1
|
Chen J, Epstein MP, Schildkraut JM, Kar SP. Mapping Inherited Genetic Variation with Opposite Effects on Autoimmune Disease and Four Cancer Types Identifies Candidate Drug Targets Associated with the Anti-Tumor Immune Response. Genes (Basel) 2025; 16:575. [PMID: 40428397 PMCID: PMC12111551 DOI: 10.3390/genes16050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Germline alleles near genes encoding certain immune checkpoints (CTLA4, CD200) are associated with autoimmune/autoinflammatory disease and cancer, but in opposite ways. This motivates a systematic search for additional germline alleles with this pattern with the aim of identifying potential cancer immunotherapeutic targets using human genetics. Methods: Pairwise fixed effect cross-disorder meta-analyses combining genome-wide association studies (GWAS) for breast, prostate, ovarian and endometrial cancers (240,540 cases/317,000 controls) and seven autoimmune/autoinflammatory diseases (112,631 cases/895,386 controls) coupled with in silico follow-up. Results: Meta-analyses followed by linkage disequilibrium clumping identified 312 unique, independent lead variants with p < 5 × 10-8 associated with at least one of the cancer types at p < 10-3 and one of the autoimmune/autoinflammatory diseases at p < 10-3. At each lead variant, the allele that conferred autoimmune/autoinflammatory disease risk was protective for cancer. Mapping led variants to nearest genes as putative functional targets and focusing on immune-related genes implicated 32 genes. Tumor bulk RNA-Seq data highlighted that the tumor expression of 5/32 genes (IRF1, IKZF1, SPI1, SH2B3, LAT) was each strongly correlated (Spearman's ρ > 0.5) with at least one intra-tumor T/myeloid cell infiltration marker (CD4, CD8A, CD11B, CD45) in every one of the cancer types. Tumor single-cell RNA-Seq data from all cancer types showed that the five genes were more likely to be expressed in intra-tumor immune versus malignant cells. The five lead SNPs corresponding to these genes were linked to them via the expression of quantitative trait locus mechanisms and at least one additional line of functional evidence. Proteins encoded by the genes were predicted to be druggable. Conclusions: We provide population-scale germline genetic and functional genomic evidence to support further evaluation of the proteins encoded by IRF1, IKZF1, SPI1, SH2B3 and LAT as possible targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.C.); (J.M.S.)
| | - Michael P. Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; (J.C.); (J.M.S.)
| | - Siddhartha P. Kar
- Early Cancer Institute, University of Cambridge, Cambridge CB2 0AH, UK
- Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge CB1 8RN, UK
- Department of Oncology, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
2
|
Shi LL, Xiong P, Yang M, Ardicli O, Schneider SR, Funch AB, Kiykim A, Lopez J, Akdis CA, Akdis M. Role of IgG4 Antibodies in Human Health and Disease. Cells 2025; 14:639. [PMID: 40358163 PMCID: PMC12071442 DOI: 10.3390/cells14090639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Immunoglobulin G4 (IgG4), a unique subclass of IgG antibodies, plays diverse roles in human health and disease. Its distinct features, such as Fab-arm exchange and specific mutations, confer reduced effector functions compared to other IgG subclasses. In health, IgG4 responses contribute to immune tolerance, particularly in the context of allergen-specific immunotherapy (AIT), where they can mediate tolerance to environmental antigens, inhibit IgE-dependent mast cell degranulation, and compete with IgE for allergen binding. This helps in attenuating allergic symptoms and is associated with increased levels of allergen-specific IgG4. However, in disease scenarios, the role of IgG4 is complex. IgG4 lacks complement fixation and, thus, shows a reduced ability to activate immune effector pathways, it was initially thought to be protective against autoimmune diseases. However, emerging evidence suggests that it can contribute to pathology. For instance, IgG4 autoantibodies against specific antigens can aggravate conditions in certain autoimmune disorders. In some cancers, it may play a role in immune evasion, with higher levels correlating with poor patient survival, albeit in others, its exact function remains elusive. Overall, understanding the precise role of IgG4 in various physiological and pathological conditions is crucial for developing targeted therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Li-li Shi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peng Xiong
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minglin Yang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa 16700, Turkey
| | - Stephan Raphael Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
| | - Anders Boutrup Funch
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey
| | - Juan Lopez
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (L.-l.S.); (P.X.); (O.A.); (S.R.S.); (A.B.F.); (A.K.); (J.L.); (C.A.A.)
| |
Collapse
|
3
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential antibody response to EBV proteome following EBVST immunotherapy in EBV-associated lymphomas. Blood Adv 2025; 9:1658-1669. [PMID: 39908567 PMCID: PMC11995064 DOI: 10.1182/bloodadvances.2024014937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
ABSTRACT Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) infusions have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas; however, not all patients respond to T-cell immunotherapies. To identify EBV antigen-specific antibody responses associated with clinical outcomes, we comprehensively characterized antibody responses to the complete EBV proteome using a custom protein microarray in 56 patients with EBV-associated lymphoma who received EBVST infusions in phase 1 clinical trials. Responders (nonprogressors) and nonresponders (progressors) had distinct antibody profiles against EBV. Twenty-five immunoglobulin G (IgG) antibodies were significantly elevated in higher levels in nonresponders than in responders at 3 months after EBVST infusion. Ten of these remained significant after adjustment for sex, age, and cancer type, including LMP2A (4 variants), BGRF1/BDRF1 (2 variants), LMP1, BKRF2, BKRF4, and BALF5. Random forest analysis identified these 10 IgG antibodies as key predictors of clinical response. Paired analyses using blood samples collected at both before infusion and 3 months after EBVST infusion indicated an increase in the mean antibody level for 6 other anti-EBV antibodies (IgG [BGLF2, LF1, and BGLF3]; IgA [BGLF3, BALF2, and BBLF2/3) in nonresponders. Overall, our findings suggest that these EBV-directed antibodies as potential serological markers for predicting clinical responses to EBVST infusions and as therapeutic targets for immunotherapy in EBV-positive lymphomas. These trials were registered at www.clinicaltrials.gov as #NCT01555892 (Cytotoxic T-Lymphocytes for EBV-positive Lymphoma [GRALE]), #NCT02973113 (Nivolumab With Epstein Barr Virus Specific T Cells [EBVSTS], Relapsed/Refractory EBV Positive Lymphoma [PREVALE]), and #NCT02287311 (Most Closely Matched 3rd Party Rapidly Generated LMP, BARF1, and EBNA1 Specific CTL, EBV-Positive Lymphoma [MABEL]).
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nathan W. Van Bibber
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Helen E. Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Rayne H. Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Anna E. Coghill
- Cancer Epidemiology Program, Division of Population Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2025; 158:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionised the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Vesely MD, Christensen SR. Type 2 immunity to the rescue: enhancing antitumor immunity for skin cancer prevention. J Clin Invest 2025; 135:e188018. [PMID: 39744952 PMCID: PMC11684797 DOI: 10.1172/jci188018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) incidence and deaths continue to rise, underscoring the need for improved cSCC prevention. Elimination of actinic keratosis (AK) precursor lesions is a major strategy to prevent cSCC. Topical calcipotriol and 5-fluorouracil (5-FU) have been shown to eliminate AKs and reduce the risk of cSCC development, but the mechanism was undefined. In this issue of the JCI, Oka et al. demonstrate that type 2 immunity is necessary and sufficient for the elimination of premalignant keratinocytes and cSCC prevention. Paired biopsies from AK lesions and unaffected skin revealed that only keratinocytes from AKs produced thymic stromal lymphopoietin (TSLP) and damage-associated molecular patterns, resulting in selective recruitment of Th2 cells to the AK lesion. In mouse models of skin carcinogenesis, TSLP was necessary to recruit Th2 cells and trigger IL-24-mediated keratinocyte cell death. These findings suggest that the TSLP/Th2/IL-24 axis is a potential therapeutic target for SCC prevention.
Collapse
Affiliation(s)
| | - Sean R. Christensen
- Department of Dermatology, and
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Qian BZ, Ma RY. Immune Microenvironment in Breast Cancer Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:413-432. [PMID: 39821036 DOI: 10.1007/978-3-031-70875-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Metastatic disease is the final stage of breast cancer that accounts for vast majority of patient death. Mounting data over recent years strongly support the critical roles of the immune microenvironment in determining breast cancer metastasis. The latest single-cell studies provide further molecular evidence illustrating the heterogeneity of this immune microenvironment. This chapter summarizes major discoveries on the role of various immune cells in metastasis progression and discusses future research opportunities. Studies investigating immune heterogeneity within primary breast cancer and across different metastasis target organs can potentially lead to more precise treatment strategies with improved efficacy.
Collapse
Affiliation(s)
- Bin-Zhi Qian
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China.
| | - Ruo-Yu Ma
- Department of Oncology, Fudan University Shanghai Cancer Center, Zhangjiang-Fudan International Innovation Center, Shanghai Medical College, The Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Liu Y, Liu F, Zeng Y, Lin L, Yu H, Zhang S, Yang W. Hydrogel systems for spatiotemporal controlled delivery of immunomodulators: engineering the tumor immune microenvironment for enhanced cancer immunotherapy. Front Cell Dev Biol 2024; 12:1514595. [PMID: 39735340 PMCID: PMC11681625 DOI: 10.3389/fcell.2024.1514595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024] Open
Abstract
Tumor immunotherapy, modulating innate and adaptive immunity, has become an important therapeutic strategy. However, the tumor immune microenvironment's (TIME) complexity and heterogeneity challenge tumor immunotherapy. Hydrogel is a hydrophilic three-dimensional (3D) mesh structure with good biocompatibility and drug release control, which is widely used in drug delivery, agriculture, industry, etc. Hydrogels loaded with immune cells, cytokines, immune checkpoint inhibitors, and anti-tumor drugs can achieve targeted delivery and ultimately activate the immune response in the TIME. In this review, we will summarize the components of the TIME and their immune effects, the emerging immunomodulatory agents, the characteristics and functions of hydrogels, and how hydrogels regulate innate and adaptive immune cells in the TIME.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
| | - Fang Liu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
- College of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yan Zeng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Liangbin Lin
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Yu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Sunfu Zhang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Wenyong Yang
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, China
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
8
|
Ercelik M, Tekin C, Gurbuz M, Tuncbilekli Y, Dogan HY, Mutlu B, Eser P, Tezcan G, Parın FN, Yildirim K, Sarihan M, Akpinar G, Kasap M, Bekar A, Kocaeli H, Taskapilioglu MO, Aksoy SA, Ozpar R, Hakyemez B, Tunca B. A new nano approach to prevent tumor growth in the local treatment of glioblastoma: Temozolomide and rutin-loaded hybrid layered composite nanofiber. Asian J Pharm Sci 2024; 19:100971. [PMID: 39640055 PMCID: PMC11617954 DOI: 10.1016/j.ajps.2024.100971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Total resection of glioblastoma (GB) tumors is nearly impossible, and systemic administration of temozolomide (TMZ) is often inadequate. This study presents a hybrid layered composite nanofiber mesh (LHN) designed for localized treatment in GB tumor bed. The LHN, consisting of polyvinyl alcohol and core-shell polylactic acid layers, was loaded with TMZ and rutin. In vitro analysis revealed that LHNTMZ and LHNrutin decelerated epithelial-mesenchymal transition and growth of stem-like cells, while the combination, LHNTMZ +rutin, significantly reduced sphere size compared to untreated and LHNTMZ-treated cells (P < 0.0001). In an orthotopic C6-induced GB rat model, LHNTMZ +rutin therapy demonstrated a more pronounced tumor-reducing effect than LHNTMZ alone. Tumor volume, assessed by magnetic resonance imaging, was significantly reduced in LHNTMZ +rutin-treated rats compared to untreated controls. Structural changes in tumor mitochondria, reduced membrane potential, and decreased PARP expression indicated the activation of apoptotic pathways in tumor cells, which was further confirmed by a reduction in PHH3, indicating decreased mitotic activity of tumor cells. Additionally, the local application of LHNs in the GB model mitigated aggressive tumor features without causing local tissue inflammation or adverse systemic effects. This was evidenced by a decrease in the angiogenesis marker CD31, the absence of inflammation or necrosis in H&E staining of the cerebellum, increased production of IFN-γ, decreased levels of interleukin-4 in splenic T cells, and lower serum AST levels. Our findings collectively indicate that LHNTMZ +rutin is a promising biocompatible model for the local treatment of GB.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Melisa Gurbuz
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Yagmur Tuncbilekli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hazal Yılmaz Dogan
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
| | - Busra Mutlu
- Department of Metallurgical and Materials Engineering, Bursa Technical University, Bursa, Turkey
- Central Research Laboratory, Bursa Technical University, Bursa, Turkey
| | - Pınar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Fatma Nur Parın
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Kenan Yildirim
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Mehmet Sarihan
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Murat Kasap
- Department of Medical Biology/Proteomics Laboratory, Kocaeli University, Kocaeli, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | | | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | - Rıfat Ozpar
- Department of Radiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Bahattin Hakyemez
- Department of Radiology, Faculty of Medicine, Bursa Uludağ University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
9
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Li M, Jiang X, Gai X, Dai M, Li M, Wang Y, Wang H. CiteSpace-based visual analysis on transcutaneous electrical acupoint stimulation of clinical randomized controlled trial studies and its mechanism on perioperative disorders. Medicine (Baltimore) 2024; 103:e39893. [PMID: 39465871 PMCID: PMC11479488 DOI: 10.1097/md.0000000000039893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
To systematically present an overview of randomized controlled trials on transcutaneous electrical acupoint stimulation (TEAS) using bibliometric methods, and describe the role and mechanisms of TEAS in most prevalent diseases. Relevant literature was searched in China National Knowledge Infrastructure, Wanfang Data, VIP, SinoMed, PubMed, and Web of Science. The literature was imported and screened into NoteExpress, screened according to inclusion and exclusion criteria, and analyzed using Excel and CiteSpace 6.3R1 software. A total of 1296 documents were included. The number of publications increased annually after 2012. Junlu Wang was the most prolific author. The main research institutions were Peking University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Shuguang Hospital, and Tongde Hospital of Zhejiang Province. The research hotspots in this field include perioperative care, cancer, pain management, and stroke, primarily focusing on analgesia, immune enhancement, antihypertension, and reduction of gastrointestinal disorders. The main regulatory mechanisms of TEAS include the control of inflammation, oxidative stress, and regulation of the autonomic nervous system. TEAS is most widely used in the elderly, with PC6, ST36, and LI4 being the most frequently studied acupoints in clinical randomized controlled trials. The concept of accelerated rehabilitation is gradually being applied to TEAS, representing an emerging trend for future development. Clinical research on TEAS is rapidly developing, with a focus on applications in cancer and perioperative care. Future research should expand collaboration and conduct high-level clinical and mechanistic studies, which will contribute to the development of standardized protocols and clinical practice.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangmu Gai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyao Dai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
11
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential EBV protein-specific antibody response between responders and non-responders to EBVSTs immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607997. [PMID: 39211169 PMCID: PMC11361067 DOI: 10.1101/2024.08.14.607997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) immunotherapies have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas, but not all patients respond to treatment. To identify the set of EBV-directed antibody responses associated with clinical response in patients with EBV-associated lymphomas, we comprehensively characterized the immune response to the complete EBV proteome using a custom protein microarray in 56 EBV-associated lymphoma patients who were treated with EBVST infusions enrolled in Phase I clinical trials. Significant differences in antibody profiles between responders and non-responders emerged at 3 months post-EBVST infusion. Twenty-five IgG antibodies were present at significantly higher levels in non-responders compared to responders at 3 months post-EBVST infusion, and 10 of these IgG antibody associations remained after adjustment for sex, age, and cancer diagnosis type. Random forest prediction analysis further confirmed that these 10 antibodies were important for predicting clinical response. Differential IgG antibody responses were directed against LMP2A (four fragments), BGRF1/BDRF1 (two fragments), LMP1, BKRF2, BKRF4, and BALF5. Paired analyses using blood samples collected at both pre-infusion and 3 months post-EBVST infusion indicated an increase in the mean antibody level for six other anti-EBV antibodies (IgG: BGLF2, LF1, BGLF3; IgA: BGLF3, BALF2, BBLF2/3) in non-responders. Overall, our results indicate that EBV-directed antibodies can be biomarkers for predicting the clinical response of individuals with EBV-associated lymphomas treated with EBVST infusions.
Collapse
|
12
|
Kim J, Maharjan R, Park J. Current Trends and Innovative Approaches in Cancer Immunotherapy. AAPS PharmSciTech 2024; 25:168. [PMID: 39044047 PMCID: PMC11573471 DOI: 10.1208/s12249-024-02883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Immunotherapy is one of the most promising therapeutic approaches in the field of cancer treatment. As a tumor progresses, tumor cells employ an array of immune-regulatory mechanisms to suppress immune responses within the tumor microenvironment. Using our understanding of these mechanisms, cancer immunotherapy has been developed to enhance the immune system's effectiveness in treating cancer. Numerous cancer immunotherapies are currently in clinical use, yet many others are either in different stages of development or undergoing clinical studies. In this paper, we briefly discuss the features and current status of cancer immunotherapies. This includes the application of monoclonal antibodies, immune checkpoint inhibitors, adoptive cell therapy, cytokine therapy, cancer vaccines, and gene therapy, all of which have gained significant recognition in clinical practice. Additionally, we discuss limitations that may hinder successful clinical utilization and promising strategies, such as combining immunotherapy with nanotechnology.
Collapse
Affiliation(s)
- Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Ruby Maharjan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone, Lexington, KY, 40506, USA.
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
13
|
Al-Azzawi HMA, Paolini R, Cirillo N, O’Reilly LA, Mormile I, Moore C, Yap T, Celentano A. Eosinophils in Oral Disease: A Narrative Review. Int J Mol Sci 2024; 25:4373. [PMID: 38673958 PMCID: PMC11050291 DOI: 10.3390/ijms25084373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of diseases characterised by eosinophilia is on the rise, emphasising the importance of understanding the role of eosinophils in these conditions. Eosinophils are a subset of granulocytes that contribute to the body's defence against bacterial, viral, and parasitic infections, but they are also implicated in haemostatic processes, including immunoregulation and allergic reactions. They contain cytoplasmic granules which can be selectively mobilised and secrete specific proteins, including chemokines, cytokines, enzymes, extracellular matrix, and growth factors. There are multiple biological and emerging functions of these specialised immune cells, including cancer surveillance, tissue remodelling and development. Several oral diseases, including oral cancer, are associated with either tissue or blood eosinophilia; however, their exact mechanism of action in the pathogenesis of these diseases remains unclear. This review presents a comprehensive synopsis of the most recent literature for both clinicians and scientists in relation to eosinophils and oral diseases and reveals a significant knowledge gap in this area of research.
Collapse
Affiliation(s)
- Huda Moutaz Asmael Al-Azzawi
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Lorraine Ann O’Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ilaria Mormile
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Caroline Moore
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia; (H.M.A.A.-A.); (R.P.); (N.C.); (C.M.); (T.Y.)
| |
Collapse
|
14
|
Liu G, Jin K, Liu Z, Su X, Xu Z, Li B, Xu J, Liu H, Chang Y, Zhu Y, Xu L, Wang Z, Wang Y, Zhang W. Integration of CD4 + T cells and molecular subtype predicts benefit from PD-L1 blockade in muscle-invasive bladder cancer. Cancer Sci 2024; 115:1306-1316. [PMID: 38402640 PMCID: PMC11007017 DOI: 10.1111/cas.16119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is a disease characterized by molecular and clinical heterogeneity, posing challenges in selecting the most appropriate treatment in clinical settings. Considering the significant role of CD4+ T cells, there is an emerging need to integrate CD4+ T cells with molecular subtypes to refine classification. We conducted a comprehensive study involving 895 MIBC patients from four independent cohorts. The Zhongshan Hospital (ZSHS) and The Cancer Genome Atlas (TCGA) cohorts were included to investigate chemotherapeutic response. The IMvigor210 cohort was included to assess the immunotherapeutic response. NCT03179943 was used to evaluate the clinical response to a combination of immune checkpoint blockade (ICB) and chemotherapy. Additionally, we evaluated genomic characteristics and the immune microenvironment to gain deeper insights into the distinctive features of each subtype. We unveiled four immune-molecular subtypes, each exhibiting distinct clinical outcomes and molecular characteristics. These subtypes include luminal CD4+ Thigh, which demonstrated benefits from both immunotherapy and chemotherapy; luminal CD4+ Tlow, characterized by the highest level of fibroblast growth factor receptor 3 (FGFR3) mutation, thus indicating potential responsiveness to FGFR inhibitors; basal CD4+ Thigh, which could benefit from a combination of ICB and chemotherapy; and basal CD4+ Tlow, characterized by an immune suppression microenvironment and likely to benefit from transforming growth factor-β (TGF-β) inhibition. This immune-molecular classification offers new possibilities for optimizing therapeutic interventions in MIBC.
Collapse
Affiliation(s)
- Ge Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Kaifeng Jin
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaopei Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaohe Su
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Ziyue Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Bingyu Li
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Hailong Liu
- Department of Urology, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Chang
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Yu Zhu
- Department of UrologyFudan University Shanghai Cancer CenterShanghaiChina
| | - Le Xu
- Department of Urology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zewei Wang
- Department of Urology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
16
|
Limbu S, McCloskey KE. Stemness genes and miR-1247-3p expression associate with clinicopathological parameters and prognosis in lung adenocarcinoma. PLoS One 2023; 18:e0294171. [PMID: 37948380 PMCID: PMC10637681 DOI: 10.1371/journal.pone.0294171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Lung cancer makes up one-fourth of all cancer-related mortality with the highest mortality rate among all cancers. Despite recent scientific advancements in cancer therapeutics, the 5-year survival rate of lung adenocarcinoma (LUAD) cancer patients remains below 15 percent. It has been suggested that the high mortality rate of LUAD is linked to the acquisition of progenitor-like cells with stem-like characteristics that assist the whole tumor in regulating immune cell infiltration. To examine this hypothesis further, this study mined several databases to explore the presence of stemness-related genes and miRNAs in LUAD cancers. We examine their association with immune and accessory cell infiltration rates and patient survival. We found 3 stem cell-related genes, ORC1L, KIF20A, and DLGAP5, present in LUAD that also correlate with changes in immune infiltration rates and reduced patient survival rates. Additionally, the modulation in myeloid-derived suppressor cell (MDSC) infiltration and miRNA hsa-mir-1247-3p mediated targeting of tumor suppressor SLC24A4 and oncogenes RAB3B and HJURP appears to primarily regulate LUAD patient survival. Given these findings, hsa-mir-1247-3p and/or its associated gene targets may offer a promising avenue to enhance patient survivability.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Program, University of California, Merced, Merced, CA, United States of America
| | - Kara E. McCloskey
- Quantitative and System Biology Program, University of California, Merced, Merced, CA, United States of America
- Materials Science and Engineering Department, University of California, Merced, Merced, CA, United States of America
| |
Collapse
|
17
|
Wang X, Wen S, Du X, Zhang Y, Yang X, Zou R, Feng B, Fu X, Jiang F, Zhou G, Liu Z, Zhu W, Ma R, Feng J, Shen B. SAA suppresses α-PD-1 induced anti-tumor immunity by driving T H2 polarization in lung adenocarcinoma. Cell Death Dis 2023; 14:718. [PMID: 37925492 PMCID: PMC10625560 DOI: 10.1038/s41419-023-06198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023]
Abstract
Cancer stem cells (CSCs) are believed to be crucial in the initiation, progression, and recurrence of cancer. CSCs are also known to be more resistant to cancer treatments. However, the interaction between CSCs and the immune microenvironment is complex and not fully understood. In current study we used single cell RNA sequence (scRNA-Seq, public dataset) technology to identify the characteristic of CSCs. We found that the lung adenocarcinoma cancer stem population is highly inflammatory and remodels the tumor microenvironment by secreting inflammatory factors, specifically the acute phase protein serum amyloid A (SAA). Next, we developed an ex-vivo autologous patient-derived organoids (PDOs) and peripheral blood mononuclear cells (PBMCs) co-culture model to evaluate the immune biological impact of SAA. We found that SAA not only promotes chemoresistance by inducing cancer stem transformation, but also restricts anti-tumor immunity and promotes tumor fibrosis by driving type 2 immunity, and α-SAA neutralization antibody could restrict treatment resistant and tumor fibrosis. Mechanically, we found that the malignant phenotype induced by SAA is dependent on P2X7 receptor. Our data indicate that cancer stem cells secreted SAA have significant biological impact to promote treatment resistant and tumor fibrosis by driving cancer stemness transformation and type 2 immunity polarization via P2X7 receptor. Notably, α-SAA neutralization antibody shows therapeutic potential by restricting these malignant phenotypes.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yihan Zhang
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Yang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bing Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiao Fu
- Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing, China
- Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zi Liu
- Nanjing Advanced Analysis Tech. (NAAT) Co., LTD, Nanjing, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
18
|
Filin IY, Mayasin YP, Kharisova CB, Gorodilova AV, Chulpanova DS, Kitaeva KV, Rizvanov AA, Solovyeva VV. T-Lymphocytes Activated by Dendritic Cells Loaded by Tumor-Derived Vesicles Decrease Viability of Melanoma Cells In Vitro. Curr Issues Mol Biol 2023; 45:7827-7841. [PMID: 37886937 PMCID: PMC10605065 DOI: 10.3390/cimb45100493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Immunotherapy represents an innovative approach to cancer treatment, based on activating the body's own immune system to combat tumor cells. Among various immunotherapy strategies, dendritic cell vaccines hold a special place due to their ability to activate T-lymphocytes, key players in cellular immunity, and direct them to tumor cells. In this study, the influence of dendritic cells processed with tumor-derived vesicles on the viability of melanoma cells in vitro was investigated. Dendritic cells were loaded with tumor-derived vesicles, after which they were used to activate T-cells. The study demonstrated that such modified T-cells exhibit high activity against melanoma cells, leading to a decrease in their viability. Our analysis highlights the potential efficacy of this approach in developing immunotherapy against melanoma. These results provide new prospects for further research and the development of antitumor strategies based on the mechanisms of T-lymphocyte activation using tumor-derived vesicles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Albert Anatolyevich Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (I.Y.F.); (Y.P.M.); (C.B.K.); (A.V.G.); (D.S.C.); (K.V.K.); (V.V.S.)
| | | |
Collapse
|
19
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
20
|
Walters AA, Ali A, Wang JTW, Al-Jamal KT. Anti-tumor antibody isotype response can be modified with locally administered immunoadjuvants. Drug Deliv Transl Res 2023; 13:2032-2040. [PMID: 36417163 PMCID: PMC10238356 DOI: 10.1007/s13346-022-01258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
In situ vaccination with immunostimulatory compounds is a demonstrated means to treat tumors preclinically. While these therapeutic effects have been attributed to the actions of T cells or innate immune activation, characterisation of the humoral immune response is seldom performed. This study aims to identify whether the injection of immunoadjuvants, Addavax (Adda) and cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG), intratumorally can influence the antibody response. Specifically, whether intratumoral injection of immunoadjuvants can alter the tumor-specific antibody target, titre and isotype. Following this, the study aimed to investigate whether serum obtained from in situ vaccinated mice could neutralise circulating tumor cells. Serum was obtained from mice bearing B16F10-OVA-Luc-GFP tumors treated with immunoadjuvants. Antibody targets' titre and isotype were assessed by indirect ELISA. The ability of serum to neutralise circulating cancer cells was evaluated in a B16F10 pseudo-metastatic model. It was observed that tumor-bearing mice mount a specific anti-tumor antibody response. Antibody titre and target were unaffected by in situ vaccination with immunoadjuvants; however, a higher amount of IgG2c was produced in mice receiving Adda plus CpG. Serum from in situ vaccinated mice was unable to neutralise circulating B16F10 cells. Thus, this study has demonstrated that anti-tumor antibody isotype may be modified using in situ vaccination; however, this alone is not sufficient to neutralise circulating cancer cells.
Collapse
Affiliation(s)
- Adam A Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Abrar Ali
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
21
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
22
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
23
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
24
|
Davern M, Bracken-Clarke D, Donlon NE, Sheppard AD, Connell FO, Heeran AB, Majcher K, Conroy MJ, Mylod E, Butler C, Donohoe C, Donnell DO, Lowery M, Bhardwaj A, Ravi N, Melo AA, Sullivan JO, Reynolds JV, Lysaght J. Visceral adipose tissue secretome from early and late-stage oesophageal cancer patients differentially affects effector and regulatory T cells. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04620-6. [PMID: 36790524 PMCID: PMC10356656 DOI: 10.1007/s00432-023-04620-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
AIM Visceral obesity is a key risk factor in the development of oesophagogastric junctional adenocarcinoma (OGJ), predominantly via generation of systemic low grade inflammation. Obesity-induced inflammation promotes resistance to current standards of care, enhancing tumour cell growth and survival. This study investigates the effect of the visceral adipose tissue secretome from OGJ patients with early versus advanced tumours on T-cell immunity and the role of immune checkpoint blockade in enhancing anti-tumour immunity. METHODS AND RESULTS Visceral adipose conditioned media (ACM) from both early and late-stage OGJ patients significantly altered T cell activation status, upregulating co-stimulatory marker CD27 on T cells. ACM from both early and late-stage OGJ patients significantly altered immune checkpoint expression profiles downregulating immune checkpoints (ICs) on the surface of dual Th1/17-like and Th17-like cells and upregulating ICs on the surface of Th1-like cells and Treg cells. ACM derived from early-stage OGJ patients but not late-stage OGJ patients increased IFN-γ production by T cells. The addition of immune checkpoint blockers (ICBs) did not increase IFN-γ production by T cells in the presence of late-stage ACM, collectively highlighting the dichotomous immunostimulatory effect of early-stage ACM and immune-inhibitory effect of late-stage ACM. Interestingly, ACM from early-stage OGJ patients was more pro-inflammatory than ACM from late-stage patients, reflected by decreased levels of IL-17A/F, TNF-α, IL-1RA and IL-5. CONCLUSION The ACM-induced upregulation of ICs on T cells highlights a therapeutic vulnerability that could be exploited by ICBs to harness anti-cancer immunity and improve clinical outcomes for OGJ patients. Schematic workflow - (A) visceral adipose tissue was taken from OAC patients at time of surgery and cultured for 72 h in media. (B) The harvested ACM was co-cultured with healthy donor PBMCs that were concurrently activated with anti-CD3/28 for 48 h and T cell immunophenotyping was carried out by flow cytometry. Key findings - (A) Early and late stage ACM enhanced a Th1-like phenotype and upregulated CTLA-4 on Th1-like cells. A Th17-like phenotype was also enhanced in addition with a Treg-like phenotype. CTLA-4 and PD-L1 were upregulated on the surface of Treg-like cells. (B) ICB-attenuated IL-17 production by T cells. However, ACM attenuated ICB-mediated reduction in IL-10 production by T cells. Higher levels of pro-inflammatory factors were found in early stage ACM compared with late stage ACM.
Collapse
Affiliation(s)
- Maria Davern
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Dara Bracken-Clarke
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Noel E Donlon
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Fiona O' Connell
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Aisling B Heeran
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Klaudia Majcher
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Melissa J Conroy
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Eimear Mylod
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Christine Butler
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Claire Donohoe
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Dearbhaile O' Donnell
- Department of Clinical Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Dublin 8, Ireland
| | - Maeve Lowery
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Anshul Bhardwaj
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Narayanasamy Ravi
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ashanty A Melo
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland
| | - Jacintha O' Sullivan
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Department of Surgery, School of Medicine, Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Dublin 8, Ireland.
| |
Collapse
|
25
|
Wang M, Zhang L, Chang W, Zhang Y. The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Front Immunol 2023; 13:1096551. [PMID: 36726985 PMCID: PMC9885097 DOI: 10.3389/fimmu.2022.1096551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The gastrointestinal tract is inhabited by trillions of commensal microorganisms that constitute the gut microbiota. As a main metabolic organ, the gut microbiota has co-evolved in a symbiotic relationship with its host, contributing to physiological homeostasis. Recent advances have provided mechanistic insights into the dual role of the gut microbiota in cancer pathogenesis. Particularly, compelling evidence indicates that the gut microbiota exerts regulatory effects on the host immune system to fight against cancer development. Some microbiota-derived metabolites have been suggested as potential activators of antitumor immunity. On the contrary, the disequilibrium of intestinal microbial communities, a condition termed dysbiosis, can induce cancer development. The altered gut microbiota reprograms the hostile tumor microenvironment (TME), thus allowing cancer cells to avoid immunosurvelliance. Furthermore, the gut microbiota has been associated with the effects and complications of cancer therapy given its prominent immunoregulatory properties. Therapeutic measures that aim to manipulate the interplay between the gut microbiota and tumor immunity may bring new breakthroughs in cancer treatment. Herein, we provide a comprehensive update on the evidence for the implication of the gut microbiota in immune-oncology and discuss the fundamental mechanisms underlying the influence of intestinal microbial communities on systemic cancer therapy, in order to provide important clues toward improving treatment outcomes in cancer patients.
Collapse
|
26
|
Preliminary Assessment of Tumor-Associated Tissue Eosinophilia (TATE) in Canine Mast Cell Tumors: Prevalence and Prognostic Relevance and Its Association with Neoangiogenesis. Animals (Basel) 2023; 13:ani13020283. [PMID: 36670824 PMCID: PMC9855198 DOI: 10.3390/ani13020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Mast cell tumor (MCT) is the most common malignant skin tumor in dogs. In order to gain more information on the prognostic markers in MCT, the role of the eosinophil granulocytes infiltrates was investigated and assessed by the evaluation of tumor-associated tissue eosinophilia (TATE) in 87 canine cutaneous MCTs. In human medicine, high TATE are often described in highly angiogenic tumors: we therefore assessed the vascular endothelial growth factor (VEGF) expression in neoplastic mast cells. TATE and VEGF expression were compared between themselves, with histological grading, immunohistochemical expression of KIT and Ki-67, and with the recurrence. We found a statistically significant correlation between TATE and Patnaik grading (p = 0.041), Kiupel grading (p = 0.022), immunohistochemical KIT expression (p = 0.015), and tumor recurrence (p = 0.000). No associations were observed with Ki-67 and VEGF expression. This is the first evaluation of TATE and its prognostic value in canine MCTs in veterinary oncology. This study suggest that this investigation could be an important source of information for this tumor and for other neoplasms.
Collapse
|
27
|
Ivasko SM, Anders K, Grunewald L, Launspach M, Klaus A, Schwiebert S, Ruf P, Lindhofer H, Lode HN, Andersch L, Schulte JH, Eggert A, Hundsdoerfer P, Künkele A, Zirngibl F. Combination of GD2-directed bispecific trifunctional antibody therapy with Pd-1 immune checkpoint blockade induces anti-neuroblastoma immunity in a syngeneic mouse model. Front Immunol 2023; 13:1023206. [PMID: 36700232 PMCID: PMC9869131 DOI: 10.3389/fimmu.2022.1023206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Despite advances in treating high-risk neuroblastoma, 50-60% of patients still suffer relapse, necessitating new treatment options. Bispecific trifunctional antibodies (trAbs) are a promising new class of immunotherapy. TrAbs are heterodimeric IgG-like molecules that bind CD3 and a tumor-associated antigen simultaneously, whereby inducing a TCR-independent anti-cancer T cell response. Moreover, via their functional Fc region they recruit and activate cells of the innate immune system like antigen-presenting cells potentially enhancing induction of adaptive tumor-specific immune responses. Methods We used the SUREK trAb, which is bispecific for GD2 and murine Cd3. Tumor-blind trAb and the monoclonal ch14.18 antibody were used as controls. A co-culture model of murine dendritic cells (DCs), T cells and a neuroblastoma cell line was established to evaluate the cytotoxic effect and the T cell effector function in vitro. Expression of immune checkpoint molecules on tumor-infiltrating T cells and the induction of an anti-neuroblastoma immune response using a combination of whole cell vaccination and trAb therapy was investigated in a syngeneic immunocompetent neuroblastoma mouse model (NXS2 in A/J background). Finally, vaccinated mice were assessed for the presence of neuroblastoma-directed antibodies. We show that SUREK trAb-mediated effective killing of NXS2 cells in vitro was strictly dependent on the combined presence of DCs and T cells. Results Using a syngeneic neuroblastoma mouse model, we showed that vaccination with irradiated tumor cells combined with SUREK trAb treatment significantly prolonged survival of tumor challenged mice and partially prevent tumor outgrowth compared to tumor vaccination alone. Treatment led to upregulation of programmed cell death protein 1 (Pd-1) on tumor infiltrating T cells and combination with anti-Pd-1 checkpoint inhibition enhanced the NXS2-directed humoral immune response. Conclusion Here, we provide first preclinical evidence that a tumor vaccination combined with SUREK trAb therapy induces an endogenous anti-neuroblastoma immune response reducing tumor recurrence. Furthermore, a combination with anti-Pd-1 immune checkpoint blockade might even further improve this promising immunotherapeutic concept in order to prevent relapse in high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Sara Marie Ivasko
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Launspach
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Peter Ruf
- Trion Research, Martinsried, Germany
| | | | - Holger N. Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Department of Pediatrics, HELIOS Klinikum Berlin Buch, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,German Cancer Consortium (DKTK), Berlin, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Zirngibl
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt – Universität zu Berlin and Berlin Institute of Health, Berlin, Germany,Berlin Institute of Health (BIH), Berlin, Germany,*Correspondence: Felix Zirngibl,
| |
Collapse
|
28
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
29
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
30
|
Jacenik D, Karagiannidis I, Beswick EJ. Th2 cells inhibit growth of colon and pancreas cancers by promoting anti-tumorigenic responses from macrophages and eosinophils. Br J Cancer 2023; 128:387-397. [PMID: 36376448 PMCID: PMC9902541 DOI: 10.1038/s41416-022-02056-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Immunotherapy of gastrointestinal cancers is challenging; however, several lines of evidence suggest that adoptive transfer of stimulated or modified immune cells support not only protective role of immune cells in tumor microenvironment, but actively participate in the elimination of cancer cells. METHODS In vivo studies employing cancer cell-derived allograft murine models of gastrointestinal cancers were performed. The effects of T helper (Th) 2 cells on gastrointestinal cancers growth and tumor microenvironment composition using adoptive transfer of Th2 cells, interleukin (IL)-5 treatment, and immunofluorescence, multiplex and real-time PCR were explored. RESULTS Here, we show that Th2 cells play an essential role in the inhibition of colon and pancreas cancers progression. In murine models of gastrointestinal tumors using adoptive transfer of Th2 cells, we identify that Th2 cells are responsible for generation of apoptotic factors and affect macrophage as well as eosinophil recruitment into tumors where they produce cytotoxic factors. Moreover, we found that Th2 cells lead to IL-5 hypersecretion, which links the anti-tumorigenic function of Th2 cells and eosinophils. Importantly, we noted that recombinant IL-5 administration is also related with inhibition of gastrointestinal tumor growth. Finally, using an in vitro approach, we documented that both Th2 cells and eosinophils are directly responsible for gastrointestinal cancer cell killing. CONCLUSIONS These data demonstrate the significance of Th2 cells, eosinophils and IL-5 in the inhibition of gastrointestinal tumor growth, and pointed toward tumor microenvironment reprogramming as a Th2 cell-mediated anti-tumorigenic mechanism of action.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Utah, Salt Lake City, USA
| | - Ioannis Karagiannidis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Utah, Salt Lake City, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Utah, Utah, Salt Lake City, USA.
| |
Collapse
|
31
|
Influence of Perioperative Anesthesia on Cancer Recurrence: from Basic Science to Clinical Practice. Curr Oncol Rep 2023; 25:63-81. [PMID: 36512273 PMCID: PMC9745294 DOI: 10.1007/s11912-022-01342-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
PURPOSEOF REVIEW In this review, we will summarize the effects of these perioperative anesthetics and anesthetic interventions on the immune system and tumorigenesis as well as address the related clinical evidence on cancer-related mortality and recurrence. RECENT FINDINGS Cancer remains a leading cause of morbidity and mortality worldwide. For many solid tumors, surgery is one of the major therapies. Unfortunately, surgery promotes angiogenesis, shedding of circulating cancer cells, and suppresses immunity. Hence, the perioperative period has a close relationship with cancer metastases or recurrence. In the perioperative period, patients require multiple anesthetic management including anesthetics, anesthetic techniques, and body temperature control. Preclinical and retrospective studies have found that these anesthetic agents and interventions have complex effects on cancer outcomes. Therefore, well-planned, prospective, randomized controlled trials are required to explore the effects of different anesthetics and techniques on long-term outcomes after cancer surgery. Due to the conflicting effects of anesthetic management on cancer recurrence, further preclinical and clinical trials are required and beneficial to the development of systemic cancer therapies.
Collapse
|
32
|
Lu Z, Fei L, Hou G. A pan-cancer analysis of the oncogenic role of ERCC6L. BMC Cancer 2022; 22:1347. [PMID: 36550435 PMCID: PMC9773625 DOI: 10.1186/s12885-022-10452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Excision repair cross-complementation group 6 like (ERCC6L), a polo-like kinase 1 (PLK1)-interacting checkpoint helicase, confers a high risk of cancer and enhances the progression of a variety of cancers. The present investigation aimed to elucidate the pan-cancer expression patterns of ERCC6L and to examine the possibility of using this gene for patient diagnosis and prognosis. METHODS The expression patterns of ERCC6L in normal and cancer patients at various clinical stages were explored based on TCGA datasets. Subsequently, Bioinformatics techniques were then used to analyze patient's survival probabilities, Cox multivariate clinical parameters, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms related to ERCC6L, the correlation between mRNA expression levels and patient survival, genetic alterations or somatic mutations of ERCC6L, and immune infiltration. RESULTS Most cancer types had higher ERCC6L mRNA levels than normal tissue. Higher ERCC6L expression levels were correlated with poor prognosis for cancer patients. Thus, ERCC6L may serve as an effective diagnostic and prognostic marker for multiple cancers. Moreover, ERCC6L expression levels were higher in patients with higher clinical tumor grades and were associated with poor prognoses at these stages. GO and KEGG analyses revealed a correlation between ERCC6L expression levels and chromatin and cell cycle events. We also found that the mRNA expression level of the ERCC6L promoter and a favorable prognosis was negatively correlated with the promoter's methylation but not with copy number variation. A quantitative analysis of immune infiltration suggested a positive correlation between ERCC6L levels and the infiltration of Th2 immune cells in main cancer types. Finally, we examined the ERCC6L somatic mutations, especially single-nucleotide variants, and ERCC6L expression-related drug sensitivity. CONCLUSIONS Herein, we reported a comprehensive investigation of the tumor-promoting role of ERCC6L in various cancer types. ERCC6L is a candidate biomarker for diagnosing and unfavorable prognosis of specific cancers.
Collapse
Affiliation(s)
- Zhimin Lu
- grid.459505.80000 0004 4669 7165Department of Outpatient, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| | - Lihong Fei
- grid.459505.80000 0004 4669 7165Department of Gastroenterology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| | - Guoxin Hou
- grid.459505.80000 0004 4669 7165Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang China
| |
Collapse
|
33
|
Setd2 supports GATA3 +ST2 + thymic-derived Treg cells and suppresses intestinal inflammation. Nat Commun 2022; 13:7468. [PMID: 36463230 PMCID: PMC9719510 DOI: 10.1038/s41467-022-35250-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Treg cells acquire distinct transcriptional properties to suppress specific inflammatory responses. Transcription characteristics of Treg cells are regulated by epigenetic modifications, the mechanism of which remains obscure. Here, we report that Setd2, a histone H3K36 methyltransferase, is important for the survival and suppressive function of Treg cells, especially those from the intestine. Setd2 supports GATA3+ST2+ intestinal thymic-derived Treg (tTreg) cells by facilitating the expression and reciprocal relationship of GATA3 and ST2 in tTreg cells. IL-33 preferentially boosts Th2 cells rather than GATA3+ Treg cells in Foxp3Cre-YFPSetd2 flox/flox mice, corroborating the constraint of Th2 responses by Setd2 expression in Treg cells. SETD2 sustains GATA3 expression in human Treg cells, and SETD2 expression is increased in Treg cells from human colorectal cancer tissues. Epigenetically, Setd2 regulates the transcription of target genes (including Il1rl1) by modulating the activity of promoters and intragenic enhancers where H3K36me3 is typically deposited. Our findings provide mechanistic insights into the regulation of Treg cells and intestinal immunity by Setd2.
Collapse
|
34
|
Yang F, Lian Q, Ni B, Qiu X, He Y, Zou X, He F, Chen W. MUTYH is a potential prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. LIVER RESEARCH 2022; 6:258-268. [PMID: 39957908 PMCID: PMC11791856 DOI: 10.1016/j.livres.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The development of biomarkers for early detection and monitoring of HCC has not shown significant progress. Meanwhile, the second adenomatous polyposis-related gene, MUTYH, which encodes a DNA glycosylase, has been observed in its contribution to oxidative DNA damage repair. Abnormal expression of MUTYH can reduce cell survival rate. Therefore, this study investigated the usefulness of MUTYH in diagnosing and prognosis HCC. Materials and methods Using The Cancer Genome Atlas (TCGA) data, we analyzed the prognostic value of MUTYH in HCC. We used logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test to examine MUTYH expression concerning clinical-pathologic characteristics. Univariate and multivariate Cox regression methods and Kaplan-Meier analysis were applied to determine the related prognostic factors of HCC. The enrichment analysis (GSEA) was used to determine the critical pathways associated with MUTYH. The single-sample gene set enrichment analysis (ssGSEA) was conducted to examine the correlation between MUTYH expression and cancer immune infiltration. Results The higher expression of MUTYH in HCC patients was associated with a poorer overall survival rate and a shorter disease-specific survival rate. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that all differentially expressed genes (DEGs) between the high and low expression levels of MUTYH significantly enriched in the trace ligand-receptor interaction, cell cycle, oocyte meiosis, gap junction, and DNA replication. Group analysis revealed the signals of their open access. The neuron system, M phase, DNA repair, Rho GTPase effector, and cell cycle checkpoints were significantly enriched. ssGSEA showed a positive correlation between MUTYH expression and the infiltration levels of Th2 cells, NK cells, and T helper cells. Moreover, a negative correlation was found between MUTYH expression and the infiltration levels of dendritic cells (DCs) and cytotoxic cells. Conclusions MUTYH expression levels were positively correlated with immune checkpoint gene expression levels in HCC tissues. The expression level of MUTYH was related to the prognosis of HCC and the immune infiltration of HCC.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiusheng Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhan He
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoguang Zou
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
| | - Fangping He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
35
|
Chang MS, Hartman RI, Trepanowski N, Giovannucci EL, Nan H, Li X. Cumulative Erythemal Ultraviolet Radiation and Risk of Cancer in 3 Large US Prospective Cohorts. Am J Epidemiol 2022; 191:1742-1752. [PMID: 35671977 PMCID: PMC9991893 DOI: 10.1093/aje/kwac101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet radiation (UVR) exposure is the major risk factor for melanoma. However, epidemiologic studies on UVR and noncutaneous cancers have reported inconsistent results, with some suggesting an inverse relationship potentially mediated by vitamin D. To address this, we examined 3 US prospective cohorts, the Health Professionals Follow-up Study (HPFS) (1986) and Nurses' Health Study (NHS) I and II (1976 and 1989), for associations between cumulative erythemal UVR and incident cancer risk, excluding nonmelanoma skin cancer. We used a validated spatiotemporal model to calculate erythemal UVR. Participants (47,714 men; 212,449 women) were stratified into quintiles by cumulative average erythemal UVR, using the first quintile as referent, for Cox proportional hazards regression analysis. In the multivariable-adjusted meta-analysis of all cohorts, compared with the lowest quintile, risk of any cancer was slightly increased across all other quintiles (highest quintile hazard ratio (HR) = 1.04, 95% confidence interval (CI): 1.01, 1.07; P for heterogeneity = 0.41). All UVR quintiles were associated with similarly increased risk of any cancer excluding melanoma. As expected, erythemal UVR was positively associated with risk of melanoma (highest quintile HR = 1.17, 95% CI: 1.04, 1.31; P for heterogeneity = 0.83). These findings suggest that elevated UVR is associated with increased risk of both melanoma and noncutaneous cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Li
- Correspondence to Dr. Xin Li, Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Health Sciences Building, RG 5114, 1050 Wishard Boulevard., Indianapolis, IN 46202 (e-mail: )
| |
Collapse
|
36
|
Blair T, Baird J, Bambina S, Kramer G, Gostissa M, Harvey CJ, Gough MJ, Crittenden MR. ICOS is upregulated on T cells following radiation and agonism combined with radiation results in enhanced tumor control. Sci Rep 2022; 12:14954. [PMID: 36056093 PMCID: PMC9440216 DOI: 10.1038/s41598-022-19256-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023] Open
Abstract
Multiple preclinical studies have shown improved outcomes when radiation therapy is combined with immune modulating antibodies. However, to date, many of these promising results have failed to translate to successful clinical studies. This led us to explore additional checkpoint and co-stimulatory pathways that may be regulated by radiation therapy. Here, we demonstrate that radiation increases the expression of inducible T cell co-stimulator (ICOS) on both CD4 and CD8 T cells in the blood following treatment. Moreover, when we combined a novel ICOS agonist antibody with radiation we observed durable cures across multiple tumor models and mouse strains. Depletion studies revealed that CD8 T cells were ultimately required for treatment efficacy, but CD4 T cells and NK cells also partially contributed to tumor control. Phenotypic analysis showed that the combination therapy diminished the increased infiltration of regulatory T cells into the tumor that typically occurs following radiation alone. Finally, we demonstrate in a poorly immunogenic pancreatic tumor model which is resistant to combined radiation and anti-PD1 checkpoint blockade that the addition of this novel ICOS agonist antibody to the treatment regimen results in tumor control. These findings identify ICOS as part of a T cell pathway that is modulated by radiation and targeting this pathway with a novel ICOS antibody results in durable tumor control in preclinical models.
Collapse
Affiliation(s)
- Tiffany Blair
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Jason Baird
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Shelly Bambina
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Gwen Kramer
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Monica Gostissa
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA, 02139, USA
| | - Christopher J Harvey
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA, 02139, USA
- Phenomic AI, 661 University Ave Suite 1300, Toronto, ON, M5G 0B7, Canada
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St, North Pavilion, Suite 2N108, Portland, OR, 97213, USA.
- The Oregon Clinic, Portland, OR, 97213, USA.
| |
Collapse
|
37
|
Urbiola-Salvador V, Miroszewska D, Jabłońska A, Qureshi T, Chen Z. Proteomics approaches to characterize the immune responses in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119266. [PMID: 35390423 DOI: 10.1016/j.bbamcr.2022.119266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Despite the dynamic development of cancer research, annually millions of people die of cancer. The human immune system is the major 'guard' against tumor development. Unfortunately, cancer cells have the ability to evade the immune system and continue to grow. The proper understanding of the intricate immune response in tumorigenesis remains the holy grail of cancer immunology and designing effective immunotherapy. To decode the immune responses in cancer, in recent years, proteomics studies have received considerable attention. Proteomics studies focus on the detection and quantification of proteins, which are the effectors of biological functions, and as such, are proven to reflect the cell state more accurately, in comparison to genomic or transcriptomic studies. In this review, we discuss the proteomics studies applied to characterize the immune responses in cancer and tumor immune microenvironment heterogeneity. Further, we describe emerging single-cell proteomics approaches that have the potential to be applied in cancer immunity studies.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
38
|
Ollila H, Mäyränpää MI, Paavolainen L, Paajanen J, Välimäki K, Sutinen E, Wolff H, Räsänen J, Kallioniemi O, Myllärniemi M, Ilonen I, Pellinen T. Prognostic Role of Tumor Immune Microenvironment in Pleural Epithelioid Mesothelioma. Front Oncol 2022; 12:870352. [PMID: 35795056 PMCID: PMC9251441 DOI: 10.3389/fonc.2022.870352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPleural mesothelioma (MPM) is an aggressive malignancy with an average patient survival of only 10 months. Interestingly, about 5%–10% of the patients survive remarkably longer. Prior studies have suggested that the tumor immune microenvironment (TIME) has potential prognostic value in MPM. We hypothesized that high-resolution single-cell spatial profiling of the TIME would make it possible to identify subpopulations of patients with long survival and identify immunophenotypes for the development of novel treatment strategies.MethodsWe used multiplexed fluorescence immunohistochemistry (mfIHC) and cell-based image analysis to define spatial TIME immunophenotypes in 69 patients with epithelioid MPM (20 patients surviving ≥ 36 months). Five mfIHC panels (altogether 21 antibodies) were used to classify tumor-associated stromal cells and different immune cell populations. Prognostic associations were evaluated using univariate and multivariable Cox regression, as well as combination risk models with area under receiver operating characteristic curve (AUROC) analyses.ResultsWe observed that type M2 pro-tumorigenic macrophages (CD163+pSTAT1−HLA-DRA1−) were independently associated with shorter survival, whereas granzyme B+ cells and CD11c+ cells were independently associated with longer survival. CD11c+ cells were the only immunophenotype increasing the AUROC (from 0.67 to 0.84) when added to clinical factors (age, gender, clinical stage, and grade).ConclusionHigh-resolution, deep profiling of TIME in MPM defined subgroups associated with both poor (M2 macrophages) and favorable (granzyme B/CD11c positivity) patient survival. CD11c positivity stood out as the most potential prognostic cell subtype adding prediction power to the clinical factors. These findings help to understand the critical determinants of TIME for risk and therapeutic stratification purposes in MPM.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- *Correspondence: Hely Ollila,
| | - Mikko I. Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Henrik Wolff
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Laboratory of Pathology, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pulmonary Medicine, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
39
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
40
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
41
|
Elkoshi Z. Cancer and Autoimmune Diseases: A Tale of Two Immunological Opposites? Front Immunol 2022; 13:821598. [PMID: 35145524 PMCID: PMC8822211 DOI: 10.3389/fimmu.2022.821598] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
The present article compares, side-by-side, cancer and autoimmune diseases in terms of innate and adaptive immune cells involvement, MHC Class I and Class II expression, TGFβ effect, immune modulating drugs effect and the effect of reactive oxygen species. The change in the inflammatory immune reaction during the progress of cancer and the effect of this change on the comorbidity of autoimmune diseases and cancer are discussed. The similar inflammatory properties of autoimmune diseases and early cancer, and the contrasting inflammatory properties of autoimmune diseases and advanced cancer elucidate the increased incidence of many types of cancer in patients with pre-existing autoimmune diseases and the decreased cancer-specific mortality of these patients. Stage-dependent effects of reactive oxygen-species on tumor proliferation are an additional probable cause for these epidemiological observations. The relationship: {standardized incidence ratio (SIR)} > {cancer-specific hazard ratio (HR)} for cancer patients with a history of autoimmune diseases is substantiated and rationalized.
Collapse
|
42
|
Mahhengam N, Kazemnezhad K, Setia Budi H, Ansari MJ, Olegovich Bokov D, Suksatan W, Thangavelu L, Siahmansouri H. Targeted therapy of tumor microenvironment by gold nanoparticles as a new therapeutic approach. J Drug Target 2022; 30:494-510. [DOI: 10.1080/1061186x.2022.2032095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Kimia Kazemnezhad
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus.
| | - Hendrik Setia Budi
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University,Al-kharj, Saudi Arabia.
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation.
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand.
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Huo J, Fan X, Qi B, Sun P. A Five-Gene Signature Associated With DNA Damage Repair Molecular Subtype Predict Overall Survival for Hepatocellular Carcinoma. Front Genet 2022; 13:771819. [PMID: 35126478 PMCID: PMC8811360 DOI: 10.3389/fgene.2022.771819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/03/2022] [Indexed: 01/02/2023] Open
Abstract
Background: DNA damage repair (DDR) is an important mechanism for the occurrence and development of hepatocellular carcinoma (HCC), but its impact on prognosis has not been fully understood.Materials and methods: A total of 904 HCC patients were included in our study, TCGA (n = 370) and GSE14520 (n = 239) were merged into a large-sample training cohort (n = 609). The training cohort was clustered into C1 and C2 based on prognostic DDR-related genes, the differentially expressed genes (DEGs) between C1 and C2 were identified by the Wilcoxon signed-rank test referred to criteria (|log2FC|≥1 and FDR< 0.05). The univariate Cox analysis was used to screen the prognostic-related DEGs, and Lasso penalized Cox regression analysis was used to construct the risk score. The patients were clarified into high- and low-risk groups based on the median risk score. ICGC (n = 231) and GSE116174 (n = 64) cohorts were used for external validation of the risk score’s prognostic value.Results: The Kaplan–Meier survival analysis showed that the high-risk group had a significantly reduced overall survival (OS) compared to the low-risk group in the three independent cohorts, and the time-dependent ROC curve showed that the five-gene (STMN1, PON1, PLOD2, MARCKSL1, and SPP1) risk score with a high accuracy in predicting OS. The patients with AFP >300 ng/ml, tumor poor differentiation (grade 3–4), micro and macro vascular tumor invasion, advanced stage (AJCC III-IV, BCLC stage B-C, and CLIP score >2) exhibited a higher risk score. Subgroup survival analysis found that the risk score was applicable to patients with different clinical characteristics. GO and KEGG functional enrichment analysis revealed that cell cycle, p53 signaling, TNF signaling-related pathways were upregulated in the high-risk group. The higher infiltration level of activated CD4 T cell, CD56 bright natural killer cell, plasmacytoid dendritic cell, and type 2 T helper cells were found to lead an unfavorable impact on the OS of HCC patients, and these four kinds of immune cells exhibited a higher infiltration level in the high-risk group.Conclusion: The five-gene risk score proposed in the research may provide new insights into the individualized evaluation of HCC prognosis.
Collapse
Affiliation(s)
- Junyu Huo
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinyi Fan
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingxin Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobilary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Peng Sun,
| |
Collapse
|
44
|
Ramirez MF, Cata JP. Anesthesia Techniques and Long-Term Oncological Outcomes. Front Oncol 2021; 11:788918. [PMID: 34956903 PMCID: PMC8692375 DOI: 10.3389/fonc.2021.788918] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite advances in cancer treatments, surgery remains one of the most important therapies for solid tumors. Unfortunately, surgery promotes angiogenesis, shedding of cancer cells into the circulation and suppresses anti-tumor immunity. Together this increases the risk of tumor metastasis, accelerated growth of pre-existing micro-metastasis and cancer recurrence. It was theorized that regional anesthesia could influence long-term outcomes after cancer surgery, however new clinical evidence demonstrates that the anesthesia technique has little influence in oncologic outcomes. Several randomized controlled trials are in progress and may provide a better understanding on how volatile and intravenous hypnotics impact cancer progression. The purpose of this review is to summarize the effect of the anesthesia techniques on the immune system and tumor microenvironment (TME) as well as to summarize the clinical evidence of anesthesia techniques on cancer outcomes.
Collapse
Affiliation(s)
- Maria F Ramirez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Anesthesiology and Surgical Oncology Research Group, Houston, TX, United States
| |
Collapse
|
45
|
Mo Q, Wan L, Schell MJ, Jim H, Tworoger SS, Peng G. Integrative Analysis Identifies Multi-Omics Signatures That Drive Molecular Classification of Uveal Melanoma. Cancers (Basel) 2021; 13:6168. [PMID: 34944787 PMCID: PMC8699355 DOI: 10.3390/cancers13246168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
By iCluster analysis, we found that the integrative molecular classification of the UM was primarily driven by DNA copy number variation on chromosomes 3, 6 and 8, differential methylation and expression of genes involved in the immune system, cell morphogenesis, movement and migration, and differential mutation of genes including GNA11, BAP1, EIF1AX, SF3B1 and GNAQ. Integrative analysis revealed that pathways including IL6/JAK/STAT3 signaling, angiogenesis, allograft rejection, inflammatory response and interferon gamma response were hypomethylated and up-regulated in the M3 iSubtype, which was associated with a worse overall survival, compared to the D3 iSubtype. Using two independent gene expression datasets, we demonstrated that the subtype-driving genes had an excellent prognostic power in classifying UM into high- or low-risk groups for metastasis. Integrative analysis of UM multi-omics data provided a comprehensive view of UM biology for understanding the underlying mechanism leading to UM metastasis. The concordant molecular alterations at multi-omics levels revealed by our integrative analysis could be used for patient stratification towards personalized management and surveillance.
Collapse
Affiliation(s)
- Qianxing Mo
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Michael J. Schell
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Heather Jim
- Department of Health Outcomes & Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Shelley S. Tworoger
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
46
|
Paul S, Sa G. Curcumin as an Adjuvant to Cancer Immunotherapy. Front Oncol 2021; 11:675923. [PMID: 34485117 PMCID: PMC8415504 DOI: 10.3389/fonc.2021.675923] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The components of the immune system play a very sincere and crucial role in combating tumors. However, despite their firm efforts of elimination, tumor cells cleverly escape the surveillance process by adopting several immune evasion mechanisms. The conversion of immunogenicity of tumor microenvironment into tolerogenic is considered as a prime reason for tumor immune escape. Therapeutically, different immunotherapies have been adopted to block such immune escaping routes along with better clinical outcomes. Still, the therapies are haunted by several drawbacks. Over time, curcumin has been considered as a potential anti-cancer molecule. Its potentialities have been recorded against the standard hallmarks of cancer such as continuous proliferation, escaping apoptosis, continuous angiogenesis, insensitivity to growth inhibitors, tissue invasion, and metastasis. Hence, the diversity of curcumin functioning has already been established and exploration of its application with immunotherapies might open up a new avenue for scientists and clinicians. In this review, we briefly discuss the tumor's way of immune escaping, followed by various modern immunotherapies that have been used to encounter the escaping paths and their minute flaws. Finally, the conclusion has been drawn with the application of curcumin as a potential immune-adjuvant, which fearlessly could be used with immunotherapies for best outcomes.
Collapse
Affiliation(s)
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|
47
|
Combination of GP88 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Is an Independent Prognostic Factor for Bladder Cancer Patients. Cells 2021; 10:cells10071796. [PMID: 34359965 PMCID: PMC8306318 DOI: 10.3390/cells10071796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Urothelial bladder cancer (BCa) is the ninth most commonly diagnosed cancer worldwide and accounts for approximately 3% of global cancer diagnoses. We are interested in prognostic markers that may characterize tumor cells (TCs) and immune cells (ICs) and their relationship in BCa. A potential candidate marker that meets these criteria is progranulin (GP88), which is expressed separately in TCs and ICs. We analyzed GP88 expression by immunohistochemistry (IHC) in 196 muscle-invasive BCa samples using a tissue microarray. The immunoreactive score for GP88 staining in TCs and the percentage of GP88-positive ICs was determined. An easy cutoff for the staining status of TCs (positive vs. negative) and ICs (0% vs. >0%) and, more generally, negative vs. positive GP88 staining could be applied. We detected 93 patients (47.4%) and 92 patients (46.9%) with GP88-positive TCs or ICs, respectively. The IHC results were correlated with clinicopathological and survival data. Positive GP88 staining in TCs appeared to be an independent poor prognostic factor for disease-specific survival (DSS) (RR (relative risk) = 1.74; p = 0.009) and recurrence-free survival (RFS) (RR = 1.92; p = 0.002). In contrast, negative GP88 staining in ICs was an independent negative predictor for overall survival (OS) (RR = 2.18; p < 0.001), DSS (RR = 2.84; p < 0.001) and RFS (RR = 2.91; p < 0.001) in multivariate Cox’s regression analysis. When combining GP88 staining in TCs and ICs, a specific combination of GP88-positive TCs and GP88-negative ICs was associated with a 2.54-fold increased risk of death, a 4.21-fold increased risk of disease-specific death and a 4.81-fold increased risk of recurrence compared to GP88-negative TCs and GP88-positive ICs. In summary, GP88 positivity in TCs is a negative prognostic factor for DSS and RFS. In addition, GP88 positivity can mark ICs that are associated with a good prognosis (OS, DSS and RFS). The combination of GP88 staining in TCs and ICs appears to be a significant independent prognostic biomarker in muscle-invasive BCa.
Collapse
|
48
|
Schreiber S, Hammers CM, Kaasch AJ, Schraven B, Dudeck A, Kahlfuss S. Metabolic Interdependency of Th2 Cell-Mediated Type 2 Immunity and the Tumor Microenvironment. Front Immunol 2021; 12:632581. [PMID: 34135885 PMCID: PMC8201396 DOI: 10.3389/fimmu.2021.632581] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The function of T cells is critically dependent on their ability to generate metabolic building blocks to fulfil energy demands for proliferation and consecutive differentiation into various T helper (Th) cells. Th cells then have to adapt their metabolism to specific microenvironments within different organs during physiological and pathological immune responses. In this context, Th2 cells mediate immunity to parasites and are involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have investigated the metabolism of Th2 cells in more detail, while others have studied the influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and on tumor progression. We here review recent findings on the metabolism of Th2 cells and discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from both types of studies, we provide here for the first time a perspective on how the energy metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed understanding of the unique metabolic interdependency between Th2 cells and the TME could reveal novel avenues for the development of immunotherapies in treating cancer.
Collapse
Affiliation(s)
- Simon Schreiber
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Achim J. Kaasch
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
49
|
Willsmore ZN, Harris RJ, Crescioli S, Hussein K, Kakkassery H, Thapa D, Cheung A, Chauhan J, Bax HJ, Chenoweth A, Laddach R, Osborn G, McCraw A, Hoffmann RM, Nakamura M, Geh JL, MacKenzie-Ross A, Healy C, Tsoka S, Spicer JF, Papa S, Barber L, Lacy KE, Karagiannis SN. B Cells in Patients With Melanoma: Implications for Treatment With Checkpoint Inhibitor Antibodies. Front Immunol 2021; 11:622442. [PMID: 33569063 PMCID: PMC7868381 DOI: 10.3389/fimmu.2020.622442] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The contributions of the humoral immune response to melanoma are now widely recognized, with reports of positive prognostic value ascribed to tumor-infiltrating B cells (TIL-B) and increasing evidence of B cells as key predictors of patient response to treatment. There are disparate views as to the pro- and anti-tumor roles of B cells. B cells appear to play an integral role in forming tumor-associated tertiary lymphoid structures (TLSs) which can further modulate T cell activation. Expressed antibodies may distinctly influence tumor regulation in the tumor microenvironment, with some isotypes associated with strong anti-tumor immune response and others with progressive disease. Recently, B cells have been evaluated in the context of cancer immunotherapy. Checkpoint inhibitors (CPIs), targeting T cell effector functions, have revolutionized the management of melanoma for many patients; however, there remains a need to accurately predict treatment responders. Increasing evidence suggests that B cells may not be simple bystanders to CPI immunotherapy. Mature and differentiated B cell phenotypes are key positive correlates of CPI response. Recent evidence also points to an enrichment in activatory B cell phenotypes, and the contribution of B cells to TLS formation may facilitate induction of T cell phenotypes required for response to CPI. Contrastingly, specific B cell subsets often correlate with immune-related adverse events (irAEs) in CPI. With increased appreciation of the multifaceted role of B cell immunity, novel therapeutic strategies and biomarkers can be explored and translated into the clinic to optimize CPI immunotherapy in melanoma.
Collapse
Affiliation(s)
- Zena N Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Khuluud Hussein
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Helen Kakkassery
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Deepika Thapa
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Alexa McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Jenny L Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie-Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sophie Papa
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,ImmunoEngineering, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
50
|
Effects of transcutaneous electrical acupoint stimulation on perioperative immune function and postoperative analgesia in patients undergoing radical mastectomy: A randomized controlled trial. Exp Ther Med 2021; 21:184. [PMID: 33488793 PMCID: PMC7812592 DOI: 10.3892/etm.2021.9615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022] Open
Abstract
Radical mastectomy may lead to suppression of cellular immune function in patients with malignant tumors. Transcutaneous electrical acupoint stimulation (TEAS) is widely used in clinical practice. However, there have been relatively few studies on the effects of TEAS on postoperative analgesia and immune function. The present study aimed to evaluate the effects of TAES on postoperative pain and immune function in patients undergoing radical mastectomy. A total of 65 patients were enrolled and allocated to either receive TEAS or sham TEAS. TEAS was implemented on bilateral Hegu (LI4), Neiguan (PC6) and Zusanli (ST36) acupoints simultaneously for 30 min before induction of anesthesia at 4 and 12 h post-operation. The primary outcomes included visual analogue scale (VAS) scores at 4 h (T1), 12 h T2), 24 h (T3) and 48 h (T4) post-operation, and serum levels of IL-2, IL-4, IFN-γ and the IL-2/IL-4 ratio at 30 min before TEAS (T0), T1, T2, T3 and T4. Secondary outcomes included the cumulative time of rescue analgesia within 48 h post-surgery, as well as the incidence of postoperative nausea and vomiting (PONV) and pruritus. Compared with the sham TEAS group, postoperative VAS scores at T2 and T3, the total consumption of opioids in the patient-controlled analgesia (PCA) pump, pressing times of the PCA pump and the incidences of PONV and headache were significantly lower in the TEAS group. The serum levels of IFN-γ at T3 and T4, and the serum levels of IL-2 and the IL-2/IL-4 ratio at T2, T3 and T4 were higher in the TEAS group compared with the sham TEAS group. By contrast, the serum levels of IL-4 were lower at T2, T3 and T4 in the TEAS group compared with the sham TEAS group. The results indicated that TEAS could improve postoperative analgesia, reduce postoperative consumption of opioids and alleviate postoperative side effects. Simultaneously, TEAS was able to reverse decreased serum levels of IL-2 and IFN-γ, reduce the level of IL-4 and restore the balance of Th1/Th2, thereby partially attenuating perioperative immune function depression in patients with breast cancer. The current trial was registered prior to participant enrollment at www.chictr.org.cn (Clinical Trial no. ChiCTR1800017768).
Collapse
|