1
|
Gupta A, Bajaj S, Nema P, Purohit A, Kashaw V, Soni V, Kashaw SK. Potential of AI and ML in oncology research including diagnosis, treatment and future directions: A comprehensive prospective. Comput Biol Med 2025; 189:109918. [PMID: 40037170 DOI: 10.1016/j.compbiomed.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in cancer research, offering the ability to process huge data rapidly and make precise therapeutic decisions. Over the last decade, AI, particularly deep learning (DL) and machine learning (ML), has significantly enhanced cancer prediction, diagnosis, and treatment by leveraging algorithms such as convolutional neural networks (CNNs) and multi-layer perceptrons (MLPs). These technologies provide reliable, efficient solutions for managing aggressive diseases like cancer, which have high recurrence and mortality rates. This review prospective highlights the applications of AI in oncology, a long with FDA-approved technologies like EFAI RTSuite CT HN-Segmentation System, Quantib Prostate, and Paige Prostate, and explore their role in advancing cancer detection, personalized care, and treatment. Furthermore, we also explored broader applications of AI in healthcare, addressing challenges, limitations, regulatory considerations, and ethical implications. By presenting these advancements, we underscore AI's potential to revolutionize cancer care, management and treatment.
Collapse
Affiliation(s)
- Akanksha Gupta
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Samyak Bajaj
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Priyanshu Nema
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Arpana Purohit
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, M.P., India.
| | - Vandana Soni
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| |
Collapse
|
2
|
Segatta F, Paggi S, Radaelli F, Rondonotti E. Panenteric capsule endoscopy in gastrointestinal bleeding - time to change old habits? Curr Opin Gastroenterol 2025; 41:139-145. [PMID: 39998847 DOI: 10.1097/mog.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW Capsule endoscopy (CE) is an effective tool for small bowel evaluation. Recent technical advancements, including long-lasting batteries and enhanced optics, have enabled featured capsules (panenteric capsules, PCs) to potentially assess the entire gastrointestinal (GI) tract. The PC provides a potential easy-to-use, comprehensive, single-device approach for evaluating GI bleeding patients. This review critically examines the potential role of PC in patients with GI bleeding by highlighting benefits, limitations, open issues, and future challenges. RECENT FINDINGS Evidence on PC for GI bleeding patients remains limited. Two retrospective studies and one recent prospective trial consistently show that when used in the workup of GI bleeding patients, PC is safe, feasible, achieves high diagnostic yield (both in the small and large bowel), and potentially reduces the need for unnecessary colonoscopies. Nevertheless, current challenges include the need for extensive bowel preparation, incomplete colon evaluation, and limited access to trained readers. SUMMARY The PC holds promise for optimizing the diagnostic workup of GI bleeding patients. However, significant challenges remain. Robust clinical trials comparing standard diagnostic methods to PC-based workup are needed before the adoption of PC in managing bleeding patients in clinical practice.
Collapse
Affiliation(s)
- Francesco Segatta
- Gastroenterology Unit, Valduce Hospital, Como
- Department of Gastroenterology and Hepatology, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
3
|
Rasmussen MS, Hansen LØ, Deding U, Ellebæk MB, Kjeldsen J, Bjørsum-Meyer T. Applicability of colon capsule endoscopy for monitoring ulcerative colitis: a systematic review. Scand J Gastroenterol 2025; 60:336-342. [PMID: 40084907 DOI: 10.1080/00365521.2025.2475081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND As the target of therapy in Ulcerative colitis (UC) has changed from symptomatic relief to mucosal healing, endoscopic visualization is mandatory. Colon capsule endoscopy (CCE) may serve as a less invasive and more tolerable alternative to standard colonoscopy (SC) for the monitoring of UC. OBJECTIVES To evaluate the diagnostic accuracy, adverse events and tolerability for CCE compared to SC. DESIGN Systematic review. DATA SOURCES A systematic literature search was conducted in PubMed, Embase and Web of Science. METHODS Search results were imported into Covidence and screened. Included studies underwent risk of bias assessment using Methodological Index for Non-Randomized Studies (MINORS), and relevant data, including completeness of the procedure, type of bowel preparation and adverse events, was extracted. Pooled estimates of diagnostic accuracy were calculated from the studies providing the necessary data. RESULTS Out of 2804 articles, six studies were eligible for inclusion. Three provided the necessary data to calculate pooled estimates of diagnostic accuracy in recognizing mucosal inflammation: pooled sensitivity of 93%, specificity of 68.8%, positive predictive value of 89.4%, and negative predictive value of 78.6%. The adverse events, such as nausea and abdominal distension, were predominantly related to bowel preparation regimens. CONCLUSION CCE has the potential for monitoring UC. However, the specificity and NPV must be improved. Bowel preparation regimens must be optimized to improve patient experience and the effectiveness of CCE. REGISTRATION Prospero ID CRD42023450210.
Collapse
Affiliation(s)
- Mathilde Simone Rasmussen
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Lea Østergaard Hansen
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ulrik Deding
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mark Bremholm Ellebæk
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Surgical Research Unit, Odense University Hospital, Odense, Denmark
| | - Jens Kjeldsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Research, Research unit of Medical Gastroenterology, Odense University Hospital, Odense, Denmark
| | - Thomas Bjørsum-Meyer
- Department of Surgery, Odense University Hospital, Svendborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Eidler P, Kopylov U, Ukashi O. Capsule Endoscopy in Inflammatory Bowel Disease: Evolving Role and Recent Advances. Gastrointest Endosc Clin N Am 2025; 35:73-102. [PMID: 39510694 DOI: 10.1016/j.giec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Capsule endoscopy has been proven as an efficient and accurate tool in the diagnosing and monitoring patients with inflammatory bowel disease, especially Crohn's disease (CD). The current European Crohn's and Colitis Organization guidelines recommend small bowel disease assessment in newly diagnosed CD, wherein small bowel capsule endoscopy (SBCE) is of prime importance. SBCE plays an essential role in assessing mucosal healing in patients with CD, serving as a monitoring tool in a treat to target strategy, and is capable of identifying high-risk patients for future flares.
Collapse
Affiliation(s)
- Pinhas Eidler
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel
| | - Uri Kopylov
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel; Faculty of Medical and Health Sciences, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Offir Ukashi
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel; Faculty of Medical and Health Sciences, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
5
|
Mota J, João Almeida M, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Macedo G, Mascarenhas M. A Comprehensive Review of Artificial Intelligence and Colon Capsule Endoscopy: Opportunities and Challenges. Diagnostics (Basel) 2024; 14:2072. [PMID: 39335751 PMCID: PMC11431528 DOI: 10.3390/diagnostics14182072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Colon capsule endoscopy (CCE) enables a comprehensive, non-invasive, and painless evaluation of the colon, although it still has limited indications. The lengthy reading times hinder its wider implementation, a drawback that could potentially be overcome through the integration of artificial intelligence (AI) models. Studies employing AI, particularly convolutional neural networks (CNNs), demonstrate great promise in using CCE as a viable option for detecting certain diseases and alterations in the colon, compared to other methods like colonoscopy. Additionally, employing AI models in CCE could pave the way for a minimally invasive panenteric or even panendoscopic solution. This review aims to provide a comprehensive summary of the current state-of-the-art of AI in CCE while also addressing the challenges, both technical and ethical, associated with broadening indications for AI-powered CCE. Additionally, it also gives a brief reflection of the potential environmental advantages of using this method compared to alternative ones.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Patricia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Digestive Artificial Intelligence Development, 4200-135 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, 4000-432 Porto, Portugal
| |
Collapse
|
6
|
Rosa B, Andrade P, Lopes S, Gonçalves AR, Serrazina J, Marílio Cardoso P, Silva A, Macedo Silva V, Cotter J, Macedo G, Figueiredo PN, Chagas C. Pan-Enteric Capsule Endoscopy: Current Applications and Future Perspectives. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2024; 31:89-100. [PMID: 38572440 PMCID: PMC10987171 DOI: 10.1159/000533960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/13/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND The role of capsule endoscopy in the evaluation of the small bowel is well established, and current guidelines position it as a first-line test in a variety of clinical scenarios. The advent of double-headed capsules further enabled the endoscopic assessment of colonic mucosa and the opportunity for a one-step noninvasive examination of the entire bowel (pan-enteric capsule endoscopy [PCE]). SUMMARY We reviewed the technical procedure and preparation of patients for PCE, as well as its current clinical applications and future perspectives. In non-stricturing and non-penetrating Crohn's disease affecting the small bowel and colon, PCE monitors disease activity by assessing mucosal healing, a major treatment outcome, with a higher diagnostic yield than cross-sectional imaging or conventional colonoscopy. Also in ulcerative colitis, double-headed capsules have been used to monitor disease activity noninvasively. Currently, validated scoring systems have been specifically devised for these double-headed capsules and permit a standardized assessment of the inflammatory burden. In suspected mid-lower digestive bleeding, some exploratory studies have demonstrated the feasibility and high diagnostic yield of PCE, which may work as a filter indicating which patients may benefit of further invasive procedures, namely, for planned hemostatic procedures. The possibility of using PCE is also discussed in the context of polyposis syndromes with simultaneous involvement of the small intestine and colon. KEY MESSAGES PCE is a feasible, effective, and safe diagnostic procedure to evaluate the small bowel and colon. It has been increasingly explored in the setting of inflammatory bowel diseases and, more recently, in suspected mid-lower digestive bleeding. PCE is expected to reduce the demand for invasive procedures and expand the scope of noninvasive intestinal evaluation in the coming future.
Collapse
Affiliation(s)
- Bruno Rosa
- Gastroenterology Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Andrade
- Gastroenterology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center Porto, Porto, Portugal
| | - Sandra Lopes
- Gastroenterology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Rita Gonçalves
- Gastroenterology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Juliana Serrazina
- Gastroenterology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Pedro Marílio Cardoso
- Gastroenterology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center Porto, Porto, Portugal
| | - Andrea Silva
- Gastroenterology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Vítor Macedo Silva
- Gastroenterology Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Cotter
- Gastroenterology Department, Hospital da Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Guilherme Macedo
- Gastroenterology Department, Centro Hospitalar Universitário de São João, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center Porto, Porto, Portugal
| | - Pedro Narra Figueiredo
- Gastroenterology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cristina Chagas
- Gastroenterology Department, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| |
Collapse
|
7
|
Jayasinghe M, Prathiraja O, Caldera D, Jena R, Coffie-Pierre JA, Silva MS, Siddiqui OS. Colon Cancer Screening Methods: 2023 Update. Cureus 2023; 15:e37509. [PMID: 37193451 PMCID: PMC10182334 DOI: 10.7759/cureus.37509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. National screening guidelines have been implemented to identify and remove precancerous polyps before they become cancer. Routine CRC screening is advised for people with average risk starting at age 45 because it is a common and preventable malignancy. Various screening modalities are currently in use, ranging from stool-based tests (fecal occult blood test (FOBT), fecal immunochemical test (FIT), and FIT-DNA test), radiologic tests (computed tomographic colonography (CTC), double contrast barium enema), and visual endoscopic examinations (flexible sigmoidoscopy (FS), colonoscopy, and colon capsule endoscopy (CCE)) with their varying sensitivity and specificity. Biomarkers also play a vital role in assessing the recurrence of CRC. This review offers a summary of the current screening options, including biomarkers available to detect CRC, highlighting the benefits and challenges encompassing each screening modality.
Collapse
Affiliation(s)
| | | | | | - Rahul Jena
- Neurology/Internal Medicine, Bharati Vidyapeeth Medical College/Bharati Hospital, Pune, IND
| | | | | | - Ozair S Siddiqui
- Medicine, GMERS Medical College and Hospital, Dharpur-Patan, Patan, IND
| |
Collapse
|
8
|
Gude SS, Veeravalli RS, Vejandla B, Gude SS, Venigalla T, Chintagumpala V. Colorectal Cancer Diagnostic Methods: The Present and Future. Cureus 2023; 15:e37622. [PMID: 37197135 PMCID: PMC10185295 DOI: 10.7759/cureus.37622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2023] [Indexed: 05/19/2023] Open
Abstract
To meet the needs of the colorectal cancer (CRC) patient population, colorectal cancer screening is continuously updated. The most significant advice is to start CRC screening exams at age 45 for people at average risk for CRC. CRC testing is divided into two categories: stool-based tests and visual inspections. High-sensitivity guaiac-based fecal occult blood testing, fecal immunochemical testing, and multitarget stool DNA testing are stool-based assays. Colon capsule endoscopy and flexible sigmoidoscopy are visualization examinations. There have been arguments about the importance of these tests in detecting and managing precursor lesions because of the lack of validation of screening results. Recent advancements in artificial intelligence and genetics have prompted the creation of newer diagnostic tests, which require validation in diverse populations and cohorts. In this article, we have discussed the present and emerging diagnostic tests.
Collapse
Affiliation(s)
| | | | | | | | - Tejaswi Venigalla
- Internal Medicine, Einstein Medical Center Montgomery, East Norriton, USA
| | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Colorectal cancer continues to be one of the most common causes of cancer-related death. Widespread dissemination of screening colonoscopy in the United States has led to a significant reduction in the incidence and mortality. Here we review current literature with an aim to highlight recent improvements in the safety, efficiency, and effectiveness of screening colonoscopy. RECENT FINDINGS Colon capsule endoscopy is an emerging noninvasive method to capture images of colonic mucosa for select patients with appreciable sensitivity for polyp detection. Recent literature supports the use of the novel oral anticoagulant apixaban over other anticoagulants to reduce the risk of gastrointestinal bleeding related to colonoscopy. Cold snare polypectomy for smaller lesions and prophylactic clipping following resection of large polyps in the proximal colon may reduce the rate of delayed bleeding. Novel methods and devices for improving bowel preparation continue to emerge. Mechanical attachment devices and artificial intelligence represent recent innovations to improve polyp detection. SUMMARY Clinicians should be aware of relevant data and literature that continue to improve the quality and safety of screening colonoscopy and incorporate these findings into their clinical practice.
Collapse
|
10
|
Awidi M, Bagga A. Artificial intelligence and machine learning in colorectal cancer. Artif Intell Gastrointest Endosc 2022; 3:31-43. [DOI: 10.37126/aige.v3.i3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
|
11
|
Abstract
INTRODUCTION Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally. Nonetheless, with early detection of CRC or its precancerous lesions, mortality, and CRC incidence can be reduced. Although colonoscopy is currently the gold standard for CRC screening and diagnosis, its invasive nature, and troublesome bowel preparation deter patient participation. Therefore, there is a need to expand the use of noninvasive or minimally invasive methods to increase patient compliance. AREAS COVERED This review summarizes advances in different methods for CRC screening, including stool bacterial and metagenomic markers, fecal proteins, genetic and epigenetic markers in blood and stools, and imaging modalities. The cost-effectiveness of these methods is also discussed. FIT is more cost-effective compared to virtual colonoscopy, mSEPT9 test, and Multitarget Stool DNA test, while the cost-effectiveness of other noninvasive methods requires further evaluation. EXPERT OPINION Recent evidence has well demonstrated the usefulness of gut microbiome and certain fecal bacterial markers in the noninvasive diagnosis of CRC and its precancerous lesions. Many of the fecal biomarkers, from host cells or the gut environment, show better diagnostic sensitivity than FIT. New screening tests based on these fecal biomarkers can be expected to replace FIT with higher cost-effectiveness in the near future.
Collapse
Affiliation(s)
- Sarah Cheuk Hei Chan
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Cuhk Shenzhen Research Institute, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
12
|
Ginghina O, Hudita A, Zamfir M, Spanu A, Mardare M, Bondoc I, Buburuzan L, Georgescu SE, Costache M, Negrei C, Nitipir C, Galateanu B. Liquid Biopsy and Artificial Intelligence as Tools to Detect Signatures of Colorectal Malignancies: A Modern Approach in Patient's Stratification. Front Oncol 2022; 12:856575. [PMID: 35356214 PMCID: PMC8959149 DOI: 10.3389/fonc.2022.856575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) is the second most frequently diagnosed type of cancer and a major worldwide public health concern. Despite the global efforts in the development of modern therapeutic strategies, CRC prognosis is strongly correlated with the stage of the disease at diagnosis. Early detection of CRC has a huge impact in decreasing mortality while pre-lesion detection significantly reduces the incidence of the pathology. Even though the management of CRC patients is based on robust diagnostic methods such as serum tumor markers analysis, colonoscopy, histopathological analysis of tumor tissue, and imaging methods (computer tomography or magnetic resonance), these strategies still have many limitations and do not fully satisfy clinical needs due to their lack of sensitivity and/or specificity. Therefore, improvements of the current practice would substantially impact the management of CRC patients. In this view, liquid biopsy is a promising approach that could help clinicians screen for disease, stratify patients to the best treatment, and monitor treatment response and resistance mechanisms in the tumor in a regular and minimally invasive manner. Liquid biopsies allow the detection and analysis of different tumor-derived circulating markers such as cell-free nucleic acids (cfNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) in the bloodstream. The major advantage of this approach is its ability to trace and monitor the molecular profile of the patient's tumor and to predict personalized treatment in real-time. On the other hand, the prospective use of artificial intelligence (AI) in medicine holds great promise in oncology, for the diagnosis, treatment, and prognosis prediction of disease. AI has two main branches in the medical field: (i) a virtual branch that includes medical imaging, clinical assisted diagnosis, and treatment, as well as drug research, and (ii) a physical branch that includes surgical robots. This review summarizes findings relevant to liquid biopsy and AI in CRC for better management and stratification of CRC patients.
Collapse
Affiliation(s)
- Octav Ginghina
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marius Zamfir
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Andrada Spanu
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Mara Mardare
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | - Irina Bondoc
- Department of Surgery, “Sf. Ioan” Clinical Emergency Hospital, Bucharest, Romania
| | | | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
| | - Cornelia Nitipir
- Department II, University of Medicine and Pharmacy “Carol Davila” Bucharest, Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, Bucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Esaki M. Endoscopic delivery: A solution for capsule endoscopy in patients with swallowing disorders, difficulties, or impaired gastrointestinal motility. Dig Endosc 2022; 34:472-473. [PMID: 35165931 DOI: 10.1111/den.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Motohiro Esaki
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
14
|
Mascarenhas M, Ribeiro T, Afonso J, Ferreira JP, Cardoso H, Andrade P, Parente MP, Jorge RN, Mascarenhas Saraiva M, Macedo G. Deep learning and colon capsule endoscopy: automatic detection of blood and colonic mucosal lesions using a convolutional neural network. Endosc Int Open 2022; 10:E171-E177. [PMID: 35186665 PMCID: PMC8850002 DOI: 10.1055/a-1675-1941] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/21/2021] [Indexed: 10/31/2022] Open
Abstract
Background and study aims Colon capsule endoscopy (CCE) is a minimally invasive alternative to conventional colonoscopy. However, CCE produces long videos, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial intelligence (AI) algorithms with high performance levels in image analysis. We aimed to develop a deep learning model for automatic identification and differentiation of significant colonic mucosal lesions and blood in CCE images. Patients and methods A retrospective multicenter study including 124 CCE examinations was conducted for development of a CNN model, using a database of CCE images including anonymized images of patients with normal colon mucosa, several mucosal lesions (erosions, ulcers, vascular lesions and protruding lesions) and luminal blood. For CNN development, 9005 images (3,075 normal mucosa, 3,115 blood and 2,815 mucosal lesions) were ultimately extracted. Two image datasets were created and used for CNN training and validation. Results The mean (standard deviation) sensitivity and specificity of the CNN were 96.3 % (3.9 %) and 98.2 % (1.8 %) Mucosal lesions were detected with a sensitivity of 92.0 % and a specificity of 98.5 %. Blood was detected with a sensitivity and specificity of 97.2 % and 99.9 %, respectively. The algorithm was 99.2 % sensitive and 99.6 % specific in distinguishing blood from mucosal lesions. The CNN processed 65 frames per second. Conclusions This is the first CNN-based algorithm to accurately detect and distinguish colonic mucosal lesions and luminal blood in CCE images. AI may improve diagnostic and time efficiency of CCE exams, thus facilitating CCE adoption to routine clinical practice.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal,Faculty of Medicine of the University of Porto Porto, Portugal
| | - Tiago Ribeiro
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - João Afonso
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - João P.S. Ferreira
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal,INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.
| | - Hélder Cardoso
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal,Faculty of Medicine of the University of Porto Porto, Portugal
| | - Patrícia Andrade
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal,Faculty of Medicine of the University of Porto Porto, Portugal
| | - Marco P.L. Parente
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal,INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.
| | - Renato N. Jorge
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal,INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal.
| | | | - Guilherme Macedo
- Department of Gastroenterology, São João University Hospital, Porto, Portugal,WGO Gastroenterology and Hepatology Training Center, Porto, Portugal,Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
15
|
Huguet JM, Ferrer-Barceló L, Suárez P, Sanchez E, Prieto JD, Garcia V, Sempere J. Colorectal cancer screening and surveillance in patients with inflammatory bowel disease in 2021. World J Gastroenterol 2022; 28:502-516. [PMID: 35316962 PMCID: PMC8905018 DOI: 10.3748/wjg.v28.i5.502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The detection of dysplasia in patients with inflammatory bowel disease (IBD) continues to be important given the increased risk of colorectal cancer in this population. Therefore, in 2017, we performed a review and update of the recommendations for the management and follow-up of patients with IBD based on the clinical practice guidelines of various scientific societies. The present manuscript focuses on new aspects of the detection, follow-up, and management of dysplasia according to the latest studies and recommendations. While chromoendoscopy with targeted biopsy continues to be the technique of choice for the screening and detection of dysplasia in IBD, the associated difficulties mean that it is now being compared with other techniques (virtual chromoendoscopy), which yield similar results with less technical difficulties. Furthermore, the emergence of new endoscopy techniques that are still being researched but seem promising (e.g., confocal laser endomicroscopy and full-spectrum endoscopy), together with the development of devices that improve endoscopic visualization (e.g., Endocuff Vision), lead us to believe that these approaches can revolutionize the screening and follow-up of dysplasia in patients with IBD. Nevertheless, further studies are warranted to define the optimal follow-up strategy in this patient population.
Collapse
Affiliation(s)
- Jose Maria Huguet
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Luis Ferrer-Barceló
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Patrícia Suárez
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Eva Sanchez
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Jose David Prieto
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Victor Garcia
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| | - Javier Sempere
- Department of Digestive Disease, General University Hospital of Valencia, Valencia 46014, Spain
| |
Collapse
|
16
|
Zhang X, Li T, Niu Q, Qin CJ, Zhang M, Wu GM, Li HZ, Li Y, Wang C, Du WF, Wang CY, Zhao Q, Zhao XD, Wang XL, Zhu JB. Genome-wide analysis of cell-Free DNA methylation profiling with MeDIP-seq identified potential biomarkers for colorectal cancer. World J Surg Oncol 2022; 20:21. [PMID: 35065650 PMCID: PMC8783473 DOI: 10.1186/s12957-022-02487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
Background Colorectal cancer is the most common malignancy and the third leading cause of cancer-related death worldwide. This study aimed to identify potential diagnostic biomarkers for colorectal cancer by genome-wide plasma cell-free DNA (cfDNA) methylation analysis. Methods Peripheral blood from colorectal cancer patients and healthy controls was collected for cfDNA extraction. Genome-wide cfDNA methylation profiling, especially differential methylation profiling between colorectal cancer patients and healthy controls, was performed by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Logistic regression models were established, and the accuracy of this diagnostic model for colorectal cancer was verified using tissue-sourced data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) due to the lack of cfDNA methylation data in public datasets. Results Compared with the control group, 939 differentially methylated regions (DMRs) located in promoter regions were found in colorectal cancer patients; 16 of these DMRs were hypermethylated, and the remaining 923 were hypomethylated. In addition, these hypermethylated genes, mainly PRDM14, RALYL, ELMOD1, and TMEM132E, were validated and confirmed in colorectal cancer by using publicly available DNA methylation data. Conclusions MeDIP-seq can be used as an optimal approach for analyzing cfDNA methylomes, and 12 probes of four differentially methylated genes identified by MeDIP-seq (PRDM14, RALYL, ELMOD1, and TMEM132E) could serve as potential biomarkers for clinical application in patients with colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02487-4.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
| | - Qiang Niu
- Department of General Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, China
| | - Chang-Jiang Qin
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Ming Zhang
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Guang-Ming Wu
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Hua-Zhong Li
- General Surgery, The People's Hospital of Wuhai, Wuhai, 010600, Inner Mongolia, China
| | - Yan Li
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Chen Wang
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China
| | - Wen-Fei Du
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen-Yang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Dong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao-Liang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, No. 1158 Gongyuan East Road, Qingpu District, Shanghai, 201700, China. .,Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| | - Jian-Bin Zhu
- Digestive Internal, The People's Hospital of Wuhai, No. 29 Huanghe East Street, Haibowan District, Wuhai, 010600, Inner Mongolia, China.
| |
Collapse
|
17
|
Review: Colon Capsule Endoscopy in Inflammatory Bowel Disease. Diagnostics (Basel) 2022; 12:diagnostics12010149. [PMID: 35054315 PMCID: PMC8775260 DOI: 10.3390/diagnostics12010149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has caused considerable disruption in healthcare services and has had a substantial impact on the care of patients with chronic diseases, such as inflammatory bowel disease. Endoscopy services were significantly restricted, resulting in long waiting lists. There has been a growing interest in the use of capsule endoscopy in the diagnostic pathway and management of these patients. This review explores the published literature on the role of colon capsule endoscopy in ulcerative colitis and Crohn’s disease as a method for mucosal assessment of extent, severity, and response to treatment. Colon capsule preparation regimens and scoring systems are reported. The studies indicate that, despite inherent limitations of minimally invasive capsule endoscopy, there is increasing evidence to support the use of the second-generation colon capsule in inflammatory bowel disease evaluation, providing an additional pathway to expedite investigation of appropriate patients especially during and after the pandemic.
Collapse
|
18
|
Nakaji K, Kumamoto M, Yodozawa M, Okahara K, Suzumura S, Nakae Y. Follow-up outcomes in patients with negative initial colon capsule endoscopy findings. World J Gastrointest Endosc 2021; 13:502-509. [PMID: 34733410 PMCID: PMC8546568 DOI: 10.4253/wjge.v13.i10.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colon capsule endoscopy (CCE), which became clinically applicable in 2006, is a simple and noninvasive procedure to evaluate colonic diseases; the accuracy of second-generation CCE, introduced in 2009, has dramatically improved. Currently, CCE is used as an alternative method for colorectal cancer screening, as well as for evaluating the mucosal lesions of inflammatory bowel disease, in cases where performing colonoscopy (CS) is difficult. However, the outcomes of CCE are uncertain.
AIM To investigate the outcomes of Japanese patients with negative findings (no polyps or colorectal cancer) on initial CCE.
METHODS This retrospective, single-center study was conducted at the Endoscopic Center at Aishinkai Nakae Hospital. This study included patients who underwent continuous CCE between November 2013 and August 2019, that exhibited no evidence of polyps or colorectal cancer at the initial CCE, and could be followed up using either the fecal immunochemical test (FIT), CS, or CCE. The observational period, follow-up method, presence or absence of polyps and colorectal cancer, pathological diagnosis, and number of colorectal cancer deaths were evaluated.
RESULTS Thirty-one patients (mean age, 60.4 ± 15.6 years; range, 28–84 years; 14 men and 17 women) were enrolled in this study. The reasons for performing the first CCE were screening in 12, a positive FIT in six, lower abdominal pain in nine, diarrhea in two, and anemia in two patients. The mean total water volume at the time of examination was 3460 ± 602 mL (2250–4800 mL), and a total CS was performed in 28 patients (90%). The degree of cleanliness was excellent in 15 patients and good in 16, and no poor cases were observed. No adverse events, such as retention or capsule aspiration, were observed in any of the patients. The mean follow-up period was 3.1 ± 1.5 years (range, 0.3–5.5 years). Follow-up included FIT in nine, CS in 20, and CCE in four patients (including duplicate patients). The FIT was positive in two patients, while CS revealed five polyp lesions (three in the ascending colon, one in the transverse colon, and one in the descending colon), with sizes ranging between 2 mm and 8 mm. Histopathological findings revealed a hyperplastic polyp in one patient, and adenoma with low grade dysplasia in four patients; colorectal cancers were not recognized. In the follow-up example by CCE, polyps and colorectal cancer could not be recognized. During the follow-up period, there were no deaths due to colorectal cancer in any of the patients.
CONCLUSION We determined the outcomes in patients with negative initial CCE findings.
Collapse
Affiliation(s)
- Konosuke Nakaji
- Endoscopy Center, Aishinkai Nakae Hospital, Wakayama-shi 640-8461, Wakayama, Japan
| | - Mitsutaka Kumamoto
- Endoscopy Center, Aishinkai Nakae Hospital, Wakayama-shi 640-8461, Wakayama, Japan
| | - Mikiko Yodozawa
- Endoscopy Center, Aishinkai Nakae Hospital, Wakayama-shi 640-8461, Wakayama, Japan
| | - Kazuki Okahara
- Endoscopy Center, Aishinkai Nakae Hospital, Wakayama-shi 640-8461, Wakayama, Japan
| | - Shigeo Suzumura
- Internal Medicine, Japanese Red Cross Urakawa Hospital, Higashichochinomi, Urakawagun Urakawacho 057-0007, Hokkaido, Japan
| | - Yukinori Nakae
- Endoscopy Center, Aishinkai Nakae Hospital, Wakayama-shi 640-8461, Wakayama, Japan
| |
Collapse
|
19
|
Xiao YF, Wu ZX, He S, Zhou YY, Zhao YB, He JL, Peng X, Yang ZX, Lv QJ, Yang H, Bai JY, Fan CQ, Tang B, Hu CJ, Jie MM, Liu E, Lin H, Koulaouzidis A, Zhao XY, Yang SM, Xie X. Fully automated magnetically controlled capsule endoscopy for examination of the stomach and small bowel: a prospective, feasibility, two-centre study. Lancet Gastroenterol Hepatol 2021; 6:914-921. [PMID: 34555347 DOI: 10.1016/s2468-1253(21)00274-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The use of magnetically controlled capsules for gastroscopy is in the early stages of clinical adoption. We aimed to evaluate the safety and efficacy of a fully automated magnetically controlled capsule endoscopy (FAMCE) system in clinical practice for gastroscopy and small bowel examination. METHODS We did a prospective, comparative study to evaluate the safety and efficacy of FAMCE. Patients from two hospitals in Chongqing, China were consecutively enrolled. Eligible participants were aged 18-80 years with suspected gastric pathology and no previous surgery. Participants underwent FAMCE for screening of gastric lesions, then conventional transoral gastroscopy 2 h later, and stomach examination results were compared. The primary outcome was the rate of complete detection of gastric anatomy landmarks (cardia, fundus, body, angulus, antrum, and pylorus) by FAMCE. Secondary outcomes were the time required for gastric completion by FAMCE, the rate of detection of gastric lesions by FAMCE compared with conventional transoral gastroscopy, and the rate of complete small bowel examination. Adverse events were also evaluated. The study was registered in the Chinese Clinical Trial Registry, ChiCTR2000040507. FINDINGS Between May 12 and Aug 17, 2020, 114 patients (mean age 44·0 years [IQR 34·0-55·0]; 63 [55%] female) were enrolled. The rate of complete detection of gastric anatomical structures by FAMCE was 100% (95% CI 99·3-100·0). The concordance between FAMCE and conventional transoral gastroscopy was 99·61% (99·45-99·78). The mean completion time of a gastroscopy with FAMCE was 19·17 min (SD 1·43; median 19·00, IQR 19·00-20·00), compared with 5·21 min (2·00; 5·18, 3·68-6·45) for conventional transoral gastroscopy. In 114 enrolled patients, 214 lesions were detected by FAMCE and conventional transoral gastroscopy. Of those, 193 were detected by both modalities. FAMCE missed five pathologies (four cases of gastritis and one polyp), whereas conventional transoral gastroscopy missed 16 pathologies (12 cases of gastritis, one polyp, one fundal xanthoma, and two antral erosions). FAMCE was able to provide a complete small bowel examination for all 114 patients and detected intestinal lesions in 50 (44%) patients. During the study, two (2%) patients experienced adverse events. No serious adverse events were recorded, and there was no evidence of capsule retention. INTERPRETATION The performance of FAMCE is similar to conventional transoral gastroscopy in completion of gastric examination and lesion detection. Furthermore, it can provide a complete small bowel examination. Therefore, FAMCE could be effective method for examination of the gastrointestinal tract. FUNDING Chinese National Key Research and Development Program.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhi-Xuan Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan-Yuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yong-Bing Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jia-Lin He
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xue Peng
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Zhao-Xia Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Jian Lv
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huan Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian-Ying Bai
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Chang-Jiang Hu
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Meng-Meng Jie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - En Liu
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Hui Lin
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | | | - Xiao-Yan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Shi-Ming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
20
|
Nam JH, Lee KH, Lim YJ. Examination of Entire Gastrointestinal Tract: A Perspective of Mouth to Anus (M2A) Capsule Endoscopy. Diagnostics (Basel) 2021; 11:diagnostics11081367. [PMID: 34441301 PMCID: PMC8394372 DOI: 10.3390/diagnostics11081367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Capsule endoscopy (CE) is the only non-invasive diagnostic tool that enables the direct visualization of the gastrointestinal (GI) tract. Even though CE was initially developed for small-bowel investigation, its clinical application is expanding, and technological advances continue. The final iteration of CE will be a mouth to anus (M2A) capsule that investigates the entire GI tract by the ingestion of a single capsule. This narrative review describes the current developmental status of CE and discusses the possibility of realizing an M2A capsule and what needs to be overcome in the future.
Collapse
Affiliation(s)
- Ji Hyung Nam
- Division of Gastroenterology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
| | - Kwang Hoon Lee
- Division of Rheumatology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
| | - Yun Jeong Lim
- Division of Gastroenterology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang 10326, Korea;
- Correspondence: ; Tel.: +82-31-961-7133
| |
Collapse
|
21
|
Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. ACTA ACUST UNITED AC 2021; 28:1581-1607. [PMID: 33922402 PMCID: PMC8161764 DOI: 10.3390/curroncol28030149] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The development of artificial intelligence (AI) algorithms has permeated the medical field with great success. The widespread use of AI technology in diagnosing and treating several types of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which represents the third most commonly diagnosed malignancy in both men and women, is considered a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based on current literature. We also explore the role of recent advances in AI systems regarding medical diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of this malignancy. So far, computer-aided detection and characterization systems have been developed to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare is rapidly moving toward precision or personalized medicine. Machine learning models have the potential to contribute to individual-based cancer care and transform the future of medicine.
Collapse
Affiliation(s)
- Athanasia Mitsala
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
- Correspondence: ; Tel.: +30-6986423707
| | - Christos Tsalikidis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Michail Pitiakoudis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Constantinos Simopoulos
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery & Surgical Research, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
22
|
Goyal H, Mann R, Gandhi Z, Perisetti A, Ali A, Aman Ali K, Sharma N, Saligram S, Tharian B, Inamdar S. Scope of Artificial Intelligence in Screening and Diagnosis of Colorectal Cancer. J Clin Med 2020; 9:3313. [PMID: 33076511 PMCID: PMC7602532 DOI: 10.3390/jcm9103313] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Globally, colorectal cancer is the third most diagnosed malignancy. It causes significant mortality and morbidity, which can be reduced by early diagnosis with an effective screening test. Integrating artificial intelligence (AI) and computer-aided detection (CAD) with screening methods has shown promising colorectal cancer screening results. AI could provide a "second look" for endoscopists to decrease the rate of missed polyps during a colonoscopy. It can also improve detection and characterization of polyps by integration with colonoscopy and various advanced endoscopic modalities such as magnifying narrow-band imaging, endocytoscopy, confocal endomicroscopy, laser-induced fluorescence spectroscopy, and magnifying chromoendoscopy. This descriptive review discusses various AI and CAD applications in colorectal cancer screening, polyp detection, and characterization.
Collapse
Affiliation(s)
- Hemant Goyal
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA 18505, USA
| | | | - Zainab Gandhi
- Department of Medicine, Geisinger Community Medical Center, Scranton, PA 18510, USA;
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Aman Ali
- Division of Gastroenterology, The Commonwealth Medical College, Wilkes Barre General Hospital, Wilkes-Barre, PA 18764, USA;
- Digestive Care Associates, Kingston, PA 18704, USA;
| | | | - Neil Sharma
- Division of Interventional Oncology & Surgical Endoscopy (IOSE), Parkview Cancer Institute, Fort Wayne, IN 46845, USA;
- Division of Interventional Oncology & Surgical Endoscopy, Indiana University School of Medicine, Fort Wayne, IN 46805, USA
| | - Shreyas Saligram
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA;
| | - Benjamin Tharian
- General and Advanced Endoscopy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sumant Inamdar
- Advanced Endoscopy Fellowship, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
23
|
Sivananthan A, Glover B, Ayaru L, Patel K, Darzi A, Patel N. The evolution of lower gastrointestinal endoscopy: where are we now? Ther Adv Gastrointest Endosc 2020; 13:2631774520979591. [PMID: 33426522 PMCID: PMC7754801 DOI: 10.1177/2631774520979591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Lower gastrointestinal endoscopy has evolved over time, fulfilling a widening diagnostic and therapeutic remit. As our understanding of colorectal cancer and its prevention has improved, endoscopy has progressed with improved diagnostic technologies and advancing endoscopic therapies. Despite this, the fundamental design of the endoscope has remained similar since its inception. This review presents the important role lower gastrointestinal endoscopy serves in the prevention of colorectal cancer and the desirable characteristics of the endoscope that would enhance this. A brief history of the endoscope is presented. Current and future robotic endoscopic platforms, which may fulfil these desirable characteristics, are discussed. The incorporation of new technologies from allied scientific disciplines will help the endoscope fulfil its maximum potential in preventing the increasing global burden of colorectal cancer. There are a number of endoscopic platforms under development, which show significant promise.
Collapse
Affiliation(s)
| | | | | | - Kinesh Patel
- Chelsea and Westminster NHS Healthcare Trust, UK
| | | | | |
Collapse
|