1
|
Weiss MG, de Jong AM, Seegert H, Moeslund N, Maassen H, Schjalm C, de Boer E, Leuvenink H, Mollnes TE, Eijken M, Keller AK, Dijkstra G, Jespersen B, Pischke SE. Activation of the Innate Immune System in Brain-Dead Donors Can Be Reduced by Luminal Intestinal Preservation During Organ Procurement Surgery - A Porcine Model. Transpl Int 2024; 37:13569. [PMID: 39544322 PMCID: PMC11560447 DOI: 10.3389/ti.2024.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Organs obtained from brain dead donors can have suboptimal outcomes. Activation of the innate immune system and translocation of intestinal bacteria could be causative. Thirty two pigs were assigned to control, brain death (BD), BD + luminal intestinal polyethylene glycol (PEG), and BD + luminal intestinal University of Wisconsin solution (UW) groups. Animals were observed for 360 min after BD before organ retrieval. 2,000 mL luminal intestinal preservation solution was instilled into the duodenum at the start of organ procurement. Repeated measurements of plasma C3a, Terminal Complement Complex (TCC), IL-8, TNF, and lipopolysaccharide binding protein were analysed by immunoassays. C3a was significantly higher in the BD groups compared to controls at 480 min after brain death. TCC was significantly higher in BD and BD + UW, but not BD + PEG, compared to controls at 480 min. TNF was significantly higher in the BD group compared to all other groups at 480 min. LPS binding protein increased following BD in all groups except BD + PEG, which at 480 min was significantly lower compared with all other groups. Brain death induced innate immune system activation was decreased by luminal preservation using PEG during organ procurement, possibly due to reduced bacterial translocation.
Collapse
Affiliation(s)
- Marc Gjern Weiss
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Marye de Jong
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Helene Seegert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanno Maassen
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eline de Boer
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Henri Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Marco Eijken
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Clarysse M, Accarie A, Panisello-Roselló A, Farré R, Canovai E, Monbaliu D, De Hertogh G, Vanuytsel T, Pirenne J, Ceulemans LJ. Intravenous Polyethylene Glycol Alleviates Intestinal Ischemia-Reperfusion Injury in a Rodent Model. Int J Mol Sci 2023; 24:10775. [PMID: 37445954 DOI: 10.3390/ijms241310775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Intestinal ischemia-reperfusion injury (IRI) is a common clinical entity, and its outcome is unpredictable due to the triad of inflammation, increased permeability and bacterial translocation. Polyethylene glycol (PEG) is a polyether compound that is extensively used in pharmacology as an excipient in various products. More recently, this class of products have shown to have potent anti-inflammatory, anti-apoptotic, immunosuppressive and cell-membrane-stabilizing properties. However, its effects on the outcome after intestinal IRI have not yet been investigated. We hypothesized that PEG administration would reduce the effects of intestinal IRI in rodents. In a previously described rat model of severe IRI (45 min of ischemia followed by 60 min of reperfusion), we evaluated the effect of IV PEG administration at different doses (50 and 100 mg/kg) before and after the onset of ischemia. In comparison to control animals, PEG administration stabilized the endothelial glycocalyx, leading to reduced reperfusion edema, bacterial translocation and inflammatory reaction as well as improved 7-day survival. These effects were seen both in a pretreatment and in a treatment setting. The fact that this product is readily available and safe should encourage further clinical investigations in settings of intestinal IRI, organ preservation and transplantation.
Collapse
Affiliation(s)
- Mathias Clarysse
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Alison Accarie
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Arnau Panisello-Roselló
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Cientificas (CSIC)-Institut D'Investigacions Biomèdique August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Emilio Canovai
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research, KU Leuven, 3000 Leuven, Belgium
| | - Tim Vanuytsel
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery & Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium
- Abdominal Transplantation Laboratory, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
| | - Laurens J Ceulemans
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, 3000 Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Li JH, Xu X, Wang YF, Xie HY, Chen JY, Dong NG, Badiwala M, Xin LM, Ribeiro RVP, Yin H, Zhang H, Zhang JZ, Huo F, Yang JY, Yang HJ, Pan H, Li SG, Qiao YB, Luo J, Li HY, Jia JJ, Yu H, Liang H, Yang SJ, Wang H, Liu ZY, Zhang LC, Hu XY, Wu H, Hu YQ, Tang PF, Ye QF, Zheng SS. Chinese expert consensus on organ protection of transplantation (2022 edition). Hepatobiliary Pancreat Dis Int 2022; 21:516-526. [PMID: 36376226 DOI: 10.1016/j.hbpd.2022.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jian-Hui Li
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yan-Feng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Hai-Yang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jing-Yu Chen
- Wuxi Lung Transplantation Center, Wuxi People's Hospital Affiliated with Nanjing Medical University, Wuxi 214023, China
| | - Nian-Guo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mitesh Badiwala
- Peter Munk Cardiac Centre, Toronto General Hospital-University Health Network, Toronto, Canada
| | - Li-Ming Xin
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| | | | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China
| | - Hao Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Jian-Zheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Feng Huo
- Department of Surgery, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510040, China
| | - Jia-Yin Yang
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hong-Ji Yang
- Organ Transplantation Center, Sichuan Provincial People's Hospital and School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hui Pan
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shao-Guang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Yin-Biao Qiao
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jia Luo
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Hao-Yu Li
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China
| | - Jun-Jun Jia
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Yu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Han Liang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Si-Jia Yang
- Department of Lung Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Zhong-Yang Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Li-Cheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Xiao-Yi Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hao Wu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yi-Qing Hu
- Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Pei-Fu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100039, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100039, China
| | - Qi-Fa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430062, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Zhejiang Shuren University School of Medicine, Hangzhou 310022, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Division of Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Luminal Preservation Protects the Small Intestine in a Brain-dead Rat Model. Transplant Direct 2022; 8:e1378. [PMID: 36176723 PMCID: PMC9514830 DOI: 10.1097/txd.0000000000001378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 11/27/2022] Open
Abstract
Intestinal transplantation depends on donation after brain death (DBD). Luminal preservation (LP) has been beneficial against preservation injury in previous studies in animal models, but none include DBD. This study aims to investigate whether these benefits occur also with DBD.
Collapse
|
5
|
Liu R, Wang SM, Guo SJ, Ma MM, Fu YL. Histone deacetylase inhibitor attenuates intestinal mucosal injury in fatally scalded rats. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:54. [PMID: 35282042 PMCID: PMC8848362 DOI: 10.21037/atm-21-5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 11/06/2022]
Abstract
Background Severe burns, trauma and shock can cause intestinal epithelial barrier dysfunction, which can lead to intestinal endotoxemia and even sepsis and multi-organ dysfunction. Many studies have shown that histone deacetylase inhibitors (HDACIs) can improve cell tolerance to hypoxia and inflammation, thus protecting the functions of important organs in the body, and at the same time, inhibiting the degradation of tight junction (TJ) proteins, protecting the intercellular barrier, and reducing tissue edema and organ damage. However, the mechanism is unclear. Methods Eighty male Sprague-Dawley rats (weighing 280-300 g) with a 50% total body surface area full-thickness dermal burn were randomly assigned to 4 groups (20 rats/group): sham control (SC group), scald + normal saline (SN group), scald + 2-methyl-2pentenoic acid (2M2P group), and scald + valproic acid (VPA group). After scalding, we measured the following parameters at various time intervals postburn injury: intestinal mucosal injury score, diamine oxidase (DAO) activity, intestinal protein expression of acetyl histone H3 at K9 (Ac-H3K9), hypoxia inducible factor 1α (HIF-1α), erythropoietin (EPO), zonula occludens-1 (ZO-1), endothelial nitric oxide synthase (eNOS) content, nitric oxide (NO) content, and intestinal mucosal blood flow (IMBF). Results Intestinal mucosa showed significant morphologic injury at 4 and 8 hours after scalding that was attenuated by VPA. DAO activity in the VPA group was significantly decreased compared with the other scald groups. At 4 and 8 hours after scalding, VPA enhanced Ac-H3K9 and ZO-1 expression and decreased HIF-1α and EPO expression in the intestine compared with the other scald groups. At 4 and 8 hours after scalding, eNOS and NO protein content and IMBF in the VPA group were markedly increased compared with the other scald groups. Conclusions HDACIs attenuated intestinal mucosal injury in fatally scalded rats. This may have involved VPA enhancing Ac-H3K9 and ZO-1 expression, inhibiting HIF-1α and EPO expression and inducing eNOS and NO increments.
Collapse
Affiliation(s)
- Rui Liu
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Shu-Ming Wang
- Department of Emergency Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Jia Guo
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Ming-Ming Ma
- Department of Burns, Heilongjiang Provincial Hospital, Harbin, China
| | - Yi-Li Fu
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Wang ZY, Lin JY, Feng YR, Liu DS, Zhao XZ, Li T, Li SY, Sun JC, Li SF, Jia WY, Jing HR. Recombinant angiopoietin-like protein 4 attenuates intestinal barrier structure and function injury after ischemia/reperfusion. World J Gastroenterol 2021; 27:5404-5423. [PMID: 34539141 PMCID: PMC8409166 DOI: 10.3748/wjg.v27.i32.5404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intestinal barrier breakdown, a frequent complication of intestinal ischemia-reperfusion (I/R) including dysfunction and the structure changes of the intestine, is characterized by a loss of tight junction and enhanced permeability of the intestinal barrier and increased mortality. To develop effective and novel therapeutics is important for the improvement of outcome of patients with intestinal barrier deterioration. Recombinant human angiopoietin-like protein 4 (rhANGPTL4) is reported to protect the blood-brain barrier when administered exogenously, and endogenous ANGPTL4 deficiency deteriorates radiation-induced intestinal injury. AIM To identify whether rhANGPTL4 may protect intestinal barrier breakdown induced by I/R. METHODS Intestinal I/R injury was elicited through clamping the superior mesenteric artery for 60 min followed by 240 min reperfusion. Intestinal epithelial (Caco-2) cells and human umbilical vein endothelial cells were challenged by hypoxia/ reoxygenation to mimic I/R in vitro. RESULTS Indicators including fluorescein isothiocyanate-conjugated dextran (4 kilodaltons; FD-4) clearance, ratio of phosphorylated myosin light chain/total myosin light chain, myosin light chain kinase and loss of zonula occludens-1, claudin-2 and VE-cadherin were significantly increased after intestinal I/R or cell hypoxia/reoxygenation. rhANGPTL4 treatment significantly reversed these indicators, which were associated with inhibiting the inflammatory and oxidative cascade, excessive activation of cellular autophagy and apoptosis and improvement of survival rate. Similar results were observed in vitro when cells were challenged by hypoxia/reoxygenation, whereas rhANGPTL4 reversed the indicators close to normal level in Caco-2 cells and human umbilical vein endothelial cells significantly. CONCLUSION rhANGPTL4 can function as a protective agent against intestinal injury induced by intestinal I/R and improve survival via maintenance of intestinal barrier structure and functions.
Collapse
Affiliation(s)
- Zi-Yi Wang
- Emergent Intensive Care Unit, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, Liaoning Province, China
| | - Jian-Yu Lin
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai 264200, Shandong Province, China
| | - Yang-Rong Feng
- Graduate College, Shandong First Medical University, Jinan 271000, Shandong Province, China
| | - De-Shun Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, Liaoning Province, China
| | - Xu-Zi Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Tong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100000, China
| | - Si-Yuan Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jing-Chao Sun
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Feng Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Yan Jia
- Physiological Examination Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong Province, China
| | - Hui-Rong Jing
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
7
|
Characterizing Autophagy in the Cold Ischemic Injury of Small Bowel Grafts: Evidence from Rat Jejunum. Metabolites 2021; 11:metabo11060396. [PMID: 34204418 PMCID: PMC8234201 DOI: 10.3390/metabo11060396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Cold ischemic injury to the intestine during preservation remains an unresolved issue in transplantation medicine. Autophagy, a cytoplasmic protein degradation pathway, is essential for metabolic adaptation to starvation, hypoxia, and ischemia. It has been implicated in the cold ischemia (CI) of other transplantable organs. This study determines the changes in intestinal autophagy evoked by cold storage and explores the effects of autophagy on ischemic grafts. Cold preservation was simulated by placing the small intestines of Wistar rats in an IGL-1 (Institute George Lopez) solution at 4 °C for varying periods (3, 6, 9, and 12 h). The extent of graft preservation injury (mucosal and cellular injury) and changes in autophagy were measured after each CI time. Subsequently, we determined the differences in apoptosis and preservation injury after activating autophagy with rapamycin or inhibiting it with 3-methyladenine. The results revealed that ischemic injury and autophagy were induced by cold storage. Autophagy peaked at 3 h and subsequently declined. After 12 h of storage, autophagic expression was reduced significantly. Additionally, enhanced intestinal autophagy by rapamycin was associated with less tissue, cellular, and apoptotic damage during and after the 12-h long preservation. After reperfusion, grafts with enhanced autophagy still presented with less injury. Inhibiting autophagy exhibited the opposite trend. These findings demonstrate intestinal autophagy changes in cold preservation. Furthermore, enhanced autophagy was protective against cold ischemia-reperfusion damage of the small bowels.
Collapse
|