1
|
Zhao L, Zhang X, Birmann BM, Danford CJ, Lai M, Simon TG, Chan AT, Giovannucci EL, Ngo L, Libermann TA, Zhang X. Pre-diagnostic plasma inflammatory proteins and risk of hepatocellular carcinoma in three population-based cohort studies from the United States and the United Kingdom. Int J Cancer 2024; 155:1593-1603. [PMID: 38861327 PMCID: PMC11537828 DOI: 10.1002/ijc.35054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Previous studies suggest a role for inflammation in hepatocarcinogenesis. However, no study has comprehensively evaluated associations between circulating inflammatory proteins and risk of hepatocellular carcinoma (HCC) among the general population. We conducted a nested case-control study in the Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) with 56 pairs of incident HCC cases and controls. External validation was performed in the UK Biobank (34 HCC cases and 48,471 non-HCC controls). Inflammatory protein levels were measured in pre-diagnostic plasma using the Olink® Inflammation Panel. We used conditional logistic regression to calculate multivariable odds ratios (ORs) with 95% confidence intervals (CIs) for associations between a 1-standard deviation (SD) increase in biomarker levels and HCC risk, considering a statistically significant threshold of false discovery rate (FDR)-adjusted p < .05. In the NHS/HPFS, among 70 analyzed proteins with call rates >80%, 15 proteins had significant associations with HCC risk (pFDR < .05). Two proteins (stem cell factor, OR per SD = 0.31, 95% CI = 0.16-0.58; tumor necrosis factor superfamily member 12, OR per SD = 0.51, 95% CI = 0.31-0.85) were inversely associated whereas 13 proteins were positively associated with risk of HCC; positive ORs per SD ranged from 1.73 for interleukin (IL)-10 to 2.35 for C-C motif chemokine-19. A total of 11 proteins were further replicated in the UK Biobank. Seven of the eight selected positively associated proteins also showed positive associations with HCC risk by enzyme-linked immunosorbent assay, with ORs ranging from 1.56 for IL-10 to 2.72 for hepatocyte growth factor. More studies are warranted to further investigate the roles of these observed inflammatory proteins in HCC etiology, early detection, risk stratification, and disease treatment.
Collapse
Affiliation(s)
- Longgang Zhao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Michelle Lai
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tracey G. Simon
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Long Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Yale University School of Nursing, Orange, Connecticut, USA
| |
Collapse
|
2
|
Poli E, De Martin E. Progression of liver disease and associated risk of hepatocellular carcinoma. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2023.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer type, often seen in individuals with chronic liver disease. Once the patient progresses to the cirrhotic stage, the annual incidence of HCC is approximately 2%-4%. As it exceeds the minimum threshold of 1.0%-1.5% per year, HCC screening every 6 months through abdominal ultrasound is indicated in the cirrhotic population. While the incidence of viral hepatitis-associated HCC is decreasing, there is a notable rise of HCC associated with metabolic dysfunction-related steatotic liver disease and alcohol-related liver disease, particularly in high-income countries. The most effective approach for oncological prevention remains addressing the cause of liver disease. The indications for HCC screening in patients without cirrhosis depend on the etiology of liver disease and the stage of fibrosis, assessed by liver biopsy or noninvasive tests such as FIB-4 or transient elastography. However, clear recommendations for HCC screening in patients without cirrhosis and for the different etiologies are currently unavailable. Research efforts should focus on identifying markers, or combinations thereof, to provide a more accurate estimate of HCC occurrence. Such advancements would enable the effective targeting of populations at the highest risk of HCC and the establishment of the correct timing to start the screening.
Collapse
|
3
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
4
|
ZHANG LINGLI, LI YAN, MAO JINGXIN. Research progress on natural products against hepatocellular carcinoma. BIOCELL 2024; 48:905-922. [DOI: 10.32604/biocell.2024.050396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 11/26/2024]
|
5
|
Karimi-Sari H, Piggott DA, Scully EP, Ward K, Sutcliffe CG, Sulkowski M, Falade-Nwulia O. Changes in Inflammatory Cytokines After Chronic Hepatitis C Treatment Among People Living With HIV. Open Forum Infect Dis 2024; 11:ofad623. [PMID: 38192382 PMCID: PMC10773550 DOI: 10.1093/ofid/ofad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/10/2024] Open
Abstract
We aimed to evaluate the effect of hepatitis C virus cure on serum inflammatory markers among people with HIV. Among 127 people with HIV, serum alanine aminotransferase, soluble tumor necrosis factor receptor 1, and inflammatory index score were significantly lower at the 24-week time point in patients who achieved sustained virologic response as compared with those who did not.
Collapse
Affiliation(s)
- Hamidreza Karimi-Sari
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Damani A Piggott
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eileen P Scully
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Ward
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Catherine G Sutcliffe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mark Sulkowski
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oluwaseun Falade-Nwulia
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Xie Y, Yao J, Yan M, Lin Y, Wei J, Wang H, Mao Y, Liu P, Li X. Pretreatment of UC-MSCs with IFN-α2 improves treatment of liver fibrosis by recruiting neutrophils. J Transl Med 2023; 21:832. [PMID: 37980535 PMCID: PMC10656886 DOI: 10.1186/s12967-023-04732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND The use of umbilical cord mesenchymal stem cells (UC-MSCs) is a burgeoning method for the treatment of liver cirrhosis. However, the secretory phenotype and regulatory ability of UC-MSCs are easily affected by their microenvironment. Ensuring a specific microenvironment to enhance the UC-MSCs phenotype is a potential strategy for improving their therapeutic efficacy. The aim of this study was to explore therapeutic UC-MSCs phenotypes for improving liver fibrosis. METHODS RNA-sequencing was used to analyze the response pattern of UC-MSCs after exposure to the serum of cirrhotic patients with HBV. Using immunohistochemistry, quantitative polymerase chain reaction, and immunofluorescence techniques, we evaluated the therapeutic effect of UC-MSCs pretreated with interferon alpha 2 (IFN-α2) (pre-MSCs) in an animal model of cirrhosis. Immunoblotting, ELISA, and other techniques were used to analyze the signaling pathways underlying the IFN-induced changes in UC-MSCs. RESULTS UC-MSCs exposed to the serum of patients with hepatitis B-induced cirrhosis showed an enhanced response to type I IFN. The activated type I IFN signal induced the highest secretion of colony-stimulating factor 3 (CSF-3), interleukin (IL)-8, and chemokine (C-C motif) ligand 20 (CCL20) by the UC-MSCs. Pre-MSCs showed a higher therapeutic efficacy than untreated UC-MSCs in an animal model of liver fibrosis. Immunohistochemical analysis revealed that pre-MSCs could recruit neutrophils resulting in an increase in the secretion of matrix metalloprotease 8 that alleviated fibrosis. When neutrophils in animals were depleted, the therapeutic effect of pre-MSCs on fibrosis was inhibited. IFN-α2 altered the secretory phenotype of UC-MSCs by activating phosphorylated signal transducer and activator of transcription 1 and 2 (p-STAT1 and p-STAT2). CONCLUSIONS Pre-MSCs exhibited enhanced secretion of CSF-3, IL-8, and CCL20 and recruited neutrophils to alleviate fibrosis. This new strategy can improve cell therapy for liver cirrhosis.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Mengchao Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yan Lin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haiping Wang
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Pinyan Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
7
|
Cao X, Zhang N, Chen H, Wang W, Liang Y, Zhang J, Liu R, Li S, Yao Y, Jin Q, Guo Z, Chen Y, Gong Y, Li X, Zao X, Ye Y. Exploring the mechanism of JiGuCao capsule formula on treating hepatitis B virus infection via network pharmacology analysis and in vivo/vitro experiment verification. Front Pharmacol 2023; 14:1159094. [PMID: 37361218 PMCID: PMC10285482 DOI: 10.3389/fphar.2023.1159094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The JiGuCao capsule formula (JCF) has demonstrated promising curative effects in treating chronic hepatitis B (CHB) in clinical trials. Here, we aimed to investigate JCF's function and mechanism in diseases related to the hepatitis B virus (HBV). We used mass spectrometry (MS) to identify the active metabolites of JCF and established the HBV replication mouse model by hydrodynamically injecting HBV replication plasmids into the mice's tail vein. Liposomes were used to transfect the plasmids into the cells. The CCK-8 kit identified cell viability. We detected the levels of HBV s antigen (HBsAg) and HBV e antigen (HBeAg) by the quantitative determination kits. qRT-PCR and Western blot were used to detect the genes' expression. The key pathways and key genes related to JCF on CHB treatment were obtained by network pharmacological analysis. Our results showed that JCF accelerated the elimination of HBsAg in mice. JCF and its medicated serum inhibited HBV replication and proliferation of HBV-replicating hepatoma cells in vitro. And the key targets of JCF in treating CHB were CASP3, CXCL8, EGFR, HSPA8, IL6, MDM2, MMP9, NR3C1, PTGS2, and VEGFA. Furthermore, these key targets were related to pathways in cancer, hepatitis B, microRNAs in cancer, PI3K-Akt signaling, and proteoglycans in cancer pathways. Finally, Cholic Acid, Deoxycholic Acid, and 3', 4', 7-Trihydroxyflavone were the main active metabolites of JCF that we obtained. JCF employed its active metabolites to perform an anti-HBV effect and prevent the development of HBV-related diseases.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhao Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Gong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression. Int J Mol Sci 2023; 24:ijms24065295. [PMID: 36982370 PMCID: PMC10049661 DOI: 10.3390/ijms24065295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naïve HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression.
Collapse
|
9
|
Feng Q, Feng Z, Yang B, Han S, Wen S, Lu G, Jin R, Xu B, Zhang H, Xu L, Xie Z. Metatranscriptome Reveals Specific Immune and Microbial Signatures of Respiratory Syncytial Virus Infection in Children. Microbiol Spectr 2023; 11:e0410722. [PMID: 36861979 PMCID: PMC10100699 DOI: 10.1128/spectrum.04107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequently detected respiratory virus in children with acute lower respiratory tract infection. Previous transcriptome studies have focused on systemic transcriptional profiles in blood and have not compared the expression of multiple viral transcriptomes. Here, we sought to compare transcriptome responses to infection with four common respiratory viruses for children (respiratory syncytial virus, adenovirus, influenza virus, and human metapneumovirus) in respiratory samples. Transcriptomic analysis showed that cilium organization and assembly were common pathways related to viral infection. Compared with other virus infections, collagen generation pathways were distinctively enriched in RSV infection. We identified two interferon-stimulated genes (ISGs), CXCL11 and IDO1, which were upregulated to a greater extent in the RSV group. In addition, a deconvolution algorithm was used to analyze the composition of immune cells in respiratory tract samples. The proportions of dendritic cells and neutrophils in the RSV group were significantly higher than those in the other virus groups. The RSV group exhibited a higher richness of Streptococcus than the other virus groups. The concordant and discordant responses mapped out here provide a window to explore the pathophysiology of the host response to RSV. Last, according to host-microbe network interference, RSV may disrupt respiratory microbial composition by changing the immune microenvironment. IMPORTANCE In the present study, we demonstrated the comparative results of host responses to infection between RSV and other three common respiratory viruses for children. The comparative transcriptomics study of respiratory samples sheds light on the significant roles that ciliary organization and assembly, extracellular matrix changes, and microbial interactions play in the pathogenesis of RSV infection. Additionally, it was demonstrated that the recruitment of neutrophils and dendritic cells (DCs) in the respiratory tract is more substantial in RSV infection than in other viral infections. Finally, we discovered that RSV infection dramatically increased the expression of two ISGs (CXCL11 and IDO1) and the abundance of Streptococcus.
Collapse
Affiliation(s)
- Qianyu Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziheng Feng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- Vision Medicals Center for Infectious Diseases, Guangzhou, Guangdong, China
| | - Shuaibing Han
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Shunhang Wen
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gen Lu
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Rong Jin
- Guiyang Women and Children Healthcare Hospital, Guiyang, Guizhou, China
| | - Baoping Xu
- Department of Respiratory Diseases I, Beijing Children’s Hospital, Capital Medical University, National Clinical Research Center for Respiratory Diseases, National Center for Children’s Health, Beijing, China
| | - Hailin Zhang
- Department of Children’s Respiration disease, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Xu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Genetic Susceptibility to Hepatocellular Carcinoma in Patients with Chronic Hepatitis Virus Infection. Viruses 2023; 15:v15020559. [PMID: 36851773 PMCID: PMC9964813 DOI: 10.3390/v15020559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally. The risk factors for HCC include chronic hepatitis B and C virus infections, excessive alcohol consumption, obesity, metabolic disease, and aflatoxin exposure. In addition to these viral and environmental risk factors, individual genetic predisposition is a major determinant of HCC risk. Familial clustering of HCC has been observed, and a hereditary factor likely contributes to the risk of HCC development. The familial aggregation may depend on a shared environment and genetic background as well as the interactions of environmental and genetic factors. Genome-wide association studies (GWASs) are one of the most practical tools for mapping the patterns of inheritance for the most common form of genomic variation, single nucleotide polymorphisms. This approach is practical for investigating genetic variants across the human genome, which is affected by thousands of common genetic variants that do not follow Mendelian inheritance. This review article summarizes the academic knowledge of GWAS-identified genetic loci and their association with HCC. We summarize the GWASs in accordance with various chronic hepatitis virus infection statuses. This genetic profiling could be used to identify candidate biomarkers to refine HCC screening and management by enabling individual risk-based personalization and stratification. A more comprehensive understanding of the genetic mechanisms underlying individual predisposition to HCC may lead to improvements in the prevention and early diagnosis of HCC and the development of effective treatment strategies.
Collapse
|
11
|
Shen C, Jiang X, Li M, Luo Y. Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers (Basel) 2023; 15:533. [PMID: 36672482 PMCID: PMC9856776 DOI: 10.3390/cancers15020533] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, causing 600,000 deaths each year. Infectious factors, including hepatitis B virus (HBV), hepatitis C virus (HCV) and hepatitis D virus (HDV), have long been considered the major risk factors for the development and progression of HCC. These pathogens induce hepatocyte transformation through a variety of mechanisms, including insertional mutations caused by viral gene integration, epigenetic changes, and the induction of long-term immune dysfunction. The discovery of these mechanisms, while advancing our understanding of the disease, also provides targets for new diagnostic and therapeutic approaches. In addition, the discovery and research of chronic HEV infection over the past decade indicate that this common hepatitis virus also seems to have the potential to induce HCC. In this review, we provide an overview of recent studies on the link between hepatitis virus and HCC, as well as new diagnostic and therapeutic approaches to HCC based on these findings. Finally, we also discuss the potential relationship between HEV and HCC. In conclusion, these associations will further optimize the diagnosis and treatment of infection-associated HCC and call for better management policies.
Collapse
Affiliation(s)
| | | | - Mei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Luo
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Mayne ES, George JA, Louw S. Assessing Biomarkers in Viral Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:159-173. [PMID: 37378766 DOI: 10.1007/978-3-031-28012-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Current biomarkers to assess the risk of complications of both acute and chronic viral infection are suboptimal. Prevalent viral infections like human immunodeficiency virus (HIV), hepatitis B and C virus, herpes viruses, and, more recently, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) may be associated with significant sequelae including the risk of cardiovascular disease, other end-organ diseases, and malignancies. This review considers some biomarkers which have been investigated in diagnosis and prognosis of key viral infections including inflammatory cytokines, markers of endothelial dysfunction and activation and coagulation, and the role that more conventional diagnostic markers, such as C-reactive protein and procalcitonin, can play in predicting these secondary complications, as markers of severity and to distinguish viral and bacterial infection. Although many of these are still only available in the research setting, these markers show promise for incorporation in diagnostic algorithms which may assist to predict adverse outcomes and to guide therapy.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, Cape Town, South Africa.
| | - Jaya A George
- National Health Laboratory Service and Wits Diagnostic Innovation Hub, University of Witwatersrand, Johannesburg, South Africa
| | - Susan Louw
- Department of Molecular Medicine and Haematology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
13
|
Association between Immunologic Markers and Cirrhosis in Individuals from a Prospective Chronic Hepatitis C Cohort. Cancers (Basel) 2022; 14:cancers14215280. [PMID: 36358697 PMCID: PMC9657502 DOI: 10.3390/cancers14215280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Chronic hepatitis C virus (HCV) infection can affect immune response and inflammatory pathways, leading to severe liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). Methods: In a prospective cohort of chronically HCV-infected individuals, we sampled 68 individuals who developed cirrhosis, 91 controls who did not develop cirrhosis, and 94 individuals who developed HCC. Unconditional odds ratios (ORs) from polytomous logistic regression models and canonical discriminant analyses (CDAs) were used to compare categorical (C) baseline plasma levels for 102 markers in individuals who developed cirrhosis vs. controls and those who developed HCC vs. cirrhosis. Leave-one-out cross validation was used to produce receiver operating characteristic curves to assess predictive ability of markers. Lastly, biological pathways were assessed in association with cirrhotic development compared to controls. Results: After multivariable adjustment, DEFA-1 (OR: C2v.C1 = 7.73; p < 0.0001), ITGAM (OR: C2v.C1 = 4.03; p = 0.0002), SCF (OR: C4v.C1 = 0.19; p-trend = 0.0001), and CCL11 (OR: C4v.C1 = 0.31; p-trend= 0.002) were all associated with development of cirrhosis compared to controls; these markers, together with clinical/demographics variables, improved prediction of cirrhosis from 55.7% (in clinical/demographic-only model) to 74.9% accuracy. A twelve-marker model based on CDA results further increased prediction of cirrhosis to 88.0%. While six biological pathways were found to be associated with cirrhosis, cell adhesion was the only pathway associated with cirrhosis after Bonferroni correction. In contrast to cirrhosis, DEFA-1 and ITGAM levels were inversely associated with HCC risk. Conclusions: Pending validation, these findings highlight the important role of immunological markers in predicting HCV-related cirrhosis even 11 years post-enrollment.
Collapse
|
14
|
Beudeker BJB, Groothuismink ZMA, van der Eijk AA, Debes JD, Boonstra A. Circulating Cytokines Reflect the Etiology-Specific Immune Environment in Cirrhosis and HCC. Cancers (Basel) 2022; 14:cancers14194900. [PMID: 36230823 PMCID: PMC9563264 DOI: 10.3390/cancers14194900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/24/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims: Chronic liver disease—from any etiology—can progress to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The progression of liver cirrhosis to the end stages of disease is influenced by a variety of factors, including inflammatory cytokines. We pursued a study of cytokine-mediated inflammatory responses in hepatitis B (HBV), hepatitis C (HCV), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) patients with liver cirrhosis. Methods: Immune profiles were determined through the serum multiplex profiling of >100 cytokines in a 188 cirrhotic patients, 35 healthy controls and 196 early-stage HCC patients. Results: Patients with liver cirrhosis exhibited a vast upregulation of proinflammatory cytokines (p < 0.0001), including those with pro-oncogenic features, when compared to healthy individuals. In contrast to prevailing assumptions, each etiological cause of cirrhosis exhibited a unique cytokine profile in blood. Regardless of antiviral therapy, HBV cirrhosis patients had the largest number of upregulated proinflammatory mediators, compared to HCV, ALD and NAFLD (p < 0.0001). To further evaluate the etiology-dependent modulation of cytokine response in relation to liver cancer, we studied cytokine profiles in early-stage HCC patients strictly stratified by underlying liver disease. We observed unique sets of differentially expressed cytokines in each cohort of early-stage HCC patients of different cirrhosis etiologies. Conclusions: Our findings, therefore, underscore the importance of stratification by the etiological cause of liver cirrhosis in immune-based studies.
Collapse
Affiliation(s)
- Boris J. B. Beudeker
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Zwier M. A. Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Annemiek A. van der Eijk
- Department of Viroscience, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jose D. Debes
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Xu Y, Zhang M, Zhang Q, Yu X, Sun Z, He Y, Guo W. Role of Main RNA Methylation in Hepatocellular Carcinoma: N6-Methyladenosine, 5-Methylcytosine, and N1-Methyladenosine. Front Cell Dev Biol 2021; 9:767668. [PMID: 34917614 PMCID: PMC8671007 DOI: 10.3389/fcell.2021.767668] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynaecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
16
|
Association between immunologic markers and cirrhosis in individuals with chronic hepatitis B. Sci Rep 2021; 11:21194. [PMID: 34782638 PMCID: PMC8593047 DOI: 10.1038/s41598-021-00455-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Host immune response and chronic inflammation associated with chronic hepatitis B virus (HBV) infection play a key role in the pathogenesis of liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). We sampled 175 HCC, 117 cirrhotic and 165 non-cirrhotic controls from a prospective cohort study of chronically HBV-infected individuals. Multivariable polytomous logistic regression and canonical discriminant analysis (CDA) were used to compare baseline plasma levels for 102 markers in individuals who developed cirrhosis vs. controls and those who developed HCC vs. cirrhosis. Leave-one-out cross validation was used to generate receiver operating characteristic curves to compare the predictive ability of marker groups. After multivariable adjustment, HGF (Q4v1OR: 3.74; p-trend = 0.0001), SLAMF1 (Q4v1OR: 4.07; p-trend = 0.0001), CSF1 (Q4v1OR: 3.00; p-trend = 0.002), uPA (Q4v1OR: 3.36; p-trend = 0.002), IL-8 (Q4v1OR: 2.83; p-trend = 0.004), and OPG (Q4v1OR: 2.44; p-trend = 0.005) were all found to be associated with cirrhosis development compared to controls; these markers predicted cirrhosis with 69% accuracy. CDA analysis identified a nine marker model capable of predicting cirrhosis development with 79% accuracy. No markers were significantly different between HCC and cirrhotic participants. In this study, we assessed immunologic markers in relation to liver disease in chronically-HBV infected individuals. While validation in required, these findings highlight the importance of immunologic processes in HBV-related cirrhosis.
Collapse
|
17
|
Yang J, Hong S, Zhang X, Liu J, Wang Y, Wang Z, Gao L, Hong L. Tumor Immune Microenvironment Related Gene-Based Model to Predict Prognosis and Response to Compounds in Ovarian Cancer. Front Oncol 2021; 11:807410. [PMID: 34966691 PMCID: PMC8710702 DOI: 10.3389/fonc.2021.807410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) has been recognized to be an imperative factor facilitating the acquisition of many cancer-related hallmarks and is a critical target for targeted biological therapy. This research intended to construct a risk score model premised on TIME-associated genes for prediction of survival and identification of potential drugs for ovarian cancer (OC) patients. METHODS AND RESULTS The stromal and immune scores were computed utilizing the ESTIMATE algorithm in OC patient samples from The Cancer Genome Atlas (TCGA) database. Weighted gene co-expression network and differentially expressed genes analyses were utilized to detect stromal-and immune-related genes. The Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression was utilized for additional gene selection. The genes that were selected were utilized as the input for a stepwise regression to construct a TIME-related risk score (TIMErisk), which was then validated in Gene Expression Omnibus (GEO) database. For the evaluation of the protein expression levels of TIME regulators, the Human Protein Atlas (HPA) dataset was utilized, and for their biological functions, the TIMER and CIBERSORT algorithm, immunoreactivity, and Immune Cell Abundance Identifier (ImmuCellAI) were used. Possible OC medications were forecasted utilizing the Genomics of Drug Sensitivity in Cancer (GDSC) database and connectivity map (CMap). TIMErisk was developed based on ALPK2, CPA3, PTGER3, CTHRC1, PLA2G2D, CXCL11, and ZNF683. High TIMErisk was recognized as a poor factor for survival in the GEO and TCGA databases; subgroup analysis with FIGO stage, grade, lymphatic and venous invasion, debulking, and tumor site also indicated similar results. Functional immune cells corresponded to more incisive immune reactions, including secretion of chemokines and interleukins, natural killer cell cytotoxicity, TNF signaling pathway, and infiltration of activated NK cells, eosinophils, and neutrophils in patients with low TIMErisk. Several small molecular medications which may enhance the prognosis of patients in the TIMErisk subgroup were identified. Lastly, an enhanced predictive performance nomogram was constructed by compounding TIMErisk with the FIGO stage and debulking. CONCLUSION These findings may offer a valuable indicator for clinical stratification management and personalized therapeutic options for OC patients and may be a foundation for future mechanistic research of their association.
Collapse
|