1
|
Haga S, Ozawa T, Yamada Y, Morita N, Nagashima I, Inoue H, Inaba Y, Noda N, Abe R, Umezawa K, Ozaki M. p62/SQSTM1 plays a protective role in oxidative injury of steatotic liver in a mouse hepatectomy model. Antioxid Redox Signal 2014; 21:2515-30. [PMID: 24925527 PMCID: PMC4245881 DOI: 10.1089/ars.2013.5391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Liver injury and regeneration involve complicated processes and are affected by various physio-pathological factors. We investigated the mechanisms of steatosis-associated liver injury and delayed regeneration in a mouse model of partial hepatectomy. RESULTS Initial regeneration of the steatotic liver was significantly delayed after hepatectomy. Although hepatocyte proliferation was not significantly suppressed, severe liver injury with oxidative stress (OS) occurred immediately after hepatectomy in the steatotic liver. Fas-ligand (FasL)/Fas expression was upregulated in the steatotic liver, whereas the expression of antioxidant and anti-apoptotic molecules (catalase/MnSOD/Ref-1 and Bcl-2/Bcl-xL/FLIP, respectively) and p62/SQSTM1, a steatosis-associated protein, was downregulated. Interestingly, pro-survival Akt was not activated in response to hepatectomy, although it was sufficiently expressed even before hepatectomy. Suppression of p62/SQSTM1 increased FasL/Fas expression and reduced nuclear factor erythroid 2-related factor-2 (Nrf-2)-dependent antioxidant response elements activity and antioxidant responses in steatotic and nonsteatotic hepatocytes. Exogenously added FasL induced severe cellular OS and necrosis/apoptosis in steatotic hepatocytes, with only the necrosis being inhibited by pretreatment with antioxidants, suggesting that FasL/Fas-induced OS mainly leads to necrosis. Furthermore, p62/SQSTM1 re-expression in the steatotic liver markedly reduced liver injury and improved liver regeneration. INNOVATION This study is the first which demonstrates that reduced expression of p62/SQSTM1 plays a crucial role in posthepatectomy acute injury and delayed regeneration of steatotic liver, mainly via redox-dependent mechanisms. CONCLUSION In the steatotic liver, reduced expression of p62/SQSTM1 induced FasL/Fas overexpression and suppressed antioxidant genes, mainly through Nrf-2 inactivation, which, along with the hypo-responsiveness of Akt, caused posthepatectomy necrotic/apoptotic liver injury and delayed regeneration, both mainly via a redox-dependent mechanism.
Collapse
Affiliation(s)
- Sanae Haga
- 1 Laboratory of Molecular and Functional Bio-imaging, Faculty of Health Sciences, Hokkaido University , Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Abraham J, Balbo S, Crabb D, Brooks PJ. Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res 2011; 35:2113-20. [PMID: 21919919 DOI: 10.1111/j.1530-0277.2011.01563.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We recently reported that exposure of human cells in vitro to acetaldehyde resulted in the activation of the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. METHODS To determine whether intracellular generation of acetaldehyde from ethanol metabolism can cause DNA damage and activate the FA-BRCA network, we engineered HeLa cells to metabolize alcohol by expression of human alcohol dehydrogenase (ADH) 1B. RESULTS Incubation of HeLa-ADH1B cells with ethanol (20 mM) resulted in acetaldehyde accumulation in the media, which was prevented by co-incubation with 4-methyl pyrazole (4-MP), a specific inhibitor of ADH. Ethanol treatment of HeLa-ADH1B cells produced a 4-fold increase in the acetaldehyde-DNA adduct and N(2)-ethylidene-dGuo and also resulted in the activation of the FA-BRCA DNA damage response network, as indicated by a monoubiquitination of FANCD2 and phosphorylation of BRCA1. Ser 1524 was identified as 1 site of BRCA1 phosphorylation. The increased levels of DNA adducts, FANCD2 monoubiquitination, and BRCA1 phosphorylation were all blocked by 4-MP, indicating that acetaldehyde, rather than ethanol itself, was responsible for all 3 responses. Importantly, the ethanol concentration we used is within the range that can be attained in the human body during social drinking. CONCLUSIONS Our results indicate that intracellular metabolism of ethanol to acetaldehyde results in DNA damage, which activates the FA-BRCA DNA damage response network.
Collapse
Affiliation(s)
- Jessy Abraham
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, USA
| | | | | | | |
Collapse
|
3
|
Hote PT, Sahoo R, Jani TS, Ghare SS, Chen T, Joshi-Barve S, McClain CJ, Barve SS. Ethanol inhibits methionine adenosyltransferase II activity and S-adenosylmethionine biosynthesis and enhances caspase-3-dependent cell death in T lymphocytes: relevance to alcohol-induced immunosuppression. J Nutr Biochem 2007; 19:384-91. [PMID: 17869084 PMCID: PMC4867115 DOI: 10.1016/j.jnutbio.2007.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/18/2007] [Accepted: 05/23/2007] [Indexed: 02/02/2023]
Abstract
An important aspect in alcohol abuse-associated immune suppression is the loss of T helper CD4(+) lymphocytes, leading to impairment of multiple immune functions. Our work has shown that ethanol can sensitize CD4(+) T lymphocytes to caspase-3-dependent activation-induced cell death (AICD). It has been demonstrated that the formation of S-adenosylmethionine (SAMe) catalyzed by methionine adenosyltransferase (MAT) II is essential for CD4(+) T-cell activation and proliferation. Since ethanol is known to affect SAMe metabolism in hepatocytes, we investigated the effect of ethanol on MAT II activity/expression, SAMe biosynthesis and cell survival in CD4(+) T lymphocytes. We demonstrate for the first time that ethanol at a physiologically relevant concentration (25 mM) substantially decreased the enzymatic activity of MAT II in T lymphocytes. Ethanol was observed to decrease the transcription of MAT2A, which encodes the catalytic subunit of MAT II and is vital for MAT II activity and SAMe biosynthesis. Furthermore, correspondent to its effect on MAT II, ethanol decreased intracellular SAMe levels and enhanced caspase-3-dependent AICD. Importantly, restoration of intracellular SAMe levels by exogenous SAMe supplementation considerably decreased both caspase-3 activity and apoptotic death in T lymphocytes. In conclusion, our data show that MAT II and SAMe are critical molecular components essential for CD4(+) T-cell survival that are affected by ethanol, leading to enhanced AICD. Furthermore, these studies provide a clinical paradigm for the development of much needed therapy using SAMe supplementation in the treatment of immune dysfunction induced by alcohol abuse.
Collapse
Affiliation(s)
- Prachi T Hote
- Department of Pharmacology and Toxicology, University of Louisville Medical Center, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Castaneda F, Zimmermann D, Nolte J, Baumbach JI. Role of undecan-2-one on ethanol-induced apoptosis in HepG2 cells. Cell Biol Toxicol 2007; 23:477-85. [PMID: 17453350 DOI: 10.1007/s10565-007-9009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Accepted: 03/16/2007] [Indexed: 12/20/2022]
Abstract
Based on the reduced expression of ethanol-oxidizing enzymes in human hepatocellular carcinoma (HepG2) cells, we analyzed the role of nonoxidative metabolites in ethanol-induced apoptosis in HepG2 cells. For this purpose, an analysis of volatile metabolites of ethanol using ion-mobility spectrometry and gas chromatography-mass spectrometry was performed. HepG2 cells exposed to 1 mmol/L ethanol exhibited significant synthesis of undecan-2-one compared to untreated cells. Undecan-2-one is a fatty acid ethyl ester metabolite synthesized through a nonoxidative pathway. Undecan-2-one had a dose-dependent cytotoxic effect on HepG2 cells as shown by release of lactate dehydrogenase (LDH). The most notable finding of this study was the potentiation of ethanol-induced apoptosis demonstrated by an increased apoptotic rate induced by undecan-2-one in ethanol-treated HepG2 cells. The data presented in this study contribute to the better understanding of the molecular mechanisms of ethanol exposure at low concentration in HepG2 cells, a human hepatocellular carcinoma-derived cell line.
Collapse
Affiliation(s)
- F Castaneda
- Laboratory for Molecular Pathobiochemistry and Clinical Research, Max Planck Institute for Molecular Physiology, Dortmund, Germany.
| | | | | | | |
Collapse
|
5
|
Haseba T, Mashimo K, Sugimoto J, Sato S, Ohno Y. Maturation of Whisky Changes Ethanol Elimination Kinetics and Neural Effects by Increasing Nonvolatile Congeners. Alcohol Clin Exp Res 2007; 31:S77-82. [PMID: 17331171 DOI: 10.1111/j.1530-0277.2006.00291.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The maturation of distilled spirits is known to change constituent congeners to improve the qualities of smell and taste. However, it has been largely unknown how maturation modifies the pharmacokinetics or neuropharmacological effects of ethanol. We used single malt whiskies to investigate the effects of spirit maturation on ethanol metabolism and drunkenness. METHODS Mice were injected with 5-year (5-y) or 20-year (20-y) aged single malt whisky with a concentration of 20% (w/v) ethanol at a dose of 3 g/kg. The concentrations of ethanol and its metabolites in the blood and the duration of loss of righting reflex (LORR) were compared between the 2 whisky groups. In addition, the effects of nonvolatile congeners in whisky on the biomedical reactivities of ethanol were investigated by administering a nonvolatile fraction added to a 20% ethanol solution, whose fraction was prepared by evaporating 16-y whisky. Liver alcohol dehydrogenase (ADH) activity was measured with whisky as the substrate or in the presence of nonvolatile congeners with ethanol as the substrate. RESULTS The rate of ethanol elimination (mmol/kg/h) was smaller in the 20-y whisky group than in the 5-y group (p<0.01 by Fisher's protected least significant difference), which resulted in lower concentrations of blood acetaldehyde and acetate in the former group than in the latter group (p<0.01 by ANOVA). Nonvolatile congeners added to the ethanol solution also depressed the rate of ethanol elimination in mice. In vitro studies demonstrated that liver ADH activity measured with whisky as the substrate was decreased as a function of the age of the whisky, and that the activity measured with ethanol as the substrate was strongly inhibited by nonvolatile congeners. The duration of LORR was longer in the 20-y group than in the 5-y group (p<0.01). Nonvolatile congeners also prolonged the duration of ethanol-induced LORR, when administered together with ethanol. CONCLUSION Maturation of whisky delayed ethanol metabolism to lower the level of blood acetaldehyde and acetate with increasing inhibition of liver ADH activity by nonvolatile congeners. It also prolonged drunkenness by enhancing the neurodepressive effects of ethanol, due to increases in the amount of nonvolatile congeners. These biomedical effects of whisky maturation may reduce aversive reactions and cytotoxicity due to acetaldehyde, and may also limit overdrinking with the larger neurodepression.
Collapse
Affiliation(s)
- Takeshi Haseba
- Department of Legal Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
6
|
Donohue TM, Osna NA, Clemens DL. Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity. Int J Biochem Cell Biol 2006; 38:92-101. [PMID: 16181800 DOI: 10.1016/j.biocel.2005.07.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/27/2005] [Indexed: 02/08/2023]
Abstract
HepG2 cells were transfected with recombinant plasmids, one carrying the murine alcohol dehydrogenase (ADH) gene and the other containing the gene encoding human cytochrome P450 2E1 (CYP2E1). One of recombinant clones called VL-17A exhibited ADH and CYP2E1 specific activities comparable to those in isolated rat hepatocytes. VL-17A cells oxidized ethanol and generated acetaldehyde, the levels of which depended upon the initial ethanol concentration. Compared with unexposed VL-17A cells, ethanol exposure increased the cellular redox (lactate:pyruvate ratio) and caused cell toxicity, indicated by increased leakage of lactate dehydrogenase into the medium,. Exposure of VL-17A cells to 100mM ethanol significantly elevated caspase 3 activity, an indicator of apoptosis, but this ethanol concentration did not affect caspase 3 activity in parental HepG2 cells. Because ethanol consumption causes a decline in hepatic protein catabolism, we examined the influence of ethanol exposure on proteasome activity in HepG2, VL-17A, E-47 (CYP2E1(+)) and VA-13 (ADH(+)) cells. Exposure to 100mM ethanol caused a 25% decline in the chymotrypsin-like activity of the proteasome in VL-17A cells, but the enzyme was unaffected in the other cell types. This inhibitory effect on the proteasome was blocked when ethanol metabolism was blocked by 4-methyl pyrazole. We conclude that recombinant VL-17A cells, which express both ADH and CYP2E1 exhibit hepatocyte-like characteristics in response to ethanol. Furthermore, the metabolism of ethanol by these cells via ADH and CYP2E1 is sufficient to bring about an inhibition of proteasome activity that may lead to apoptotic cell death.
Collapse
|
7
|
McKillop IH, Schrum LW. Alcohol and liver cancer. Alcohol 2005; 35:195-203. [PMID: 16054981 DOI: 10.1016/j.alcohol.2005.04.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the eighth most frequent cancer in the world, accounting for approximately 500,000 deaths per year. Unlike many malignancies, hepatocellular carcinoma occurs predominantly within the context of known risk factors, with hepatic cirrhosis being the most common precursor to the development of hepatocellular carcinoma. After ethanol ingestion, the liver represents the major site of metabolism. Ethanol metabolism by alcohol dehydrogenase leads to the generation of acetaldehyde and free radicals that bind rapidly to numerous cellular targets, including components of cell signaling pathways and DNA. In addition to direct DNA damage, acetaldehyde depletes glutathione, an antioxidant involved in detoxification. Chronic ethanol abuse leads to induction of hepatocyte microsomal cytochrome P450 2E1, an enzyme that metabolizes ethanol to acetaldehyde and, in doing so, causes further free radical production and aberrant cell function. Cytochrome P450 2E1-dependent ethanol metabolism is also associated with activation of procarcinogens, changes in cell cycle, nutritional deficiencies, and altered immune system responses. The identification of oxidative stress in mediating many deleterious effects of ethanol in the liver has led to renewed interest in the use of dietary antioxidants as therapeutic agents. Included in this group are S-adenosyl-L-methionine and plant-derived flavanoids.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
8
|
Abstract
AIM: To study the correlation between genetic polymorphism of cytochrome P450IIE1 (CYPIIE1) and fatty liver.
METHODS: Peripheral blood mononuclear cells were collected in 56 patients with fatty liver, 26 patients without fatty liver and 20 normal controls. Then PCR-RFLP was used to analyze genetic polymorphism of CYPIIE1 in monocytes on the region of Pst I and Rsa I.
RESULTS: The frequency of homozygotic C1 gene in patients with alcoholic fatty liver (28.6%), obese fatty liver (38.5%), or diabetic fatty liver (33.3%) was significantly lower than that of the corresponding patients without fatty liver (100%, 100% and 80% respectively), while the frequency of C2 genes, including C1/C2 and C2/C2, was significantly higher (71.4%/0%, 61.5%/0%, and 66.7%/20%) (P < 0.01). The frequency distribution of the above genes of non-fatty liver patients (100%/0, 100%/0, and 80%/20%) was not significantly different from that of the normal controls (85%/15%) (P > 0.05).
CONCLUSION: The genetic polymorphism of CYPIIE1 on the position of Pst I and Rsa I is related to the susceptibility of fatty liver. Besides, C2 gene may play a key role in the pathogenesis of fatty liver.
Collapse
Affiliation(s)
- Yun-Feng Piao
- Department of Gastroenterology, First Hospital, Jilin University, Changchun 130021, Jilin Province, China
| | | | | |
Collapse
|
9
|
Osna NA, Clemens DL, Donohue TM. Interferon gamma enhances proteasome activity in recombinant Hep G2 cells that express cytochrome P4502E1: modulation by ethanol. Biochem Pharmacol 2003; 66:697-710. [PMID: 12948850 DOI: 10.1016/s0006-2952(03)00252-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We tested the influence of IFNgamma on proteasome activity in parental Hep G2 cells that do not metabolize ethanol, as well as in recombinant Hep G2-derived cells that express either or both alcohol dehydrogenase (ADH) and cytochrome P4502E1 (CYP2E1). IFNgamma treatment increased proteasome activity in VL-17A (ADH(+), CYP2E1(+)) and E-47 (CYP2E1(+)) cells, but not in Hep G2, VI-R2 (parental cells with empty vectors) or in VA-13 (ADH(+)) cells. Proteasome activation by IFNgamma correlated positively with the level of CYP2E1 activity. Treatment of VL-17A cells with agents that inhibit CYP2E1 or the inducible nitric oxide synthase (iNOS) or that prevent the formation of peroxynitrite also blocked proteasome activation by IFNgamma, indicating that the proteasome may be directly activated by products of CYP2E1 and iNOS catalysis. While IFNgamma treatment increased proteasome activity, it also decreased CYP2E1 activity. Both effects were mediated via the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) pathway, as both were blocked by the JAK2 inhibitor, tyrphostin AG 490. Ethanol treatment of VL-17A cells also caused a similar blockage of these same IFNgamma-mediated effects, by inhibiting STAT1 phosphorylation. This inhibition was largely due to ethanol metabolism, as 4-methylpyrazole, an ethanol metabolism inhibitor, restored IFNgamma-mediated STAT1 phosphorylation in ethanol-treated cells. Our results lead us to propose that IFNgamma initiates signal transduction, which alters the activities of CYP2E1 and iNOS, thereby producing reactive oxygen species. One of these oxidants, possibly peroxynitrite, may be directly involved in proteasome activation. Ethanol metabolism by VL-17A cells suppresses IFNgamma-mediated induction of proteasome activity, in part, by preventing STAT1 phosphorylation.
Collapse
Affiliation(s)
- Natalia A Osna
- Liver Study Unit, Research Service (151), The Veterans Affairs Medical Center, University of Nebraska Medical Center, 4101 Woolworth Ave., Omaha, NE 68105-8090, USA.
| | | | | |
Collapse
|
10
|
Clemens DL, Calisto LE, Sorrell MF, Tuma DJ. Ethanol metabolism results in a G2/M cell-cycle arrest in recombinant Hep G2 cells. Hepatology 2003; 38:385-93. [PMID: 12883482 DOI: 10.1053/jhep.2003.50332] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Previous studies using the Hep G2-based VA cells showed that ethanol metabolism resulted in both cytotoxicity and impaired DNA synthesis, causing reduced accumulation of cells in culture. To further characterize the ethanol oxidation-mediated impairment of DNA synthesis we analyzed the cell-cycle progression of VA cells. These studies showed approximately a 6-fold increase in the percentage of cells in the G2/M phase of the cell cycle after 4 days of ethanol exposure. The G2/M transition requires activity of the cyclin-dependent kinase, Cdc2. Cdc2 is positively regulated by association with cyclin B1, and negatively regulated by phosphorylation of amino acids Thr14 and Tyr15. Immunoblot analysis revealed that ethanol metabolism had little affect on total Cdc2 content in these cells, but resulted in the accumulation of up to 20 times the amount of cyclin B1, indicating that cyclin B1 was available for formation of Cdc2/cyclin B1 complexes. Co-immunoprecipitation revealed that 6 times more Cdc2/cyclin B1 complexes were present in the ethanol-treated cells compared with the controls. Investigation of the phosphorylation state of Cdc2 revealed that ethanol oxidation increased the amount of the phosphorylated inactive form of Cdc2 by approximately 3-fold. Thus, the impairment in cell-cycle progression could not be explained by a lack of cyclin B1, or the ability of Cdc2 and cyclin B1 to associate, but instead resulted, at least in part, from impaired Cdc2 activity. In conclusion, ethanol oxidation by VA cells results in a G2/M cell-cycle arrest, mediated by accumulation of the phosphorylated inactive form of Cdc2.
Collapse
Affiliation(s)
- Dahn L Clemens
- Department of Internal Medicine, University of Nebraska Medical Center and Veterans Administration Medical Center, Omaha, NE 68105, USA.
| | | | | | | |
Collapse
|