1
|
Prakash K, Saharia KK, Karaba A, Law N, Albarillo FS, Zangeneh TT, Grossi P, Miller R, Slavin M, Shoham S, Ison M, La Hoz RM, Baddley JW. Minimizing risk while maximizing opportunity: The infectious disease organ offer process survey. Transpl Infect Dis 2024; 26:e14342. [PMID: 39037217 DOI: 10.1111/tid.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND The purpose of this study was to understand how transplant infectious disease (TID) physicians assess a potential donor with known or suspected infection and describe posttransplant management. METHODS We designed a survey of 10 organ offer scenarios and asked questions pertaining to organ acceptability for transplantation and management posttransplant. The survey was distributed to TID clinicians via transplant society listservs and email. Responses were recorded in REDCap, and descriptive statistics were employed. RESULTS One hundred thirteen infectious disease physicians responded to the survey, of whom 85 completed all cases. Respondents were generally in agreement regarding organ acceptability, although some divergence was seen when evaluating lungs from donors with influenza, tuberculosis, or multidrug-resistant Acinetobacter infection. Posttransplant management showed more variation. Areas of optimization were identified: (1) Further understanding of where risk-mitigation strategies within the donor offer process may improve donor acceptability and therefore organ utilization; (2) importance of recipient considerations in assessing degree of infectious risk; and (3) gaps in evidenced-based data regarding optimal posttransplant management of recipients. CONCLUSION Evaluation of donor offers by TID clinicians is a complex process. Although the survey does not itself serve to make recommendations regarding best practices, it highlights areas where generation of data to inform acceptance and management practices may allow for improved organ utilization and recipient management.
Collapse
Affiliation(s)
- Katya Prakash
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kapil K Saharia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Karaba
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nancy Law
- University of California San Diego School of Medicine, San Diego, California, USA
| | - Fritzie S Albarillo
- Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | | | - Paolo Grossi
- Duke University School of Medicine, Varese, Italy
| | - Rachel Miller
- School of Medicine, Duke University, Durham, North Carolina, USA
| | - Monica Slavin
- Peter MacCallum Cancer Center, University of Melbourne, Melbourne, Australia
| | - Shmuel Shoham
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Ison
- National Institutes of Health, Bethesda, Maryland, USA
| | - Ricardo M La Hoz
- Division of Infectious Disease, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W Baddley
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Inagaki K, Weinberg JB, Kaul DR. Risk of Staphylococcus aureus Bacteremia Before and After Solid Organ Transplantation. Transplantation 2023; 107:1820-1827. [PMID: 36959162 DOI: 10.1097/tp.0000000000004590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
BACKGROUND Solid organ transplant recipients are at high risk for Staphylococcus aureus bacteremia, but the risks before and after transplantation require further research. METHODS We performed a population-based retrospective self-controlled study using the State Inpatient Database from 10 states in the United States. Adult and pediatric patients who had solid organ transplantation from 2004 to 2018 were tracked longitudinally for 1 y before and after transplantation outside of the immediate peritransplant periods. The exposure of interest was solid organ transplantation, and the outcome of interest was hospitalization with S. aureus bacteremia. RESULTS Of 75 549 patients, 581 (0.77%) and 239 (0.32%) were hospitalized with S. aureus bacteremia in the pretransplant and posttransplant periods, respectively ( P < 0.001). Overall, the odds of hospitalization with S. aureus bacteremia increased from 7 to 12 mo to 1 to 6 mo before transplantation (odds ratio, 1.24; 95% confidence interval, 1.05-1.46) and then decreased following transplantation (odds ratio, 0.35; 95% confidence interval, 0.28-0.45; 7-12 mo after transplantation). The decreased rate after transplantation was driven by the cases associated with central line-associated bloodstream infections and endocarditis among kidney and heart transplant recipients. Odds of hospitalization with S. aureus bacteremia did not change after liver transplantation, whereas they increased after lung transplantation. CONCLUSIONS In addition to immunosuppression, the reversal of organ failure and associated requirements for organ support following transplantation may play an important role in the risk of S. aureus bacteremia in solid organ transplant recipients. These results can guide infection prevention approaches and future research on S. aureus infections in transplant patients.
Collapse
Affiliation(s)
- Kengo Inagaki
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Daniel R Kaul
- Internal Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Dolci G, Burastero GJ, Paglia F, Cervo A, Meschiari M, Guaraldi G, Chester J, Mussini C, Franceschini E. Epidemiology and Prevention of Early Infections by Multi-Drug-Resistant Organisms in Adults Undergoing Liver Transplant: A Narrative Review. Microorganisms 2023; 11:1606. [PMID: 37375108 DOI: 10.3390/microorganisms11061606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Invasive bacterial infections are a leading cause of morbidity and mortality after liver transplant (LT), especially during the first months after LT, and infections due to multi-drug-resistant organisms (MDRO) are increasing in this setting. Most of the infections in patients in intensive care unit arise from the endogenous microflora and, for this reason, pre-LT MDRO rectal colonization is a risk factor for developing MDRO infections in the post-LT. Moreover, the transplanted liver may carry an increased risk of MDRO infections due to organ transportation and preservation, to donor intensive care unit stay and previous antibiotic exposure. To date, little evidence is available about how MDRO pre-LT colonization in donors and recipients should address LT preventive and antibiotic prophylactic strategies, in order to reduce MDRO infections in the post-LT period. The present review provided an extensive overview of the recent literature on these topics, with the aim to offer a comprehensive insight about the epidemiology of MDRO colonization and infections in adult LT recipients, donor-derived MDRO infections, possible surveillance, and prophylactic strategies to reduce post-LT MDRO infections.
Collapse
Affiliation(s)
- Giovanni Dolci
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Giulia Jole Burastero
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Francesca Paglia
- Infectious Diseases Unit, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Adriana Cervo
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Unit, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Johanna Chester
- Department of Dermatology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Unit, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Erica Franceschini
- Infectious Diseases Unit, Azienda Ospedaliero-Universitaria of Modena, 41126 Modena, Italy
| |
Collapse
|
4
|
Adediran TY, Hitchcock S, Johnson JK, Stine OC, Leekha S, Thom KA, Liang Y, Rasko DA, Harris AD. Molecular concordance of methicillin-resistant Staphylococcus aureus isolates from healthcare workers and patients. Infect Control Hosp Epidemiol 2023; 44:578-588. [PMID: 36177884 PMCID: PMC10060437 DOI: 10.1017/ice.2022.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a significant nosocomial pathogen in the ICU. MRSA contamination of healthcare personnel (HCP) gloves and gowns after providing care to patients with MRSA occurs at a rate of 14%-16% in the ICU setting. Little is known about whether the MRSA isolates identified on HCP gown and gloves following patient care activities are the same as MRSA isolates identified as colonizing or infecting the patient. METHODS From a multisite cohort of 388 independent patient MRSA isolates and their corresponding HCP gown and glove isolates, we selected 91 isolates pairs using a probability to proportion size (PPS) sampling method. To determine whether the patient and HCP gown or gloves isolates were genetically similar, we used 5 comparative genomic typing methods: phylogenetic analysis, spa typing, multilocus sequence typing (MLST), large-scale BLAST score ratio (LSBSR), and single-nucleotide variant (SNV) analysis. RESULTS We identified that 56 (61.5%) of isolate pairs were genetically similar at least by 4 of the methods. Comparably, the spa typing and the LSBSR analyses revealed that >75% of the examined isolate pairs were concordant, with the thresholds established for each analysis. CONCLUSIONS Many of the patient MRSA isolates were genetically similar to those on the HCP gown or gloves following a patient care activity. This finding indicates that the patient is often the primary source of the MRSA isolates transmitted to the HCP, which can potentially be spread to other patients or hospital settings through HCP vectors. These results have important implications because they provide additional evidence for hospitals considering ending the use of contact precautions (gloves and gowns) for MRSA patients.
Collapse
Affiliation(s)
- Timileyin Y. Adediran
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephanie Hitchcock
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - J. Kristie Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - O. Colin Stine
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Surbhi Leekha
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kerri A. Thom
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yuanyuan Liang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anthony D. Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Deceased donors with multidrug-resistant organisms: implications and future directions. Curr Opin Organ Transplant 2022; 27:250-256. [PMID: 36354250 DOI: 10.1097/mot.0000000000000991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE OF REVIEW Organ utilization from donors infected or colonized with multidrug-resistant organisms (MDROs) remains inconsistent, and hesitancy to accept organs from these donors may relate to poor outcomes among solid organ transplant recipients with MDRO donor-derived infections (DDIs). An improved understanding of the risk factors for donor MDRO colonization or infection and the risk of MDRO DDI is needed to safely expand the donor pool while minimizing unnecessary organ discard. RECENT FINDINGS Recent studies have begun to delineate risk factors for MDRO acquisition among deceased donors and the epidemiology of MDRO DDIs, but additional efforts are warranted to inform optimal approaches to donor evaluation, risk stratification, management, interfacility and interagency data sharing, and approaches to recipient management. SUMMARY This review summaries recent data regarding risk factors for MDRO colonization and infection in deceased donors, epidemiology of MDRO DDIs, and current approaches to donors harboring MDROs and provides a framework for future research and collaboration.
Collapse
|
6
|
Zhang F, Zhong J, Ding H, Liao G. Effects of preservative fluid associated possible donor-derived carbapenem-resistant Klebsiella Pneumoniae infection on kidney transplantation recipients. BMC Nephrol 2022; 23:101. [PMID: 35287599 PMCID: PMC8919621 DOI: 10.1186/s12882-022-02733-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/09/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Infections remain a major cause of morbidity and mortality in kidney transplant (KT) recipients. This study aimed to investigate the preservation fluid (PF) samples from deceased donors and report the impacts of possible donor-derived carbapenem-resistant Klebsiella pneumoniae (pdd-CRKP) infections on KT recipients. METHODS A retrospective study was performed that included all recipients who received kidney transplantation from deceased donors in our hospital between December 2018 and December 2020. A total of 212 patients received kidney transplantation from deceased donors, a total of 206 PF samples were collected, and 20 recipients had a CRKP-positive culture. Both donors and recipients with CRKP-positive PF cultures were divided into two groups, and continuous variables between the two groups were compared using independent-sample t tests and Mann-Whitney tests. Categorical variables were compared using the chi-square test or Fisher's exact test. The significance level of p values was set at 0.05. RESULTS A total of 337 recipients underwent kidney transplantation, including 212 recipients of organs from deceased donors and 110 corresponding deceased donors. A total of 206 PF samples were collected, and 20 recipients had CRKP-positive PF cultures. The donors' length of ICU stay was a potential risk factor for CRKP positivity in the PF culture (P < 0.05). Fifteen recipients were infected with pdd-CRKP, and the incidence of pdd-CRKP infection was 7.3% (15/206). The use of antibiotics, including ceftazidime-avibactam (CAZ-AVI), was a potential protective factor against death and graft loss in recipients with a CRKP-positive PF culture (P < 0.05). CONCLUSIONS This study shows that the incidence of pdd-CRKP is high in our centre, recipients with pdd-CRKP infection can still achieve a good prognosis with the use of antimicrobial agents including CAZ-AVI.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, China
| | - Jinbiao Zhong
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, China
| | - Handong Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, China
| | - Guiyi Liao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China. .,Institute of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China. .,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
7
|
Solid Organ Transplantation From Deceased Donors With Infective Endocarditis: The UK Experience. Transplantation 2022; 106:588-596. [PMID: 33901109 DOI: 10.1097/tp.0000000000003792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND There is little evidence regarding the use of organs from deceased donors with infective endocarditis. We performed a retrospective analysis of the utilization, safety, and long-term survival of transplants from donors with infective endocarditis in the United Kingdom. METHODS We studied deceased donor transplants over an 18-y period (2001-2018) using data from the UK Transplant Registry. We estimated the risk of infection transmission, defined as a microbiological isolate in the recipient matching the causative organism in the donor in the first 30 days posttransplant. We examined all-cause allograft failure up to 5 years in kidney and liver recipients, comparing transplants from donors with endocarditis with randomly selected matched control transplants. RESULTS We studied 88 transplants from 42 donors with infective endocarditis. We found no cases of infection transmission. There was no difference in allograft failure between transplants from donors with infective endocarditis and matched control transplants, among either kidney (hazard ratio, 1.48; 95% CI, 0.66-3.34) or liver (hazard ratio, 1.14; 95% CI, 0.54-2.41) recipients. Compared with matched controls, donors with infective endocarditis donated fewer organs (2.3 versus 3.2 organs per donor; P < 0.001) and were less likely to become kidney donors (odds ratio, 0.29; 95% CI, 0.16-0.55). CONCLUSIONS We found acceptable safety and long-term allograft survival in transplants from selected donors with infective endocarditis in the United Kingdom. This may have implications for donor selection and organ utilization.
Collapse
|
8
|
Anesi JA, Blumberg EA, Han JH, Lee DH, Clauss H, Hasz R, Molnar E, Alimenti D, Motzer AR, West S, Bilker WB, Tolomeo P, Lautenbach E. Impact of donor multidrug-resistant organisms on solid organ transplant recipient outcomes. Transpl Infect Dis 2022; 24:e13783. [PMID: 34968006 PMCID: PMC9495582 DOI: 10.1111/tid.13783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The impact of donor colonization or infection with multidrug-resistant organisms (MDROs) on solid organ transplant (SOT) recipient outcomes remains uncertain. We thus evaluated the association between donor MDROs and risk of posttransplant infection, graft failure, and mortality. METHODS A multicenter retrospective cohort study was performed. All SOT recipients with a local deceased donor were included. The cohort was divided into three exposure groups: recipients whose donors had (1) an MDRO, (2) a non-MDRO bacterial or candidal organism, or (3) no growth on cultures. The primary outcomes were (1) bacterial or invasive candidal infection within 3 months and (2) graft failure or death within 12 months posttransplant. Mixed effect multivariable frailty models were developed to evaluate each association. RESULTS Of 658 total SOT recipients, 93 (14%) had a donor with an MDRO, 477 (73%) had a donor with a non-MDRO organism, and 88 (13%) had a donor with no organisms on culture. On multivariable analyses, donor MDROs were associated with a significantly increased hazard of infection compared to those with negative donor cultures (adjust hazard ratio [aHR] 1.63, 95% CI 1.01-2.62, p = .04) but were not associated with graft failure or death (aHR 0.45, 95% CI 0.15-1.36, p = .16). CONCLUSIONS MDROs on donor culture increase the risk of early posttransplant infection but do not appear to affect long-term graft or recipient survival, suggesting organ donors with MDROs on culture may be safely utilized. Future studies aimed at reducing early posttransplant infections associated with donor MDROs are needed.
Collapse
Affiliation(s)
- Judith A. Anesi
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily A. Blumberg
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Dong Heun Lee
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Heather Clauss
- Section of Infectious Diseases, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Richard Hasz
- Gift of Life Donor Program, Philadelphia, Pennsylvania, USA
| | - Esther Molnar
- Section of Infectious Diseases, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Darcy Alimenti
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew R. Motzer
- Section of Infectious Diseases, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sharon West
- Gift of Life Donor Program, Philadelphia, Pennsylvania, USA
| | - Warren B. Bilker
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pam Tolomeo
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Characterization of antibiotic resistance and virulence genes of ocular methicillin-resistant Staphylococcus aureus strains through complete genome analysis. Exp Eye Res 2021; 212:108764. [PMID: 34508729 DOI: 10.1016/j.exer.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
Virulence-factor encoding genes (VFGs) and antimicrobial resistance genes (ARGs) of ocular Methicillin-Resistant Staphylococcus aureus (MRSA), are the reason behind the common cause of severe and untreatable ocular infection and are largely unknown. The unavailability of the complete genome sequence of ocular MRSA strains hinders the unambiguous determination of ARGs and VRGs role in disease pathogenesis and their genomic location. To fulfill this critical need, we achieved the high-quality complete genome of four ocular MRSA strains (AMRF3 - AMRF6) by combining MinION nanopore sequencing technology, followed by polishing with Illumina sequence reads. We obtained a single chromosome and a plasmid in each strain. Sequence typing revealed that AMRF3 and AMRF5 strains harbored ST772, whereas AMRF4 and AMRF6 harbored ST 2066. All plasmids carried heavy metal cadmium resistance genes cadC and cadD, while cadA was detected only in the plasmid pSaa6159 of AMRF4 and AMRF6 strains. Further, pSaa6159 contains a complete Tn552 transposon with beta-lactamase genes, blaI, blaR1, and blaZ. Interestingly, pSaa6159 in AMRF6 carried five copies of Tn552 transposon. Several exotoxins and enterotoxins were identified across ocular MRSA strains and ST2066 strains found to be not carried any enterotoxins; this finding suggests that these two strains are exotoxigenic. Besides, ST2066 strains carried serine proteases (splA, splB, splD, splE and spIF) and exotoxin (seb and set 21) for their virulence, while ST772 carried antimicrobial resistance genes (blaZ, dfrG, msrA, mphC and fosB) and enterotoxin sec for virulence, suggesting sequence type-specific resistance and virulence. Also, we identified many VFGs and ARGs, that provided multi-drug resistance, enterotoxigenic, exotoxigenic, biofilm-forming, host tissue adhesion and immune response evasion in ocular MRSA strains. Thus, our study provides a better insight into the genomes of ocular MRSA strains that would provide more effective treatment strategies for ocular MRSA infection.
Collapse
|
10
|
Jorch SK, Surewaard BG, Hossain M, Peiseler M, Deppermann C, Deng J, Bogoslowski A, van der Wal F, Omri A, Hickey MJ, Kubes P. Peritoneal GATA6+ macrophages function as a portal for Staphylococcus aureus dissemination. J Clin Invest 2020; 129:4643-4656. [PMID: 31545300 DOI: 10.1172/jci127286] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Essentially all Staphylococcus aureus (S. aureus) bacteria that gain access to the circulation are plucked out of the bloodstream by the intravascular macrophages of the liver - the Kupffer cells. It is also thought that these bacteria are disseminated via the bloodstream to other organs. Our data show that S. aureus inside Kupffer cells grew and escaped across the mesothelium into the peritoneal cavity and immediately infected GATA-binding factor 6-positive (GATA6+) peritoneal cavity macrophages. These macrophages provided a haven for S. aureus, thereby delaying the neutrophilic response in the peritoneum by 48 hours and allowing dissemination to various peritoneal and retroperitoneal organs including the kidneys. In mice deficient in GATA6+ peritoneal macrophages, neutrophils infiltrated more robustly and reduced S. aureus dissemination. Antibiotics administered i.v. did not prevent dissemination into the peritoneum or to the kidneys, whereas peritoneal administration of vancomycin (particularly liposomal vancomycin with optimized intracellular penetrance capacity) reduced kidney infection and mortality, even when administered 24 hours after infection. These data indicate that GATA6+ macrophages within the peritoneal cavity are a conduit of dissemination for i.v. S. aureus, and changing the route of antibiotic delivery could provide a more effective treatment for patients with peritonitis-associated bacterial sepsis.
Collapse
Affiliation(s)
- Selina K Jorch
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bas Gj Surewaard
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mokarram Hossain
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Moritz Peiseler
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carsten Deppermann
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Deng
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ania Bogoslowski
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fardau van der Wal
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia
| | - Paul Kubes
- Department of Physiology and Pharmacology, Immunology Research Group, and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
A Complete Genome Screening Program of Clinical Methicillin-Resistant Staphylococcus aureus Isolates Identifies the Origin and Progression of a Neonatal Intensive Care Unit Outbreak. J Clin Microbiol 2019; 57:JCM.01261-19. [PMID: 31578260 PMCID: PMC6879278 DOI: 10.1128/jcm.01261-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/23/2019] [Indexed: 01/17/2023] Open
Abstract
Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital. Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices. In this study, we established a long-read technology-based WGS screening program of all first-episode methicillin-resistant Staphylococcus aureus (MRSA) blood infections at a major urban hospital. A survey of 132 MRSA genomes assembled from long reads enabled detailed characterization of an outbreak lasting several months of a CC5/ST105/USA100 clone among 18 infants in a neonatal intensive care unit (NICU). Available hospital-wide genome surveillance data traced the origins of the outbreak to three patients admitted to adult wards during a 4-month period preceding the NICU outbreak. The pattern of changes among complete outbreak genomes provided full spatiotemporal resolution of its progression, which was characterized by multiple subtransmissions and likely precipitated by equipment sharing between adults and infants. Compared to other hospital strains, the outbreak strain carried distinct mutations and accessory genetic elements that impacted genes with roles in metabolism, resistance, and persistence. This included a DNA recognition domain recombination in the hsdS gene of a type I restriction modification system that altered DNA methylation. Transcriptome sequencing (RNA-Seq) profiling showed that the (epi)genetic changes in the outbreak clone attenuated agr gene expression and upregulated genes involved in stress response and biofilm formation. Overall, our findings demonstrate the utility of long-read sequencing for hospital surveillance and for characterizing accessory genomic elements that may impact MRSA virulence and persistence.
Collapse
|
12
|
Pereira MR, Rana MM. Methicillin-resistant Staphylococcus aureus in solid organ transplantation-Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13611. [PMID: 31120612 DOI: 10.1111/ctr.13611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/25/2022]
Abstract
These updated guidelines from the American Society of Transplantation Infectious Diseases Community of Practice review the epidemiology, diagnosis, prevention, and management of methicillin-resistant Staphylococcus aureus (MRSA) infections in solid organ transplantation. Despite an increasing armamentarium of antimicrobials active against MRSA, improved diagnostic tools, and overall declining rates of infection, MRSA infections remain a substantial cause of morbidity and mortality in solid organ transplant recipients. Pre- and post-transplant MRSA colonization is a significant risk factor for post-transplant MRSA infection. The preferred initial treatment of MRSA bacteremia remains vancomycin. Hand hygiene, chlorhexidine bathing in the ICU, central-line bundles that focus on reducing unnecessary catheter use, disinfection of patient equipment, and the environment along with antimicrobial stewardship are all aspects of an infection prevention approach to prevent MRSA transmission and decrease healthcare-associated infections.
Collapse
|
13
|
Grossi PA. Liver transplantation from donors with positive blood cultures: increased risk of graft failure or opportunity to expand the donor pool? Transpl Int 2019; 30:556-557. [PMID: 28218989 DOI: 10.1111/tri.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Paolo A Grossi
- Department of Medicine & Surgery, Infectious and Tropical Diseases Unit, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Copin R, Sause WE, Fulmer Y, Balasubramanian D, Dyzenhaus S, Ahmed JM, Kumar K, Lees J, Stachel A, Fisher JC, Drlica K, Phillips M, Weiser JN, Planet PJ, Uhlemann AC, Altman DR, Sebra R, van Bakel H, Lighter J, Torres VJ, Shopsin B. Sequential evolution of virulence and resistance during clonal spread of community-acquired methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2019; 116:1745-1754. [PMID: 30635416 PMCID: PMC6358666 DOI: 10.1073/pnas.1814265116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The past two decades have witnessed an alarming expansion of staphylococcal disease caused by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). The factors underlying the epidemic expansion of CA-MRSA lineages such as USA300, the predominant CA-MRSA clone in the United States, are largely unknown. Previously described virulence and antimicrobial resistance genes that promote the dissemination of CA-MRSA are carried by mobile genetic elements, including phages and plasmids. Here, we used high-resolution genomics and experimental infections to characterize the evolution of a USA300 variant plaguing a patient population at increased risk of infection to understand the mechanisms underlying the emergence of genetic elements that facilitate clonal spread of the pathogen. Genetic analyses provided conclusive evidence that fitness (manifest as emergence of a dominant clone) changed coincidently with the stepwise emergence of (i) a unique prophage and mutation of the regulator of the pyrimidine nucleotide biosynthetic operon that promoted abscess formation and colonization, respectively, thereby priming the clone for success; and (ii) a unique plasmid that conferred resistance to two topical microbiocides, mupirocin and chlorhexidine, frequently used for decolonization and infection prevention. The resistance plasmid evolved through successive incorporation of DNA elements from non-S. aureus spp. into an indigenous cryptic plasmid, suggesting a mechanism for interspecies genetic exchange that promotes antimicrobial resistance. Collectively, the data suggest that clonal spread in a vulnerable population resulted from extensive clinical intervention and intense selection pressure toward a pathogen lifestyle that involved the evolution of consequential mutations and mobile genetic elements.
Collapse
Affiliation(s)
- Richard Copin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Yi Fulmer
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Sophie Dyzenhaus
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Jamil M Ahmed
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Krishan Kumar
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - John Lees
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Anna Stachel
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jason C Fisher
- Division of Pediatric Surgery, Department of Surgery, New York University School of Medicine, New York, NY 10016
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Michael Phillips
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| | - Paul J Planet
- Department of Pediatric Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Deena R Altman
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jennifer Lighter
- Division of Pediatric Infectious Diseases, Department of Pediatrics, New York University School of Medicine, New York, NY 10016
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | - Bo Shopsin
- Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, New York, NY 10016;
- Department of Microbiology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
15
|
Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection. Infect Immun 2018; 86:IAI.00331-18. [PMID: 30061376 PMCID: PMC6204747 DOI: 10.1128/iai.00331-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/21/2018] [Indexed: 01/05/2023] Open
Abstract
Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes.
Collapse
|
16
|
Hierarchy of human IgG recognition within the Staphylococcus aureus immunome. Sci Rep 2018; 8:13296. [PMID: 30185867 PMCID: PMC6125462 DOI: 10.1038/s41598-018-31424-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/17/2018] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of serious infections associated with significant morbidity, by strains increasingly resistant to antibiotics. However, to date all candidate vaccines have failed to induce protective immune responses in humans. We need a more comprehensive understanding of the antigenic targets important in the context of human infection. To investigate infection-associated immune responses, patients were sampled at initial presentation and during convalescence from three types of clinical infection; skin and soft tissue infection (SSTI), prosthetic joint infection (PJI) and pediatric hematogenous osteomyelitis (PHO). Reactivity of serum IgG was tested with an array of recombinant proteins, representing over 2,652 in-vitro-translated open reading frames (ORFs) from a community-acquired methicillin-resistant S. aureus USA300 strain. High-level reactivity was demonstrated for 104 proteins with serum IgG in all patient samples. Overall, high-level IgG-reactivity was most commonly directed against a subset of secreted proteins. Although based on limited surveys, we found subsets of S. aureus proteins with differential reactivity with serum samples from patients with different clinical syndromes. Together, our studies have revealed a hierarchy within the diverse proteins of the S. aureus “immunome”, which will help to advance efforts to develop protective immunotherapeutic agents.
Collapse
|
17
|
Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect Dis Clin North Am 2018; 32:551-580. [DOI: 10.1016/j.idc.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Teh YE, Ang MLT, La MV, Gunalan V, Tan CK, Tan AL, Lin RTP, Tan TT, Jeyaraj PR, Cumaraswamy S, Tan BH. Donor-Derived Candida dubliniensis Resulting in Perigraft Abscesses in a Liver Transplant Recipient Proven by Whole Genome Sequencing: A Case Report. Transplant Proc 2018; 50:915-919. [PMID: 29661462 DOI: 10.1016/j.transproceed.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND The transmission of fungi via transplant, although well-known, has not often been molecularly proven. We describe a case of donor-derived candidiasis verified by whole genome sequencing. CASE DESCRIPTION The multiorgan donor was a 42-year-old woman with subdural hemorrhage. Procurement of the thoracic organs was performed followed by the abdominal organs. Tissue from the left bronchus grew Candida dubliniensis. The liver recipient was a 63-year-old woman with cryptogenic liver cirrhosis. She was noted to have worsening leukocytosis on postoperative day (POD) 9. Computed tomography of the abdomen and pelvis showed multiple rim-enhancing collections around the graft. Percutaneous drainage was performed. Fluid cultures grew C dubliniensis. C dubliniensis isolated from the donor's left bronchus and the liver recipient's abscesses were verified to be related by whole genome sequencing. We postulate that C dubliniensis colonizing the donor's transected trachea could have contaminated the inferior vena cava when the former was left open after explant of the donor's lungs. A portion of the donor's contaminated inferior vena cava was transplanted along with the liver graft, resulting in the infected collections in the recipient. CONCLUSIONS Our case report highlights the importance of maintaining a sterile field during organ procurement, especially in a multiorgan donor whose organs are explanted in succession.
Collapse
Affiliation(s)
- Y E Teh
- Department of Infectious Diseases, Singapore General Hospital, Singapore.
| | - M L T Ang
- National Public Health Laboratory, Ministry of Health, Singapore
| | - M V La
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - V Gunalan
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - C K Tan
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - A L Tan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - R T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore; Department of Laboratory Medicine, National University Hospital, Singapore
| | - T T Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - P R Jeyaraj
- Department of Hepato-pancreato-biliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - S Cumaraswamy
- Heart and Lung Transplant Unit, Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore
| | - B H Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| |
Collapse
|
19
|
Liu T, Zhang Y, Wan Q. Methicillin-resistant Staphylococcus aureus bacteremia among liver transplant recipients: epidemiology and associated risk factors for morbidity and mortality. Infect Drug Resist 2018; 11:647-658. [PMID: 29765236 PMCID: PMC5939879 DOI: 10.2147/idr.s161180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteremia due to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), complicates the clinical course of liver transplantation and is associated with high morbidity and mortality. Intravascular catheters had been reported to be the most frequent source of MRSA bacteremia. Among bacteremic liver recipients, 26.3%-100% of S. aureus were MRSA. Previous studies identified pre-transplant and post-transplant acquired S. aureus carriage, greater severity of liver disease, hepatocellular carcinoma and infection with immuno-modulatory viruses as predictors of S. aureus bacteremia in liver recipients. MRSA bacteremia accompanied by pneumonia and abdominal infections was related to mortality. Vancomycin, as well as daptomycin, is a first-line antibiotic for MRSA bacteremia. The purpose of this review is to better understand the characteristics of MRSA bacteremia by summarizing the epidemiology and antimicrobial resistance of S. aureus, the primary source, and related risk factors for morbidity and mortality of MRSA bacteremia. We have also explored the diagnostic, therapeutic and preventive measures for MRSA bacteremia to improve the outcomes of liver recipients.
Collapse
Affiliation(s)
- Taohua Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Yuezhong Zhang
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, People’s Republic of China
| | - Qiquan Wan
- Department of Transplant Surgery, the Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
20
|
Abstract
Staphylococcus aureus is a Gram-positive opportunistic pathogen that causes superficial and invasive infections in the hospital and community. High mortality from infection emphasizes the need for improved methods for prevention and treatment. Although S. aureus possesses an arsenal of virulence factors that contribute to evasion of host defenses, few studies have examined long-term humoral and B-cell responses. Adults with acute-phase skin and soft tissue infections were recruited; blood samples were obtained; and S. aureus isolates, including methicillin-resistant strains, were subjected to genomic sequence analysis. In comparisons of acute-phase sera with convalescent-phase sera, a minority (37.5%) of patients displayed 2-fold or greater increases in antibody titers against three or more S. aureus antigens, whereas nearly half exhibited no changes, despite the presence of toxin genes in most infecting strains. Moreover, enhanced antibody responses waned over time, which could reflect a defect in B-cell memory or long-lived plasma cells. However, memory B cells reactive with a range of S. aureus antigens were prevalent at both acute-phase and convalescent-phase time points. While some memory B cells exhibited toxin-specific binding, those cross-reactive with structurally related leucocidin subunits were dominant across patients, suggesting the targeting of conserved epitopes. Memory B-cell reactivity correlated with serum antibody levels for selected S. aureus exotoxins, suggesting a relationship between the cellular and humoral compartments. Overall, although there was no global defect in the representation of anti-S. aureus memory B cells, there was evidence of restrictions in the range of epitopes recognized, which may suggest potential therapeutic approaches for augmenting host defenses. The contribution of B-cell memory and long-term antibody responses to host defenses against S. aureus exotoxins remains poorly understood. Our studies confirmed that infection did not commonly lead to enhanced long-term humoral responses. Whereas circulating memory B cells against S. aureus secreted exotoxins were prevalent, they were dominated by cross-reactivity with structurally related leucocidin subunits, consistent with recognition of conserved epitopes. These findings also provide the first evidence of a relationship between the reactivity of antistaphylococcal circulating memory B cells and serum antibody levels. In general, infection was not associated with a global defect in B-cell memory for S. aureus secreted factors, and responses were highly dominated by cross-reactivity to structurally related exotoxins, which arguably may alone be suboptimal in providing host defenses. Our studies illuminate aspects of the S. aureus-host relationship that may better inform strategies for the development of an effective protective vaccine.
Collapse
|
21
|
Perioperative Antibiotic Prophylaxis to Prevent Surgical Site Infections in Solid Organ Transplantation. Transplantation 2018; 102:21-34. [DOI: 10.1097/tp.0000000000001848] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
After the deluge: mining Staphylococcus aureus genomic data for clinical associations and host-pathogen interactions. Curr Opin Microbiol 2017; 41:43-50. [PMID: 29197673 DOI: 10.1016/j.mib.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
Abstract
The genome of Staphylococcus aureus has rapidly become one the most frequently sequenced among bacteria, with more than 40000 genome sequences uploaded to public databases. Computational resources required for analysis and quality assessment have lagged behind accumulation of sequence data. Improved analytic pipelines, in combination with the development of customized S. aureus reference databases, can be used to inform S. aureus biology and potentially predict clinical outcome. Here, we review the currently available data about S. aureus genome in public databases, and discuss their potential utility for understanding S. aureus evolution. Also discussed are ways to overcome challenges to the application of whole-genome sequencing data for prevention and management of S. aureus disease.
Collapse
|
23
|
Ye QF, Zhou W, Wan QQ. Donor-derived infections among Chinese donation after cardiac death liver recipients. World J Gastroenterol 2017; 23:5809-5816. [PMID: 28883707 PMCID: PMC5569296 DOI: 10.3748/wjg.v23.i31.5809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/27/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate blood cultures of deceased donors and report the confirmed transmission of bacterial infection from donors to liver recipients. METHODS We retrospectively studied the results of blood cultures among our donation after cardiac death (DCD) donors and calculated the donor-derived bacterial infection rates among liver recipients. Study participants underwent liver transplantation between January 1, 2010 and February 1, 2017. The study involved a total of 67 recipients of liver grafts from 67 DCD donors. We extracted the data of donors' and patients' characteristics, culture results and clinical outcomes, especially the post-transplant complications in liver recipients, from electronic medical records. We analyzed the characteristics of the donors and the corresponding liver recipients with emphasis put on donor-derived infections. RESULTS Head trauma was the most common origin of death among our 67 DCD donors (46.3%). Blood taken prior to the procurement operation was cultured for 53 of the donors, with 17 episodes of bloodstream infections developing from 13 donors. The predominant organism isolated from the blood of donors was Gram-positive bacteria (70.6%). Only three (4.5%) of 67 liver recipients developed confirmed donor-derived bacterial infections, with two isolates of multidrug-resistant Klebsiella pneumoniae and one isolate of multidrug-resistant Enterobacter aerogenes. The liver recipients with donor-derived infections showed relation to higher crude mortality and graft loss rates (33.3% each) within 3 mo post transplantation, as compared to those without donor-derived infections (9.4% and 4.7%, respectively). All three liver recipients received appropriate antimicrobial therapy. CONCLUSION Liver recipients have high occurrence of donor-derived infections. The liver recipients with donor-derived multidrug-resistant Enterobacteriaceae infections can have good outcome if appropriate antimicrobial therapy is given.
Collapse
Affiliation(s)
- Qi-Fa Ye
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Department of Transplant Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wei Zhou
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Qi-Quan Wan
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
24
|
Wan Q, Liu H, Ye S, Ye Q. Confirmed Transmission of Bacterial or Fungal Infection to Kidney Transplant Recipients from Donated After Cardiac Death (DCD) Donors in China: A Single-Center Analysis. Med Sci Monit 2017; 23:3770-3779. [PMID: 28771455 PMCID: PMC5553435 DOI: 10.12659/msm.901884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We aimed to investigate blood and urine cultures of donated after cardiac death (DCD) donors and report the cases of confirmed (proven/probable) transmission of bacterial or fungal infection from donors to kidney recipients. MATERIAL AND METHODS Seventy-eight DCD donors between 2010 and 2016 were included. Sixty-one DCD donors underwent blood cultures and 22 episodes of bacteremias developed in 18 donors. Forty-three donors underwent urine cultures and 14 donors experienced 17 episodes of urinary infections. RESULTS Seven of 154 (4.5%) kidney recipients developed confirmed donor-derived bacterial or fungal infections. Inappropriate use of antibiotics in donor was a risk factor for donor-derived infection (p=0.048). The use of FK506 was more frequent in recipients without donor-derived infection than those with donor-derived infection (p=0.033). Recipients with donor-derived infection were associated with higher mortality and graft loss (42.9% and 28.6%, respectively), when compared with those without donor-derived infection (4.8% each). Three kidney recipients with donor-derived infection died; one death was due to multi-organ failure caused by Candida albicans, and two were related to rupture of the renal artery; two of them did not receive appropriate antimicrobial therapy after infection. CONCLUSIONS Our kidney recipients showed high occurrence rates of donor-derived infection. Recipients with donor-derived infection were associated with higher mortality and graft loss than those without donor-derived infection. The majority of recipients with donor-derived infection who died did not receive appropriate antimicrobial therapy after infection.
Collapse
Affiliation(s)
- Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Huanmiao Liu
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shaojun Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China
| | - Qifa Ye
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, P.R. China
| |
Collapse
|
25
|
Genomic confirmation of vancomycin-resistant Enterococcus transmission from deceased donor to liver transplant recipient. PLoS One 2017; 12:e0170449. [PMID: 28301471 PMCID: PMC5354240 DOI: 10.1371/journal.pone.0170449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 01/05/2017] [Indexed: 11/19/2022] Open
Abstract
In a liver transplant recipient with vancomycin-resistant Enterococcus (VRE) surgical site and bloodstream infection, a combination of pulsed-field gel electrophoresis, multilocus sequence typing, and whole genome sequencing identified that donor and recipient VRE isolates were highly similar when compared to time-matched hospital isolates. Comparison of de novo assembled isolate genomes was highly suggestive of transplant transmission rather than hospital-acquired transmission and also identified subtle internal rearrangements between donor and recipient missed by other genomic approaches. Given the improved resolution, whole-genome assembly of pathogen genomes is likely to become an essential tool for investigation of potential organ transplant transmissions.
Collapse
|
26
|
Hand J, Patel G. Multidrug-resistant organisms in liver transplant: Mitigating risk and managing infections. Liver Transpl 2016; 22:1143-53. [PMID: 27228555 DOI: 10.1002/lt.24486] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Abstract
Liver transplant (LT) recipients are vulnerable to infections with multidrug-resistant (MDR) pathogens. Risk factors for colonization and infection with resistant bacteria are ubiquitous and unavoidable in transplantation. During the past decade, progress in transplantation and infection prevention has contributed to the decreased incidence of infections with methicillin-resistant Staphylococcus aureus. However, even in the face of potentially effective antibiotics, vancomycin-resistant enterococci continue to plague LT. Gram-negative bacilli prove to be more problematic and are responsible for high rates of both morbidity and mortality. Despite the licensure of novel antibiotics, there is no universal agent available to safely and effectively treat infections with MDR gram-negative organisms. Currently, efforts dedicated toward prevention and treatment require involvement of multiple disciplines including transplant providers, specialists in infectious diseases and infection prevention, and researchers dedicated to the development of rapid diagnostics and safe and effective antibiotics with novel mechanisms of action. Liver Transplantation 22 1143-1153 2016 AASLD.
Collapse
Affiliation(s)
- Jonathan Hand
- Department of Infectious Diseases, Ochsner Clinic Foundation, The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - Gopi Patel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
27
|
Abstract
Staphylococcus aureus is a major human pathogen and an important cause of livestock infections. The first S. aureus genomes to be published, 15 years ago, provided the first view of genome structure and gene content. Since then, thousands of genomes from a wide array of strains from different sources have been sequenced. Comparison of these sequences has resulted in broad insights into population structure, bacterial evolution, clone emergence and expansion, and the molecular basis of niche adaptation. Furthermore, this information is now being applied clinically in outbreak investigations to inform infection control measures and to determine appropriate treatment regimens. In this review, we summarize some of the broad insights into S. aureus biology gained from the analysis of genomes and discuss future directions and opportunities in this dynamic field of research.
Collapse
Affiliation(s)
- J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom;
| | - Matthew T G Holden
- School of Medicine, University of St. Andrews, St. Andrews, Fife KY16 9S5, United Kingdom;
| |
Collapse
|
28
|
Surewaard BGJ, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, Omri A, Yates RM, Kubes P. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med 2016; 213:1141-51. [PMID: 27325887 PMCID: PMC4925027 DOI: 10.1084/jem.20160334] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Kubes et al. show that methicillin-resistant Staphylococcus aureus (MRSA) survive and proliferate inside Kupffer cells. Intracellular MRSA is resistant to neutrophil-killing and antibiotics treatment and, when released into the circulation, can infect other organs. Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is reaching epidemic proportions causing morbidity, mortality, and chronic disease due to relapses, suggesting an intracellular reservoir. Using spinning-disk confocal intravital microscopy to track MRSA-GFP in vivo, we identified that within minutes after intravenous infection MRSA is primarily sequestered and killed by intravascular Kupffer cells (KCs) in the liver. However, a minority of the Staphylococci overcome the KC’s antimicrobial defenses. These bacteria survive and proliferate for many days within this intracellular niche, where they remain undetected by recruited neutrophils. Over time, the KCs lyse, releasing bacteria into the circulation, enabling dissemination to other organs such as the kidneys. Vancomycin, the antibiotic of choice to treat MRSA bacteremia, could not penetrate the KCs to eradicate intracellular MRSA. However, based on the intravascular location of these specific macrophages, we designed a liposomal formulation of vancomycin that is efficiently taken up by KCs and diminished the intracellular MRSA. Targeting the source of the reservoir dramatically protected the liver but also dissemination to other organs, and prevented mortality. This vancomycin formulation strategy could help treat patients with Staphylococcal bacteremia without a need for novel antibiotics by targeting the previously inaccessible intracellular reservoir in KCs.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medical Microbiology, University Medical Centre, 3584 CX Utrecht, the Netherlands
| | - Justin F Deniset
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Franz J Zemp
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John Conly
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Pathology and Laboratory Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Microbiology, Infectious Diseases and Immunology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| | - Robin M Yates
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| |
Collapse
|
29
|
Genomic insights into the emergence and spread of international clones of healthcare-, community- and livestock-associated meticillin-resistant Staphylococcus aureus: Blurring of the traditional definitions. J Glob Antimicrob Resist 2016; 6:95-101. [PMID: 27530849 DOI: 10.1016/j.jgar.2016.04.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/24/2016] [Accepted: 04/11/2016] [Indexed: 11/24/2022] Open
Abstract
The evolution of meticillin-resistant Staphylococcus aureus (MRSA) from meticillin-susceptible S. aureus has been a result of the accumulation of genetic elements under selection pressure from antibiotics. The traditional classification of MRSA into healthcare-associated MRSA (HA-MRSA) and community-associated MRSA (CA-MRSA) is no longer relevant as there is significant overlap of identical clones between these groups, with an increasing recognition of human infection caused by livestock-associated MRSA (LA-MRSA). Genomic studies have enabled us to model the epidemiology of MRSA along these lines. In this review, we discuss the clinical relevance of genomic studies, particularly whole-genome sequencing, in the investigation of outbreaks. We also discuss the blurring of each of the three epidemiological groups (HA-MRSA, CA-MRSA and LA-MRSA), demonstrating the limited relevance of this classification.
Collapse
|
30
|
Jamrozy DM, Harris SR, Mohamed N, Peacock SJ, Tan CY, Parkhill J, Anderson AS, Holden MTG. Pan-genomic perspective on the evolution of the Staphylococcus aureus USA300 epidemic. Microb Genom 2016; 2:e000058. [PMID: 28348852 PMCID: PMC5320670 DOI: 10.1099/mgen.0.000058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus USA300 represents the dominant community-associated methicillin-resistant S. aureus lineage in the USA, where it is a major cause of skin and soft tissue infections. Previous comparative genomic studies have described the population structure and evolution of USA300 based on geographically restricted isolate collections. Here, we investigated the USA300 population by sequencing genomes of a geographically distributed panel of 191 clinical S. aureus isolates belonging to clonal complex 8 (CC8), derived from the Tigecycline Evaluation and Surveillance Trial program. Isolates were collected at 12 healthcare centres across nine USA states in 2004, 2009 or 2010. Reconstruction of evolutionary relationships revealed that CC8 was dominated by USA300 isolates (154/191, 81 %), which were heterogeneous and demonstrated limited phylogeographic clustering. Analysis of the USA300 core genomes revealed an increase in median pairwise SNP distance from 62 to 98 between 2004 and 2010, with a stable pattern of above average dN/dS ratios. The phylogeny of the USA300 population indicated that early diversification events led to the formation of nested clades, which arose through cumulative acquisition of predominantly non-synonymous SNPs in various coding sequences. The accessory genome of USA300 was largely homogenous and consisted of elements previously associated with this lineage. We observed an emergence of SCCmec negative and ACME negative USA300 isolates amongst more recent samples, and an increase in the prevalence of ϕSa5 prophage. Together, the analysed S. aureus USA300 collection revealed an evolving pan-genome through increased core genome heterogeneity and temporal variation in the frequency of certain accessory elements.
Collapse
Affiliation(s)
| | | | - Naglaa Mohamed
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | - Sharon J. Peacock
- The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Charles Y. Tan
- Pfizer Vaccine Research and Development, Pearl River, New York, USA
| | | | | | | |
Collapse
|
31
|
Lewis JD, Sifri CD. Multidrug-Resistant Bacterial Donor-Derived Infections in Solid Organ Transplantation. Curr Infect Dis Rep 2016; 18:18. [PMID: 27115701 DOI: 10.1007/s11908-016-0526-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although rare, donor-derived infections (DDIs) caused by multidrug-resistant (MDR) bacteria can have devastating consequences for organ transplant recipients. Recognition of MDR bacterial DDIs can be challenging, as MDR bacteria are prevalent in most hospitals and distinguishing their transmission through transplantation from other, more typical routes of acquisition are difficult. New technologies such as whole genome sequencing have recently proven to be a powerful advance in the investigation of MDR bacterial DDIs. Once recognized, the optimal treatment of MDR bacterial DDIs is not clear. Herein, we review the clinical manifestations, outcomes, and management of MDR bacterial DDIs, and identify areas of uncertainty toward which the transplant community should direct further research efforts.
Collapse
Affiliation(s)
- Jessica D Lewis
- Division of Infectious Diseases & International Health, University of Virginia Health System, P.O. Box 800473, Charlottesville, VA, 22908-0473, USA
| | - Costi D Sifri
- Division of Infectious Diseases & International Health, University of Virginia Health System, P.O. Box 800473, Charlottesville, VA, 22908-0473, USA.
| |
Collapse
|
32
|
Forkhead Box O1 Regulates Macrophage Polarization Following Staphylococcus aureus Infection: Experimental Murine Data and Review of the Literature. Clin Rev Allergy Immunol 2016; 51:353-369. [DOI: 10.1007/s12016-016-8531-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
A Staphylococcus aureus Proteome Overview: Shared and Specific Proteins and Protein Complexes from Representative Strains of All Three Clades. Proteomes 2016; 4:proteomes4010008. [PMID: 28248218 PMCID: PMC5217359 DOI: 10.3390/proteomes4010008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is an important model organism and pathogen. This S. aureus proteome overview details shared and specific proteins and selected virulence-relevant protein complexes from representative strains of all three major clades. To determine the strain distribution and major clades we used a refined strain comparison combining ribosomal RNA, MLST markers, and looking at highly-conserved regions shared between strains. This analysis shows three sub-clades (A–C) for S. aureus. As calculations are complex and strain annotation is quite time consuming we compare here key representatives of each clade with each other: model strains COL, USA300, Newman, and HG001 (clade A), model strain N315 and Mu50 (clade B) and ED133 and MRSA252 (clade C). We look at these individual proteomes and compare them to a background of 64 S. aureus strains. There are overall 13,284 S. aureus proteins not part of the core proteome which are involved in different strain-specific or more general complexes requiring detailed annotation and new experimental data to be accurately delineated. By comparison of the eight representative strains, we identify strain-specific proteins (e.g., 18 in COL, 105 in N315 and 44 in Newman) that characterize each strain and analyze pathogenicity islands if they contain such strain-specific proteins. We identify strain-specific protein repertoires involved in virulence, in cell wall metabolism, and phosphorylation. Finally we compare and analyze protein complexes conserved and well-characterized among S. aureus (a total of 103 complexes), as well as predict and analyze several individual protein complexes, including structure modeling in the three clades.
Collapse
|
34
|
Ljungman P, Snydman D, Boeckh M. Infection Prevention and Control Issues After Solid Organ Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7123530 DOI: 10.1007/978-3-319-28797-3_46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections are an important cause of morbidity and mortality in solid organ transplant recipients. Consequently, infection prevention is an essential component of any organ transplant program. Given their frequent and often prolonged contact with the healthcare system, solid organ transplant recipients are at high risk for healthcare-associated infections, including those caused by antibiotic-resistant organisms. In this chapter we review several different healthcare-associated infections of importance to transplant recipients, including those caused by bacterial, viral, and fungal organisms. We also describe infection prevention and control strategies applicable to this patient population. These practices focus on clinical interventions and environmental controls designed to prevent the spread of potentially pathogenic organisms in the healthcare setting. We also describe post-exposure interventions applicable to solid organ transplant recipients exposed to potential pathogens in order to reduce their risk of subsequent infection.
Collapse
Affiliation(s)
- Per Ljungman
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Snydman
- Tufts University School of Medicine Tufts Medical Center, Boston, Massachusetts USA
| | - Michael Boeckh
- University of Washington Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
35
|
Whole-genome sequencing identifies emergence of a quinolone resistance mutation in a case of Stenotrophomonas maltophilia bacteremia. Antimicrob Agents Chemother 2015; 59:7117-20. [PMID: 26324280 DOI: 10.1128/aac.01723-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
Whole-genome sequences for Stenotrophomonas maltophilia serial isolates from a bacteremic patient before and after development of levofloxacin resistance were assembled de novo and differed by one single-nucleotide variant in smeT, a repressor for multidrug efflux operon smeDEF. Along with sequenced isolates from five contemporaneous cases, they displayed considerable diversity compared against all published complete genomes. Whole-genome sequencing and complete assembly can conclusively identify resistance mechanisms emerging in S. maltophilia strains during clinical therapy.
Collapse
|
36
|
Steinig EJ, Andersson P, Harris SR, Sarovich DS, Manoharan A, Coupland P, Holden MTG, Parkhill J, Bentley SD, Robinson DA, Tong SYC. Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus. BMC Genomics 2015; 16:388. [PMID: 25981586 PMCID: PMC4432960 DOI: 10.1186/s12864-015-1599-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/28/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors. RESULTS Sequencing using single-molecule real-time technology resulted in the assembly of a single continuous chromosomal sequence, which was error-corrected, annotated and compared to nine draft genome assemblies of ST772-MRSA-V from Australia, Malaysia and India. We discovered numerous and redundant resistance genes associated with mobile genetic elements (MGEs) and known core genome mutations that explain the highly antibiotic resistant phenotype of DAR4145. Staphylococcal toxins and superantigens, including the leukotoxin Panton-Valentinin Leukocidin, were predominantly associated with genomic islands and the phage φ-IND772PVL. Some of these mobile resistance and virulence factors were variably present in other strains of the ST772-MRSA-V lineage. CONCLUSIONS The genomic characteristics presented here emphasize the contribution of MGEs to the emergence of multidrug-resistant and highly virulent strains of community-associated MRSA. Antibiotic resistance was further augmented by chromosomal mutations and redundancy of resistance genes. The complete genome of DAR4145 provides a valuable resource for future investigations into the global dissemination and phylogeography of ST772-MRSA-V.
Collapse
Affiliation(s)
- Eike J Steinig
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| | - Patiyan Andersson
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| | - Simon R Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Derek S Sarovich
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| | - Anand Manoharan
- Pushpagiri Research Center, Pushpagiri Institute of Medical Sciences and Research Center, Thiruvalla, India.
| | - Paul Coupland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - D Ashley Robinson
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Steven Y C Tong
- Menzies School of Health Research, Darwin, Northern Territory, Australia.
| |
Collapse
|
37
|
USA300 and USA500 clonal lineages of Staphylococcus aureus do not produce a capsular polysaccharide due to conserved mutations in the cap5 locus. mBio 2015; 6:mBio.02585-14. [PMID: 25852165 PMCID: PMC4453534 DOI: 10.1128/mbio.02585-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The surface capsular polysaccharide (CP) is a virulence factor that has been used as an antigen in several successful vaccines against bacterial pathogens. A vaccine has not yet been licensed against Staphylococcus aureus, although two multicomponent vaccines that contain CP antigens are in clinical trials. In this study, we evaluated CP production in USA300 methicillin-resistant S. aureus (MRSA) isolates that have become the predominant community-associated MRSA clones in the United States. We found that all 167 USA300 MRSA and 50 USA300 methicillin-susceptible S. aureus (MSSA) isolates were CP negative (CP−). Moreover, all 16 USA500 isolates, which have been postulated to be the progenitor lineage of USA300, were also CP−. Whole-genome sequence analysis of 146 CP− USA300 MRSA isolates revealed they all carry a cap5 locus with 4 conserved mutations compared with strain Newman. Genetic complementation experiments revealed that three of these mutations (in the cap5 promoter, cap5D nucleotide 994, and cap5E nucleotide 223) ablated CP production in USA300 and that Cap5E75 Asp, located in the coenzyme-binding domain, is essential for capsule production. All but three USA300 MSSA isolates had the same four cap5 mutations found in USA300 MRSA isolates. Most isolates with a USA500 pulsotype carried three of these four USA300-specific mutations, suggesting the fourth mutation occurred in the USA300 lineage. Phylogenetic analysis of the cap loci of our USA300 isolates as well as publicly available genomes from 41 other sequence types revealed that the USA300-specific cap5 mutations arose sequentially in S. aureus in a common ancestor of USA300 and USA500 isolates. The USA300 MRSA clone emerged as a community-associated pathogen in the United States nearly 20 years ago. Since then, it has rapidly disseminated and now causes health care-associated infections. This study shows that the CP-negative (CP−) phenotype has persisted among USA300 isolates and is a universal and characteristic trait of this highly successful MRSA lineage. It is important to note that a vaccine consisting solely of CP antigens would not likely demonstrate high efficacy in the U.S. population, where about half of MRSA isolates comprise USA300. Moreover, conversion of a USA300 strain to a CP-positive (CP+) phenotype is unlikely in vivo or in vitro since it would require the reversion of 3 mutations. We have also established that USA300 MSSA isolates and USA500 isolates are CP− and provide new insight into the evolution of the USA300 and USA500 lineages.
Collapse
|
38
|
Frey KG, Bishop-Lilly KA. Next-Generation Sequencing for Pathogen Detection and Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|