiology of NAFLD is multifactorial and remains largely enigmatic, it is well accepted that inflammation is a central component of NAFLD pathogenesis. Despite the significance, critical immune mediators, loci of immune activation, the immune signaling pathways and the mechanism(s) underlying disease progression remain incompletely understood. Recent findings have focused on the role of Interleukin 17 (IL-17) family of proinflammatory cytokines in obesity and pathogenesis of obesity-associated sequelae. Notably, obesity favors a Th17 bias and is associated with increased IL-17A expression in both humans and mice. Further, in mice, IL-17 axis has been implicated in regulation of both obesity and NAFLD pathogenesis. However, despite these recent advances several important questions require further evaluation including: the relevant cellular source of IL-17A production; the critical IL- 17RA-expressing cell type; the critical liver infiltrating immune cells; and the underlying cellular effector mechanisms. Addressing these questions may aid in the identification and development of novel therapeutic targets for prevention of inflammation- driven NAFLD progression.
Collapse
Affiliation(s)
| | | | - Senad Divanovic
- Division of Immunobiology Cincinnati Children's Hospital Medical Center TCHRF - Location S, Room #S.5.409 3333 Burnet Avenue Cincinnati, Ohio 45229-3039 U.S.A.
| |
Collapse
|
32
|
Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by γδ T cells in liver fibrosis. Hepatology 2016; 64:616-31. [PMID: 27178735 DOI: 10.1002/hep.28644] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 04/10/2016] [Accepted: 04/30/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED During liver injury, hepatocytes secrete exosomes that include diverse types of self-RNAs. Recently, self-noncoding RNA has been recognized as an activator of Toll-like receptor 3 (TLR3). However, the roles of hepatic exosomes and TLR3 in liver fibrosis are not yet fully understood. Following acute liver injury and early-stage liver fibrosis induced by a single or 2-week injection of carbon tetrachloride (CCl4 ), increased interleukin (IL)-17A production was detected primarily in hepatic γδ T cells in wild-type (WT) mice. However, liver fibrosis and IL-17A production by γδ T cells were both significantly attenuated in TLR3 knockout (KO) mice compared with WT mice. More interestingly, IL-17A-producing γδ T cells were in close contact with activated hepatic stellate cells (HSCs), suggesting a role for HSCs in IL-17A production by γδ T cells. In vitro treatments with exosomes derived from CCl4 -treated hepatocytes significantly increased the expression of IL-17A, IL-1β, and IL-23 in WT HSCs but not in TLR3 KO HSCs. Furthermore, IL-17A production by γδ T cells was substantially increased upon coculturing with exosome-treated WT HSCs or conditioned medium from TLR3-activated WT HSCs. However, similar increases were not detected when γδ T cells were cocultured with exosome-treated HSCs from IL-17A KO or TLR3 KO mice. Using reciprocal bone marrow transplantation between WT and TLR3 KO mice, we found that TLR3 deficiency in HSCs contributed to decreased IL-17A production by γδ T cells, as well as liver fibrosis. CONCLUSION In liver injury, the exosome-mediated activation of TLR3 in HSCs exacerbates liver fibrosis by enhancing IL-17A production by γδ T cells, which might be associated with HSC stimulation by unknown self-TLR3 ligands from damaged hepatocytes. Therefore, TLR3 might be a novel therapeutic target for liver fibrosis. (Hepatology 2016;64:616-631).
Collapse
Affiliation(s)
- Wonhyo Seo
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Hyuk Soo Eun
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - So Yeon Kim
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
| | - Hyon-Seung Yi
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seol-Hee Park
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
- Department of Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Mi-Jin Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eunjung Jo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Il Jeong
- Laboratory of Liver Research, Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, Republic of Korea
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Hepatic immunophenotyping for streptozotocin-induced hyperglycemia in mice. Sci Rep 2016; 6:30656. [PMID: 27464894 PMCID: PMC4964583 DOI: 10.1038/srep30656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/07/2016] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence revealed that diabetes induces abnormal immune responses that result in serious complications in organs. However, the effect of hyperglycemia on hepatic immunity remains obscure. We evaluated the population and function of hepatic immune cells in streptozotocin (STZ)-induced hyperglycemic mice. CC chemokine receptor 2 (CCR2)-knockout mice and mice with a depletion of regulatory T cells (DEREG) were used to investigate the migration and role of regulatory T cells (Tregs) in hyperglycemic mice. The inflammatory cytokines and hepatic transaminase levels were significantly increased in the hyperglycemic mice. The population and number of infiltrating monocytes, granulocytes, and Tregs were enhanced in the livers of the hyperglycemic mice. Hepatic monocytes other than macrophages showed the increased expression of inflammatory cytokines and chemokines in the hyperglycemic mice. The CCR2 knockout and DEREG chimeric mice exhibited increased populations of activated T cells and neutrophils compared to the WT chimeric mice, which promoted hepatic inflammation in the hyperglycemic mice. The migration of CCR2 knockout Tregs into the liver was significantly reduced compared to the WT Tregs. We demonstrated that hyperglycemia contributes to increase in infiltrating monocytes and Tregs, which are associated with hepatic immune dysfunction in mice. CCR2-mediated migration of Tregs regulates hyperglycemia-induced hepatic inflammation.
Collapse
|
34
|
Seo W, Jeong WI. Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease? World J Gastroenterol 2016; 22:1348-1356. [PMID: 26819504 PMCID: PMC4721970 DOI: 10.3748/wjg.v22.i4.1348] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/28/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol consumption is one of the most common causes of the progression of alcoholic liver disease (ALD). In the past, alcohol-mediated hepatocyte injury was assumed to be a significantly major cause of ALD. However, a huge number of recent and brilliant studies have demonstrated that hepatic non-parenchymal cells including Kupffer cells, hepatic stellate cells, liver sinusoidal endothelial cells and diverse types of lymphocytes play crucial roles in the pathogenesis of ALD by producing inflammatory mediators such as cytokines, oxidative stress, microRNA, and lipid-originated metabolites (retinoic acid and endocannabinoids) or by directly interacting with parenchymal cells (hepatocytes). Therefore, understanding the comprehensive roles of hepatic non-parenchymal cells during the development of ALD will provide new integrative directions for the treatment of ALD. This review will address the roles of non-parenchymal cells in alcoholic steatosis, inflammation, and liver fibrosis and might help us to discover possible therapeutic targets and treatments involving modulating the non-parenchymal cells in ALD.
Collapse
|
35
|
Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice. PLoS One 2015; 10:e0127946. [PMID: 26024318 PMCID: PMC4449184 DOI: 10.1371/journal.pone.0127946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3), a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs) and natural killer (NK) cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice. Methods Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4) or bile duct ligation (BDL) for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP)/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA). In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies. Results Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1), and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs. Conclusions Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.
Collapse
|
36
|
Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J Nutr Biochem 2015; 26:996-1006. [PMID: 26033743 DOI: 10.1016/j.jnutbio.2015.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) prevalence is increasing worldwide, with the affected US population estimated near 30%. Diet is a recognized risk factor in the NAFLD spectrum, which includes nonalcoholic steatohepatitis (NASH) and fibrosis. Low hepatic copper (Cu) was recently linked to clinical NAFLD/NASH severity. Simple sugar consumption including sucrose and fructose is implicated in NAFLD, while consumption of these macronutrients also decreases liver Cu levels. Though dietary sugar and low Cu are implicated in NAFLD, transcript-level responses that connect diet and pathology are not established. We have developed a mature rat model of NAFLD induced by dietary Cu deficiency, human-relevant high sucrose intake (30% w/w) or both factors in combination. Compared to the control diet with adequate Cu and 10% (w/w) sucrose, rats fed either high-sucrose or low-Cu diet had increased hepatic expression of genes involved in inflammation and fibrogenesis, including hepatic stellate cell activation, while the combination of diet factors also increased ATP citrate lyase and fatty acid synthase gene transcription (fold change > 2, P < 0.02). Low dietary Cu decreased hepatic and serum Cu (P ≤ 0.05), promoted lipid peroxidation and induced NAFLD-like histopathology, while the combined factors also induced fasting hepatic insulin resistance and liver damage. Neither low Cu nor 30% sucrose in the diet led to enhanced weight gain. Taken together, transcript profiles, histological and biochemical data indicate that low Cu and high sucrose promote hepatic gene expression and physiological responses associated with NAFLD and NASH, even in the absence of obesity or severe steatosis.
Collapse
|
37
|
Duval F, Moreno-Cuevas JE, González-Garza MT, Maldonado-Bernal C, Cruz-Vega DE. Liver fibrosis and mechanisms of the protective action of medicinal plants targeting inflammation and the immune response. Int J Inflam 2015; 2015:943497. [PMID: 25954568 PMCID: PMC4411506 DOI: 10.1155/2015/943497] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/29/2014] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a central feature of liver fibrosis as suggested by its role in the activation of hepatic stellate cells leading to extracellular matrix deposition. During liver injury, inflammatory cells are recruited in the injurious site through chemokines attraction. Thus, inflammation could be a target to reduce liver fibrosis. The pandemic trend of obesity, combined with the high incidence of alcohol intake and viral hepatitis infections, highlights the urgent need to find accessible antifibrotic therapies. Medicinal plants are achieving popularity as antifibrotic agents, supported by their safety, cost-effectiveness, and versatility. The aim of this review is to describe the role of inflammation and the immune response in the pathogenesis of liver fibrosis and detail the mechanisms of inhibition of both events by medicinal plants in order to reduce liver fibrosis.
Collapse
Affiliation(s)
- Florent Duval
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Jorge E. Moreno-Cuevas
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - María Teresa González-Garza
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Calle Dr. Márquez 162, 06720 Ciudad de México, DF, Mexico
| | - Delia Elva Cruz-Vega
- Catedra de Terapia Celular, Escuela de Medicina, Tecnológico de Monterrey, Avenida Morones Prieto 3000 Pte., 64710 Monterrey, NL, Mexico
| |
Collapse
|
38
|
Machado MV, Cortez-Pinto H. Non-alcoholic fatty liver disease: what the clinician needs to know. World J Gastroenterol 2014; 20:12956-80. [PMID: 25278691 PMCID: PMC4177476 DOI: 10.3748/wjg.v20.i36.12956] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 05/25/2014] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent cause of liver disease in the Western world. Furthermore, it is increasing worldwide, paralleling the obesity pandemic. Though highly frequent, only about one fifth of affected subjects are at risk of developing the progressive form of the disease, non-alcoholic steatohepatitis with fibrosis. Even in the latter, liver disease is slowly progressive, though, since it is so prevalent, it is already the third cause of liver transplantation in the United States, and it is predicted to get to the top of the ranking in few years. Of relevance, fatty liver is also associated with increased overall mortality and particularly increased cardiovascular mortality. The literature and amount of published papers on NAFLD is increasing as fast as its prevalence, which makes it difficult to keep updated in this topic. This review aims to summarize the latest knowledge on NAFLD, in order to help clinicians understanding its pathogenesis and advances on diagnosis and treatment.
Collapse
|
39
|
Elpek G&O. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20:7260-7276. [PMID: 24966597 PMCID: PMC4064072 DOI: 10.3748/wjg.v20.i23.7260] [Citation(s) in RCA: 285] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/08/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.
Collapse
|
40
|
Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol 2014; 96:382-92. [DOI: 10.1016/j.yexmp.2014.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
|
41
|
Sipeki N, Antal-Szalmas P, Lakatos PL, Papp M. Immune dysfunction in cirrhosis. World J Gastroenterol 2014; 20:2564-2577. [PMID: 24627592 PMCID: PMC3949265 DOI: 10.3748/wjg.v20.i10.2564] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/25/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality.
Collapse
|
42
|
Sun XF, Gu L, Deng WS, Xu Q. Impaired balance of T helper 17/T regulatory cells in carbon tetrachloride-induced liver fibrosis in mice. World J Gastroenterol 2014; 20:2062-2070. [PMID: 24616573 PMCID: PMC3934476 DOI: 10.3748/wjg.v20.i8.2062] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/01/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of T helper (Th) 17/T regulatory (Treg) cells on hepatic fibrosis in mice and its possible mechanism.
METHODS: Hepatic fibrosis was induced by intraperitoneal injection of carbon tetrachloride. Hepatic pathological changes were observed by hematoxylin and eosin staining; the protein levels of interleukin (IL)-6, transforming growth factor (TGF)-β and α-smooth muscle actin (SMA) in liver tissue were determined by Western blotting; and the frequency of Th17 and Treg cells in the liver was estimated by flow cytometry. In addition, hepatic stellate cells were isolated from healthy mouse liver and co-cultured with Th17 or Treg cells. Immunofluorescence staining and Western blotting were performed to determine the change in HSC activation.
RESULTS: In the model group, there were different degrees of fibroplasia, degeneration and necrosis. The protein levels of IL-6, TGF-β and α-SMA in liver tissue were significantly higher than those in the control group at 12 wk (P < 0.05). Compared with the control group, the frequency of Th17 cells in the model group was increased but the frequency of Treg cells decreased gradually. Furthermore, at 4, 8 and 12 wk, there were significant differences in the number of Th17 cells (0.52% ± 0.16%, 1.46% ± 0.24%, and 2.60% ± 0.41%, respectively, P < 0.05) and Treg cells (2.99% ± 0.40%, 2.16% ± 0.50%, and 1.49% ± 0.34%, respectively, P < 0.05). In vitro, Th17 cells promoted, whereas Treg cells inhibited the expression of α-SMA, both in a dose-dependent manner, compared with the control group.
CONCLUSION: Th17/Treg imbalance exists in mice with liver fibrosis, which potentially promotes liver fibrosis via HSC activation.
Collapse
|