1
|
He S, Xue T, Geng R, Wang Q, Wang B, Wen L, Li M, Hu J, Yang J. Mapping the evolution of anti-diabetic polysaccharides research: Trends, collaborations, and emerging frontiers. Eur J Pharmacol 2025; 997:177479. [PMID: 40054717 DOI: 10.1016/j.ejphar.2025.177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
Diabetes Mellitus, characterized by insufficient insulin secretion, pancreatic beta cell damage, or insulin resistance, is the third most prevalent chronic metabolic disease worldwide. Polysaccharides, biocompatible natural macromolecules, have garnered significant attention for their potential in modulating diabetes through various mechanisms. Despite extensive studies, a comprehensive and impartial evaluation of anti-diabetic polysaccharides (ATDPs) research is still lacking. This study employs bibliometric and knowledge mapping techniques to analyze research trends and developments concerning ATDPs. A total of 3435 publications from 2001 to 2024 were examined, revealing a marked increase in publication volume and citation frequency, particularly since 2016. Network analysis indicates China as the leading contributor, with the highest number of publications and prominent institutions. The International Journal of Biological Macromolecules is identified as the most prolific journal in this field. Shaoping Nie stands out as a leading researcher with the highest citation frequency and h-index. Current research trends focus on the role of polysaccharides in regulating oxidative stress and inflammation, modulation of gut microbiota, and their structural characterization. Emerging studies investigate how these polysaccharides impact gut microbiota composition, enhance intestinal barrier functions, and modulate immune responses, representing cutting-edge areas in diabetes research. This research pioneers the use of bibliometric analysis to map ATDPs research trajectories, offering valuable insights into prevailing trends, emerging topics, and opportunities for future research and collaboration.
Collapse
Affiliation(s)
- Shengqi He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Ruoyu Geng
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Qianqian Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Baojuan Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Mingjie Li
- People's Hospital of Shaya, Akesu, 842200, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, 830054, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
2
|
Dong L, Tang Y, Wen S, He Y, Li F, Deng Y, Tao Z. Fecal Microbiota Transplantation Alleviates Allergic Rhinitis via CD4 + T Cell Modulation Through Gut Microbiota Restoration. Inflammation 2024; 47:1278-1297. [PMID: 38294580 DOI: 10.1007/s10753-024-01975-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Allergic rhinitis (AR) is an allergic condition of the upper respiratory tract with a complex pathogenesis, including epithelial barrier disruption, immune regulation, and gut microbiota, which is not yet fully understood. Gut microbiota is closely linked to allergic diseases, including AR. Fecal microbiota transplantation (FMT) has recently been recognized as a potentially effective therapy for allergic diseases. However, the efficacy and mechanism of action of FMT in AR remain unknown. Herein, we aimed to observe the implications of gut microbiota on epithelial barrier function and T cell homeostasis, as well as the effect of FMT in AR, using the ovalbumin (OVA)-induced AR mice. The intestinal microbiota of recipient mice was cleared using an antibiotic cocktail; thereafter, FMT was performed. Subsequently, the nasal symptom scores and histopathological features of colon and nasal mucosa tissues of mice were monitored, and serum OVA-sIgE and cytokines of IL-4, IFNγ, IL-17A, and IL-10 cytokine concentrations were examined. Thereafter, tight junction protein and CD4+ T cell-related transcription factor and cytokine expressions were observed in the colon and nasal mucosa, and changes in the expression of PI3K/AKT/mTOR and NFκB signaling pathway were detected by WB assay in each group. Fecal DNA was extracted from the four mice groups for high-throughput 16S rRNA sequencing. FMT ameliorated nasal symptoms and reduced nasal mucosal inflammation in AR mice. Moreover, according to 16S rRNA sequencing, FMT restored the disordered gut microbiota in AR mice. Following FMT, ZO-1 and claudin-1 and Th1/Th2/Th17-related transcription factor and cytokine expressions were upregulated, whereas Treg cell-related Foxp3 and IL-10 expressions were downregulated. Mechanistic studies have revealed that FMT also inhibited PI3K/AKT/mTOR and NF-κB pathway protein phosphorylation in AR mouse tissues. FMT alleviates allergic inflammation in AR by repairing the epithelial barrier and modulating CD4+ T cell balance and exerts anti-inflammatory effects through the PI3K/AKT/mTOR and NF-κB signaling pathways. Moreover, gut microbiota disorders are involved in AR pathogenesis. Disturbed gut microbiota causes an altered immune-inflammatory state in mice and increases susceptibility to AR. This study suggested the regulatory role of the gut-nose axis in the pathogenesis of AR is an emerging field, which provides novel directions and ideas for the treatment of AR.
Collapse
Affiliation(s)
- Lin Dong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yulei Tang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan He
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yuqin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
- Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
3
|
Verde L, Frias-Toral E, Cacciapuoti S, Simancas-Racines D, Megna M, Caiazzo G, Potestio L, Maisto M, Tenore GC, Colao A, Savastano S, Muscogiuri G, Barrea L. Very low-calorie ketogenic diet (VLCKD): a therapeutic nutritional tool for acne? J Transl Med 2024; 22:322. [PMID: 38556870 PMCID: PMC10983624 DOI: 10.1186/s12967-024-05119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Acne, a chronic inflammatory disease impacting the pilosebaceous unit, is influenced significantly by inflammation and oxidative stress, and is commonly associated with obesity. Similarly, obesity is also associated with increased inflammation and oxidation. The role of diet in acne remains inconclusive, but the very low-calorie ketogenic diet (VLCKD), known for weight loss and generating anti-inflammatory ketone bodies, presents promising potential. Despite this, the effects of VLCKD on acne remain underexplored. This study aimed to investigate the efficacy of a 45-day active phase of VLCKD in reducing the clinical severity of acne in young women with treatment-naïve moderate acne and grade I obesity. METHODS Thirty-one women with treatment-naïve moderate acne, grade I obesity (BMI 30.03-34.65 kg/m2), aged 18-30 years, meeting inclusion/exclusion criteria, and consenting to adhere to VLCKD were recruited. Baseline and post-intervention assessments included anthropometric measurements, body composition, phase angle (PhA), trimethylamine N-oxide (TMAO) levels, and reactive oxygen metabolite derivatives (dROMs) as markers of inflammation, dysbiosis, and oxidative stress, respectively. A comprehensive dermatological examination, incorporating the Global Acne Grading System (GAGS) and the Dermatology Life Quality Index (DLQI), was conducted for all women. RESULTS VLCKD resulted in general improvements in anthropometric and body composition parameters. Significantly, there were significant reductions in both the GAGS score (Δ%: - 31.46 ± 9.53, p < 0.001) and the DLQI score (Δ%: - 45.44 ± 24.02, p < 0.001) after the intervention. These improvements coincided with significant decreases in TMAO (p < 0.001) and dROMs (p < 0.001) levels and a significant increase in PhA (Δ%: + 8.60 ± 7.40, p < 0.001). Changes in the GAGS score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjusting for Δ% FM. Changes in the DLQI score positively correlated with changes in dROMs (p < 0.001) and negatively with PhA (p < 0.001) even after adjustment for Δ% FM. CONCLUSION Given the side effects of drugs used for acne, there is an increasing need for safe, tolerable, and low-cost treatments that can be used for acne disease. The 45-day active phase of VLCKD demonstrated notable improvements in acne severity, and these improvements seemed to be attributable to the known antioxidant and anti-inflammatory effects of VLCKD.
Collapse
Affiliation(s)
- Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo, Samborondón, 0901952, Ecuador
| | - Sara Cacciapuoti
- Section of Dermatology-Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Daniel Simancas-Racines
- Centro de Investigación en Salud Pública y Epidemiología Clínica (CISPEC), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, 170129, Ecuador.
| | - Matteo Megna
- Section of Dermatology-Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppina Caiazzo
- Dipartimento di Scienze Biomediche avanzate, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Luca Potestio
- Section of Dermatology-Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Maria Maisto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Silvia Savastano
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Cattedra Unesco "Educazione Alla Salute E Allo Sviluppo Sostenibile", University Federico II, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Dipartimento di Benessere, Nutrizione e Sport, Università Telematica Pegaso, Centro Direzionale, Via Porzio, Isola F2, 80143, Naples, Italy
| |
Collapse
|
4
|
Histopathological and ultra-structural investigation of the damaging effects of hypoinsulinemia, hyper glycaemia and oxidative stress caused by parenteral nutrition combined with fasting on the small intestine of rabbits. Arab J Gastroenterol 2023:S1687-1979(23)00012-6. [PMID: 36890026 DOI: 10.1016/j.ajg.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/27/2022] [Accepted: 02/19/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND AND STUDY AIMS Parenteral nutrition (PN) is a life-saving practice when the use of the gastrointestinal tract is not appropriate. Despite its great benefits, however, PN may cause several complications. In this study, we conducted histopathological and ultra-structural examinations of the effect of PN combined with starvation on the small intestines of rabbits. MATERIALS AND METHODS Rabbits were divided into four groups. A fasting + PN group was left completely unfed and received all its daily required energy by PN through an intravenous central catheter. An oral feeding + PN group received half the necessary daily calories by oral feeding and the other half through PN. A semi-starvation group received only half the necessary daily calories by oral feeding and no PN. The fourth group, serving as a control, was supplied with its entire daily energy requirements through oral feeding. After 10 days, the rabbits were euthanized. Blood and small intestine tissue samples were collected from all groups. Blood samples were biochemically analysed, and tissue samples were examined by light and transmission electron microscopy. RESULTS The fasting + PN group exhibited lower insulin levels, higher glucose levels, and increased systemic oxidative stress than the other groups. Ultra-structural and histopathological examinations revealed a significant increase in apoptotic activity in this group's small intestines and a significant decrease in villus length and crypt depth. Severe damage to the intracellular organelles and nuclei of enterocytes was also observed. CONCLUSION PN combined with starvation appears to cause apoptosis in the small intestine due to oxidative stress and hyperglycaemia with hypoinsulinemia, with destructive effects on small intestine tissue. Adding enteral nutrition to PN may reduce these destructive effects.
Collapse
|
5
|
Nutritional Support in Children Meeting the At-Risk for Pediatric Acute Respiratory Distress Syndrome Criteria. Crit Care Explor 2023; 5:e0856. [PMID: 36760816 PMCID: PMC9901991 DOI: 10.1097/cce.0000000000000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a prevalent condition in the PICU with a high morbidity and mortality, but effective preventative strategies are lacking. OBJECTIVES To examine associations between early enteral nutrition (EN) and PICU outcomes in a cohort of children meeting the 2015 Pediatric Acute Lung Injury Consensus Conference "at-risk" for pediatric acute respiratory distress syndrome (ARF-PARDS) criteria. DESIGN SETTING AND PARTICIPANTS This was a single-center, electronic health record-based retrospective chart review. We included children less than or equal to 18 years-old admitted to our mixed medical-surgical PICU from January 2017 to December 2018 who met ARF-PARDS criteria within 48 hours of admission. Children were categorized as receiving "early" EN if feeds were initiated within 48 hours of admission. All others were categorized as "delayed" EN. MAIN OUTCOMES AND MEASURES Extracted data included demographics, illness characteristics including primary diagnosis and Pediatric Risk of Mortality (PRISM) III score, respiratory support and oxygenation indices, nutritional data, and PICU length of stay (LOS). The primary outcome of interest was subsequent diagnosis of PARDS. RESULTS Of 201 included children, 152 (75.6%) received early EN. The most common admission diagnoses were pneumonia, bronchiolitis, and influenza. Overall, 21.4% (n = 43) of children developed PARDS. Children receiving early EN had a subsequent diagnosis of PARDS less often then children receiving delayed EN (15.1% vs 40.8%; p < 0.001), an association that persisted after adjusting for patient demographics and illness characteristics, including PRISM III and diagnosis (adjusted odds ratio, 0.24; 95% CI, 0.10-0.58; p = 0.002). Early EN was also associated with a shorter PICU LOS in univariate analysis (2.2 d [interquartile range, 1.5-3.4 d] vs 4.2 d [2.7-8.9 d]; p < 0.001). CONCLUSIONS AND RELEVANCE In this single-center, retrospective cohort study, compared with children with ARF-PARDS who received late EN, those who received early EN demonstrated a reduced odds of subsequent diagnosis of PARDS, and an unadjusted reduction in PICU LOS when compared with delayed EN. Prospective studies should be designed to confirm these findings.
Collapse
|
6
|
Wande DP, Qiu Y, Chen S, Yao L, Xu Y, Yao J, Xiong H. Modified chitosan nanogel-polymersomes for oral co-delivery of oxaliplatin and rapamycin for synergistic chemotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Leow EH, Wong JJM, Mok YH, Hornik CP, Ng YH, Lee JH. Fluid overload in children with pediatric acute respiratory distress syndrome: A retrospective cohort study. Pediatr Pulmonol 2022; 57:300-307. [PMID: 34633156 DOI: 10.1002/ppul.25720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To assess the association of cumulative fluid overload (FO) up to 14 days from the diagnosis of pediatric acute respiratory syndrome (PARDS) with pediatric intensive care unit (PICU) mortality, 28-day mechanical ventilation free days (VFD), and 28-day intensive care unit free days (IFD). We hypothesized that fluid overload, even beyond the acute period, would be associated with increased morbidity and mortality. METHODS We conducted a retrospective cohort study of PARDS patients admitted to PICU from 2009 to 2015. For repeated admissions, we considered the admission with the highest oxygenation index (OI). Daily FO (%) was calculated as (intake - output)/weight at PICU admission × 100. Peak cumulative FO (CFO) was the highest CFO from the diagnosis of PARDS to Day 14 or to PICU discharge or mortality, whichever was earliest. Rate to peak CFO was the peak CFO divided by the number of days to reach that highest CFO. The association of FO with mortality, VFD and IFD were analyzed with logistic and linear regression models, with the following covariates: Pediatric Index of Mortality 2 score, PARDS severity, and the presence of acute kidney injury (AKI). RESULTS There were 165 patients included in this study, with a mortality rate of 45.5% (75/165), median age 3.2 years (interquartile range [IQR] 0.7-9.9) and OI 15.8 (IQR 9.5-27.9). Seventy-three (44.2%) patients had severe PARDS and 64 (38.8%) had AKI. AKI (aOR [adjusted odds ratio] 3.19, 95% CI [confidence interval] 1.43-7.09, p = 0.004) and rate to peak cumulative FO (aOR 1.23, 95% CI 1.07-1.42, p = 0.004) were associated with mortality. AKI and peak cumulative FO were associated with decreased VFD and IFD. CONCLUSION The rate to peak CFO over the first 14 days of PARDS was associated with mortality and peak CFO was associated with decreased VFD and IFD.
Collapse
Affiliation(s)
- Esther H Leow
- Department of Paediatric Nephrology, KK Women's and Children's Hospital, Singapore
| | - Judith J-M Wong
- Department of Pediatric Subspecialties, Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Yee H Mok
- Department of Pediatric Subspecialties, Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore
| | - Christoph P Hornik
- Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA.,Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Yong H Ng
- Department of Paediatric Nephrology, KK Women's and Children's Hospital, Singapore
| | - Jan H Lee
- Department of Pediatric Subspecialties, Children's Intensive Care Unit, KK Women's and Children's Hospital, Singapore.,Duke-NUS Medical School, Singapore
| |
Collapse
|
9
|
Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. Int J Hypertens 2021; 2021:9877053. [PMID: 34888100 PMCID: PMC8651365 DOI: 10.1155/2021/9877053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia and sleep fragmentation are pathophysiological processes involved in obstructive sleep apnea (OSA) which affect gut microbiota, sleep architecture, and mTOR signaling pathway. However, the involvement of these elements in the pathogenesis mechanism of OSA-associated hypertension remains unclear. Therefore, this study investigated whether the OSA-associated hypertension mechanism is regulated by the gut microbiota and mTOR signaling pathway. Patients were diagnosed by polysomnography; their fecal samples were obtained and analyzed for their microbiome composition by 16S ribosomal RNA pyrosequencing and bioinformatics analysis. Transcript genes on fasting peripheral blood mononuclear cells (PBMCs) were examined using Illumina RNA-sequencing analysis. Totally, we enrolled 60 patients with severe OSA [without hypertension (n = 27) and with hypertension (n = 33)] and 12 controls (neither OSA nor hypertension). Results revealed that severe-OSA patients with hypertension had an altered gut microbiome, decreased short-chain fatty acid-producing bacteria (P < 0.05), and reduced arginine and proline metabolism pathways (P=0.001), compared with controls; also, they had increased stage N1 sleep and reduced stages N2 and N3 sleep accompanied by repeated arousals (P < 0.05). Analysis of PBMCs using the Kyoto Encyclopedia of Genes and Genomes database showed that the mTOR signaling pathway (P=0.006) was the most important differential gene-enriched pathway in severe-OSA patients with hypertension. Our findings extend prior work and suggest a possibility that the regulation of the mTOR signaling pathway is involved in developing OSA-associated hypertension through its interaction with the disturbance of the gut microbiome and sleep architecture.
Collapse
|
10
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
11
|
An infectious diseases perspective on the microbiome and allogeneic stem cell transplant. Curr Opin Infect Dis 2021; 33:426-432. [PMID: 33148984 DOI: 10.1097/qco.0000000000000683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW The gut microbiome presents a novel source of diagnostic and therapeutic potential to modify post allogeneic stem cell transplant complications. There is an explosion of interest in microbiome research, mostly in the form of single-centre prospective time-series cohorts utilizing a variety of sampling frequencies and metagenomic technologies to sequence the microbiome. The purpose of this review is to summarize important recent publications and contextualize them within what has already been described in this rapidly growing field. RECENT FINDING Results from observational human cohort and animal transplant models add to the growing body of evidence that the microbiome modulates the immunopathogenesis of posttransplant complications. This is particularly the case for recipients of grafts replete with T cells where the evidence that acute graft-versus-host disease is mediated by anaerobic commensal-associated short-chain fatty acids, which interact with mucosa-associated (CD4FOXP3) T-regulatory cells. SUMMARY Future human research into the role of the microbiome in allogeneic stem transplant should incorporate rigorous and considered experimental design in addition to next-generation sequencing technology to better portray microbiome functional potential and active gene expression. In combination with host immune phenotyping, which would facilitate a robust understanding of the host--microbiome interaction that is required before meaningful translation into clinical diagnostics and therapeutics can be expected.
Collapse
|
12
|
Association between disease-related malnutrition and innate immunity gene expression in critically ill patients at intensive care unit admission. Cent Eur J Immunol 2021; 45:414-424. [PMID: 33658890 PMCID: PMC7882404 DOI: 10.5114/ceji.2020.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to analyse the relationship between nutritional disorders and the expression of innate antibacterial response genes in patients admitted to the intensive care unit (ICU). In 46 patients with severe malnutrition and life-threatening surgical complications, nutritional status tests were performed on the basis of the NRS 2002 (Nutritional Risk Screening) scale, cytokine, albumin, C-reactive protein concentrations, anthropometric tests, and body composition analysis. Concurrently, the expression of Toll-like receptor 2, NOD1, TRAF6, and HMGB1 genes was determined in peripheral blood leukocytes at the mRNA level using real-time polymerase chain reaction. It was found that both the nutritional status and the gene expression changed depending on the group of patients studied (including the group of survivors vs. non-survivors). Significant correlations were found between the results of routine tests used in the diagnostics of malnutrition (including NRS 2002, resistance, reactance, phase angle, excess of extracellular water) and the expression of the studied genes. Moreover, the expression of TRAF6 and HMGB1 genes correlated with the Acute Physiology and Chronic Health Evaluation II scale and the age of the patients. The results of the research suggest that the expression of innate antibacterial response genes may be a new diagnostic tool complementing the assessment of nutritional disorders in surgical patients admitted to the ICU. These tests may be helpful in providing more accurate diagnostics of the genetic effects of malnutrition and in the monitoring of patients for whom nutritional treatment is planned to support the functions of the immune system, thereby increasing the effectiveness of this type of treatment in the ICU.
Collapse
|
13
|
Dietrich CG, Schoppmeyer K. Percutaneous endoscopic gastrostomy – Too often? Too late? Who are the right patients for gastrostomy? World J Gastroenterol 2020; 26:2464-2471. [PMID: 32523304 PMCID: PMC7265142 DOI: 10.3748/wjg.v26.i20.2464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Percutaneous endoscopic gastrostomy is an established method to provide nutrition to patients with restricted oral uptake of fluids and calories. Here, we review the methods, indications and complications of this procedure. While gastrostomy can be safely and easily performed during gastroscopy, the right patients and timing for this intervention are not always chosen. Especially in patients with dementia, the indication for and timing of gastrostomies are often improper. In this patient group, clear data for enteral nutrition are lacking; however, some evidence suggests that patients with advanced dementia do not benefit, whereas patients with mild to moderate dementia might benefit from early enteral nutrition. Additionally, other patient groups with temporary or permanent restriction of oral uptake might be a useful target population for early enteral nutrition to maintain mobilization and muscle strength. We plead for a coordinated study program for these patient groups to identify suitable patients and the best timing for tube implantation.
Collapse
Affiliation(s)
- Christoph G Dietrich
- Medical Clinic, Bethlehem-Gesundheitszentrum Stolberg/Rhld., Stolberg D-52222, Germany
| | | |
Collapse
|
14
|
Madnawat H, Welu AL, Gilbert EJ, Taylor DB, Jain S, Manithody C, Blomenkamp K, Jain AK. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr Clin Pract 2019; 35:63-71. [PMID: 31872510 DOI: 10.1002/ncp.10461] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Parenteral nutrition (PN) has revolutionized the care of patients with intestinal failure by providing nutrition intravenously. Worldwide, PN remains a standard tool of nutrition delivery in neonatal, pediatric, and adult patients. Though the benefits are evident, patients receiving PN can suffer serious cholestasis due to lack of enteral feeding and sometimes have fatal complications from liver injury and gut atrophy, including PN-associated liver disease or intestinal failure-associated liver disease. Recent studies into gut-systemic cross talk via the bile acid-regulated farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) axis, gut microbial control of the TGR5-glucagon-like peptide (GLP) axis, sepsis, and role of prematurity of hepatobiliary receptors are greatly broadening our understanding of PN-associated injury. It has also been shown that the composition of ω-6/ω-3 polyunsaturated fatty acids given parenterally as lipid emulsions can variably drive damage to hepatocytes and cell integrity. This manuscript reviews the mechanisms for the multifactorial pathogenesis of liver disease and gut injury with PN and discusses novel ameliorative strategies.
Collapse
Affiliation(s)
- Himani Madnawat
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Adam L Welu
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Ester J Gilbert
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Derian B Taylor
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Sonali Jain
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Chandrashekhara Manithody
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Keith Blomenkamp
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| | - Ajay K Jain
- Department of Pediatrics, St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Dowhaniuk JK, Szamosi J, Chorlton S, Owens J, Mileski H, Clause R, Pernica JM, Bowdish DME, Surette MG, Ratcliffe EM. Starving the Gut: A Deficit of Butyrate in the Intestinal Ecosystem of Children With Intestinal Failure. JPEN J Parenter Enteral Nutr 2019; 44:1112-1123. [DOI: 10.1002/jpen.1715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/25/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Jake Szamosi
- Department of Medicine and Biochemistry and Biomedical SciencesMcMaster University Hamilton Ontario Canada
| | - Sam Chorlton
- Department of Undergraduate MedicineMcMaster University Hamilton Ontario Canada
| | - Jillian Owens
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | - Heather Mileski
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | - Rose‐Frances Clause
- Division of Pediatric Gastroenterology and NutritionMcMaster Children's Hospital Hamilton Ontario Canada
| | | | - Dawn M. E. Bowdish
- Department of Pathology & Molecular MedicineMcMaster University Hamilton Ontario Canada
| | - Michael G. Surette
- Department of Medicine and Biochemistry and Biomedical SciencesMcMaster University Hamilton Ontario Canada
| | | |
Collapse
|
16
|
Lee YB, Byun EJ, Kim HS. Potential Role of the Microbiome in Acne: A Comprehensive Review. J Clin Med 2019; 8:jcm8070987. [PMID: 31284694 PMCID: PMC6678709 DOI: 10.3390/jcm8070987] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Acne is a highly prevalent inflammatory skin condition involving sebaceous sties. Although it clearly develops from an interplay of multiple factors, the exact cause of acne remains elusive. It is increasingly believed that the interaction between skin microbes and host immunity plays an important role in this disease, with perturbed microbial composition and activity found in acne patients. Cutibacterium acnes (C. acnes; formerly called Propionibacterium acnes) is commonly found in sebum-rich areas and its over-proliferation has long been thought to contribute to the disease. However, information provided by advanced metagenomic sequencing has indicated that the cutaneous microbiota in acne patients and acne-free individuals differ at the virulent-specific lineage level. Acne also has close connections with the gastrointestinal tract, and many argue that the gut microbiota could be involved in the pathogenic process of acne. The emotions of stress (e.g., depression and anxiety), for instance, have been hypothesized to aggravate acne by altering the gut microbiota and increasing intestinal permeability, potentially contributing to skin inflammation. Over the years, an expanding body of research has highlighted the presence of a gut–brain–skin axis that connects gut microbes, oral probiotics, and diet, currently an area of intense scrutiny, to acne severity. This review concentrates on the skin and gut microbes in acne, the role that the gut–brain–skin axis plays in the immunobiology of acne, and newly emerging microbiome-based therapies that can be applied to treat acne.
Collapse
Affiliation(s)
- Young Bok Lee
- Department of Dermatology, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Jung Byun
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea
| | - Hei Sung Kim
- Department of Dermatology, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea.
| |
Collapse
|
17
|
Why do current strategies for optimal nutritional therapy neglect the microbiome? Nutrition 2019; 60:100-105. [DOI: 10.1016/j.nut.2018.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
|
18
|
Enteral versus parenteral nutrition in patients undergoing pancreaticoduodenectomy: A meta-analysis of randomized controlled trial. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2017.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Zhang J, Ankawi G, Sun J, Digvijay K, Yin Y, Rosner MH, Ronco C. Gut-kidney crosstalk in septic acute kidney injury. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:117. [PMID: 29724256 PMCID: PMC5934860 DOI: 10.1186/s13054-018-2040-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Septic AKI is a complex and multifactorial process that is incompletely understood. During sepsis, the disruption of the mucus membrane barrier, a shift in intestinal microbial flora, and microbial translocation may lead to systemic inflammation, which further alters host immune and metabolic homeostasis. This altered homeostasis may promote and potentiate the development of AKI. As part of this vicious cycle, when AKI develops, the clearance of inflammatory mediators and metabolic products is decreased. This will lead to further gut injury and breakdown in mucous membrane barriers. Thus, changes in the gut during sepsis can initiate and propagate septic AKI. This deleterious gut–kidney crosstalk may be a potential target for therapeutic maneuvers. This review analyses the underlying mechanisms in gut–kidney crosstalk in septic AKI.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China.,International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Ghada Ankawi
- Department of Internal Medicine and Nephrology, King Abdulaziz University, Jeddah, Saudi Arabia.,International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Kumar Digvijay
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology and Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China.
| | - Mitchell H Rosner
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, USA
| | - Claudio Ronco
- International Renal Research Institute of Vicenza (IRRIV), Vicenza, Italy.,Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
20
|
Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb Pathog 2018; 118:98-104. [PMID: 29548696 DOI: 10.1016/j.micpath.2018.03.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/12/2018] [Indexed: 02/08/2023]
Abstract
The gut microbiota plays a substantial role in regulating the host metabolic and immune functions. Dysbiosis, resulting from disruption of gut microbiota, predisposes many morbid pathologies like obesity and its associated comorbidities, diabetes and inflammatory conditions including some types of cancer. There are numerous proposed signaling pathways through which alterations in gut microbiota and its metabolites can disturb the host's normal physiological functions. Interestingly, many of these processes happen to be controlled by the mammalian target of rapamycin (mTOR). The mTOR pathway responds to environmental changes and regulates accordingly many intracellular processes such as transcription, translation, cell growth, cytoskeletal organization and autophagy. In this review, we aim to highlight the cross-talk between the gut microbiota and the mTOR pathway and discuss how this emerging field of research gives a beautiful insight into how the mentioned cross-talk impacts the body's homeostasis thus leading to undesirable complications including obesity, diabetes, colon and pancreatic cancer, immune system malfunctioning and ageing. Although there are a limited number of studies investigating the crosstalk between the gut microbiota and the mTOR pathway, the results obtained so far are enough to elucidate the key role of the mTOR signaling in microbiota-associated metabolic and immune regulations.
Collapse
Affiliation(s)
- Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
21
|
McClave SA, Lowen CC, Martindale RG. The 2016 ESPEN Arvid Wretlind lecture: The gut in stress. Clin Nutr 2018; 37:19-36. [DOI: 10.1016/j.clnu.2017.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 02/07/2023]
|
22
|
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2574-2583. [PMID: 28286161 PMCID: PMC5589488 DOI: 10.1016/j.bbadis.2017.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/16/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The gastrointestinal tract has long been hypothesized to function as "the motor" of multiple organ dysfunction syndrome. The gastrointestinal microenvironment is comprised of a single cell layer epithelia, a local immune system, and the microbiome. These three components of the intestine together play a crucial role in maintaining homeostasis during times of health. However, the gastrointestinal microenvironment is perturbed during sepsis, resulting in pathologic changes that drive both local and distant injury. In this review, we seek to characterize the relationship between the epithelium, gastrointestinal lymphocytes, and commensal bacteria during basal and pathologic conditions and how the intestinal microenvironment may be targeted for therapeutic gain in septic patients.
Collapse
Affiliation(s)
- Katherine T Fay
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
23
|
Porsani MY, Paludetti M, Orlando DR, Peconick AP, Costa RC, Oliveira LE, Zangeronimo MG, Sousa RV. Protective effect of β-glucan and glutamine on intestinal and immunological damage in mice induced by cytarabine (Ara-C). PESQUISA VETERINARIA BRASILEIRA 2017. [DOI: 10.1590/s0100-736x2017000900013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ABSTRACT: Recently, glutamine and β-glucan have been demonstrated to play an important role in modulation of the immune system and in promoting intestinal health benefits. The aim of this study was to investigate the effect of this intervention on inflammatory responses and intestinal health in mice orally pretreated with soluble Saccharomyces cerevisiae derived 1,3/1,6-β-glucan (80mg/kg) with or without glutamine (150mg/kg) and then challenged with cytarabine (Ara-C) (15mg/kg). Improvements in villi and crypts were not observed in the β-glucan group. The intestinal morphometry in the glutamine group showed the best results. β-glucan in combination with glutamine presented the highest values of IL-1β and IL-10 and lowest values for leukocytes and INF-γ. Based on these results, combined β-glucan and glutamine pretreatment reduced intestinal inflammation and improved the immune response after Ara-C challenge.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The goal of this review is to provide updates on the definition, pathophysiology, treatment, and prevention of intestinal failure-associated liver disease (IFALD) that are relevant to care of pediatric patients. RECENT FINDINGS Current literature emphasizes the multifactorial nature of IFALD. The pathogenesis is still largely unknown; however, molecular pathways have been identified. Key to these pathways are proinflammatory cytokines involved in hepatic inflammation and bile acids synthesis such as Toll-like receptor 4 and farnesoid X receptor, respectively. Research for prevention and treatment is aimed at alleviating risk factors associated with IFALD, principally those associated with parental nutrition. Multiple nutrients and amino acids are relevant to the development of IFALD, but lipid composition has been the primary focus. Lipid emulsions with a lower ratio of omega-6-to-omega-3 polyunsaturated fatty acids (FAs) appear to improve bile flow and decrease intrahepatic inflammation. Long-term consequences of these alternative lipid emulsions are yet to be determined. SUMMARY IFALD remains the greatest contributor of mortality in patients with intestinal failure. Many factors contribute to its development, namely, alterations in the gut microbiome, sepsis, and lack of enteral intake. Novel combinations of lipid formulations are promising alternatives to purely soy-based formulas to reduce cholestasis.
Collapse
Affiliation(s)
- Cathleen M Courtney
- aDivision of Pediatric Surgery, St. Louis Children's Hospital bDepartment of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
25
|
Feeding strategies in pediatric cancer patients with gastrointestinal mucositis: a multicenter prospective observational study and international survey. Support Care Cancer 2017; 25:3075-3083. [PMID: 28447222 PMCID: PMC5577052 DOI: 10.1007/s00520-017-3715-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Currently, there is no adequate prevention or treatment for both oral and gastrointestinal mucositis induced by chemotherapy and/or radiotherapy. Supportive care of symptoms plays a primary role during mucositis in the pediatric clinical setting. We aimed to get insight in the currently used feeding strategies in clinical practice in pediatric cancer patients with chemotherapy-induced mucositis. METHODS A prospective observational study was performed to identify feeding strategies after chemotherapy courses causing mucositis in almost all patients at the University Medical Center Groningen (UMCG), the Academic Medical Center Amsterdam (AMC), and the Princess Maxima Center Utrecht (PMC). Consecutive patients, aged 0-18 years, either diagnosed with B cell non-Hodgkin lymphoma (B-NHL) or scheduled for autologous stem cell transplantation (SCT) between April 2015 and September 2016 were included in this study. In addition to the observational study in the Netherlands, an international online questionnaire was conducted for pediatric oncology centers. RESULTS A total of 13 patients were included, after 21 chemotherapy courses. No nutritional support was administered after 23.8% courses, tube feeding after 19.0% of the courses, TPN in 19.0% of courses, and 38.1% received a combination of tube feeding and TPN. The international survey revealed that 63.2% of the centers administered tube feeding as first choice, 31.6% administered only TPN as first choice, and one center administered a combination as first choice. CONCLUSIONS There is a variability in feeding strategies in the clinical practice both in the Netherlands as well as worldwide. This study is a basis for future studies in this important clinical field to develop clinical trials comparing tube feeding and TPN both in adult and pediatric patients.
Collapse
|
26
|
Greis C, Rasuly Z, Janosi RA, Kordelas L, Beelen DW, Liebregts T. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:70. [PMID: 28327177 PMCID: PMC5361812 DOI: 10.1186/s13054-017-1654-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023]
Abstract
Background Impaired gastric emptying is common in critically ill patients. Intestinal dysmotility, a major cause of feed intolerance, may foster infectious complications due to mucosal barrier disruption. However, little is known about gut-directed immune activation, intestinal barrier function and its association with impaired gastric emptying in critically ill patients at ICU admission. Methods We conducted a prospective observational study at two tertiary care medical ICUs. Fifty consecutive patients needing invasive mechanical ventilation were recruited within 24 h of ICU admission, prior to any nutritional support. The acute physiology and chronic health evaluation (APACHE) II score, the sequential organ failure assessment (SOFA) score and the multiple organ dysfunction score (MODS) were used to assess illness severity and multiple organ dysfunction. Gastric emptying was assessed by paracetamol absorption test. Peripheral blood mononuclear cells were freshly isolated and cultured for 24 h, and TNF-α, IL-1β and IL-10 measured in cell culture supernatants and in serum by ELISA. The intestinal epithelial barrier was assessed, quantifying serum concentrations of intestinal fatty acid binding protein (I-FABP), ileal bile-acid binding protein (I-BABP) and zonulin-1 by ELISA. Small bowel homing T lymphocytes (CD4+ α4β7 + CCR9+) were analyzed by flow cytometry. The Mann-Whitney test and Spearman correlation were used in statistical evaluation. Results CD4 + α4β7 + CCR9+ T lymphocytes were inversely correlated with gastric emptying. Patients with delayed gastric emptying at ICU admission (n = 35) had significantly higher serum and PBMC-induced TNF-α and IL-1β and increased intestinal barrier disruption reflected by higher I-FABP, I-BABP and zonulin-1. Patients who died in the ICU had significantly impaired gastric empting at admission compared to ICU survivors. No differences were observed in APACHE II, SOFA or MODS in patients with delayed gastric emptying compared to patients with normal gastric emptying. Conclusions Exaggerated CD4 + α4β7 + CCR9+ T lymphocyte homing with increased pro-inflammatory cytokine release and intestinal epithelial barrier disruption are associated with delayed gastric emptying. This is not simply due to differences in overall severity of illness at ICU admission and may represent a pathophysiological mechanism of gut-directed immune activation leading to impaired barrier function in the critically ill.
Collapse
Affiliation(s)
- Christian Greis
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Zohal Rasuly
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Rolf A Janosi
- Department of Cardiology, University Hospital Essen, Essen, Germany
| | - Lambros Kordelas
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany
| | - Tobias Liebregts
- Department of Bone Marrow Transplantation, University of Duisburg-Essen, University Hospital Essen, West German Cancer Center, Hufelandstr. 55, Essen, 45122, Germany.
| |
Collapse
|
27
|
Doctor A, Zimmerman J, Agus M, Rajasekaran S, Wardenburg JB, Fortenberry J, Zajicek A, Typpo K. Pediatric Multiple Organ Dysfunction Syndrome: Promising Therapies. Pediatr Crit Care Med 2017; 18:S67-S82. [PMID: 28248836 PMCID: PMC5333132 DOI: 10.1097/pcc.0000000000001053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To describe the state of the science, identify knowledge gaps, and offer potential future research questions regarding promising therapies for children with multiple organ dysfunction syndrome presented during the Eunice Kennedy Shriver National Institute of Child Health and Human Development Workshop on Pediatric Multiple Organ Dysfunction Syndrome (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an expert from the field, issues relevant to the association of multiple organ dysfunction syndrome with a variety of conditions were presented, discussed, and debated with a focus on identifying knowledge gaps and research priorities. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by relevant literature. CONCLUSIONS Among critically ill children, multiple organ dysfunction syndrome is relatively common and associated with significant morbidity and mortality. For outcomes to improve, effective therapies aimed at preventing and treating this condition must be discovered and rigorously evaluated. In this article, a number of potential opportunities to enhance current care are highlighted including the need for a better understanding of the pharmacokinetics and pharmacodynamics of medications, the effect of early and optimized nutrition, and the impact of effective glucose control in the setting of multiple organ dysfunction syndrome. Additionally, a handful of the promising therapies either currently being implemented or developed are described. These include extracorporeal therapies, anticytokine therapies, antitoxin treatments, antioxidant approaches, and multiple forms of exogenous steroids. For the field to advance, promising therapies and other therapies must be assessed in rigorous manner and implemented accordingly.
Collapse
Affiliation(s)
- Allan Doctor
- Departments of Pediatrics (Critical Care Medicine) and Biochemistry, Washington University in Saint Louis
| | - Jerry Zimmerman
- Department of Pediatrics (Critical Care Medicine), University of Washington, Seattle, WA
| | - Michael Agus
- Department of Pediatrics (Critical Care Medicine), Harvard University, Boston, MA
| | - Surender Rajasekaran
- Department of Pediatrics (Critical Care Medicine), Michigan State University, Grand Rapids, MI
| | | | - James Fortenberry
- Department of Pediatrics (Critical Care Medicine), Emory University, Atlanta, GA
| | - Anne Zajicek
- Obstetric and Pediatric Pharmacology and Therapeutics Branch, NICHD
| | - Katri Typpo
- Department of Pediatrics (Critical Care Medicine), University of Arizona, Phoenix, AZ
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW To highlight recent advances in the understanding of nutritional immunology and in the development of novel therapeutics for inflammatory bowel disease (IBD). RECENT FINDINGS We highlight the variety of factors that contribute to the interaction of the immune system and nutrition including the microbiome and the nervous system stimulation of the gut. We describe the potential for therapeutic development in IBD. Further, we review the cellular metabolic effects on immune activation and promising therapeutic targets. Finally, we show how the progression of understanding the role of lanthionine synthetase C-like 2 has encompassed both nutritional and therapeutic advances and led to the development of novel oral small molecule therapeutics for IBD. SUMMARY Nutritional immunology and drug development research centered around immunoregulatory pathways can provide safer and more effective drugs while accelerating the path to cures.
Collapse
|
29
|
de Jong PR, González-Navajas JM, Jansen NJG. The digestive tract as the origin of systemic inflammation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:279. [PMID: 27751165 PMCID: PMC5067918 DOI: 10.1186/s13054-016-1458-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Failure of gut homeostasis is an important factor in the pathogenesis and progression of systemic inflammation, which can culminate in multiple organ failure and fatality. Pathogenic events in critically ill patients include mesenteric hypoperfusion, dysregulation of gut motility, and failure of the gut barrier with resultant translocation of luminal substrates. This is followed by the exacerbation of local and systemic immune responses. All these events can contribute to pathogenic crosstalk between the gut, circulating cells, and other organs like the liver, pancreas, and lungs. Here we review recent insights into the identity of the cellular and biochemical players from the gut that have key roles in the pathogenic turn of events in these organ systems that derange the systemic inflammatory homeostasis. In particular, we discuss the dangers from within the gastrointestinal tract, including metabolic products from the liver (bile acids), digestive enzymes produced by the pancreas, and inflammatory components of the mesenteric lymph.
Collapse
Affiliation(s)
- Petrus R de Jong
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands. .,Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| | - José M González-Navajas
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Hospital General Universitario de Alicante, Alicante, Spain.,Alicante Institute of Health and Biomedical Research (ISABIAL - FISABIO Foundation), Alicante, Spain
| | - Nicolaas J G Jansen
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease. Exp Biol Med (Maywood) 2016; 242:127-139. [PMID: 27633573 DOI: 10.1177/1535370216669610] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a poorly understood syndrome of systemic inflammation responsible for hundreds of thousands of deaths every year. The integrity of the gut epithelium and competence of adaptive immune responses are notoriously compromised during sepsis, and the prevalent assumption in the scientific and medical community is that intestinal commensals have a detrimental role in the systemic inflammation and susceptibility to nosocomial infections seen in critically ill, septic patients. However, breakthroughs in the last decade provide strong credence to the idea that our mucosal microbiome plays an essential role in adaptive immunity, where a human host and its prokaryotic colonists seem to exist in a carefully negotiated armistice with compromises and benefits that go both ways. In this review, we re-examine the notion that intestinal contents are the driving force of critical illness. An overview of the interaction between the microbiome and the immune system is provided, with a special focus on the impact of commensals in priming and the careful balance between normal intestinal flora and pathogenic organisms residing in the gut microbiome. Based on the data in hand, we hypothesize that sepsis induces imbalances in microbial populations residing in the gut, along with compromises in epithelial integrity. As a result, normal antigen sampling becomes impaired, and proliferative cues are intermixed with inhibitory signals. This situates the microbiome, the gut, and its complex immune network of cells and bacteria, at the center of aberrant immune responses during and after sepsis.
Collapse
Affiliation(s)
- Javier Cabrera-Perez
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,2 Medical Scientist Training Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Vladimir P Badovinac
- 3 Department of Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,4 Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas S Griffith
- 1 Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,5 Department of Urology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,6 Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,7 Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA.,8 Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
31
|
Peng L, Wu LG, Li B, Zhao J, Wen LM. Early enteral nutrition improves intestinal immune barrier in a rat model of severe acute pancreatitis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2016; 23:681-687. [PMID: 27168084 DOI: 10.1002/jhbp.358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The aim of the present study was to investigate the role of early enteral nutrition (EEN) in the intestinal immune barrier in severe acute pancreatitis (SAP), and to explore its potential mechanisms. METHODS Sixty rats were randomly assigned to three groups: sham-operated group (SO group, n = 20), SAP group receiving EEN (SAP + EEN group, n = 20), and SAP group receiving total parental nutrition (SAP + TPN group, n = 20). SAP was induced by infusion of sodium taurocholate. Rats were killed 5 days after nutritional support. The pathological damage of the intestine was determined using HE staining. The expression of MAdCAM-1, CD4+ , and CD8+ in Peyer's lymph nodes of the distal ilium was examined by immunohistochemistry. Serum levels of endotoxin and bacterial translocation were determined. RESULTS The survival rate in the SAP + TPN (50%) and SAP + EEN (75%) groups was significantly lower than in the SO group (100%) (P < 0.05). The survival rate in the SAP + EEN group was significantly higher than in the SAP + TPN group (P < 0.05). The expression of MAdCAM-1, CD4+ and CD8+ in the intestine was decreased in SAP rats. EEN significantly increased the expression of MAdCAM-1, CD4+ and CD8+ compared with TPN, accompanied by a decrease in the serum levels of endotoxin and bacterial translocation. CONCLUSIONS Early enteral nutrition improves intestinal immune barrier, thus reducing bacterial and endotoxin translocation and improving the survival rate in SAP rats.
Collapse
Affiliation(s)
- Lan Peng
- Department of Gastroenterology, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Li-Guo Wu
- Department of Gastroenterology, Wenjiang People Hospital, Chengdu, Sichuan, China
| | - Bo Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Jun Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Sichuan Medical University, Luzhou, Sichuan, China
| | - Li-Ming Wen
- Department of Gastroenterology, Mianyang 404 Hospital, Mianyang, Sichuan, China
| |
Collapse
|
32
|
Jung MJ, Lee J, Shin NR, Kim MS, Hyun DW, Yun JH, Kim PS, Whon TW, Bae JW. Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice. Sci Rep 2016; 6:30887. [PMID: 27471110 PMCID: PMC4965768 DOI: 10.1038/srep30887] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 02/08/2023] Open
Abstract
Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and type 2 diabetes (T2D). Therefore, we examined whether changes in the regulation of mTOR signaling induced by diet (a high-fat diet [HFD] or normal-chow diet) and/or therapeutics (resveratrol [a specific inhibitor of mTOR complex 1] or rapamycin [an inhibitor of both mTOR complex 1 and 2]) altered the composition of the gut microbiota in mice. Oral administration of resveratrol prevented glucose intolerance and fat accumulation in HFD-fed mice, whereas rapamycin significantly impaired glucose tolerance and exacerbated intestinal inflammation. The abundance of Lactococcus, Clostridium XI, Oscillibacter, and Hydrogenoanaerobacterium increased under the HFD condition; however, the abundance of these species declined after resveratrol treatment. Conversely, the abundance of unclassified Marinilabiliaceae and Turicibacter decreased in response to a HFD or rapamycin. Taken together, these results demonstrated that changes in the composition of intestinal microbiota induced by changes in mTOR activity correlate with obese and diabetic phenotypes.
Collapse
Affiliation(s)
- Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Jina Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
33
|
Lu JW, Liu C, Du ZQ, Liu XM, Lv Y, Zhang XF. Early enteral nutrition vs parenteral nutrition following pancreaticoduodenectomy: Experience from a single center. World J Gastroenterol 2016; 22:3821-3828. [PMID: 27076767 PMCID: PMC4814745 DOI: 10.3748/wjg.v22.i14.3821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/22/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze and compare postoperative morbidity between patients receiving total parenteral nutrition (TPN) and early enteral nutrition supplemented with parenteral nutrition (EEN + PN). METHODS Three hundred and forty patients receiving pancreaticoduodenectomy (PD) from 2009 to 2013 at our center were enrolled retrospectively. Patients were divided into two groups depending on postoperative nutrition support scheme: an EEN + PN group (n = 87) and a TPN group (n = 253). Demographic characteristics, comorbidities, preoperative biochemical parameters, pathological diagnosis, intraoperative information, and postoperative complications of the two groups were analyzed. RESULTS The two groups did not differ in demographic characteristics, preoperative comorbidities, preoperative biochemical parameters or pathological findings (P > 0.05 for all). However, patients with EEN + PN following PD had a higher incidence of delayed gastric emptying (16.1% vs 6.7%, P = 0.016), pulmonary infection (10.3% vs 3.6%, P = 0.024), and probably intraperitoneal infection (18.4% vs 10.3%, P = 0.059), which might account for their longer nasogastric tube retention time (9 d vs 5 d, P = 0.006), postoperative hospital stay (25 d vs 20 d, P = 0.055) and higher hospitalization expenses (USD10397 vs USD8663.9, P = 0.008), compared to those with TPN. CONCLUSION Our study suggests that TPN might be safe and sufficient for patient recovery after PD. Postoperative EEN should only be performed scrupulously and selectively.
Collapse
|
34
|
GLP-2 Prevents Intestinal Mucosal Atrophy and Improves Tissue Antioxidant Capacity in a Mouse Model of Total Parenteral Nutrition. Nutrients 2016; 8:nu8010033. [PMID: 26761030 PMCID: PMC4728647 DOI: 10.3390/nu8010033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 01/04/2023] Open
Abstract
We investigated the effects of exogenous glucagon-like peptide-2 (GLP-2) on mucosal atrophy and intestinal antioxidant capacity in a mouse model of total parenteral nutrition (TPN). Male mice (6–8 weeks old) were divided into three groups (n = 8 for each group): a control group fed a standard laboratory chow diet, and experimental TPN (received standard TPN solution) and TPN + GLP-2 groups (received TPN supplemented with 60 µg/day of GLP-2 for 5 days). Mice in the TPN group had lower body weight and reduced intestinal length, villus height, and crypt depth compared to the control group (all p < 0.05). GLP-2 supplementation increased all parameters compared to TPN only (all p < 0.05). Intestinal total superoxide dismutase activity and reduced-glutathione level in the TPN + GLP-2 group were also higher relative to the TPN group (all p < 0.05). GLP-2 administration significantly upregulated proliferating cell nuclear antigen expression and increased glucose-regulated protein (GRP78) abundance. Compared with the control and TPN + GLP-2 groups, intestinal cleaved caspase-3 was increased in the TPN group (all p < 0.05). This study shows GLP-2 reduces TPN-associated intestinal atrophy and improves tissue antioxidant capacity. This effect may be dependent on enhanced epithelial cell proliferation, reduced apoptosis, and upregulated GRP78 expression.
Collapse
|
35
|
Wilson B, Typpo K. Nutrition: A Primary Therapy in Pediatric Acute Respiratory Distress Syndrome. Front Pediatr 2016; 4:108. [PMID: 27790606 PMCID: PMC5061746 DOI: 10.3389/fped.2016.00108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Appropriate nutrition is an essential component of intensive care management of children with acute respiratory distress syndrome (ARDS) and is linked to patient outcomes. One out of every two children in the pediatric intensive care unit (PICU) will develop malnutrition or have worsening of baseline malnutrition and present with specific micronutrient deficiencies. Early and adequate enteral nutrition (EN) is associated with improved 60-day survival after pediatric critical illness, and, yet, despite early EN guidelines, critically ill children receive on average only 55% of goal calories by PICU day 10. Inadequate delivery of EN is due to perceived feeding intolerance, reluctance to enterally feed children with hemodynamic instability, and fluid restriction. Underlying each of these factors is large practice variation between providers and across institutions for initiation, advancement, and maintenance of EN. Strategies to improve early initiation and advancement and to maintain delivery of EN are needed to improve morbidity and mortality from pediatric ARDS. Both, over and underfeeding, prolong duration of mechanical ventilation in children and worsen other organ function such that precise calorie goals are needed. The gut is thought to act as a "motor" of organ dysfunction, and emerging data regarding the role of intestinal barrier functions and the intestinal microbiome on organ dysfunction and outcomes of critical illness present exciting opportunities to improve patient outcomes. Nutrition should be considered a primary rather than supportive therapy for pediatric ARDS. Precise nutritional therapies, which are titrated and targeted to preservation of intestinal barrier function, prevention of intestinal dysbiosis, preservation of lean body mass, and blunting of the systemic inflammatory response, offer great potential for improving outcomes of pediatric ARDS. In this review, we examine the current evidence regarding dose, route, and timing of nutrition, current recommendations for provision of nutrition to children with ARDS, and the current literature for immune-modulating diets for pediatric ARDS. We will examine emerging data regarding the role of the intestinal microbiome in modulating the response to critical illness.
Collapse
Affiliation(s)
- Bryan Wilson
- Department of Emergency Medicine, University of Arizona College of Medicine , Tucson, AZ , USA
| | - Katri Typpo
- Department of Pediatrics, Steele Children's Research Center, University of Arizona College of Medicine , Tucson, AZ , USA
| |
Collapse
|
36
|
Demehri FR, Barrett M, Teitelbaum DH. Changes to the Intestinal Microbiome With Parenteral Nutrition: Review of a Murine Model and Potential Clinical Implications. Nutr Clin Pract 2015; 30:798-806. [PMID: 26424591 DOI: 10.1177/0884533615609904] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parenteral nutrition (PN) dependence, while life sustaining, carries a significant risk of septic complications associated with epithelial barrier dysfunction and translocation of gut-derived microbiota. Increasing evidence suggests that PN-associated changes in the intestinal microbiota play a central role in the breakdown of the intestinal epithelial barrier. This review outlines the clinical and experimental evidence of epithelial barrier dysfunction with PN, the role of gut inflammatory dysregulation in driving this process, and the role of the intestinal microbiome in modulating inflammation in the gut and systemically. The article summarizes the most current work of our laboratory and others and describes many of the laboratory findings behind our current understanding of the PN enteral environment. Understanding the interaction between nutrient delivery, the intestinal microbiome, and PN-associated complications may lead to the development of novel therapies to enhance safety and quality of life for patients requiring PN.
Collapse
Affiliation(s)
- Farokh R Demehri
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Meredith Barrett
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| | - Daniel H Teitelbaum
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan
| |
Collapse
|
37
|
Kuiken NSS, Rings EHHM, Havinga R, Groen AK, Tissing WJE. Effect of minimal enteral feeding on recovery in a methotrexate-induced gastrointestinal mucositis rat model. Support Care Cancer 2015; 24:1357-64. [PMID: 26335404 PMCID: PMC4729808 DOI: 10.1007/s00520-015-2911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/16/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Patients suffering from gastrointestinal mucositis often receive parenteral nutrition as nutritional support. However, the absence of enteral nutrition might not be beneficial for the intestine. We aimed to determine the feasibility of minimal enteral feeding (MEF) administration in a methotrexate (MTX)-induced mucositis rat model and thereby determine the effect of MEF on recovery. METHODS Male Wistar rats were attached to swivel systems from day 1 to 5 after 45 mg/kg MTX IV injection. The MTX group continued ad libitum feeding, and the MTX + MEF group continued ad libitum feeding and received from day 1 to 5 continuously MEF. MEF consisted of 20% of their normal caloric intake. We measured body weight, intake, and plasma citrulline. At day 10, the rats were terminated and villus and crypt length were measured. RESULTS The administration of MEF caused no increased severity of mucositis phenotype, with comparable caloric intake, body weight, and plasma citrulline during mucositis. The recovery of plasma citrulline levels was not different between both groups. At day 7 and 8, the MTX + MEF group gained significantly more weight (p < 0.05 and p < 0.01, respectively), and at day 8 and 9 the total caloric intake was significantly increased (p < 0.01 and p < 0.05, respectively) compared to the MTX group. At day 10, the rats from the MTX + MEF group showed a significant increase in jejunal villus length compared to the MTX group (p < 0.05). CONCLUSIONS This is the first study in which the feasibility of MEF administration during chemotherapy-induced mucositis was determined. This study indicates that MEF administration is feasible during mucositis and suggests that MEF accelerates recovery after MTX-induced mucositis.
Collapse
Affiliation(s)
- Nicoline S S Kuiken
- Department of Pediatric Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatric Gastroenterology and Hepatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
- Department of Pediatrics, Erasmus Medical Center Rotterdam, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Rick Havinga
- Department of Pediatric Gastroenterology and Hepatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Albert K Groen
- Department of Pediatric Gastroenterology and Hepatology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Wim J E Tissing
- Department of Pediatric Oncology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
38
|
Fukushima K, Okada A, Hayashi Y, Ichikawa H, Nishimura A, Shibata N, Sugioka N. Enhanced oral bioavailability of vancomycin in rats treated with long-term parenteral nutrition. SPRINGERPLUS 2015; 4:442. [PMID: 26312207 PMCID: PMC4546118 DOI: 10.1186/s40064-015-1228-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
Long-term parenteral nutrition (PN) can induce intestinal atrophy, leading to a loss of epithelial integrity in the small intestines. This change may alter the intestinal permeability of vancomycin (VCM), a non-absorbable antibiotic. The aim of the present study was to investigate the effect of PN on the pharmacokinetics of VCM in rats. VCM was intravenously (5 mg/kg) or intraduodenally (20 mg/kg) administered to control and PN rats, which were prepared by administration of PN for 9 days. After intravenous administration, there were no significant differences in any of the VCM pharmacokinetic parameters between the control and PN rats. However, after intraduodenal administration, the maximum concentration and area under the plasma concentration-time curve of VCM in PN rats was approximately 2.4- and 2.6-fold higher, respectively, than in the control rats; the calculated bioavailability was approximately 0.5 and 1.3 % in control and PN rats, respectively. These results indicated that PN administration did not affect VCM disposition, but enhanced VCM absorption; however, the enhanced oral VCM bioavailability was statistically, not clinically, significant. Therefore, while long-term PN administration may play a role in the enhancement of VCM bioavailability, this effect may be negligible without any complications.
Collapse
Affiliation(s)
- Keizo Fukushima
- />Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586 Japan
| | - Akira Okada
- />Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586 Japan
| | - Yoriko Hayashi
- />Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586 Japan
| | - Hideki Ichikawa
- />Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586 Japan
| | - Asako Nishimura
- />Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyotanabe, Kyoto 610-0395 Japan
| | - Nobuhito Shibata
- />Department of Biopharmaceutics, Faculty of Pharmaceutical Science, Doshisha Women’s College of Liberal Arts, Kyotanabe, Kyoto 610-0395 Japan
| | - Nobuyuki Sugioka
- />Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586 Japan
| |
Collapse
|
39
|
Chaudhry KK, Shukla PK, Mir H, Manda B, Gangwar R, Yadav N, McMullen M, Nagy LE, Rao R. Glutamine supplementation attenuates ethanol-induced disruption of apical junctional complexes in colonic epithelium and ameliorates gut barrier dysfunction and fatty liver in mice. J Nutr Biochem 2015; 27:16-26. [PMID: 26365579 DOI: 10.1016/j.jnutbio.2015.08.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/23/2015] [Accepted: 08/08/2015] [Indexed: 12/12/2022]
Abstract
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of Gln in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed with Gln-free diet and absent in mice fed with Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury.
Collapse
Affiliation(s)
- Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Hina Mir
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | - Nikki Yadav
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN
| | | | | | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN.
| |
Collapse
|
40
|
Takesue T, Takeuchi H, Ogura M, Fukuda K, Nakamura R, Takahashi T, Wada N, Kawakubo H, Kitagawa Y. A Prospective Randomized Trial of Enteral Nutrition After Thoracoscopic Esophagectomy for Esophageal Cancer. Ann Surg Oncol 2015. [PMID: 26219242 DOI: 10.1245/s10434-015-4767-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Several studies have reported that postoperative enteral nutrition (EN) reduced complications and decreased weight loss and hospital stay periods; however, the majority of patients analyzed in these studies underwent open thoracic surgery. No studies have been conducted regarding EN in patients after thoracoscopic esophagectomy as a less invasive surgery. The aim of this study was to investigate the efficacy of EN after thoracoscopic esophagectomy. METHODS Fifty patients who underwent thoracoscopic esophagectomy for esophageal cancer were divided into two groups: parenteral nutrition (PN; n = 25) and EN (n = 25). The rate of weight loss at postoperative day (POD) 14, levels of prealbumin at POD 10, postoperative complications until POD 14, and other perioperative data were collected for each group. RESULTS This study analyzed data for 47 patients. The rate of weight loss at POD 14 was significantly lower in the EN group (3.0 ± 3.2 %) than in the PN group (5.1 ± 3.7 %; p = 0.020). Prealbumin levels were 21.0 ± 7.5 mg/dL in the PN group and 18.4 ± 5.8 mg/dL in the EN group at POD 10, with no significant differences between the groups. However, the incidence of postoperative pneumonia was higher in the PN group (30.4 %) than in the EN group (12.5 %). CONCLUSIONS EN could suppress weight loss and reduce the incidence of pneumonia after thoracoscopic esophagectomy.
Collapse
Affiliation(s)
- Tomoko Takesue
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Masaharu Ogura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Nakamura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | | | - Norihito Wada
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
41
|
Nonpulmonary treatments for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med 2015; 16:S73-85. [PMID: 26035367 DOI: 10.1097/pcc.0000000000000435] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the recommendations from the Pediatric Acute Lung Injury Consensus Conference on nonpulmonary treatments in pediatric acute respiratory distress syndrome. DESIGN Consensus conference of experts in pediatric acute lung injury. METHODS A panel of 27 experts met over the course of 2 years to develop a taxonomy to define pediatric acute respiratory distress syndrome and to make recommendations regarding treatment and research priorities. The nonpulmonary subgroup comprised three experts. When published data were lacking, a modified Delphi approach emphasizing strong professional agreement was utilized. RESULTS The Pediatric Acute Lung Injury Consensus Conference experts developed and voted on a total of 151 recommendations addressing the topics related to pediatric acute respiratory distress syndrome, 30 of which related to nonpulmonary treatment. All 30 recommendations had strong agreement. Patients with pediatric acute respiratory distress syndrome should receive 1) minimal yet effective targeted sedation to facilitate mechanical ventilation; 2) neuromuscular blockade, if sedation alone is inadequate to achieve effective mechanical ventilation; 3) a nutrition plan to facilitate their recovery, maintain their growth, and meet their metabolic needs; 4) goal-directed fluid management to maintain adequate intravascular volume, end-organ perfusion, and optimal delivery of oxygen; and 5) goal-directed RBC transfusion to maintain adequate oxygen delivery. Future clinical trials in pediatric acute respiratory distress syndrome should report sedation, neuromuscular blockade, nutrition, fluid management, and transfusion exposures to allow comparison across studies. CONCLUSIONS The Consensus Conference developed pediatric-specific definitions for pediatric acute respiratory distress syndrome and recommendations regarding treatment and future research priorities. These recommendations for nonpulmonary treatment in pediatric acute respiratory distress syndrome are intended to promote optimization and consistency of care for patients with pediatric acute respiratory distress syndrome and identify areas of uncertainty requiring further investigation.
Collapse
|
42
|
Busch RA, Heneghan AF, Pierre JF, Neuman JC, Reimer CA, Wang X, Kimple ME, Kudsk KA. Bombesin Preserves Goblet Cell Resistin-Like Molecule β During Parenteral Nutrition but Not Other Goblet Cell Products. JPEN J Parenter Enteral Nutr 2015; 40:1042-9. [PMID: 25934045 DOI: 10.1177/0148607115585353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Parenteral nutrition (PN) increases the risk of infection in critically ill patients and is associated with defects in gastrointestinal innate immunity. Goblet cells produce mucosal defense compounds, including mucin (principally MUC2), trefoil factor 3 (TFF3), and resistin-like molecule β (RELMβ). Bombesin (BBS), a gastrin-releasing peptide analogue, experimentally reverses PN-induced defects in Paneth cell innate immunity. We hypothesized that PN reduces goblet cell product expression and PN+BBS would reverse these PN-induced defects. METHODS Two days after intravenous cannulation, male Institute of Cancer Research mice were randomized to chow (n = 15), PN (n = 13), or PN+BBS (15 µg tid) (n = 12) diets for 5 days. Defined segments of ileum and luminal fluid were analyzed for MUC2, TFF3, and RELMβ by quantitative reverse transcriptase polymerase chain reaction and Western blot. Th2 cytokines interleukin (IL)-4 and IL-13 were measured by enzyme-linked immunosorbent assay. RESULTS Compared with chow, PN significantly reduced MUC2 in ileum (P < .01) and luminal fluid (P = .01). BBS supplementation did not improve ileal or luminal MUC2 compared with PN (P > .3). Compared with chow, PN significantly reduced TFF3 in ileum (P < .02) and luminal fluid (P < .01). BBS addition did not improve ileal or luminal TFF3 compared with PN (P > .3). Compared with chow, PN significantly reduced ileal RELMβ (P < .01). BBS supplementation significantly increased ileal RELMβ to levels similar to chow (P < .03 vs PN; P > .6 vs chow). Th2 cytokines were decreased with PN and returned to chow levels with BBS. CONCLUSION PN significantly impairs the goblet cell component of innate mucosal immunity. BBS only preserves goblet cell RELMβ during PN but not other goblet cell products measured.
Collapse
Affiliation(s)
- Rebecca A Busch
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aaron F Heneghan
- Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Joseph F Pierre
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA Department of Medicine, Division of Gastroenterology, University of Chicago, Chicago, Illinois, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Claire A Reimer
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xinying Wang
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA Department of Surgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kenneth A Kudsk
- Veteran Administration Surgical Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
43
|
Zhu J, Wu Y, Guo Y, Tang Q, Lu T, Cai W, Huang H. Choline Alleviates Parenteral Nutrition-Associated Duodenal Motility Disorder in Infant Rats. JPEN J Parenter Enteral Nutr 2015; 40:995-1005. [PMID: 25904588 DOI: 10.1177/0148607115583674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/08/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Parenteral nutrition (PN) has been found to influence duodenal motility in animals. Choline is an essential nutrient, and its deficiency is related to PN-associated organ diseases. Therefore, this study was aimed to investigate the role of choline supplementation in an infant rat model of PN-associated duodenal motility disorder. MATERIALS AND METHODS Three-week-old Sprague-Dawley male rats were fed chow and water (controls), PN solution (PN), or PN plus intravenous choline (600 mg/kg) (PN + choline). Rats underwent jugular vein cannulation for infusion of PN solution or 0.9% saline (controls) for 7 days. Duodenal oxidative stress status, concentrations of plasma choline, phosphocholine, and betaine and serum tumor necrosis factor (TNF)-α were assayed. The messenger RNA (mRNA) and protein expression of c-Kit proto-oncogene protein (c-Kit) and membrane-bound stem cell factor (mSCF) together with the electrophysiological features of slow waves in the duodenum were also evaluated. RESULTS Rats on PN showed increased reactive oxygen species; decreased total antioxidant capacity in the duodenum; reduced plasma choline, phosphocholine, and betaine; and enhanced serum TNF-α concentrations, which were reversed by choline intervention. In addition, PN reduced mRNA and protein expression of mSCF and c-Kit, which were inversed under choline administration. Moreover, choline attenuated depolarized resting membrane potential and declined the frequency and amplitude of slow waves in duodenal smooth muscles of infant rats induced by PN, respectively. CONCLUSION The addition of choline to PN may alleviate the progression of duodenal motor disorder through protecting smooth muscle cells from injury, promoting mSCF/c-Kit signaling, and attenuating impairment of interstitial cells of Cajal in the duodenum during PN feeding.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggao Guo
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, China
| | - Qingya Tang
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Lu
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Huang
- Department of Gastroenterology, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To review the mechanistic evidence for early enteral nutrition in critically ill patients within the first week of ICU admission. RECENT FINDINGS There is a lack of recent large randomized controlled trials showing clinically important outcome benefits related to early enteral nutrition. Most supporting studies are based on the animal models, and explore mechanisms of benefit related to gut immunity and oxidative stress. In addition, the impact of nutrient deprivation on the microbiome recently shown in a human trial is compelling. Large randomized controlled clinical trials have emerged in the last 2 years, however, comparing minimal enteral nutrition therapy and enteral nutrition versus parenteral nutrition. They call into question the low quality of clinical evidence and the widespread support for early enteral nutrition as a primary recommendation. As a result, the questions of whether or not enteral nutrition should be initiated in the first week versus standard of care or parenteral nutrition and how clinicians justify this recommendation are raised. SUMMARY Despite the wide range of quality in the current clinical outcomes evidence, early enteral nutrition within the first week of ICU admission, delivered to the appropriate patient, promotes gut-mediated immunity, lowers metabolic response to stress, maintains microbial diversity, and improves clinical outcomes versus standard of care or parenteral nutrition therapy.
Collapse
Affiliation(s)
- Robert G Martindale
- aDivision of General Surgery, Hospital Nutrition Services, Oregon Health and Science University bDepartment of Surgery, Oregon Health and Science University cPortland VA Healthcare Center, Portland, Oregon, USA
| | | |
Collapse
|
45
|
Rosenthal MD, Vanzant EL, Martindale RG, Moore FA. Evolving paradigms in the nutritional support of critically ill surgical patients. Curr Probl Surg 2015; 52:147-82. [PMID: 25946621 DOI: 10.1067/j.cpsurg.2015.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/29/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
|
46
|
The enteric nervous system neuropeptide, bombesin, reverses innate immune impairments during parenteral nutrition. Ann Surg 2015; 260:432-43; discussion 443-4. [PMID: 25115419 DOI: 10.1097/sla.0000000000000871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Lack of enteral stimulation during parenteral nutrition (PN) impairs mucosal immunity. Bombesin (BBS), a gastrin-releasing peptide analogue, reverses PN-induced defects in acquired immunity. Paneth cells produce antimicrobial peptides (AMPs) of innate immunity for release after cholinergic stimulation. OBJECTIVE Determine if BBS restores AMPs and bactericidal function during PN. METHODS Intravenously cannulated male ICR mice were randomized to Chow, PN, or PN+BBS (15 μg 3 times daily, n = 7 per group) for 5 days. Ileum was analyzed for AMPs (Protein: sPLA2 by fluorescence, lysozyme and RegIII-γ by western andcryptdin-4 by ELISA; mRNA: all by RT-PCR). Cholinergic stimulated (100 μM bethanechol) ileal specimens assessed Pseudomonas bactericidal activity. Ileum (Chow: n = 7; PN: n = 9; PN+BBS: n = 8) was assessed for Escherichia coli invasion in ex-vivo culture. RESULTS PN significantly decreased most AMPs versus Chow while BBS maintained Chow levels (sPLA2: Chow: 107 + 14*, PN: 44.6 + 7.2, PN+BBS: 78.7 + 13.4* Fl/min/μL/total protein; Lysozyme: Chow: 63.9 + 11.9*, PN: 26.8 + 6.2; PN+BBS: 64.9 + 13.8* lysozyme/total protein; RegIII-γ: Chow: 51.5 + 10.0*, PN: 20.4 + 4.3, PN+BBS: 31.0 + 8.4 RegIII-γ/total protein; Cryptdin-4: Chow: 18.4 + 1.5*, PN: 12.7 + 1.6, PN+BBS: 26.1 + 2.4*† pg/mg [all *P < 0.05 vs PN and †P < 0.05 vs Chow]). Functionally, BBS prevented PN loss of bactericidal activity after cholinergic stimulation (Chow: 25.3 + 3.6*, PN: 13.0 + 3.2; PN+BBS: 27.0 + 4.7* percent bacterial killing, *P < 0.05 vs PN). BBS reduced bacterial invasion in unstimulated tissue barely missing significance (P = 0.06). CONCLUSIONS The enteric nervous system (ENS) controls AMP levels in Paneth cells during PN but mucosal protection by innate immunity requires both ENS and parasympathetic stimulation.
Collapse
|
47
|
Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease. Pediatr Crit Care Med 2015; 16:37-44. [PMID: 25162512 PMCID: PMC4286428 DOI: 10.1097/pcc.0000000000000256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Children with congenital heart disease have loss of intestinal epithelial barrier function, which increases their risk for postoperative sepsis and organ dysfunction. We do not understand how postoperative cardiopulmonary support or the inflammatory response to cardiopulmonary bypass might alter intestinal epithelial barrier function. We examined variation in a panel of plasma biomarkers to reflect intestinal epithelial barrier function (cellular and paracellular) after cardiopulmonary bypass and in response to routine ICU care. DESIGN Prospective cohort. SETTING University medical center cardiac ICU. PATIENTS Twenty children aged between newborn and 18 years undergoing repair or palliation of congenital heart disease with cardiopulmonary bypass. INTERVENTIONS We measured baseline and repeated plasma intestinal fatty acid-binding protein, citrulline, claudin 3, and dual sugar permeability testing to reflect intestinal epithelial integrity, epithelial function, paracellular integrity, and paracellular function, respectively. We measured baseline and repeated plasma proinflammatory (interleukin-6, tumor necrosis factor-α, and interferon-γ) and anti-inflammatory (interleukin-4 and interleukin-10) cytokines, known to modulate intestinal epithelial barrier function in murine models of cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS All patients had abnormal baseline intestinal fatty acid-binding protein concentrations (mean, 3,815.5 pg/mL; normal, 41-336 pg/mL). Cytokine response to cardiopulmonary bypass was associated with early, but not late, changes in plasma concentrations of intestinal fatty acid-binding protein 2 and citrulline. Variation in biomarker concentrations over time was associated with aspects of ICU care indicating greater severity of illness: claudin 3, intestinal fatty acid-binding protein 2, and dual sugar permeability test ratio were associated with symptoms of feeding intolerance (p < 0.05), whereas intestinal fatty acid-binding protein was positively associated with vasoactive-inotrope score (p = 0.04). Citrulline was associated with larger arteriovenous oxygen saturation difference (p = 0.04) and had a complex relationship with vasoactive-inotrope score. CONCLUSIONS Children undergoing cardiopulmonary bypass for repair or palliation of congenital heart disease are at risk for intestinal injury and often present with evidence for loss of intestinal epithelial integrity preoperatively. Greater severity of illness requiring increased cardiopulmonary support rather than the inflammatory response to cardiopulmonary bypass seems to mediate late postoperative intestinal epithelial barrier function.
Collapse
|
48
|
Kuiken NSS, Rings EHHM, Tissing WJE. Risk analysis, diagnosis and management of gastrointestinal mucositis in pediatric cancer patients. Crit Rev Oncol Hematol 2014; 94:87-97. [PMID: 25560731 DOI: 10.1016/j.critrevonc.2014.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a complex inflammatory reaction of the mucous membranes of the alimentary tract upon chemotherapy and radiotherapy treatment in oncology patients. Mucositis can be subdivided in oral and gastrointestinal mucositis (GI mucositis). The damage to the gastrointestinal tract compromises the intestinal function and thereby the nutritional status and the quality of life, and eventually affects survival. The literature on GI mucositis focuses mainly on adults. This review focuses on data available on GI mucositis in pediatric cancer patients. An evaluation of the clinical presentation and consequences of GI mucositis in children is outlined. The review summarizes key issues for clinicians with respect to risk analysis for developing mucositis and the diagnosis of this condition in children. Information on these issues is obtained from clinical trials in children and adults, and from animal models. Diagnostic tools and assessment of severity of GI mucositis in children is elaborated on. Furthermore, the clinical management of the symptoms and consequences of GI mucositis in children, with specific focus on nutritional support, are discussed.
Collapse
Affiliation(s)
- Nicoline S S Kuiken
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands; Department of Pediatric Gastroenterology and Hepatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Edmond H H M Rings
- Department of Pediatrics, Leiden University Medical Center, The Netherlands; Department of Pediatrics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim J E Tissing
- Department of Pediatric Oncology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, The Netherlands.
| |
Collapse
|
49
|
Duan J, Yin J, Wu M, Liao P, Deng D, Liu G, Wen Q, Wang Y, Qiu W, Liu Y, Wu X, Ren W, Tan B, Chen M, Xiao H, Wu L, Li T, Nyachoti CM, Adeola O, Yin Y. Dietary glutamate supplementation ameliorates mycotoxin-induced abnormalities in the intestinal structure and expression of amino acid transporters in young pigs. PLoS One 2014; 9:e112357. [PMID: 25405987 PMCID: PMC4236086 DOI: 10.1371/journal.pone.0112357] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/03/2022] Open
Abstract
The purpose of this study was to investigate the hypothesis that dietary supplementation with glutamic acid has beneficial effects on growth performance, antioxidant system, intestinal morphology, serum amino acid profile and the gene expression of intestinal amino acid transporters in growing swine fed mold-contaminated feed. Fifteen pigs (Landrace×Large White) with a mean body weight (BW) of 55 kg were randomly divided into control group (basal feed), mycotoxin group (contaminated feed) and glutamate group (2% glutamate+contaminated feed). Compared with control group, mold-contaminated feed decreased average daily gain (ADG) and increased feed conversion rate (FCR). Meanwhile, fed mold-contaminated feed impaired anti-oxidative system and intestinal morphology, as well as modified the serum amino acid profile in growing pigs. However, supplementation with glutamate exhibited potential positive effects on growth performance of pigs fed mold-contaminated feed, ameliorated the imbalance antioxidant system and abnormalities of intestinal structure caused by mycotoxins. In addition, dietary glutamate supplementation to some extent restored changed serum amino acid profile caused by mold-contaminated feed. In conclusion, glutamic acid may be act as a nutritional regulating factor to ameliorate the adverse effects induced by mycotoxins.
Collapse
Affiliation(s)
- Jielin Duan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Jie Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Miaomiao Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Peng Liao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Dun Deng
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Gang Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Qingqi Wen
- Department of Animal Nutrition, Fujian Aonong biotechnology corporation, Xiamen, Fujian 361007, China
| | - Yongfei Wang
- Department of Animal Nutrition, Fujian Aonong biotechnology corporation, Xiamen, Fujian 361007, China
| | - Wei Qiu
- Research and Development Center, Twins Group Co., Ltd, Nanchang, Jiangxi 330096, China
| | - Yan Liu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingli Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Wenkai Ren
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Bie Tan
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Minghong Chen
- Hunan New Wellful Co., LTD, Changsha, Hunan, 410001, China
| | - Hao Xiao
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Li Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Charles M. Nyachoti
- Department of Animal science, University of Manitoba, Winnipeg, Man, R3T 2N2 Canada
| | - Olayiwola Adeola
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, United States of America
| | - Yulong Yin
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
- Southwest Collaborative Innovation center of swine for quality & safety, 211#211Huiming Road, Wenjiang district, Chengdu, China
| |
Collapse
|
50
|
A novel approach to maintain gut mucosal integrity using an oral enzyme supplement. Ann Surg 2014; 260:706-14; discussion 714-5. [PMID: 25203888 DOI: 10.1097/sla.0000000000000916] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To determine the role of intestinal alkaline phosphatase (IAP) in enteral starvation-induced gut barrier dysfunction and to study its therapeutic effect as a supplement to prevent gut-derived sepsis. BACKGROUND Critically ill patients are at increased risk for systemic sepsis and, in some cases, multiorgan failure leading to death. Years ago, the gut was identified as a major source for this systemic sepsis syndrome. Previously, we have shown that IAP detoxifies bacterial toxins, prevents endotoxemia, and preserves intestinal microbiotal homeostasis. METHODS WT and IAP-KO mice were used to examine gut barrier function and tight junction protein levels during 48-hour starvation and fed states. Human ileal fluid samples were collected from 20 patients postileostomy and IAP levels were compared between fasted and fed states. To study the effect of IAP supplementation on starvation-induced gut barrier dysfunction, WT mice were fasted for 48 hours +/- IAP supplementation in the drinking water. RESULTS The loss of IAP expression is associated with decreased expression of intestinal junctional proteins and impaired barrier function. For the first time, we demonstrate that IAP expression is also decreased in humans who are deprived of enteral feeding. Finally, our data demonstrate that IAP supplementation reverses the gut barrier dysfunction and tight junction protein losses due to a lack of enteral feeding. CONCLUSIONS IAP is a major regulator of gut mucosal permeability and is able to ameliorate starvation-induced gut barrier dysfunction. Enteral IAP supplementation may represent a novel approach to maintain bowel integrity in critically ill patients.
Collapse
|