1
|
Bernard MM, Mohanty A, Rajendran V. Title: A Comprehensive Review on Classifying Fast-acting and Slow-acting Antimalarial Agents Based on Time of Action and Target Organelle of Plasmodium sp. Pathog Dis 2022; 80:6589403. [PMID: 35588061 DOI: 10.1093/femspd/ftac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The clinical resistance towards malarial parasites has rendered many antimalarials ineffective, likely due to a lack of understanding of time of action and stage specificity of all life stages. Therefore, to tackle this problem a more incisive comprehensive analysis of the fast and slow-acting profile of antimalarial agents relating to parasite time-kill kinetics and the target organelle on the progression of blood-stage parasites was carried out. It is evident from numerous findings that drugs targeting food vacuole, nuclear components, and endoplasmic reticulum mainly exhibit a fast-killing phenotype within 24h affecting first-cycle activity. Whereas drugs targeting mitochondria, apicoplast, microtubules, parasite invasion and egress exhibit a largely slow-killing phenotype within 96-120h, affecting second-cycle activity with few exemptions as moderately fast-killing. It is essential to understand the susceptibility of drugs on rings, trophozoites, schizonts, merozoites, and the appearance of organelle at each stage of 48h intraerythrocytic parasite cycle. Therefore, these parameters may facilitate the paradigm for understanding the timing of antimalarials action in deciphering its precise mechanism linked with time. Thus, classifying drugs based on the time of killing may promote designing new combination regimens against varied strains of P. falciparum and evaluating potential clinical resistance.
Collapse
Affiliation(s)
- Monika Marie Bernard
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Abhinab Mohanty
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
2
|
Jiang ZP, Sun SH, Yu Y, Mándi A, Luo JY, Yang MH, Kurtán T, Chen WH, Shen L, Wu J. Discovery of benthol A and its challenging stereochemical assignment: opening up a new window for skeletal diversity of super-carbon-chain compounds. Chem Sci 2021; 12:10197-10206. [PMID: 34447528 PMCID: PMC8336589 DOI: 10.1039/d1sc02810c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Super-carbon-chain compounds (SCCCs) are marine organic molecules featuring long polyol carbon chains with numerous stereocenters. Polyol-polyene compounds (PPCs) and ladder-frame polyethers (LFPs) are two major families. It is highly challenging to establish the absolute configurations of SCCCs. In this century, few new SCCC families have been reported. Benthol A, an aberrant SCCC, was obtained from a South China Sea benthic dinoflagellate that should belong to a new taxon. Its planar structure and absolute configuration, containing thirty-five carbon stereocenters, were unambiguously established by a combination of extensive NMR spectroscopic investigations, periodate degradation of the 1,2-diol groups, ozonolysis of the carbon-carbon double bonds, J-based configurational analysis, NOE interactions, modified Mosher's MTPA ester method, and DFT-NMR 13C chemical-shift calculations aided by DP4+ statistical analysis. Benthol A displayed potent antimalarial activity against Plasmodium falciparum 3D7 parasites. This new molecule combines extraordinary structural features, particularly eight scattered ether rings on a C72 backbone chain, which places it within a new SCCC family between PPCs and LFPs, herein termed polyol-polyether compounds. This suggestion was strongly supported by principal component analysis. The discovery of benthol A does not only provide new insights into the untapped biosynthetic potential of marine dinoflagellates, but also opens up a new window for skeletal diversity of SCCCs.
Collapse
Affiliation(s)
- Zhong-Ping Jiang
- School of Pharmaceutical Sciences, Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Shi-Hao Sun
- School of Pharmaceutical Sciences, Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| | - Yi Yu
- Marine Drugs Research Center, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 P. R. China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen PO Box 400 4002 Debrecen Hungary
| | - Jiao-Yang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 P. R. China
| | - Mei-Hua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100193 P. R. China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen PO Box 400 4002 Debrecen Hungary
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen Guangdong Province 529020 P. R. China
| | - Li Shen
- Marine Drugs Research Center, College of Pharmacy, Jinan University 601 Huangpu Avenue West Guangzhou 510632 P. R. China
| | - Jun Wu
- School of Pharmaceutical Sciences, Southern Medical University 1838 Guangzhou Avenue North Guangzhou 510515 P. R. China
| |
Collapse
|
3
|
Wang W, Yao J, Chen Z, Sun Y, Shi Y, Wei Y, Zhou H, Yu Y, Li S, Duan L. Methnaridine is an orally bioavailable, fast-killing and long-acting antimalarial agent that cures Plasmodium infections in mice. Br J Pharmacol 2020; 177:5569-5579. [PMID: 32959888 DOI: 10.1111/bph.15268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Malaria is one of the deadliest diseases in the world. Novel chemotherapeutic agents are urgently required to combat the widespread Plasmodium resistance to frontline drugs. Here, we report the discovery of a novel benzonaphthyridine antimalarial, methnaridine, which was identified using a structural optimization strategy. EXPERIMENTAL APPROACH An integrated pharmacological approach was used to evaluate the antimalarial profile of methnaridine. The pharmacokinetic properties of methnaridine were investigated along with the associated safety profile. Host immune response patterns were also analysed. KEY RESULTS Methnaridine exhibited potent antimalarial activity against P. falciparum (3D7: IC50 = 0.0066 μM; Dd2: IC50 = 0.0056 μM). In P. berghei-infected mice, oral administration effectively suppressed parasitemia (ED50 = 0.52 mg·kg-1 ·day-1 ) and cured the established infection (CD50 = 10.13 mg·kg-1 ·day-1 ). These results are equivalent to or better than those of other antimalarial agents in clinical use. Notably, a four-dose oral regimen at a dosage of 25 mg·kg-1 achieved a complete cure of P. berghei infection in mice. Methnaridine exhibited a rapid parasiticidal profile (PCT99 = 36.0 h) and showed no cross-resistance to chloroquine. Pharmacokinetic studies revealed that methnaridine is readily absorbed, long-lasting and slowly cleared. The safety profile of methnaridine is also satisfactory (maximum tolerated dose = 1,125 mg·kg-1 ). In addition, following methnaridine treatment, infection-induced Th1 immune response was almost fully alleviated in mice. CONCLUSION AND IMPLICATIONS Methnaridine is an orally bioavailable, fast-acting and long-lasting agent with excellent antimalarial properties. Our study highlights the potential of methnaridine for clinical development as a promising antimalarial candidate.
Collapse
Affiliation(s)
- Weisi Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Junmin Yao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yiming Sun
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuqing Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yufen Wei
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Hejun Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Yingfang Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| | - Liping Duan
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, Key Laboratory of Parasitology and Vector Biology of the Chinese Ministry of Health, Shanghai, China
| |
Collapse
|