1
|
Quintana DS, Glaser BD, Kang H, Kildal ESM, Audunsdottir K, Sartorius AM, Barth C. The interplay of oxytocin and sex hormones. Neurosci Biobehav Rev 2024; 163:105765. [PMID: 38885888 DOI: 10.1016/j.neubiorev.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
The neuropeptide oxytocin has historically been associated with reproduction and maternal behavior. However, more recent research has uncovered that oxytocin has a much wider range of roles in physiology and behavior. Despite the excitement surrounding potential therapeutical applications of intranasally administered oxytocin, the results of these intervention studies have been inconsistent. Various reasons for these mixed results have been proposed, which tend to focus on methodological issues, such as study design. While methodological issues are certainly important, emerging evidence suggests that the interaction between oxytocin and sex hormones may also account for these varied findings. To better understand the purpose and function of the interaction of oxytocin with sex hormones, with a focus on estrogens, progesterone, and testosterone, we conducted a comprehensive thematic review via four perspectives: evolutionary, developmental, mechanistic, and survival. Altogether, this synergistic approach highlights the critical function of sex hormone activity for accomplishing the diverse roles of oxytocin via the modulation of oxytocin release and oxytocin receptor activity, which is also likely to contribute to the heterogeneity of outcomes after oxytocin administration.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway
| | - Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
2
|
Perkinson MR, Kirchner MK, Zhang M, Augustine RA, Stern JE, Brown CH. α-Melanocyte-stimulating hormone inhibition of oxytocin neurons switches to excitation in late pregnancy and lactation. Physiol Rep 2022; 10:e15226. [PMID: 35312181 PMCID: PMC8935534 DOI: 10.14814/phy2.15226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023] Open
Abstract
Oxytocin is secreted into the periphery by magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei (SON and PVN) to trigger uterine contraction during birth and milk ejection during suckling. Peripheral oxytocin secretion is triggered by action potential firing, which is regulated by afferent input activity and by feedback from oxytocin secreted into the extracellular space from magnocellular neuron somata and dendrites. A prominent input to oxytocin neurons arises from proopiomelanocortin neurons of the hypothalamic arcuate nucleus that secrete an alpha-melanocyte-stimulating hormone (α-MSH), which inhibits oxytocin neuron firing in non-pregnant rats by increasing somato-dendritic oxytocin secretion. However, α-MSH inhibition of oxytocin neuron firing is attenuated in mid-pregnancy and somato-dendritic oxytocin becomes auto-excitatory in late-pregnancy and lactation. Therefore, we hypothesized that attenuated α-MSH inhibition of oxytocin neuron firing marks the beginning of a transition from inhibition to excitation to facilitate peripheral oxytocin secretion for parturition and lactation. Intra-SON microdialysis administration of α-MSH inhibited oxytocin neuron firing rate by 33 ± 9% in non-pregnant rats but increased oxytocin neuron firing rate by 37 ± 12% in late-pregnant rats and by 28 ± 10% in lactating rats. α-MSH-induced somato-dendritic oxytocin secretion measured ex vivo with oxytocin receptor-expressing "sniffer" cells, was of similar amplitude in PVN slices from non-pregnant and lactating rats but longer-lasting in slices from lactating rats. Hence, α-MSH inhibition of oxytocin neuron activity switches to excitation over pregnancy while somato-dendritic oxytocin secretion is maintained, which might enhance oxytocin neuron excitability to facilitate the increased peripheral secretion that is required for normal parturition and milk ejection.
Collapse
Affiliation(s)
- Michael R. Perkinson
- Brain Health Research CentreUniversity of OtagoDunedinAotearoa New Zealand
- Centre for NeuroendocrinologyUniversity of OtagoDunedinAotearoa New Zealand
- Department of PhysiologyUniversity of OtagoDunedinAotearoa New Zealand
| | - Matthew K. Kirchner
- Center for Neuroinflammation and Cardiometabolic DiseasesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Meng Zhang
- Center for Neuroinflammation and Cardiometabolic DiseasesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Rachael A. Augustine
- Brain Health Research CentreUniversity of OtagoDunedinAotearoa New Zealand
- Centre for NeuroendocrinologyUniversity of OtagoDunedinAotearoa New Zealand
- Department of PhysiologyUniversity of OtagoDunedinAotearoa New Zealand
| | - Javier E. Stern
- Center for Neuroinflammation and Cardiometabolic DiseasesGeorgia State UniversityAtlantaGeorgiaUSA
| | - Colin H. Brown
- Brain Health Research CentreUniversity of OtagoDunedinAotearoa New Zealand
- Centre for NeuroendocrinologyUniversity of OtagoDunedinAotearoa New Zealand
- Department of PhysiologyUniversity of OtagoDunedinAotearoa New Zealand
| |
Collapse
|
3
|
Iovino M, Messana T, Tortora A, Giusti C, Lisco G, Giagulli VA, Guastamacchia E, De Pergola G, Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr Metab Immune Disord Drug Targets 2021; 21:91-110. [PMID: 32433011 DOI: 10.2174/1871530320666200520093730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Collapse
Affiliation(s)
- Michele Iovino
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Tullio Messana
- Infantile Neuropsychiatry, IRCCS - Institute of Neurological Sciences, Bologna, Italy
| | - Anna Tortora
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Consuelo Giusti
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Lisco
- Hospital Unit of Endocrinology, Perrino Hospital, Brindisi, Italy
| | - Vito Angelo Giagulli
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Edoardo Guastamacchia
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Internal Medicine and Clinical Oncology, University of Bari, School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine-Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases. University of Bari "Aldo Moro", School of Medicine, Policlinico, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
4
|
Israel JM, Oliet SH, Ciofi P. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices. Front Neurosci 2016; 10:109. [PMID: 27065780 PMCID: PMC4814512 DOI: 10.3389/fnins.2016.00109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/07/2016] [Indexed: 01/07/2023] Open
Abstract
Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.
Collapse
Affiliation(s)
- Jean-Marc Israel
- U1215, Neurocentre Magendie, Institut National de la Santé et de la Recherche MédicaleBordeaux, France; Université de BordeauxBordeaux, France
| | - Stéphane H Oliet
- U1215, Neurocentre Magendie, Institut National de la Santé et de la Recherche MédicaleBordeaux, France; Université de BordeauxBordeaux, France
| | - Philippe Ciofi
- U1215, Neurocentre Magendie, Institut National de la Santé et de la Recherche MédicaleBordeaux, France; Université de BordeauxBordeaux, France
| |
Collapse
|
5
|
Brown CH, Bains JS, Ludwig M, Stern JE. Physiological regulation of magnocellular neurosecretory cell activity: integration of intrinsic, local and afferent mechanisms. J Neuroendocrinol 2013; 25:678-710. [PMID: 23701531 PMCID: PMC3852704 DOI: 10.1111/jne.12051] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 01/12/2023]
Abstract
The hypothalamic supraoptic and paraventricular nuclei contain magnocellular neurosecretory cells (MNCs) that project to the posterior pituitary gland where they secrete either oxytocin or vasopressin (the antidiuretic hormone) into the circulation. Oxytocin is important for delivery at birth and is essential for milk ejection during suckling. Vasopressin primarily promotes water reabsorption in the kidney to maintain body fluid balance, but also increases vasoconstriction. The profile of oxytocin and vasopressin secretion is principally determined by the pattern of action potentials initiated at the cell bodies. Although it has long been known that the activity of MNCs depends upon afferent inputs that relay information on reproductive, osmotic and cardiovascular status, it has recently become clear that activity depends critically on local regulation by glial cells, as well as intrinsic regulation by the MNCs themselves. Here, we provide an overview of recent advances in our understanding of how intrinsic and local extrinsic mechanisms integrate with afferent inputs to generate appropriate physiological regulation of oxytocin and vasopressin MNC activity.
Collapse
Affiliation(s)
- C H Brown
- Department of Physiology and Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
6
|
Teng BL, Nonneman RJ, Agster KL, Nikolova VD, Davis TT, Riddick NV, Baker LK, Pedersen CA, Jarstfer MB, Moy SS. Prosocial effects of oxytocin in two mouse models of autism spectrum disorders. Neuropharmacology 2013; 72:187-96. [PMID: 23643748 DOI: 10.1016/j.neuropharm.2013.04.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/23/2013] [Accepted: 04/22/2013] [Indexed: 12/17/2022]
Abstract
Clinical evidence suggests that oxytocin treatment improves social deficits and repetitive behavior in autism spectrum disorders (ASDs). However, the neuropeptide has a short plasma half-life and poor ability to penetrate the blood-brain barrier. In order to facilitate the development of more bioavailable oxytocinergic compounds as therapeutics to treat core ASD symptoms, small animal models must be validated for preclinical screens. This study examined the preclinical utility of two inbred mouse strains, BALB/cByJ and C58/J, that exhibit phenotypes relevant to core ASD symptoms. Mice from both strains were intraperitoneally administered oxytocin, using either acute or sub-chronic regimens. Acute oxytocin did not increase sociability in BALB/cByJ; however, sub-chronic oxytocin had significant prosocial effects in both BALB/cByJ and C58/J. Increased sociability was observed 24 h following the final oxytocin dose in BALB/cByJ, while prosocial effects of oxytocin emerged 1-2 weeks post-treatment in C58/J. Furthermore, acute oxytocin decreased motor stereotypy in C58/J and did not induce hypoactivity or anxiolytic-like effects in an open field test. This study demonstrates that oxytocin administration can attenuate social deficits and repetitive behavior in mouse models of ASD, dependent on dose regimen and genotype. These findings provide validation of the BALB/cByJ and C58/J models as useful platforms for screening novel drugs for intervention in ASDs and for elucidating the mechanisms contributing to the prosocial effects of oxytocin.
Collapse
Affiliation(s)
- Brian L Teng
- Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamada S, Uenoyama Y, Deura C, Minabe S, Naniwa Y, Iwata K, Kawata M, Maeda KI, Tsukamura H. Oestrogen-dependent suppression of pulsatile luteinising hormone secretion and kiss1 mRNA expression in the arcuate nucleus during late lactation in rats. J Neuroendocrinol 2012; 24:1234-42. [PMID: 22536815 DOI: 10.1111/j.1365-2826.2012.02330.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Follicular development and ovulation are strongly suppressed during lactation in mammals via a profound suppression of gonadotrophin secretion. The present study aimed to examine the role of oestrogen feedback action in suppressing luteinising hormone (LH) secretion and hypothalamic kisspeptin expression during the latter half of lactation. Plasma LH concentrations kept at low levels throughout the lactating period in intact and oestrogen-replaced ovariectomised (OVX) lactating rats, whereas plasma LH concentrations gradually elevated from day 10 postpartum in lactating OVX rats. OVX lactating rats showed frequent LH pulses at late lactation, although the LH pulses were significantly inhibited by an oestrogen replacement, which is much less effective on LH release in nonlactating rats. Oestrogen replacement in lactating OVX rats significantly reduced the number of Kiss1 mRNA-expressing cells in the arcuate nucleus (ARC) at late lactation, although the same oestrogen treatment did not affect the number of Kiss1-expressing cells in nonlactating controls. Exogenous kisspeptin challenge (0.2 nmol) into the third cerebroventricle significantly increased LH secretion in lactating OVX, lactating OVX + subcutaneous 17β-oestradiol and intact lactating rats at day 16 postpartum. These results suggest that LH pulse suppression during late lactation could be a result of the enhanced oestrogen-dependent suppression of ARC kisspeptin expression.
Collapse
Affiliation(s)
- S Yamada
- Laboratory of Reproductive Science, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ferri SL, Flanagan-Cato LM. Oxytocin and dendrite remodeling in the hypothalamus. Horm Behav 2012; 61:251-8. [PMID: 22326383 PMCID: PMC3312999 DOI: 10.1016/j.yhbeh.2012.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 10/14/2022]
Abstract
For most people, their quality of life depends on their successful interdependence with others, which requires sophisticated social cognition, communication, and emotional bonds. Across the lifespan, new bonds must be forged and maintained, and conspecific menaces must be managed. The dynamic nature of the human social landscape suggests ongoing specific alterations in neural circuitry across several brain systems to subserve social behavior. To discover the biological mechanisms that contribute to normal social activities, animal models of social behavior have been developed. One valuable model system has been female rat sexual behavior, which is governed by cyclic variation of ovarian hormones. This behavior is modulated by the neuropeptide oxytocin (OT) through its actions in the hypothalamic ventromedial nucleus (VMH). The fluctuation of this behavior is associated with dendrite remodeling, like several other examples of behavioral plasticity. This review compares hormone-induced plasticity in the VMH with other examples of dendrite plasticity across the mammalian nervous system, namely the neurobehavioral paradigms of environmental enrichment, chronic stress, and incentive sensitization, which affect the neocortex, hippocampal formation, and ventral striatum, respectively. This comparison suggests that the effects of ovarian hormones on VMH neurons in rats, given the simple dendritic arbor and short time course for dendrite remodeling, provide a dual opportunity for mechanistic and functional studies that will shed light on i) the neural actions of OT that regulate social behavior and, ii) behaviorally relevant dendrite regulation in a variety of brain structures. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
9
|
Endocrine induced changes in brain function during pregnancy. Brain Res 2010; 1364:198-215. [DOI: 10.1016/j.brainres.2010.09.062] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 02/05/2023]
|
10
|
Abstract
Many neurons in the CNS display rhythmic patterns of activity to optimize excitation-secretion coupling. However, the mechanisms of rhythmogenesis are only partially understood. Magnocellular vasopressin (VP) neurons in the hypothalamus display a phasic activity that consists of alternative bursts of action potentials and silent periods. Previous observations from acute slices of adult hypothalamus suggested that VP cell rhythmicity depends on intrinsic membrane properties. However, such activity in vivo is nonregenerative. Here, we studied the mechanisms of VP neuron rhythmicity in organotypic slice cultures that, unlike acute slices, preserve functional synaptic connections. Comparative analysis of phasic firing of VP neurons in vivo, in acute slices, and in the cultures revealed that, in the latter, the activity was closely related to that observed in vivo. It was synaptically driven, essentially from glutamatergic inputs, and did not rely on intrinsic membrane properties. The glutamatergic synaptic activity was sensitive to osmotic challenges and kappa-opioid receptor activation, physiological stimuli known to affect phasic activity. Together, our data thus strongly suggest that phasic activity in magnocellular VP neurons is controlled by glutamatergic synaptic inputs rather than by intrinsic properties.
Collapse
|
11
|
Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O'Carroll AM, Lolait SJ. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 2009; 202:223-36. [PMID: 19420011 PMCID: PMC2710976 DOI: 10.1677/joe-09-0066] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, the G protein-coupled receptor GPR30 has been identified as a novel oestrogen receptor (ER). The distribution of the receptor has been thus far mapped only in the rat central nervous system. This study was undertaken to map the distribution of GPR30 in the mouse brain and rodent peripheral tissues. Immunohistochemistry using an antibody against GPR30 revealed high levels of GPR30 immunoreactivity (ir) in the forebrain (e.g. cortex, hypothalamus and hippocampus), specific nuclei of the midbrain (e.g. the pontine nuclei and locus coeruleus) and the trigeminal nuclei and cerebellum Purkinje layer of the hindbrain in the adult mouse brain. In the rat and mouse periphery, GPR30-ir was detected in the anterior, intermediate and neural lobe of the pituitary, adrenal medulla, renal pelvis and ovary. In situ hybridisation histochemistry using GPR30 riboprobes, revealed intense hybridisation signal for GPR30 in the paraventricular nucleus and supraoptic nucleus (SON) of the hypothalamus, anterior and intermediate lobe of the pituitary, adrenal medulla, renal pelvis and ovary of both rat and mouse. Double immunofluorescence revealed GPR30 was present in both oxytocin and vasopressin neurones of the paraventricular nucleus and SON of the rat and mouse brain. The distribution of GPR30 is distinct from the other traditional ERs and offers an additional way in which oestrogen may mediate its effects in numerous brain regions and endocrine systems in the rodent.
Collapse
|
12
|
Theodosis DT, Poulain DA, Oliet SHR. Activity-Dependent Structural and Functional Plasticity of Astrocyte-Neuron Interactions. Physiol Rev 2008; 88:983-1008. [DOI: 10.1152/physrev.00036.2007] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Observations from different brain areas have established that the adult nervous system can undergo significant experience-related structural changes throughout life. Less familiar is the notion that morphological plasticity affects not only neurons but glial cells as well. Yet there is abundant evidence showing that astrocytes, the most numerous cells in the mammalian brain, are highly mobile. Under physiological conditions as different as reproduction, sensory stimulation, and learning, they display a remarkable structural plasticity, particularly conspicuous at the level of their lamellate distal processes that normally ensheath all portions of neurons. Distal astrocytic processes can undergo morphological changes in a matter of minutes, a remodeling that modifies the geometry and diffusion properties of the extracellular space and relationships with adjacent neuronal elements, especially synapses. Astrocytes respond to neuronal activity via ion channels, neurotransmitter receptors, and transporters on their processes; they transmit information via release of neuroactive substances. Where astrocytic processes are mobile then, astrocytic-neuronal interactions become highly dynamic, a plasticity that has important functional consequences since it modifies extracellular ionic homeostasis, neurotransmission, gliotransmission, and ultimately neuronal function at the cellular and system levels. Although a complete picture of intervening cellular mechanisms is lacking, some have been identified, notably certain permissive molecular factors common to systems capable of remodeling (cell surface and extracellular matrix adhesion molecules, cytoskeletal proteins) and molecules that appear specific to each system (neuropeptides, neurotransmitters, steroids, growth factors) that trigger or reverse the morphological changes.
Collapse
|
13
|
Site-specific regulation of gene expression by estrogen in the hypothalamus of adult female rats. Neurosci Lett 2008; 436:35-9. [PMID: 18358606 DOI: 10.1016/j.neulet.2008.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 11/22/2022]
Abstract
Estrogen plays critical roles in the neuroendocrine system of adult female rats through separate actions, respectively, in the preoptic area (POA) and the ventromedial nucleus of the hypothalamus (VMH). Seven-week-old rats were treated with/without estrogen after they were ovariectomized, and four estrogen-responsive, neuronal system-related genes, encoding alpha4 neuronal nicotinic acetylcholine receptor (Chrna4), GABA(A) receptor delta (Gabrd), serotonin receptor 6 (Htr6), and GABA transporter 2 (Slc6a13), were investigated by real-time RT-PCR and Western blot analyses to examine their differential regulation by estrogen between the anterior part containing POA and the posterior part containing VMH. We further examined Bax, Bcl2, and Prkce, the former two genes to be involved in the gene expression network of Chrna4 and the latter gene, that of Gabrd. The regulation of Bax and Bcl2 by estrogen differed between the anterior and posterior parts. The results demonstrated differential regulation of these neuronal system-related genes by estrogen between the anterior and posterior parts of the hypothalamus and suggested the roles of gene expression networks for the respective genes in the neuroendocrine system of adult female rats.
Collapse
|
14
|
Sladek CD, Somponpun SJ. Estrogen receptors: their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front Neuroendocrinol 2008; 29:114-27. [PMID: 18022678 PMCID: PMC2274006 DOI: 10.1016/j.yfrne.2007.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/28/2007] [Accepted: 08/14/2007] [Indexed: 11/22/2022]
Abstract
Long standing interest in the impact of gonadal steroid hormones on fluid and electrolyte balance has led to a body of literature filled with conflicting reports about gender differences, the effects of gonadectomy, hormone replacement, and reproductive cycles on plasma vasopressin (VP), VP secretion, and VP gene expression. This reflects the complexity of gonadal steroid hormone actions in the body resulting from multiple sites of action that impact fluid and electrolyte balance (e.g. VP target organs, afferent pathways regulating the VP neurons, and the VP secreting neurons themselves). It also reflects involvement of multiple types of estrogen receptors (ER) in these diverse sites including ERs that act as transcription factors regulating gene expression (i.e. the classic ERalpha as well as the more recently discovered ERbeta) and potentially G-protein coupled, membrane localized ERs that mediate rapid non-genomic actions of estrogen. Furthermore, altered expression of these receptors in physiologically diverse conditions of fluid and electrolyte balance contributes to the difficulty of using simplistic approaches such as gender comparisons, gonadectomy, and hormone replacement to assess the role of gonadal steroids in regulation of VP secretion for maintenance of fluid and electrolyte homeostasis. This review catalogs these inconsistencies and provides a frame work for understanding them by describing: (1) the effect of gonadal steroids on target organ responsiveness to VP; (2) the expression of multiple types of estrogen receptors in the VP neurons and in brain regions monitoring feedback signals from the periphery; and (3) the impact of dehydration and hyponatremia on expression of these receptors.
Collapse
Affiliation(s)
- Celia D Sladek
- University of Colorado Denver and Health Science Center, Aurora, CO 80045, USA.
| | | |
Collapse
|
15
|
Vanoye-Carlo A, Morales T, Ramos E, Mendoza-Rodríguez A, Cerbón M. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat. Horm Behav 2008; 53:112-23. [PMID: 17963758 DOI: 10.1016/j.yhbeh.2007.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 01/20/2023]
Abstract
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.
Collapse
Affiliation(s)
- América Vanoye-Carlo
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, México, D.F., 04510, Mexico
| | | | | | | | | |
Collapse
|
16
|
Sakamoto H, Matsuda KI, Hosokawa K, Nishi M, Morris JF, Prossnitz ER, Kawata M. Expression of G protein-coupled receptor-30, a G protein-coupled membrane estrogen receptor, in oxytocin neurons of the rat paraventricular and supraoptic nuclei. Endocrinology 2007; 148:5842-50. [PMID: 17872373 DOI: 10.1210/en.2007-0436] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The regulatory actions of estrogens on magnocellular oxytocin (OT) neurons of the paraventricular and supraoptic nuclei are well documented. Although the expression and distribution of nuclear estrogen receptor-beta, but not estrogen receptor-alpha, in the OT neuron has been described, the nuclear receptors may not explain all aspects of estrogen function in the hypothalamic OT neuron. Recently a G protein-coupled receptor (GPR) for estrogens, GPR30, has been identified as a membrane-localized estrogen receptor in several cancer cell lines. In this study, we therefore investigated the expression and localization of GPR30 in magnocellular OT neurons to understand the mode of rapid estrogen actions within these neurons. Here we show that, in the paraventricular nucleus and supraoptic nucleus, GPR30 is expressed in magnocellular OT neurons at both mRNA and protein levels but is not expressed in vasopressin neurons. Specific markers for intracellular organelles and immunoelectron microscopy revealed that GPR30 was localized mainly in the Golgi apparatus of the neurons but could not be detected at the cell surface. In addition, the expression of GPR30 is also detected in the neurohypophysis. These results suggest that GPR30 may serve primarily as a nongenomic transducer of estrogen actions in the hypothalamo-neurohypophyseal system.
Collapse
Affiliation(s)
- Hirotaka Sakamoto
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Brown CH, Brunton PJ, Russell JA. Rapid estradiol-17beta modulation of opioid actions on the electrical and secretory activity of rat oxytocin neurons in vivo. Neurochem Res 2007; 33:614-23. [PMID: 17960480 DOI: 10.1007/s11064-007-9506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2007] [Indexed: 12/14/2022]
Abstract
During pregnancy, emergence of endogenous opioid inhibition of oxytocin neurons is revealed by increased oxytocin secretion after administration of the opioid receptor antagonist, naloxone. Here we show that prolonged estradiol-17beta and progesterone treatment (mimicking pregnancy levels) potentiates naloxone-induced oxytocin secretion in urethane-anesthetized virgin female rats. We further show that estradiol-17beta alone rapidly modifies opioid interactions with oxytocin neurons, by recording their firing rate in anesthetized rats sensitized to naloxone by morphine dependence. Naloxone-induced morphine withdrawal strongly increased the firing rate of oxytocin neurons in morphine dependent rats. Estradiol-17beta did not alter basal oxytocin neuron firing rate over 30 min, but amplified naloxone-induced increases in firing rate. Firing pattern analysis indicated that acute estradiol-17beta increased oxytocin secretion in dependent rats by increasing action potential clustering without an overall increase in firing rate. Hence, rapid estradiol-17beta actions might underpin enhanced oxytocin neuron responses to naloxone in pregnancy.
Collapse
Affiliation(s)
- Colin H Brown
- Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand.
| | | | | |
Collapse
|
18
|
Somponpun SJ. Neuroendocrine regulation of fluid and electrolyte balance by ovarian steroids: contributions from central oestrogen receptors. J Neuroendocrinol 2007; 19:809-18. [PMID: 17850463 DOI: 10.1111/j.1365-2826.2007.01587.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like other hormonally mediated mechanisms, maintenance of body fluid osmolality requires integrated responses from multiple signals at various tissue locales, a large number of which are open to modulation by circulating endocrine factors including the ovarian steroid, oestrogens (E(2)). However, the precise mechanism and the site of action of E(2) in regulating fluid osmolality are not properly understood. More importantly, the biological significance of this action is not clear and the physiological circumstances in which this modulation is engaged remain incomplete. The demonstration of oestrogen receptors (ER) in neural tissues that bear no direct relation to reproduction led us to examine and characterise the expression of ER in brain nuclei that are critical for the maintenance of fluid osmolality. In the rat, ERbeta is prominently expressed in the vasopressin magnocellular neuroendocrine cells of the hypothalamus, whereas ERalpha is localised extensively in the sensory circumventricular organ neurones in the basal forebrain. These nuclei are the primary brain sites that are engaged in defense of fluid perturbation, thus providing a neuroendocrine basis for oestrogenic influence on body fluid regulation. Plasticity in receptor expression that accompanies fluid disturbances at these central loci suggests the functional importance of the receptors and implicates E(2) as one of the fluid regulating hormones in water homeostasis.
Collapse
Affiliation(s)
- S J Somponpun
- Department of Clinical Investigation, Tripler Army Medical Center, Tripler AMC, HI 96859, USA.
| |
Collapse
|
19
|
Chakraborti A, Gulati K, Ray A. Estrogen Actions on Brain and Behavior: Recent Insights and Future Challenges. Rev Neurosci 2007; 18:395-416. [DOI: 10.1515/revneuro.2007.18.5.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Theodosis DT, Trailin A, Poulain DA. Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1175-82. [PMID: 16603657 DOI: 10.1152/ajpregu.00755.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but this glial coverage can be altered under different physiological conditions that modify neuronal activity. Changes in synaptic connectivity accompany astrocytic transformations so that an increased number of synapses are associated with reduced astrocytic coverage of postsynaptic elements, whereas synaptic numbers are reduced on reestablishment of glial coverage. A system that exemplifies activity-dependent structural synaptic plasticity in the adult brain is the hypothalamo-neurohypophysial system, and in particular, its oxytocin component. Under strong, prolonged activation (parturition, lactation, chronic dehydration), extensive portions of somatic and dendritic surfaces of magnocellular oxytocin neurons are freed of intervening astrocytic processes and become directly juxtaposed. Concurrently, they are contacted by an increased number of inhibitory and excitatory synapses. Once stimulation is over, astrocytic processes again cover oxytocinergic surfaces and synaptic numbers return to baseline levels. Such observations indicate that glial ensheathment of neurons is of consequence to neuronal function, not only directly, for example by modifying synaptic transmission, but indirectly as well, by preparing neuronal surfaces for synapse turnover.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- Laboratory of Morphofunctional Neurobiology Institut National de la Santé et de la Recherche Médicale U 378; University Victor Segalen-Bordeaux, F33077, Bordeaux, France.
| | | | | |
Collapse
|
21
|
Theodosis DT, Koksma JJ, Trailin A, Langle SL, Piet R, Lodder JC, Timmerman J, Mansvelder H, Poulain DA, Oliet SHR, Brussaard AB. Oxytocin and estrogen promote rapid formation of functional GABA synapses in the adult supraoptic nucleus. Mol Cell Neurosci 2006; 31:785-94. [PMID: 16488155 DOI: 10.1016/j.mcn.2006.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 12/14/2005] [Accepted: 01/11/2006] [Indexed: 11/26/2022] Open
Abstract
We here investigated inhibitory synapse turnover in the adult brain using the hypothalamic supraoptic nucleus where new synapses form during different physiological conditions, in particular on oxytocin neurons largely controlled by GABAergic inputs and locally released oxytocin. Patch clamp recordings and ultrastructural analysis of the nucleus in acute slices from late gestating rats showed that oxytocin and estrogen promoted rapid formation of inhibitory synapses. Thus, after 2-h exposure to a combination of oxytocin and 17-beta estradiol, the frequency of miniature inhibitory postsynaptic currents was significantly enhanced. Since their amplitude and presynaptic GABA release probability were unmodified, this indicated an increased number of synapses. Electron microscopy confirmed increased densities of symmetric, putative GABAergic synapses within 2-h exposure to the peptide or steroid, effects which were reversible and oxytocin receptor mediated. Our observations thus offer direct evidence that hypothalamic GABAergic microcircuitries can undergo rapid and functional remodeling under changing neuroendocrine conditions.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- Inserm, U 378, Bordeaux F33077 France; University Victor Segalen, Bordeaux F33077, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lipschitz DL, Crowley WR, Armstrong WE, Bealer SL. Neurochemical bases of plasticity in the magnocellular oxytocin system during gestation. Exp Neurol 2005; 196:210-23. [PMID: 16157332 DOI: 10.1016/j.expneurol.2005.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/14/2005] [Accepted: 08/06/2005] [Indexed: 11/22/2022]
Abstract
The central and systemic release of oxytocin (OT) has been well documented during parturition and lactation. In preparation for the demands of these events, the magnocellular hypothalamic neurons of the central OT system undergo a variety of biochemical, molecular, electrophysiological, and anatomical adaptations during gestation. However, the mechanisms responsible for these changes have not been well established. A number of neurochemical mediators have been implicated in contributing to the plasticity in the OT magnocellular system during gestation, including ovarian hormones, as well as central neurotransmitters, such as glutamate, gamma-amino butyric acid (GABA), and central neurosteroids, e.g., allopregnanolone. In addition, several lines of evidence suggest that central OT release and subsequent OT receptor stimulation may contribute to adaptations of the OT system during gestation, and may be necessary for its subsequent functioning during lactation. Here, we review evidence for involvement of the neurochemical systems implicated in contributing to adaptations that occur in the OT system during the course of gestation.
Collapse
Affiliation(s)
- D L Lipschitz
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, 30 South 2000 East, Rm 201, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
23
|
Cornil CA, Dalla C, Papadopoulou-Daifoti Z, Baillien M, Balthazart J. Estradiol rapidly activates male sexual behavior and affects brain monoamine levels in the quail brain. Behav Brain Res 2005; 166:110-23. [PMID: 16159671 DOI: 10.1016/j.bbr.2005.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/19/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Steroids are generally viewed as transcription factors binding to intracellular receptors and activating gene transcription. Rapid cellular effects mediated via non-genomic mechanisms have however been identified and one report showed that injections of estradiol rapidly stimulate chemoinvestigation and mounting behavior in castrated male rats. It is not known whether such effects take place in other species and what are the cellular underlying mechanisms. We show here that a single injection of estradiol (500 microg/kg) rapidly and transiently activates copulatory behavior in castrated male quail pre-treated with a dose of testosterone behaviorally ineffective by itself. The maximal behavioral effect was observed after 15 min. In a second experiment, the brain of all subjects was immediately collected after behavioral tests performed 15 min after injection. The preoptic area--hypothalamus (HPOA), hindbrain, telencephalon and cerebellum were isolated and monoamines measured by HPLC-ED. Estradiol increased levels of the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and 5-HIAA/serotonin ratios in the telencephalon and hindbrain independently of whether animals had mated or not. Estradiol also affected these measures in HPOA and cerebellum but this effect was correlated with the level of sexual activity so that significant effects of the treatment only appeared when sexual activity was used as a covariate. Interactions between estradiol effects and sexual activity were also observed for dopamine in the HPOA and for serotonin in the hindbrain and cerebellum. Together, these data demonstrate that a single estradiol injection rapidly activates male sexual behavior in quail and that this behavioral effect is correlated with changes in monoaminergic activity.
Collapse
Affiliation(s)
- Charlotte A Cornil
- Center for Cellular & Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, B-4000 Liège 1, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Wang YF, Hatton GI. Burst firing of oxytocin neurons in male rat hypothalamic slices. Brain Res 2005; 1032:36-43. [PMID: 15680939 DOI: 10.1016/j.brainres.2004.10.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 11/20/2022]
Abstract
Burst firing and single spike activity play different roles in the modulation of local neuronal circuit activity and neurosecretion. In hypothalamic oxytocin (OT) neurons in vivo, burst firing is associated with pulsatile secretion of OT in the milk ejection reflex, and can be observed in slices from both immature and lactating rats in vitro. Whether OT neurons from male rats also possess burst firing capability is still an open question. To examine this possibility, whole-cell patch clamp recordings were made in supraoptic nucleus OT neurons in brain slices from male rats. In low Ca(2+) medium, the alpha(1)-adrenoceptor agonist, phenylephrine evoked bursts that were highly similar to those from lactating rats in vivo and in vitro: explosive onset, short-duration, quickly reaching peak firing rate and displaying an exponential decay in returning to the pre-burst rate. During bursts, spike durations increased, and spike amplitudes decreased, while riding on an arc of depolarization around peak rate. In comparison to those from lactating rats in vitro, the rising phase of male bursts was more rapid, the decay phase was slower, and the rising phase of the spike after hyperpolarization was faster. No significant differences, however, were seen in burst characteristics that are most important in determining the amount of peptide release: burst amplitudes (the number of spikes in a burst), firing frequency within bursts or peak firing rate. Thus, we conclude that OT neurons in males are capable of burst firing highly similar to that seen in lactating rats.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
25
|
Matagne V, Lebrethon MC, Gérard A, Bourguignon JP. Kainate/estrogen receptor involvement in rapid estradiol effects in vitro and intracellular signaling pathways. Endocrinology 2005; 146:2313-23. [PMID: 15661860 DOI: 10.1210/en.2004-1265] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the interactions between sex steroids and GnRH have been extensively studied, little is known about the mechanism of estradiol (E2) effects on GnRH secretion. In the present study, we used retrochiasmatic hypothalamic explants of 50-d-old male rats, and we observed that E2 significantly increased the glutamate-evoked GnRH secretion in vitro within 15 min in a dose-dependent manner. E2 also significantly increased the L-arginine-evoked GnRH secretion. E2 effects were time dependent because the initially ineffective 10(-9) M concentration became effective after 5 h of incubation. The E2 effects involved the estrogen receptor (ER) alpha because they were similarly obtained with the specific ER alpha agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole. The use of glutamate receptor agonists and antagonists indicated that E2 effects on GnRH secretion evoked by both glutamate and L-arginine involved the 2-amino-3-hydroxy-5-methyl-4-isoxazol propionic acid/kainate receptors. Similar E2 effects on the kainate-evoked secretion were observed throughout development in both sexes. The observation of similar E2 effects using explants containing the median eminence alone indicated that the median eminence was a direct target for E2 rapid effects on the glutamate-evoked GnRH secretion. The signaling pathways involved in E2 effects included an increase in intracellular calcium and the activation of protein kinase A, protein kinase C, and MAPK. It is concluded that E2 can stimulate the glutamate- and nitric oxide-evoked GnRH secretion in vitro through a rapid pathway involving the ER and kainate receptor as well as through a slower mechanism responding to lower E2 concentrations.
Collapse
Affiliation(s)
- V Matagne
- Developmental Neuroendocrinology Unit, Research Center for Cellular and Molecular Neurobiology, University of Liège, Centre Hospitalier Universitaire, Sart-Tilman, B-4000 Liège, Belgium
| | | | | | | |
Collapse
|
26
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
27
|
Langle SL, Poulain DA, Theodosis DT. Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci 2003; 18:206-14. [PMID: 12859353 DOI: 10.1046/j.1460-9568.2003.02741.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamic oxytocinergic system offers a remarkable model of morphological plasticity in the adult because its neurons and astrocytes undergo mutual remodelling in relation to differing physiological conditions. Among various factors involved in such plasticity, oxytocin (OT) itself appears of primary importance as its central administration resulted in morphological changes similar to those brought on by physiological stimuli. In the present study, we applied OT on acute hypothalamic slices from adult rats that included the supraoptic nucleus. Using ultrastructural morphometric analyses, we found that it induced a significant reduction of astrocytic coverage of OT neurons, leaving their surfaces directly juxtaposed, to an extent similar to that detected in vivo under conditions like lactation. These neuronal-glial changes were rapid and reversible, occurring within a few hours, and specifically mediated via OT receptors. They were potentiated by oestrogen and depended on calcium mobilization and de novo protein synthesis. Moreover, they depended on concurrent neuronal activation brought on by hyperosmotic stimulation or blockade of inhibitory GABAergic neurotransmission; they were inhibited by blockade of glutamatergic receptors. Taken together, our observations show that intrahypothalamic release of OT affects not only neuronal activation of the OT system but its morphological plasticity as well. Moreover, the activity dependence of the OT-induced changes strongly suggests that astrocytes can sense the level of activity of adjacent neurons and/or afferent input and this can subsequently act as a signal to bring on the neuronal and glial conformational changes.
Collapse
Affiliation(s)
- Sarah L Langle
- Laboratory of Morphofunctional Neurobiology Inserm U 378, University Victor Segalen-Bordeaux 2, Rue Camille Saint-Saëns, F33077 Bordeaux cedex, France
| | | | | |
Collapse
|
28
|
Widmer H, Ludwig M, Bancel F, Leng G, Dayanithi G. Neurosteroid regulation of oxytocin and vasopressin release from the rat supraoptic nucleus. J Physiol 2003; 548:233-44. [PMID: 12588901 PMCID: PMC2342803 DOI: 10.1113/jphysiol.2002.036863] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In adult rats somato-dendritic release of oxytocin and vasopressin from magnocellular neurones in the supraoptic nucleus of the hypothalamus has important autoregulatory actions on the neuronal electrical activity, and in neonatal rats it plays a role in the development of dendritic arborisation. In the adult, oxytocin effects are modulated by allopregnanolone via an interaction with inhibitory GABAA receptors. This study examined the effects of allopregnanolone, progesterone and 17beta-oestradiol on oxytocin and vasopressin release from intact isolated supraoptic nuclei and from the neurophypophyses in rats of differing ages. In supraoptic nuclei from rats of 3-4 weeks old or less, all three neurosteroids induced oxytocin release from the isolated supraoptic nucleus, but only allopregnanolone induced significant release of vasopressin. Surprisingly, in these very young rats, allopregnanolone-induced oxytocin release was inhibited by GABAA receptor antagonists as well as by an oxytocin receptor antagonist. By contrast, in supraoptic nuclei from adult rats allopregnanolone-induced oxytocin release was much smaller, and was enhanced in the presence of bicuculline. The GABAA receptor agonist muscimol also induced oxytocin release from supraoptic nuclei in young rats, but had no effect in adult rats. Oxytocin cells isolated from young rats showed an increase in [Ca2+]i in response to both allopregnanolone and muscimol. Allopregnanolone had no effect on [Ca2+]i or on the release of oxytocin or vasopressin from neurohypophysial axon terminals in either young or old rats. We conclude that, in very young rats, (i) neurosteroids induce oxytocin release from the supraoptic nucleus by a mechanism that partly depends on the presence of GABA, which in young rats is depolarising to oxytocin cells, and which also partly depends upon endogenous oxytocin, and (ii) the effect of allopregnanolone upon oxytocin release changes with age, as the functional activity of GABAA receptors changes from excitation to inhibition of oxytocin cells.
Collapse
Affiliation(s)
- Hélène Widmer
- School of Biomedical and Clinical Laboratory Sciences, University of Edinburgh College of Medical and Veterinary Sciences, Edinburgh, UK
| | | | | | | | | |
Collapse
|
29
|
Brussaard AB, Koksma JJ. Short-term modulation of GABAA receptor function in the adult female rat. PROGRESS IN BRAIN RESEARCH 2002; 139:31-42. [PMID: 12436924 DOI: 10.1016/s0079-6123(02)39005-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Oxytocin neurons in the supraoptic nucleus (SON) exhibit marked neuronal plasticity during each reproductive cycle. We have previously shown that this neuronal plasticity includes GABAA receptor subunit switching around the time of parturition. Here we focus on addition plasticity in short-term regulatory mechanisms of postsynaptic receptor function before and after parturition, i.e. alterations in metabotropic and allosteric modulation of GABAA receptor activity. Both short- and long-term regulation of the GABAA receptor function affects the electrical behaviour of the oxytocin neurons (Brussaard and Herbison, 2000); however, their causal linkage until recently remained unclear. Non-genomic gonadal steroid feedback to oxytocin neurons is mediated via the neurosteroid allopregnanolone (3 alpha-OH-DHP) that is an allosteric modulator of postsynaptic GABAA receptors. We recently found evidence to support the idea that (1) neurosteroids not only potentiate GABAA receptor function but also prevent its suppression by PKC (Brussaard et al., 2000), and (2) that neurosteroid sensitivity of GABAA receptor is not regulated by subunit switching, but instead, is dependent on the balance between endogenous phosphatase and PKC activity (Koksma et al., 2002). Thus, before pregnancy, the GABAA receptors are sensitive to 3 alpha-OH-DHP, due to a constitutively high level of phosphatase activity. At parturition, endogenous release of oxytocin within the SON shifts the intracellular balance towards a higher level of phosphorylation, leading to 3 alpha-OH-DHP insensitivity of the GABAA receptors. Here we discuss the putative mechanisms underlying these changes in receptor physiology, their causal relations and the functional significance for the hormonal output.
Collapse
Affiliation(s)
- Arjen B Brussaard
- Department of Experimental Neurophysiology, Vrije Universiteit Amsterdam, Research Institute Neurosciences, Centre for Neurogenomics and Cognitive Research, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Kumar A, Foster TC. 17beta-estradiol benzoate decreases the AHP amplitude in CA1 pyramidal neurons. J Neurophysiol 2002; 88:621-6. [PMID: 12163515 DOI: 10.1152/jn.2002.88.2.621] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of Ca(2+) homeostasis is hypothesized to mediate several electrophysiological markers of brain aging. Recent evidence indicates that estradiol can rapidly alter Ca(2+)-dependent processes in neurons through nongenomic mechanisms. In the current study, electrophysiological effects of 17beta-estradiol benzoate (EB) on the Ca(2+)-activated afterhyperpolarization (AHP) were investigated using intracellular sharp electrode recording in hippocampal slices from ovariectomized Fischer 344 female rats. The AHP amplitude was enhanced in aged (22-24 mo) compared with young (5-8 mo) rats and direct application of EB (100 pM) reduced the AHP in aged rats. The age-related difference was due, in part, to the increased AHP amplitude of aged animals, since an EB-mediated decrease in the AHP could be observed in young rats when the extracellular Ca(2+) was elevated to increase the AHP amplitude. In aged rats, bath application of EB occluded the ability of the L-channel blocker, nifedipine (10 microM), to attenuate the AHP. The results support a role for EB in modifying hippocampal Ca(2+)-dependent processes in a manner diametrically opposite that observed during aging, possibly through L-channel inhibition.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, College of Medicine, Lexington 40536, USA
| | | |
Collapse
|
31
|
Liu CY, Chen LB, Liu PY, Xie DP, Wang PS. Effects of progesterone on gastric emptying and intestinal transit in male rats. World J Gastroenterol 2002; 8:338-41. [PMID: 11925620 PMCID: PMC4658379 DOI: 10.3748/wjg.v8.i2.338] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the dose-dependent of progesterone (P) effect and the interaction between the oxytocin (OT) and P on gastrointestinal motility.
METHODS: In order to monitor the gastric emptying and intestinal transit, the SD male rats were intubated via a catheter with normal saline (3 mL/kg) containing Na251CrO4 (0.5 μCi/mL) and 10% charcoal. OT was dissolved into normal saline and P was dissolved into 75% alcohol.
RESULTS: Low does of P (1 mg/kg, i.p.) enhanced the gastric emptying (75% ± 3%, P < 0.05) and high dose of P (5 mg/kg, i.p.) inhibit it (42% ± 11.2%, P < 0.01). P (1 mg/kg) increased the intestinal transit (4.2 ± 0.3, P < 0.05) while the higher dose (10-20 mg/kg) had no effect. OT (0.8 mg/kg, i.p.) inhibited the gastric emptying (23.5% ± 9.8%, P < 0.01). The inhibitory effects of P (20 mg/kg) (32% ± 9.7%, P < 0.05) and OT (0.8 mg/kg) on gastric emptying enhanced each other when the two chemicals were administrated simultaneously (17% ± 9.4%, P < 0.01).
CONCLUSION: Low dose of P increased GI motility while high dose of P decreased it. During the later period of pregnancy, elevated plasma level of OT may also participate in the gastrointestinal inhibition.
Collapse
Affiliation(s)
- Chuan-Yong Liu
- Department of Physiology, School of Medicine, Shandong University, Jinan 250012, Shandong Province, China.
| | | | | | | | | |
Collapse
|
32
|
Christian HC, Morris JF. Rapid actions of 17beta-oestradiol on a subset of lactotrophs in the rat pituitary. J Physiol 2002; 539:557-66. [PMID: 11882687 PMCID: PMC2290152 DOI: 10.1113/jphysiol.2001.012947] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasingly the role of rapid mechanisms of steroid action in physiological regulation are being recognised. We have investigated rapid effects of 17beta-oestradiol (E) on prolactin (PRL) release in vitro. Pituitary segments from male rats were incubated for 5, 10 or 20 min in Earle's balanced salt solution containing 1.2 mM tannic acid (to enable visualisation of exocytosed secretory granules by electron microscopy) either alone (control) or containing 10(-10)-10(-8) M E conjugated to bovine serum albumin (E-BSA). PRL and leuteinising hormone (LH) release from pituitary segments were also determined in response to E and E-BSA by radioimmunoassay. Within 10 min E-BSA and E (10(-12)-10(-6) M) stimulated a significant (P < 0.05) concentration-dependent release of PRL but not LH. After exposure to experimental media for 5 min, only occasional exocytosis from type I lactotrophs (characterised by large polymorphic secretory granules) was observed in either control or E-BSA treated tissue. In contrast, E-BSA (10(-10)-10(-8) M) induced a significant (P < 0.05) increase in the number of exocytotic profiles from type II lactotrophs (characterized by smaller, spherical granules). This effect was not inhibited by removal of extracellular calcium, or by pre-treatment of cells with the RNA synthesis inhibitor actinomycin-D (0.5 microg ml(-1)), the protein synthesis inhibitor cycloheximide (1 microg ml(-1)) or the anti-oestrogen ICI 182,780 (1 microM). FACS analysis demonstrated binding of E-BSA-fluorescein isothiocyanate (FITC) (10(-10)-10(-7) M) to a subpopulation of anterior pituitary cells. The E-BSA-FITC binding sites assumed a patchy distribution across the cell surface. In conclusion, we report for the first time a rapid, non-genomic effect of E on PRL secretion in normal pituitary tissue.
Collapse
Affiliation(s)
- H C Christian
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
33
|
Sutter-Dub MT. Rapid non-genomic and genomic responses to progestogens, estrogens, and glucocorticoids in the endocrine pancreatic B cell, the adipocyte and other cell types. Steroids 2002; 67:77-93. [PMID: 11755172 DOI: 10.1016/s0039-128x(01)00142-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rapid biologic responses to injected steroids were described as early as 60 years ago. More recently, evidence has been presented that 17beta-estradiol given i.v. will double the uterine cAMP activity within 15 s (Proc Natl Acad Sci USA 1967;58:1711-8), and also that estrogens will bind to the outer surfaces of endometrial cells (Nature 1977;265:69-72), suggesting that these steroids can both engage and direct intracellular events. Unfortunately, studies of such rapid membrane effects of steroids have languished due to the accumulation of compelling data for the more slowly manifest actions of these compounds at the level of nuclear DNA. We report a number of observations in women, in experimental animals, and in isolated organ or cell systems using 17beta-estradiol, progesterone or glucocorticoids which provide ample evidence for rapid intracellular metabolic responses to these steroids, mediated by their actions at the cellular plasma membrane. Such rapid responses have been shown in various classic targets or not, such as the B cell of the endocrine pancreas and the fat cell. They involve plasma membrane binding, changes in membrane electrical activity, Ca2+ handling, G and Ras proteins, cAMP, cGMP, IP(3), DAG, phosphodiesterases, protein kinases, tyrosine kinases, ER kinases, and mitogen activated protein kinases (MAPks) and nitric oxide synthase. These recent findings are discussed in detail and should lead to a fuller understanding of the cellular effects of the steroid hormones.
Collapse
Affiliation(s)
- Marie Thérèse Sutter-Dub
- Université Bordeaux I, UFR de Biologie, Laboratoire d'Endocrinologie cellulaire: Mécanismes d'action d'hormones stéroides, Avenue des Facultés, F-33405 Talence Cedex, France.
| |
Collapse
|
34
|
Theodosis DT. Oxytocin-secreting neurons: A physiological model of morphological neuronal and glial plasticity in the adult hypothalamus. Front Neuroendocrinol 2002; 23:101-35. [PMID: 11906204 DOI: 10.1006/frne.2001.0226] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oxytocin-secreting neurons of the hypothalamoneurohypophysial system undergo reversible morphological changes whenever they are strongly stimulated. In the hypothalamus, such structural plasticity is represented by modifications in the size and shape of their somata and dendrites, in the extent to which their surfaces are covered by glia, and in the density of their synapses. In the neurohypophysis, there is a parallel reduction in glial (pituicyte) coverage of their axons together, with retraction of pituicyte processes from the perivascular basal lamina and an increase in the number and size of their terminals. These changes occur rapidly, within a few hours. On the other hand, the system returns to its prestimulated condition on arrest of stimulation at a rate that depends on the length of time it has remained activated. Such neuronal-glial changes have several functional consequences. In the hypothalamic nuclei, reduction in astrocytic coverage of oxytocinergic neurons and their synapses modifies extracellular ionic homeostasis and glutamate clearance and, therefore, their overall excitability. Since it results in extensive dendritic bundling, it may also lead to ephaptic interactions and may facilitate dendritic electrotonic coupling. A most important indirect effect may be to permit synaptic remodeling that occurs concomitantly and that results in significant increases in the number of excitatory and inhibitory synapses driving their activity. In the stimulated neurohypophysis, glial retraction results in increased levels of extracellular K+ which can enhance neurohormone release while an enlarged neurovascular contact zone may facilitate diffusion of neurohormone into the circulation. Ongoing work aims to unravel the cell mechanisms and factors underlying such plasticity and has revealed that neurons and glia of the hypothalamoneurohypophysial system continue to express juvenile molecular features associated with similar neuronglial interactions and synaptic events during development and regeneration. They include strong expression of cell surface adhesion molecules like F3/contactin and polysialylated neural cell adhesion molecule, extracellular matrix glycoproteins like tenascin C, and cytoskeletal proteins like vimentin and microtubule-associated protein 1D. Some of these molecules reach the cell surface constitutively while others follow the activity-dependent regulated pathway. We consider many of these molecular features permissive, allowing oxytocin neurons and their glia to undergo morphological remodeling throughout life, provided the proper stimulus intervenes. In the hypothalamic nuclei, one such stimulus is centrally released oxytocin; in the neurohypophysis, an adrenergic, cAMP-mediated mechanism appears responsible.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- INSERM U378 Neuroendocrinologie Morphofonctionelle, Institut François Magendie, Bordeaux, France.
| |
Collapse
|
35
|
Stern JE, Hestrin S, Armstrong WE. Enhanced neurotransmitter release at glutamatergic synapses on oxytocin neurones during lactation in the rat. J Physiol 2000; 526 Pt 1:109-14. [PMID: 10878104 PMCID: PMC2269998 DOI: 10.1111/j.1469-7793.2000.t01-1-00109.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The increased release of oxytocin during lactation has been shown to be dependent upon glutamatergic transmission and is associated with an increased synaptic innervation of the supraoptic nucleus (SON). To determine whether the glutamatergic synaptic properties of oxytocin neurones are changed during lactation, we recorded excitatory postsynaptic currents (EPSCs) from identified oxytocin neurones in the SON of slices taken from adult virgin and lactating rats. The frequency of AMPA-mediated miniature EPSCs (mEPSCs) more than doubled during lactation. In addition, the decay time constant, but not the amplitude of the mEPSCs was significantly increased in both vasopressin and oxytocin neurones. Paired-pulse facilitation (PPF) was significantly reduced in oxytocin neurones during lactation, whereas no change was observed in vasopressin neurones. Elevating Ca(2+) reduced PPF in oxytocin neurones in virgin rats but did not alter PPF in oxytocin neurones from lactating rats. Collectively, our results suggest that excitatory glutamatergic transmission is strengthened in oxytocin neurones during lactation, probably by a combination of an increased number of terminals, slower decay kinetics, and an increase in the probability of release.
Collapse
Affiliation(s)
- J E Stern
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 45435, USA.
| | | | | |
Collapse
|
36
|
Abstract
Oxytocin is essential for successful lactation. Without it, a babe that sucks at a nipple will go hungry, even if the breast at which it sucks is engorged with milk. In lactating rats, oxytocin cells respond to suckling with brief, explosive, synchronous bursts of electrical activity (Lincoln & Wakerley, 1974). This behaviour is not observed in virgin rats even in response to stimuli that strongly excite oxytocin cells, and is not even observed in lactating rats in response to any stimulus other than suckling.
Collapse
Affiliation(s)
- G Leng
- Department of Biomedical Sciences, University of Edinburgh Medical School, George Square, Edinburgh EH8 9XD, UK.
| |
Collapse
|
37
|
Abstract
Here we highlight just a few of the outstanding questions in the field of neurohypophysial hormones that we envisage will be addressed successfully in the new millennium. To begin, we focus on the regulation of receptors. Despite intensive investigation with new drugs, molecular modelling and transgenic models, the determinants of receptor selectivity remain elusive; there may even be more vasopressin or oxytocin receptor subtypes to be discovered. We discuss the controversy over the interesting studies that indicate modulation of oxytocin receptor-binding by steroids. Oxytocin and vasopressin release and action in the brain are discussed from several aspects. Dendritically released oxytocin acting locally is important for the milk ejection reflex, and similarly released vasopressin is important in regulating patterning of vasopressin neurone activity. Such dendritically released oxytocin and vasopressin is likely to be important in paracrine modulation of neural circuitry involved in neuroendocrine control, and for a range of behaviours. Is it possible that the whole range of behaviours that comprise 'social' (or 'anti-social') or 'maternal' behaviour can be engineered by modifying the expression of just these one or two peptides and their receptors? However, whether gene expression and knockout approaches will answer all the open questions about the real functions of oxytocin and vasopressin remains to be shown.
Collapse
Affiliation(s)
- A J Douglas
- Department of Biomedical Sciences, Edinburgh University Medical School, UK
| | | |
Collapse
|