1
|
Chen J, Ou G, Gu W, Shi J, Lyu R, Wu X, Wang J, Liu C. Role in Preventing Alcoholic Liver Disease Progression: A Comparative Study of Whole-Component Finger Citron Essential Oil and Its Major Component D-Limonene. Nutrients 2025; 17:1255. [PMID: 40219012 PMCID: PMC11990129 DOI: 10.3390/nu17071255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Chronic alcohol overconsumption triggers alcohol liver injury, and therapeutic strategies targeting alcohol-triggered oxidative stress and hepatic inflammatory responses represent potential approaches to ameliorating alcohol-related hepatotoxicity. This study aimed to determine the hepatoprotective activity of finger citron essential oil (FCEO) in alcoholic liver disease (ALD)-afflicted rats and explore its underlying mechanisms. In order to identify the effective components, we compared the effects of FCEO and D-limonene. Methods: The regulatory effects of FCEO on metabolic enzymes were systematically evaluated through in vitro experiments. In vivo studies were conducted to investigate and compare the hepatoprotective effects of FCEO and D-limonene. Staining methods, assay kits, and Western Blot were used to determine the roles of FCEO and D-limonene in the ALD rats. Results: We found that FCEO downregulated phase I metabolic enzymes and upregulated phase II metabolic enzymes in Buffalo Rat Liver-3A (BRL-3A) cells. FCEO and/or D-limonene intervention reduced transaminase levels in ALD rats and effectively alleviated inflammatory cell infiltration and lipid droplet accumulation in their liver tissue. Additionally, FCEO and D-limonene played a regulatory role in oxidative stress and inflammation-related pathways such as the MAPK/Nrf2 and NF-κB/AMPK pathways. FCEO was superior to D-limonene as an antioxidant in alleviating alcoholic liver injury. Conclusions: This study revealed the alleviative effects and mechanisms of FCEO on alcoholic liver injury, demonstrating better efficacy compared to its monomer, thus providing a strategy for the development and utilization of finger citron resources.
Collapse
Affiliation(s)
- Jingxin Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Wenting Gu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Ruiying Lyu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Xueping Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Junming Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.C.); (G.O.); (W.G.); (J.S.); (R.L.); (X.W.); (J.W.)
- Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China
| |
Collapse
|
2
|
Wolf PG, Welsh C, Binion B, Dai H, Oliveira ML, Hamm A, Goldberg S, Buobu PS, Schering T, Vergis S, Kessee N, Gomez SL, Yazici C, Maienschein-Cline M, Byrd DA, Gaskins HR, Ridlon JM, Mutlu E, Greening C, Tussing-Humphreys L. Secondary Bile Acid Derivatives Are Contributors to the Fecal Bile Acid Pool and Associated With Bile Acid-Modulating Nutrients. J Nutr 2025; 155:826-838. [PMID: 39805403 PMCID: PMC11934243 DOI: 10.1016/j.tjnut.2024.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Accumulation of hydrophobic bile acids (BAs) is linked with cancer development. However, derivatives of deoxycholic acid (DCA) and lithocholic acid (LCA) produced via bacterial metabolism may mitigate the proinflammatory and cytotoxic effects of hydrophobic BAs. The impact of diet on secondary BA derivative production has not been determined. OBJECTIVES This study aimed to study the associations between BA-modulating nutrients and the composition of secondary BAs and their derivatives. METHODS Stool and blood were collected from 138 participants aged 45-75 y that self-identified as Black or non-Hispanic White. BAs were extracted from stool and serum and quantified using LC/ESI-MS/MS. Energy, macronutrients, micronutrients, and specific dietary nutrients were estimated from two 24-h diet recalls. The abundance of genes for microbial BA metabolism was assessed from stool metagenomes. Kendall τ correlation and regression-based modeling were performed to determine associations between BA categories, microbial genes, and select energy-adjusted dietary variables (alcohol, calcium, coffee, fiber, fat, and protein). RESULTS Participants had a mean age of 60 y and a mean BMI of 31 kg/m2. BA derivatives were present in all participant stools, with lagodeoxycholic acid being the most abundant derivative quantified. Analysis of stool microbial metagenomes revealed the presence of genes for secondary BA derivative production in all participants. Protein is positively associated with the accumulation of secondary BAs. monounsaturated fatty acids (MUFA)s were negatively associated with high abundant derivatives of DCA in regression models. Total fiber and coffee intake were positively correlated with increased conversion of BAs to derivatives. Race and smoking status were significant predictors of associations between dietary variables and BA derivatives. CONCLUSION Protein, MUFAs, total fiber and coffee are significantly associated with concentrations of secondary BAs and their derivatives. Future work should account for social and structural influences on dietary intake and its relationship with BA-elicited cancer risk.
Collapse
Affiliation(s)
- Patricia G Wolf
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Institute for Cancer Research, Purdue University, West Lafayette, IN, United States.
| | - Caitlin Welsh
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Briawna Binion
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Hanchu Dai
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Alyshia Hamm
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Sarah Goldberg
- Department of Clinical Nutrition, Rush University, Chicago, IL, United States
| | - Pius Sarfo Buobu
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States; Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Teresa Schering
- University of Illinois Cancer Center, Chicago, Illinois, United States
| | - Sevasti Vergis
- University of Illinois Cancer Center, Chicago, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nicollette Kessee
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States
| | - Sandra L Gomez
- Department of Clinical Nutrition, Rush University, Chicago, IL, United States
| | - Cemal Yazici
- Department of Medicine, University of Illinois Chicago, Chicago, IL
| | | | - Doratha A Byrd
- Department of Cancer Epidemiology, Division of Population Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Ece Mutlu
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Lisa Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, United States; University of Illinois Cancer Center, Chicago, Illinois, United States.
| |
Collapse
|
3
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
4
|
Pelton M, Abdel-Meguid S, Goradia E, Bussetty A, Cohen D, Kesavarapu K. Role of Nutrition in the Management of Chronic Liver Disease. GASTRO HEP ADVANCES 2025; 4:100613. [PMID: 40256313 PMCID: PMC12005925 DOI: 10.1016/j.gastha.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/31/2024] [Indexed: 04/22/2025]
Abstract
Malnutrition is prevalent, detrimental, and associated with worse outcomes, including higher rates of hospitalization, morbidity, and mortality. In this review article, we aimed to define malnutrition in patients with chronic liver disease (CLD), elucidate the pathogenesis of malnutrition, discuss the advantages and disadvantages of current screening methods, and highlight the latest evidence-based dietary recommendations. Emerging evidence suggests that CLD-specific tools such as the Liver Disease Undernutrition Screening Tool and the Royal Free Hospital-Nutritional Prioritizing Tool can accurately identify patients at high risk for malnutrition and should be used in conjunction with more standard tools such as subjective global assessments. The pathogenesis of malnutrition in CLD is multifactorial but seems to arise in large from altered metabolism, namely a reduction in protein synthesis and an increase in resting energy expenditure. However, decreased nutrient intake, impaired nutrient absorption and increased nutrient losses have also been shown to contribute. Key findings in this review argue against protein-restricted diets in patients with CLD and support the use of plant-based proteins over dairy and meat proteins for those with liver cirrhosis complicated by hepatic encephalopathy. Frequent small meals are recommended in patients with liver cirrhosis in addition to the avoidance of prolonged fasts >12 hours due to their hypercatabolic state. CLD covers a wide spectrum of diseases, and this review calls for an individualized approach to addressing the specific nutritional needs, depending on the etiology of CLD, its severity, associated complications, and comorbid conditions. This can be best achieved by close, longitudinal follow-up with a multidisciplinary team including a registered dietitian who can obtain a comprehensive, accurate nutritional assessment.
Collapse
Affiliation(s)
- Matt Pelton
- Department of Internal Medicine, Rutgers Robert Wood Johnson, New Brunswick, New Jersey
| | - Sarah Abdel-Meguid
- Department of Internal Medicine, Rutgers Robert Wood Johnson, New Brunswick, New Jersey
| | - Eshani Goradia
- Department of Internal Medicine, Rutgers Robert Wood Johnson, New Brunswick, New Jersey
| | - Arvind Bussetty
- Department of Internal Medicine, Rutgers Robert Wood Johnson, New Brunswick, New Jersey
| | - Deborah Cohen
- Department of Clinical and Preventive Nutritional Sciences, Rutgers School of Health Professions, Newark, New Jersey
| | - Keerthana Kesavarapu
- Department of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson, New Brunswick, New Jersey
| |
Collapse
|
5
|
Li W, Gao W, Yan S, Yang L, Zhu Q, Chu H. Gut Microbiota as Emerging Players in the Development of Alcohol-Related Liver Disease. Biomedicines 2024; 13:74. [PMID: 39857657 PMCID: PMC11761646 DOI: 10.3390/biomedicines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The global incidence and mortality rates of alcohol-related liver disease are on the rise, reflecting a growing health concern worldwide. Alcohol-related liver disease develops due to a complex interplay of multiple reasons, including oxidative stress generated during the metabolism of ethanol, immune response activated by immunogenic substances, and subsequent inflammatory processes. Recent research highlights the gut microbiota's significant role in the progression of alcohol-related liver disease. In patients with alcohol-related liver disease, the relative abundance of pathogenic bacteria, including Enterococcus faecalis, increases and is positively correlated with the level of severity exhibited by alcohol-related liver disease. Supplement probiotics like Lactobacillus, as well as Bifidobacterium, have been found to alleviate alcohol-related liver disease. The gut microbiota is speculated to trigger specific signaling pathways, influence metabolite profiles, and modulate immune responses in the gut and liver. This research aimed to investigate the role of gut microorganisms in the onset and advancement of alcohol-related liver disease, as well as to uncover the underlying mechanisms by which the gut microbiota may contribute to its development. This review outlines current treatments for reversing gut dysbiosis, including probiotics, fecal microbiota transplantation, and targeted phage therapy. Particularly, targeted therapy will be a vital aspect of future alcohol-related liver disease treatment. It is to be hoped that this article will prove beneficial for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Wei Li
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Shengqi Yan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| | - Qingjing Zhu
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan 430023, China;
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (W.G.); (S.Y.); (L.Y.)
| |
Collapse
|
6
|
Raya Tonetti F, Eguileor A, Mrdjen M, Pathak V, Travers J, Nagy LE, Llorente C. Gut-liver axis: Recent concepts in pathophysiology in alcohol-associated liver disease. Hepatology 2024; 80:1342-1371. [PMID: 38691396 PMCID: PMC11801230 DOI: 10.1097/hep.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The growing recognition of the role of the gut microbiome's impact on alcohol-associated diseases, especially in alcohol-associated liver disease, emphasizes the need to understand molecular mechanisms involved in governing organ-organ communication to identify novel avenues to combat alcohol-associated diseases. The gut-liver axis refers to the bidirectional communication and interaction between the gut and the liver. Intestinal microbiota plays a pivotal role in maintaining homeostasis within the gut-liver axis, and this axis plays a significant role in alcohol-associated liver disease. The intricate communication between intestine and liver involves communication between multiple cellular components in each organ that enable them to carry out their physiological functions. In this review, we focus on novel approaches to understanding how chronic alcohol exposure impacts the microbiome and individual cells within the liver and intestine, as well as the impact of ethanol on the molecular machinery required for intraorgan and interorgan communication.
Collapse
Affiliation(s)
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marko Mrdjen
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Vai Pathak
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jared Travers
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, University Hospital, Cleveland OH
| | - Laura E Nagy
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland OH
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Gao H, Jiang Y, Zeng G, Huda N, Thoudam T, Yang Z, Liangpunsakul S, Ma J. Cell-to-cell and organ-to-organ crosstalk in the pathogenesis of alcohol-associated liver disease. EGASTROENTEROLOGY 2024; 2:e100104. [PMID: 39735421 PMCID: PMC11674000 DOI: 10.1136/egastro-2024-100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Alcohol-associated liver disease (ALD) is a growing global health concern and its prevalence and severity are increasing steadily. While bacterial endotoxin translocation into the portal circulation is a well-established key factor, recent evidence highlights the critical role of sterile inflammation, triggered by diverse stimuli, in alcohol-induced liver injury. This review provides a comprehensive analysis of the complex interactions within the hepatic microenvironment in ALD. It examines the contributions of both parenchymal cells, like hepatocytes, and non-parenchymal cells, such as hepatic stellate cells, Kupffer cells, neutrophils, and liver sinusoidal endothelial cells, in driving the progression of the disease. Additionally, we explored the involvement of key mediators, including cytokines, chemokines and inflammasomes, which regulate inflammatory responses and promote liver injury and fibrosis. A particular focus has been placed on extracellular vesicles (EVs) as essential mediators of intercellular communication both within and beyond the liver. These vesicles facilitate the transfer of signalling molecules, such as microRNAs and proteins, which modulate immune responses, fibrogenesis and lipid metabolism, thereby influencing disease progression. Moreover, we underscore the importance of organ-to-organ crosstalk, particularly in the gut-liver axis, where dysbiosis and increased intestinal permeability lead to microbial translocation, exacerbating hepatic inflammation. The adipose-liver axis is also highlighted, particularly the impact of adipokines and free fatty acids from adipose tissue on hepatic steatosis and inflammation in the context of alcohol consumption.
Collapse
Affiliation(s)
- Hui Gao
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yanchao Jiang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ge Zeng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Infectious Diseases, Southern Medical University, Guangzhou, China
| | - Nazmul Huda
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Themis Thoudam
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Zhihong Yang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Suthat Liangpunsakul
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Jing Ma
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Niu B, Feng Y, Cheng X, Xiao Y, Zhao J, Lu W, Tian F, Chen W. The alleviative effects of viable and inactive Lactobacillus paracasei CCFM1120 against alcoholic liver disease via modulation of gut microbiota and the Nrf2/HO-1 and TLR4/MyD88/NF-κB pathways. Food Funct 2024; 15:8797-8809. [PMID: 39114922 DOI: 10.1039/d4fo02592j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Probiotics can alleviate alcoholic liver disease. However, whether inactive counterparts can produce similar outcomes requires further investigation. We investigated the effects of viable (V) and dead (D) Lactobacillus paracasei CCFM1120 on alcohol-induced ALD mice. The results showed that CCFM1120V and D ameliorated the disease symptoms and intestinal injury. Specifically, these interventions strengthened the intestinal barrier, as evidenced by the increased expression of ZO-1 (zonula occludens 1), occludin, and claudin-1 in the colon and the restored ileal microstructure, including the villi and crypts. In addition, they enhanced the antioxidant capacity of the liver by reducing the production of malondialdehyde and increasing the levels of glutathione and superoxide dismutase. The activation of Nrf2 and HO-1 may be responsible for recovering the antioxidant capacity. Interventions can decrease mouse TNF-α, IL-6 and IL-1β content in serum, probably through the TLR4/MyD88/NF-κB pathway. Furthermore, they possess the ability to restore the quantities of bacteria responsible for producing butyric acid, such as Lactobacillus, Blautia, Bifidobacterium, Ruminococcaceae, Faecalibaculum and Lachnospiraceae. Taken together, CCFM1120V and D apparently can modify the composition of the gut microbiota, foster the gastrointestinal equilibrium, fortify the intestinal barrier, augment the antioxidant capacity of the liver, and effectively shield it from ethanol-induced injury.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingxuan Feng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xu Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
10
|
Huang XQ, Ai YJ, Li F, Ye ST, Wang JH, Zhang R, Zhang W, Zhu YL, Chen SY. Impact of rifaximin on cirrhosis complications and gastric microbiota in patients with gastroesophageal variceal bleeding: A pilot randomized controlled trial. J Dig Dis 2024; 25:504-516. [PMID: 39443081 DOI: 10.1111/1751-2980.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/14/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES The application of rifaximin, a non-absorbable antibiotic, in hepatic encephalopathy (HE) has been well established; however, its effect on other complications in cirrhotic patients with previous gastroesophageal variceal bleeding (GEVB) remains unclear. Therefore, we performed a pilot randomized controlled trial aiming to evaluate the impact of rifaximin on cirrhosis-related complications and changes in gastric microbiota. METHODS Eighty cirrhotic patients who received prophylactic endoscopic treatment for variceal rebleeding were randomly assigned to the control or rifaximin treatment group (rifaximin 400 mg twice daily for 8 weeks). Primary outcome was the total liver-related score, consisting of changes in cirrhosis-related complications including rebleeding, ascites, HE and portal vein thrombosis (PVT). The 16S rDNA sequencing analysis was conducted with gastric lavage fluid samples for the analysis of gastric microbiota. RESULTS During the 8-week follow-up, the total liver-related score decreased significantly upon rifaximin therapy (-0.35 ± 0.14 vs 0.05 ± 0.14, p = 0.0465) as well as serum C-reactive protein (CRP) (p = 0.019) and interleukin-8 (p = 0.025) compared with the control group. The rate of PVT recanalization was significantly higher in the rifaximin group (p = 0.012). Prominent difference in gastric microbiota between the two groups was observed, and the rifaximin group had a higher abundance of several taxa which were dysregulated in the progression of cirrhosis. CRP was correlated with several taxa including Alphaproteobacteria, Rhizobiales and Collinsella. CONCLUSIONS Rifaximin may improve cirrhosis-related complications, including PVT, in patients with previous GEVB through anti-inflammatory and microbiota-modulating functions. TRIAL REGISTRATION NUMBER NCT02991612.
Collapse
Affiliation(s)
- Xiao Quan Huang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Ying Jie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Si Tao Ye
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Hao Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhang
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Yu Li Zhu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Yao Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Center of Evidence-Based Medicine, Fudan University, Shanghai, China
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Guo W, Zhong W, He L, Wei X, Hao L, Dong H, Yue R, Sun X, Yin X, Zhao J, Zhang X, Zhou Z. Reversal of hepatic accumulation of nordeoxycholic acid underlines the beneficial effects of cholestyramine on alcohol-associated liver disease in mice. Hepatol Commun 2024; 8:e0507. [PMID: 39082957 DOI: 10.1097/hc9.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.
Collapse
Affiliation(s)
- Wei Guo
- Center for Translational Biomedical Research
| | - Wei Zhong
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research
| | - Haibo Dong
- Center for Translational Biomedical Research
| | - Ruichao Yue
- Center for Translational Biomedical Research
| | - Xinguo Sun
- Center for Translational Biomedical Research
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
12
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Jiang X, Xu Y, Fagan A, Patel B, Zhou H, Bajaj JS. Single nuclear RNA sequencing of terminal ileum in patients with cirrhosis demonstrates multi-faceted alterations in the intestinal barrier. Cell Biosci 2024; 14:25. [PMID: 38369527 PMCID: PMC10875857 DOI: 10.1186/s13578-024-01209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Patients with cirrhosis have intestinal barrier dysfunction but the role of the individual cell types in human small intestine is unclear. We performed single-nuclear RNA sequencing (snRNAseq) in the pinch biopsies of terminal ileum of four age-matched men [56 years, healthy control, compensated, early (ascites and lactulose use) and advanced decompensated cirrhosis (ascites and rifaximin use)]. Cell type proportions, differential gene expressions, cell-type specific pathway analysis using IPA, and cellular crosstalk dynamics were compared. Stem cells, enterocytes and Paneth cells were lowest in advanced decompensation. Immune cells like naive CD4 + T cells were lowest while ITGAE + cells were highest in advanced decompensation patients. MECOM had lowest expression in stem cells in advanced decompensation. Defensin and mucin sulfation gene (PAPSS2) which can stabilize the mucus barrier expression were lowest while IL1, IL6 and TNF-related genes were significantly upregulated in the enterocytes, goblet, and Paneth cells in decompensated subjects. IPA analysis showed higher inflammatory pathways in enterocytes, stem, goblet, and Paneth cells in decompensated patients. Cellular crosstalk analysis showed that desmosome, protease-activated receptors, and cadherin-catenin complex interactions were most perturbed in decompensated patients. In summary, the snRNAseq of the human terminal ileum in 4 subjects (1 control and three cirrhosis) identified multidimensional alteration in the intestinal barrier with lower stem cells and altered gene expression focused on inflammation, mucin sulfation and cell-cell interactions with cirrhosis decompensation.
Collapse
Affiliation(s)
- Xixian Jiang
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, 1201 Broad Rock Blvd., Richmond, VA, USA
| | - Ying Xu
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, 1201 Broad Rock Blvd., Richmond, VA, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, 1201 Broad Rock Blvd., Richmond, VA, USA
| | - Bhaumik Patel
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, 1201 Broad Rock Blvd., Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, 1201 Broad Rock Blvd., Richmond, VA, USA.
| |
Collapse
|
14
|
Bajaj JS, Fagan A, Gavis EA, Mousel T, Gallagher ML, Puri P, Fuchs M, Davis BC, Hylemon PB, Zhou H, Ahluwalia V, Cadrain R, Sikaroodi M, Gillevet PM. The RIVET RCT: Rifamycin SV MMX improves muscle mass, physical function, and ammonia in cirrhosis and minimal encephalopathy. Hepatol Commun 2024; 8:e0384. [PMID: 38315140 PMCID: PMC10843468 DOI: 10.1097/hc9.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Minimal hepatic encephalopathy (MHE) negatively affects the prognosis of cirrhosis, but treatment is not standard. Rifamycin SV MMX (RiVM) is a nonabsorbable rifampin derivative with colonic action. METHODS In a phase 2 placebo-controlled, double-blind randomized clinical trial patients with MHE were randomized to RiVM or placebo for 30 days with a 7-day follow-up. The primary endpoint was a change in stool cirrhosis dysbiosis ratio. Gut-brain (cognition, stool/salivary microbiome, ammonia, brain magnetic resonance spectroscopy), inflammation (stool calprotectin/serum cytokines), patient-reported outcomes (sickness impact profile: total/physical/psychosocial, high = worse), and sarcopenia (handgrip, bioelectric impedance) were secondary. Between/within groups and delta (post-pre) comparisons were performed. RESULTS Thirty patients (15/group) were randomized and completed the study without safety concerns. While cirrhosis dysbiosis ratio was statistically similar on repeated measures ANOVA (95% CI: -0.70 to 3.5), ammonia significantly reduced (95% CI: 4.4-29.6) in RiVM with changes in stool microbial α/β-diversity. MHE status was unchanged but only serial dotting (which tests motor strength) improved in RiVM-assigned patients. Delta physical sickness impact profile (95% CI: 0.33 = 8.5), lean mass (95% CI: -3.3 to -0.9), and handgrip strength (95% CI: -8.1 to -1.0) improved in RiVM versus placebo. Stool short-chain fatty acids (propionate, acetate, and butyrate) increased post-RiVM. Serum, urine, and stool bile acid profile changed to nontoxic bile acids (higher hyocholate/ursodeoxycholate and lower deoxycholate/lithocholate) post-RiVM. Serum IL-1β and stool calprotectin decreased while brain magnetic resonance spectroscopy showed higher glutathione concentrations in RiVM. CONCLUSIONS RiVM is well tolerated in patients with MHE with changes in stool microbial composition and function, ammonia, inflammation, brain oxidative stress, and sarcopenia-related parameters without improvement in cognition. RiVM modulates the gut-brain axis and gut-muscle axis in cirrhosis.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Andrew Fagan
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Edith A. Gavis
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Travis Mousel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Mary L. Gallagher
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Puneet Puri
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Michael Fuchs
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Brian C. Davis
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | - Vishwadeep Ahluwalia
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
- Center for Advanced Brain Imaging, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Robert Cadrain
- Collaborative Advanced Research Imaging Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Masoumeh Sikaroodi
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| | - Patrick M. Gillevet
- Microbiome Analysis Center, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
15
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
16
|
Adhikary S, Esmeeta A, Dey A, Banerjee A, Saha B, Gopan P, Duttaroy AK, Pathak S. Impacts of gut microbiota alteration on age-related chronic liver diseases. Dig Liver Dis 2024; 56:112-122. [PMID: 37407321 DOI: 10.1016/j.dld.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
The gut microbiome and its metabolites are involved in developing and progressing liver disease. Various liver illnesses, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C, and hepatocellular carcinoma, are made worse and have worse prognoses with aging. Dysbiosis, which occurs when the symbiosis between the microbiota and the host is disrupted, can significantly negatively impact health. Liver disease is linked to qualitative changes, such as an increase in hazardous bacteria and a decrease in good bacteria, as well as quantitative changes in the overall amount of bacteria (overgrowth). Intestinal gut microbiota and their metabolites may lead to chronic liver disease development through various mechanisms, such as increasing gut permeability, persistent systemic inflammation, production of SCFA, bile acids, and alteration in metabolism. Age-related gut dysbiosis can disrupt the communication between gut microbiota and the host, impacting the host's health and lifespan. With aging, a gradual loss of the ability to maintain homeostasis because of structural alteration and gut dysbiosis leads to the disease progression in end-stage liver disease. Recently chronic liver disease has been identified as a global problem. A large number of patients are receiving liver transplants yearly. Thereby gut microbiome ecology is changing in the patients of the gut due to the changes in pathophysiology during the preoperative stage. The present review summarises the age-associated dysbiosis of gut microbial composition and its contribution to chronic liver disease. This review also provides information about the impact of liver transplant on the gut microbiome and possible disadvantageous effects of alteration in gut microbiota.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Akanksha Esmeeta
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Amit Dey
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Antara Banerjee
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Biki Saha
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Pournami Gopan
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education(CARE), Department of Medical Biotechnology, Faculty of Allied Health Sciences, Kelambakkam 603103, India.
| |
Collapse
|
17
|
Cui Y, Jing C, Yue Y, Ning M, Chen H, Yuan Y, Yue T. Kefir Ameliorates Alcohol-Induced Liver Injury Through Modulating Gut Microbiota and Fecal Bile Acid Profile in Mice. Mol Nutr Food Res 2024; 68:e2300301. [PMID: 37933689 DOI: 10.1002/mnfr.202300301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/31/2023] [Indexed: 11/08/2023]
Abstract
SCOPE Alcoholic liver disease (ALD) is the leading cause of liver-related deaths worldwide. Kefir has been studied for its properties of anti-obesity, rebuilding intestinal homeostasis, and alleviating non-alcoholic fatty liver disease. However, the possible role of kefir in the prevention or treatment of ALD has not been carefully considered. Here, it evaluated the protective effects of kefir supplementation on alcohol-induced liver injury. METHODS AND RESULTS C57BL/6J mice are fed to Lieber-DeCarli liquid diet containing alcohol to build ALD mouse model, followed by oral administration with kefir. Results indicate that kefir treatment improves liver pathological changes, decreases the expression levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and inflammatory markers, and increases antioxidant levels. Kefir supplementation also restores the intestinal barrier and altered microbial composition, indicates as increases of Blautia, Bacteroides, and Parasutterella and decreases in the Firmicutes/Bacteroidetes (F/B) ratio and populations of Psychrobacter, Bacillus, and Monoglobus. Moreover, kefir supplementation decreases the levels of total bile acids (BAs) and primary BAs and increases the secondary/primary BA ratio. Gut microbes play a key role in the conversion of primary to secondary fecal BAs. CONCLUSION Kefir can ameliorate ALD through regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Chun Jing
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuan Yue
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| |
Collapse
|
18
|
Baweja S, Mittal A, Thangariyal S, Subudhi PD, Gautam S, Kaul R. Unveiling the effect of estrogen receptors in alcoholic liver disease: A novel outlook. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:333-341. [PMID: 39958778 PMCID: PMC11791908 DOI: 10.1016/j.livres.2023.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 01/11/2025]
Abstract
Alcoholic liver disease (ALD) has a multifaceted development, progressing from alcoholic steatosis to alcoholic hepatitis and ultimately to alcoholic cirrhosis, irreversible liver damage that can even result in hepatocellular carcinoma. The prevalence of ALD is increasing globally, particularly among middle-aged adults. Gender-based studies have revealed that ALD affects more men; however, disease progression differs between men and women. Despite this, the molecular understanding of alcohol-induced liver injury among genders and its association with changes in sex hormone metabolism, particularly with estrogen and estrogen receptors (ERs) in ALD, remains poor. This review focuses on experimental and human studies describing alcohol and its association with estrogen metabolism and signaling via ERs. Chronic alcohol consumption affects the immune response, and whether estrogen has any contributory effect remains inadequately studied. This review also discusses various therapeutic approaches currently in use and future approaches that can affect the response or progression via estrogen signaling. The role of gender on alcohol consumption and its association with steroid hormones must be elucidated for a better understanding of the pathogenesis of ALD, the development of effective therapeutic approaches, and better disease management in both men and women, as ALD remains a major public health concern.
Collapse
Affiliation(s)
- Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashmit Mittal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Swati Thangariyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - P. Debishree Subudhi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shivani Gautam
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
19
|
Xiao L, Xu G, Chen S, He Y, Peng F, Yuan C. Kaempferol ameliorated alcoholic liver disease through inhibiting hepatic bile acid synthesis by targeting intestinal FXR-FGF15 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155055. [PMID: 37678053 DOI: 10.1016/j.phymed.2023.155055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is characterized by the disturbance of bile acids homeostasis, which further deteriorates ALD. Bile acid metabolism and its related signal molecules have become new therapeutic targets for alcoholic liver disease. This study aimed to investigate the impact of kaempferol (KAE) on ALD and elucidate its underlying mechanisms. METHODS C57BL/6 N mice were utilized to establish Binge-on-Chronic alcohol exposure mice model. KAE was administered as an interventional drug to chronic alcohol-fed mice for four weeks to assess its effects on liver damage and bile acid metabolism. And Z-Guggulsterone (Z-Gu), a global FXR inhibitor, was used to investigate the impact of intestinal FXR-FGF15 signal in ALD mice. Additionally, intestinal epithelial cells were exposed to alcohol or specific bile acid to induce the damage of FXR activity in vitro. The dual luciferase activity assay was employed to ascertain the interplay between KAE and FXR activity. RESULTS The results indicated that KAE treatment exhibited a significant hepatoprotective effect against chronic alcohol-fed mice. Accompanied by the intestinal FXR activation, the administration of KAE suppressed hepatic bile acid synthesis and promoted intestinal bile acid excretion in chronic ALD mice. And the notable alterations in total bile acid levels and composition were observed in mice after chronic alcohol feeding, which were reversed by KAE supplementation. And more, the protective effects of KAE on ALD mice were deprived by the inhibition of intestinal FXR activation. In vitro experiments demonstrated that KAE effectively activated FXR-FGF15 signaling, mitigated the damage to FXR activity in intestinal epithelial cells caused by alcohol or specific bile acids. Additionally, luciferase activity assays revealed that KAE directly promoted FXR expression, thereby enhancing FXR activity. CONCLUSION KAE treatment inhibited hepatic bile acids synthesis, maintained bile acids homeostasis in ALD mice by directly activating intestinal FXR-FGF15 signaling, which effectively alleviated liver injury induced by chronic alcohol consumption.
Collapse
Affiliation(s)
- Li Xiao
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Guangfu Xu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Silong Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Basic Medical Science, China Three Gorges University, Yichang, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, China.
| |
Collapse
|
20
|
Zheng J, Li Z, Xu H. Intestinal Microbiotas and Alcoholic Hepatitis: Pathogenesis and Therapeutic Value. Int J Mol Sci 2023; 24:14809. [PMID: 37834256 PMCID: PMC10573193 DOI: 10.3390/ijms241914809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic hepatitis (AH) is a rapidly progressing and severe stage of alcoholic liver disease, presenting a grim prognosis. Extensive research has elucidated several underlying mechanisms that contribute to the development of AH, including metabolic alterations, immune stimulation, and intestinal dysbiosis. These pathological changes intricately intertwine during the progression of AH. Notably, recent studies have increasingly highlighted the pivotal role of alterations in the intestinal microbiota in the pathogenesis of AH. Consequently, future investigations should place significant emphasis on exploring the dynamics of intestinal microbiota. In this comprehensive review, we consolidate the primary causes of AH while underscoring the influence of gut microbes. Furthermore, by examining AH treatment strategies, we delineate the potential therapeutic value of interventions targeting the gut microbiota. Given the existing limitations in AH treatment options, we anticipate that this review will contribute to forthcoming research endeavors aimed at advancing AH treatment modalities.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Ziyi Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
21
|
Sato S, Iino C, Chinda D, Sasada T, Tateda T, Kaizuka M, Nomiya H, Igarashi G, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. Effect of Liver Fibrosis on Oral and Gut Microbiota in the Japanese General Population Determined by Evaluating the FibroScan-Aspartate Aminotransferase Score. Int J Mol Sci 2023; 24:13470. [PMID: 37686272 PMCID: PMC10487682 DOI: 10.3390/ijms241713470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The association between liver fibrosis and oral or gut microbiota has been studied before. However, epidemiological studies in the general population are limited owing to the difficulty of noninvasive liver-fibrosis assessment. FibroScan-asparate aminotransferase (FAST) scores can be used to accurately and non-invasively evaluate liver fibrosis. This study aimed to determine the association between liver fibrosis and oral or gut microbiota using the FAST score in the general population. After propensity score matching of 1059 participants based on sex, age, body mass index, homeostasis model assessment of insulin resistance, and triglyceride levels, 125 (non-liver-fibrosis group, 100; liver fibrosis group, 25) were included. The diversity of gut microbiota differed significantly between the two groups; however, no significant differences were noted in their oral microbiota. The liver fibrosis group showed an increase in the relative abundance of Fusobacteria strains and a decrease in the relative abundance of Faecalibacterium, with the presence of Fusicatenibacter in the gut microbiota. Feacalibacterium was not identified as an independent factor of liver fibrosis in adjusting the fatty liver index. In the general population, gut microbiota may be more involved in liver fibrosis than oral microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Takafumi Sasada
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Tetsuyuki Tateda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Masatoshi Kaizuka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Hiroki Nomiya
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Go Igarashi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Tatsuya Mikami
- Department of Preemptive Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (K.S.); (T.M.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan;
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan; (S.S.); (T.S.); (T.T.); (M.K.); (H.N.); (G.I.); (H.S.); (S.F.)
| |
Collapse
|
22
|
Zhang D, Liu Z, Bai F. Roles of Gut Microbiota in Alcoholic Liver Disease. Int J Gen Med 2023; 16:3735-3746. [PMID: 37641627 PMCID: PMC10460590 DOI: 10.2147/ijgm.s420195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Alcoholic liver disease (ALD)-one of the most common liver diseases - involves a wide range of disorders, including asymptomatic hepatic steatosis, alcoholic hepatitis (AH), liver fibrosis, and cirrhosis. Alcohol consumption induces a weakened gut barrier and changes in the composition of the gut microbiota. The presence of CYP2E1 and its elevated levels in the gastrointestinal tract after alcohol exposure lead to elevated levels of ROS and acetaldehyde, inducing inflammation and oxidative damage in the gut. At the same time, the influx of harmful molecules such as the bacterial endotoxin LPS and peptidogly from gut dysbiosis can induce intestinal inflammation and oxidative damage, further compromising the intestinal mucosal barrier. In this process, various oxidative stress-mediated post-translational modifications (PTMs) play an important role in the integrity of the barrier, eg, the presence of acetaldehyde will result in the sustained phosphorylation of several paracellular proteins (occludin and zona occludens-1), which can lead to intestinal leakage. Eventually, persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic circulation will lead to hepatic stellate cell activation and hepatic fibrosis. In addition, probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), bioengineered bacteria, gut-restricted FXR agonists and others are promising therapeutic approaches that can alter gut microbiota composition to improve ALD. In the future, there will be new challenges to study the interactions between the genetics of individuals with ALD and their gut microbiome, to provide personalized interventions targeting the gut-liver axis, and to develop better techniques to measure microbial communities and metabolites in the body.
Collapse
Affiliation(s)
- Daya Zhang
- Graduate School, Hainan Medical University, Haikou, People’s Republic of China
| | - ZhengJin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, People’s Republic of China
| |
Collapse
|
23
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
24
|
Xu YF, Hao YX, Ma L, Zhang MH, Niu XX, Li Y, Zhang YY, Liu TT, Han M, Yuan XX, Wan G, Xing HC. Difference and clinical value of metabolites in plasma and feces of patients with alcohol-related liver cirrhosis. World J Gastroenterol 2023; 29:3534-3547. [PMID: 37389241 PMCID: PMC10303510 DOI: 10.3748/wjg.v29.i22.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis (ALC). AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications. METHODS According to the inclusion and exclusion criteria, 27 patients with ALC and 24 healthy controls (HCs) were selected, and plasma and feces samples were collected. Liver function, blood routine, and other indicators were detected with automatic biochemical and blood routine analyzers. Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces. Also, the correlation between metabolites and clinical features was analyzed. RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC. Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways. Compared to HCs, patients with ALC had a higher level of glycocholic acid (GCA) and taurocholic acid (TCA) in plasma and a lower level of deoxycholic acid (DCA) in the feces, while L-threonine, L-phenylalanine, and L-tyrosine increased simultaneously in plasma and feces. GCA, TCA, L-methionine, L-phenylalanine, and L-tyrosine in plasma were positively correlated with total bilirubin (TBil), prothrombin time (PT), and maddrey discriminant function score (MDF) and negatively correlated with cholinesterase (CHE) and albumin (ALB). The DCA in feces was negatively correlated with TBil, MDF, and PT and positively correlated with CHE and ALB. Moreover, we established a P/S BA ratio of plasma primary bile acid (GCA and TCA) to fecal secondary bile acid (DCA), which was relevant to TBil, PT, and MDF score. CONCLUSION The enrichment of GCA, TCA, L-phenylalanine, L-tyrosine, and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC. These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan-Xu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei Ma
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Meng-Han Zhang
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xuan-Xuan Niu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Li
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ting-Ting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Xue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Department of Statistic, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
25
|
Li Z, Zhang F, Sun M, Liu J, Zhao L, Liu S, Li S, Wang B. The modulatory effects of gut microbes and metabolites on blood–brain barrier integrity and brain function in sepsis-associated encephalopathy. PeerJ 2023; 11:e15122. [PMID: 37009158 PMCID: PMC10064995 DOI: 10.7717/peerj.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background
Intestinal microbiota homeostasis and the gut-brain axis are key players associated with host health and alterations in metabolic, inflammatory, and neurodegenerative disorders. Sepsis-associated encephalopathy (SAE), which is closely associated with bacterial translocation, is a common secondary organ dysfunction and an urgent, unsolved problem affecting patient quality of life. Our study examined the neuroprotective effects of the gut microbiome and short-chain fatty acid (SCFA) metabolites on SAE.
Methods
Male C57BL/6 mice were administered SCFAs in drinking water, then subjected to cecal ligation and puncture (CLP) surgery to induce SAE. 16S rRNA sequencing was used to investigate gut microbiome changes. The open field test (OFT) and Y-maze were performed to evaluate brain function. The permeability of the blood–brain barrier (BBB) was assessed by Evans blue (EB) staining. Hematoxylin and eosin (HE) staining was used to examine intestinal tissue morphology. The expression levels of tight junction (TJ) proteins and inflammatory cytokines was assessed by western blots and immunohistochemistry. In vitro, bEND.3 cells were incubated with SCFAs and then with lipopolysaccharide (LPS). Immunofluorescence was used to examine the expression of TJ proteins.
Results
The composition of the gut microbiota was altered in SAE mice; this change may be related to SCFA metabolism. SCFA treatment significantly alleviated behavioral dysfunction and neuroinflammation in SAE mice. SCFAs upregulated occludin and ZO-1 expression in the intestine and brain in SAE mice and LPS-treated cerebromicrovascular cells.
Conclusions
These findings suggested that disturbances in the gut microbiota and SCFA metabolites play key roles in SAE. SCFA supplementation could exert neuroprotective effects against SAE by preserving BBB integrity.
Collapse
Affiliation(s)
- Zhaoying Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
- Institute of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Meisha Sun
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Jia Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Li Zhao
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shuchun Liu
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Shanshan Li
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| | - Bin Wang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou Province, China
| |
Collapse
|
26
|
Chen L, Yang P, Hu L, Yang L, Chu H, Hou X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci 2023; 13:24. [PMID: 36739426 PMCID: PMC9899391 DOI: 10.1186/s13578-023-00974-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
27
|
He XY, Zhu YX, Jiang XQ, Zhu FR, Luo YJ, Qiu YY, Huang ZR, Liu B, Zeng F. Probiotics-Fermented Grifola frondosa Total Active Components: Better Antioxidation and Microflora Regulation for Alleviating Alcoholic Liver Damage in Mice. Int J Mol Sci 2023; 24:ijms24021406. [PMID: 36674921 PMCID: PMC9862899 DOI: 10.3390/ijms24021406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Alcoholic liver damage is caused by long-term drinking, and it further develops into alcoholic liver diseases. In this study, we prepared a probiotic fermentation product of Grifola frondosa total active components (PFGF) by fermentation with Lactobacillus acidophilus, Lactobacillus rhamnosus, and Pediococcus acidilactici. After fermentation, the total sugar and protein content in the PFGF significantly decreased, while the lactic acid level and antioxidant activity of the PFGF increased. Afterward, we investigated the alleviating effect of PFGF on alcoholic liver injury in alcohol-fed mice. The results showed that the PFGF intervention reduced the necrosis of the liver cells, attenuated the inflammation of the liver and intestines, restored the liver function, increased the antioxidant factors of the liver, and maintained the cecum tissue barrier. Additionally, the results of the 16S rRNA sequencing analysis indicated that the PFGF intervention increased the relative abundance of beneficial bacteria, such as Lactobacillus, Ruminococcaceae, Parabacteroids, Parasutterella, and Alistipes, to attenuate intestinal inflammation. These results demonstrate that PFGF can potentially alleviate alcoholic liver damage by restoring the intestinal barrier and regulating the intestinal microflora.
Collapse
Affiliation(s)
- Xiao-Yu He
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Xian Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiao-Qin Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu-Rong Zhu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yi-Juan Luo
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Yu-Yang Qiu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
| | - Zi-Rui Huang
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| | - Feng Zeng
- National Engineering Research Center of JUNCAO Technology, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (B.L.); (F.Z.)
| |
Collapse
|
28
|
Liu X, Yu S, Zhang Y, Zhang W, Zhong H, Lu X, Guan R. A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115740. [PMID: 36162549 DOI: 10.1016/j.jep.2022.115740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata is a genus of wood-rot basidiomycete in the family Fomitopsidaceae. It is a valuable medicinal fungus in China that contains more than 78 kinds of active compounds. A. camphorata has good protection effects on the liver, especially on alcoholic liver injury (ALI). AIM This paper summarizes the complex occurrence and development of alcoholic liver disease (ALD). In addition, the effect of ALD on the intestine through the gut-liver axis is summarized. The protective mechanism of A. camphorata on ALI is reviewed to reveal its therapeutic potential, offering insights into future research. MATERIALS AND METHODS A comprehensive search in the literature was obtained from books and online databases such as Web of Science, Google Scholar, PubMed, Scopus, Science direct, ACS Publications and Baidu Scholar. RESULTS The pathogenesis of ALD mainly includes oxidative stress injury, intestinal microflora imbalance, inflammatory mediator injury and nutritional imbalance. A. camphorata contains rich active components (e.g. polysaccharides, triterpenoids, maleic and succinic acid derivatives, amino acids, superoxide dismutase, vitamins, lignin and sterols). These components have good antioxidant, anti-inflammatory and intestinal protection activities. Therefore, A. camphorata has a wide application in the prevention and treatment of ALI. CONCLUSIONS ALD develops from a mild disease to alcoholic hepatitis and cirrhosis, which is the main reason of global morbidity and mortality. At present, there is no effective drug for the treatment of ALD. A. camphorata, as a valuable medicinal fungus unique to Taiwan, has a great protective effect on the liver. It is expected to be an effective drug for ALI treatment. Although many studies have performed the protective effects of A. camphorata on ALI, its regulatory effects on the gut-liver axis of ALD patients need to be further explored.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Shuzhen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, China.
| | - Wei Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Xiaoqin Lu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| |
Collapse
|
29
|
Huang DQ, Mathurin P, Cortez-Pinto H, Loomba R. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20:37-49. [PMID: 36258033 PMCID: PMC9579565 DOI: 10.1038/s41575-022-00688-6] [Citation(s) in RCA: 243] [Impact Index Per Article: 121.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 02/07/2023]
Abstract
Heavy alcohol consumption is a major cause of morbidity and mortality. Globally, alcohol per-capita consumption rose from 5.5 litres in 2005 to 6.4 litres in 2016 and is projected to increase further to 7.6 litres in 2030. In 2019, an estimated 25% of global cirrhosis deaths were associated with alcohol. The global estimated age-standardized death rate (ASDR) of alcohol-associated cirrhosis was 4.5 per 100,000 population, with the highest and lowest ASDR in Africa and the Western Pacific, respectively. The annual incidence of hepatocellular carcinoma (HCC) among patients with alcohol-associated cirrhosis ranged from 0.9% to 5.6%. Alcohol was associated with approximately one-fifth of global HCC-related deaths in 2019. Between 2012 and 2017, the global estimated ASDR for alcohol-associated cirrhosis declined, but the ASDR for alcohol-associated liver cancer increased. Measures are required to curb heavy alcohol consumption to reduce the burden of alcohol-associated cirrhosis and HCC. Degree of alcohol intake, sex, older age, obesity, type 2 diabetes mellitus, gut microbial dysbiosis and genetic variants are key factors in the development of alcohol-associated cirrhosis and HCC. In this Review, we discuss the global epidemiology, projections and risk factors for alcohol-associated cirrhosis and HCC.
Collapse
Affiliation(s)
- Daniel Q Huang
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Philippe Mathurin
- Service des Maladies de l'appareil digestif, Hôpital Huriez, Lille, France
- Unité INSERM 995, Faculté de médecine, Lille, France
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Departamento de Gastrenterologia, Centro Hospitalar Lisboa Norte, Lisboa, Portugal
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
30
|
Hong S, Li S, Meng X, Li P, Wang X, Su M, Liu X, Liu L. Bile duct ligation differently regulates protein expressions of organic cation transporters in intestine, liver and kidney of rats through activation of farnesoid X receptor by cholate and bilirubin. Acta Pharm Sin B 2023; 13:227-245. [PMID: 36815051 PMCID: PMC9939304 DOI: 10.1016/j.apsb.2022.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Body is equipped with organic cation transporters (OCTs). These OCTs mediate drug transport and are also involved in some disease process. We aimed to investigate whether liver failure alters intestinal, hepatic and renal Oct expressions using bile duct ligation (BDL) rats. Pharmacokinetic analysis demonstrates that BDL decreases plasma metformin exposure, associated with decreased intestinal absorption and increased urinary excretion. Western blot shows that BDL significantly downregulates intestinal Oct2 and hepatic Oct1 but upregulates renal and hepatic Oct2. In vitro cell experiments show that chenodeoxycholic acid (CDCA), bilirubin and farnesoid X receptor (FXR) agonist GW4064 increase OCT2/Oct2 but decrease OCT1/Oct1, which are remarkably attenuated by glycine-β-muricholic acid and silencing FXR. Significantly lowered intestinal CDCA and increased plasma bilirubin levels contribute to different Octs regulation by BDL, which are confirmed using CDCA-treated and bilirubin-treated rats. A disease-based physiologically based pharmacokinetic model characterizing intestinal, hepatic and renal Octs was successfully developed to predict metformin pharmacokinetics in rats. In conclusion, BDL remarkably downregulates expressions of intestinal Oct2 and hepatic Oct1 protein while upregulates expressions of renal and hepatic Oct2 protein in rats, finally, decreasing plasma exposure and impairing hypoglycemic effects of metformin. BDL differently regulates Oct expressions via Fxr activation by CDCA and bilirubin.
Collapse
Affiliation(s)
- Shijin Hong
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Shuai Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaoyan Meng
- Tianjin Institutes of Pharmaceutical Research, Tianjin 300301, China
| | - Ping Li
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xun Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Mengxiang Su
- Departments of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing 210098, China,Corresponding author. Tel./fax: +86 25 83271060.
| |
Collapse
|
31
|
Wolstenholme JT, Saunders JM, Smith M, Kang JD, Hylemon PB, González-Maeso J, Fagan A, Zhao D, Sikaroodi M, Herzog J, Shamsaddini A, Peña-Rodríguez M, Su L, Tai YL, Zheng J, Cheng PC, Sartor RB, Gillevet PM, Zhou H, Bajaj JS. Reduced alcohol preference and intake after fecal transplant in patients with alcohol use disorder is transmissible to germ-free mice. Nat Commun 2022; 13:6198. [PMID: 36261423 PMCID: PMC9581985 DOI: 10.1038/s41467-022-34054-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder is a major cause of morbidity, which requires newer treatment approaches. We previously showed in a randomized clinical trial that alcohol craving and consumption reduces after fecal transplantation. Here, to determine if this could be transmitted through microbial transfer, germ-free male C57BL/6 mice received stool or sterile supernatants collected from the trial participants pre-/post-fecal transplant. We found that mice colonized with post-fecal transplant stool but not supernatants reduced ethanol acceptance, intake and preference versus pre-fecal transplant colonized mice. Microbial taxa that were higher in post-fecal transplant humans were also associated with lower murine alcohol intake and preference. A majority of the differentially expressed genes (immune response, inflammation, oxidative stress response, and epithelial cell proliferation) occurred in the intestine rather than the liver and prefrontal cortex. These findings suggest a potential for therapeutically targeting gut microbiota and the microbial-intestinal interface to alter gut-liver-brain axis and reduce alcohol consumption in humans.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- VCU-Alcohol Research Center and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren Smith
- VCU-Alcohol Research Center and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason D Kang
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B Hylemon
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA
| | - Derrick Zhao
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Jeremy Herzog
- National Gnotobiotic Rodent Research Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Marcela Peña-Rodríguez
- University Center for Health Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lianyong Su
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Yun-Ling Tai
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jing Zheng
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Po-Cheng Cheng
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - R Balfour Sartor
- National Gnotobiotic Rodent Research Center, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Huiping Zhou
- Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, VA, USA.
| |
Collapse
|
32
|
Huang CY, Zhang HP, Han WJ, Zhao DT, Liao HY, Ma YX, Xu B, Li LJ, Han Y, Liu XH, Wang Q, Lou JL, Zhang XD, Zhao J, Li WJ, Liu YM, Yan HP. Disease predisposition of human leukocyte antigen class II genes influences the gut microbiota composition in patients with primary biliary cholangitis. Front Immunol 2022; 13:984697. [PMID: 36203614 PMCID: PMC9531677 DOI: 10.3389/fimmu.2022.984697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe human leukocyte antigen (HLA) susceptibility gene is the main genetic risk factor for primary biliary cholangitis (PBC). The prognosis of patients with PBC is linked to gut microbiota dysbiosis. However, whether the HLA alleles are associated with the gut microbiota distribution and disease severity remains unknown.MethodsA cohort of 964 Chinese patients with PBC was enrolled at Beijing YouAn Hospital, Beijing, China. High-resolution genotyping of the HLA class I and class II loci from 151 of these patients was performed using sequence-based PCR. Stool samples were collected from 43 of the 151 fully HLA-typed patients to analyze their microbiota compositions via 16S RNA gene sequencing.ResultsOf the 964 patients, the male:female ratio was 114:850, and 342 of these patients (35.5%) had already developed liver cirrhosis (LC) before enrollment. Patients with PBC showed a significantly higher frequency of HLA DRB1*08:03 than did the controls (21.2% vs. 9.0%, P=0.0001). HLA-DRB1*03:01, DRB1*07:01, DRB1*14:05, and DRB1*14:54 frequencies were also increased but did not reach significance after Bonferroni’s correction. Conversely, the DQB1*03:01 frequency was significantly lower in patients with PBC than in the controls (24.5% vs. 39.2%, P=0.0010). The patients’ gut microbiota were analyzed from four perspectives. The microbial community abundances were significantly lower in FHRAC-positive patients (patients with a combination of five HLA DRB1 high-risk alleles) than in FHRAC-negative patients (P<0.05). Of the top 10 microbial genera, Lachnospiraceae_incertae_sedis was higher in the FHRAC-positive patients than in the FHRAC-negative patients (P<0.05). linear discriminant analysis (LDA) effect-size (LEfSe) analysis showed different microbes at different levels in the FHRAC-negative patients but not in the FHRAC-positive patients. DQB1*03:01-positive patients contained mostly Lactobacillaceae at the family level. A comparison of the FHRAC-positive patients with and without liver cirrhosis showed that the abundances of Veillonella were significantly higher in patients with cirrhosis and FHRAC than in those without cirrhosis and are FHRAC-negative.ConclusionThe HLA class II genes may influence the gut microbiota compositions in patients with PBC. Differential gut microbiota were expressed at different taxonomic levels. Some bacterial abundances may be increased in FHRAC-positive patients with PBC and cirrhosis.
Collapse
Affiliation(s)
- Chun-Yang Huang
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hai-Ping Zhang
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Wei-Jia Han
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dan-Tong Zhao
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hui-Yu Liao
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yin-Xue Ma
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bin Xu
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Li-Juan Li
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiu-Hong Liu
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Qi Wang
- Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jin-Li Lou
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiao-Dan Zhang
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Juan Zhao
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Wen-Juan Li
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yan-Min Liu
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hui-Ping Yan, , ; Yan-Min Liu,
| | - Hui-Ping Yan
- Second Department of Liver Disease Center, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- Clinical Laboratory Center and Clinical Research Center for Autoimmune Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hui-Ping Yan, , ; Yan-Min Liu,
| |
Collapse
|
33
|
Philips CA, Schnabl B, Bajaj JS. Gut Microbiome and Alcohol-associated Liver Disease. J Clin Exp Hepatol 2022; 12:1349-1359. [PMID: 36157139 PMCID: PMC9499847 DOI: 10.1016/j.jceh.2021.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Changes in gut microbiota (GM) may be associated with the causation and progression of multiple liver diseases such as metabolic-associated liver disease, alcohol-associated liver disease (ALD), alcohol-associated hepatitis (AH), primary biliary cholangitis, primary sclerosing cholangitis, autoimmune liver disease, and most importantly, complications of cirrhosis and portal hypertension such as hepatic encephalopathy (HE), infection, and hepatocellular carcinoma. ALD includes simple steatosis, steatohepatitis, AH, cirrhosis, and acute-on-chronic liver failure. Alcohol consumption is associated with GM changes even before ALD development, and continued alcohol intake results in progressive dysbiosis and development of clinical events such as AH, infection, and HE. The composition and function of GM, specific changes in bacterial communities, and the functional metabolism of GM are affected in the spectrum of ALD, as revealed using high-throughput sequencing. It was reported in preliminary studies that modulation of disrupted GM improves adverse clinical events and ameliorates disease progression in ALD. In this review, we exhaustively discuss the preclinical and clinical studies on GM in ALD and critically discuss GM modulation and its effects based on various human and animal models of ALD.
Collapse
Key Words
- ACLF
- ACLF, acute on chronic liver failure
- AH, alcohol-associated hepatitis
- ALD
- ALD, alcohol-associated liver disease
- AUD, alcohol use disorder
- FMT
- FMT, fecal microbiota transplantation
- GM, gut microbiota
- HE, hepatic encephalopathy
- IL, interleukin
- MAFLD, metabolic-associated fatty liver disease
- SCFA, short chain fatty acids
- cirrhosis
- microbiome
Collapse
Affiliation(s)
- Cyriac A. Philips
- Department of Clinical and Translational Hepatology and The Monarch Liver Laboratory, The Liver Institute, Center for Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmohan S. Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University and Central Virginia Veterans Healthcare System, Richmond, VA, USA
| |
Collapse
|
34
|
Liu Y, Liu T, Zhao X, Gao Y. New insights into the bile acid-based regulatory mechanisms and therapeutic perspectives in alcohol-related liver disease. Cell Mol Life Sci 2022; 79:486. [PMID: 35978227 PMCID: PMC11073206 DOI: 10.1007/s00018-022-04509-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Cholestasis is a key causative factor in alcohol-related liver disease (ALD) and variable degrees of cholestasis occur in all stages of ALD. However, the pathogenetic mechanisms and biomarkers associated with cholestasis are not well characterized. Cholestatic disease is marked by the disruption of bile acids (BA) transport and homeostasis. Consequently, in both human and experimental ALD, the disease shows a direct correlation with an imbalance in BA equilibrium, which in turn may also affect the severity of the disease. Modulation of BA metabolism or signaling pathways is increasingly considered as a potential therapeutic strategy for ALD in humans. In this paper, we highlight the key advances made in the past two decades in characterizing the molecular regulatory mechanisms of BA synthesis, enterohepatic circulation, and BA homeostasis. We summarize recent insights into the nature of the linkage between BA dysregulation and ALD, including the abnormal expression of genes involved in BA metabolism, abnormal changes in receptors that regulate BA metabolism, and disturbance in the gut flora engaged in BA metabolism caused by alcohol consumption. Additionally, we provide novel perspectives on the changes in BAs in various stages of ALD. Finally, we propose potential pharmacological therapies for ALD targeting BA metabolism and signaling.
Collapse
Affiliation(s)
- Yali Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Tao Liu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Xu Zhao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
- Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
35
|
Khalyfa AA, Punatar S, Yarbrough A. Hepatocellular Carcinoma: Understanding the Inflammatory Implications of the Microbiome. Int J Mol Sci 2022; 23:ijms23158164. [PMID: 35897739 PMCID: PMC9332105 DOI: 10.3390/ijms23158164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. It is well known that repeated inflammatory insults in the liver can cause hepatic cellular injury that lead to cirrhosis and, ultimately, hepatocellular carcinoma. Furthermore, the microbiome has been implicated in multiple inflammatory conditions which predispose patients to malignancy. With this in mind, we explore the inflammatory implications of the microbiome on pathways that lead to HCC. We also focus on how an understanding of these underlying inflammatory principles lead to a more wholistic understanding of this deadly disease, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Ahamed A. Khalyfa
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
- Correspondence:
| | - Shil Punatar
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| |
Collapse
|
36
|
Jung JH, Kim SE, Suk KT, Kim DJ. Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Front Med (Lausanne) 2022; 9:913842. [PMID: 35935787 PMCID: PMC9354621 DOI: 10.3389/fmed.2022.913842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD) involves a wide spectrum of diseases, including asymptomatic hepatic steatosis, alcoholic hepatitis, hepatic fibrosis, and cirrhosis, which leads to morbidity and mortality and is responsible for 0.9% of global deaths. Alcohol consumption induces bacterial translocation and alteration of the gut microbiota composition. These changes in gut microbiota aggravate hepatic inflammation and fibrosis. Alteration of the gut microbiota leads to a weakened gut barrier and changes host immunity and metabolic function, especially related to bile acid metabolism. Modulation and treatment for the gut microbiota in ALD has been studied using probiotics, prebiotics, synbiotics, and fecal microbial transplantation with meaningful results. In this review, we focused on the interaction between alcohol and gut dysbiosis in ALD. Additionally, treatment approaches for gut dysbiosis, such as abstinence, diet, pro-, pre-, and synbiotics, antibiotics, and fecal microbial transplantation, are covered here under ALD. However, further research through human clinical trials is warranted to evaluate the appropriate gut microbiota-modulating agents for each condition related to ALD.
Collapse
Affiliation(s)
- Jang Han Jung
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
| | - Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea
| |
Collapse
|
37
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
38
|
Way GW, Jackson KG, Muscu SR, Zhou H. Key Signaling in Alcohol-Associated Liver Disease: The Role of Bile Acids. Cells 2022; 11:1374. [PMID: 35456053 PMCID: PMC9031669 DOI: 10.3390/cells11081374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a spectrum of diseases, the onset and progression of which are due to chronic alcohol use. ALD ranges, by increasing severity, from hepatic steatosis to alcoholic hepatitis (AH) and alcohol-associated cirrhosis (AC), and in some cases, can lead to the development of hepatocellular carcinoma (HCC). ALD continues to be a significant health burden and is now the main cause of liver transplantations in the United States. ALD leads to biological, microbial, physical, metabolic, and inflammatory changes in patients that vary depending on disease severity. ALD deaths have been increasing in recent years and are projected to continue to increase. Current treatment centers focus on abstinence and symptom management, with little in the way of resolving disease progression. Due to the metabolic disruption and gut dysbiosis in ALD, bile acid (BA) signaling and metabolism are also notably affected and play a prominent role in disease progression in ALD, as well as other liver disease states, such as non-alcoholic fatty liver disease (NAFLD). In this review, we summarize the recent advances in the understanding of the mechanisms by which alcohol consumption induces hepatic injury and the role of BA-mediated signaling in the pathogenesis of ALD.
Collapse
Affiliation(s)
- Grayson W. Way
- Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Kaitlyn G. Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
| | - Shreya R. Muscu
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA; (K.G.J.); (S.R.M.)
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
39
|
Modulation of the Bile Acid Enterohepatic Cycle by Intestinal Microbiota Alleviates Alcohol Liver Disease. Cells 2022; 11:cells11060968. [PMID: 35326419 PMCID: PMC8946080 DOI: 10.3390/cells11060968] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Reshaping the intestinal microbiota by the ingestion of fiber, such as pectin, improves alcohol-induced liver lesions in mice by modulating bacterial metabolites, including indoles, as well as bile acids (BAs). In this context, we aimed to elucidate how oral supplementation of pectin affects BA metabolism in alcohol-challenged mice receiving feces from patients with alcoholic hepatitis. Pectin reduced alcohol liver disease. This beneficial effect correlated with lower BA levels in the plasma and liver but higher levels in the caecum, suggesting that pectin stimulated BA excretion. Pectin modified the overall BA composition, favoring an augmentation in the proportion of hydrophilic forms in the liver, plasma, and gut. This effect was linked to an imbalance between hydrophobic and hydrophilic (less toxic) BAs in the gut. Pectin induced the enrichment of intestinal bacteria harboring genes that encode BA-metabolizing enzymes. The modulation of BA content by pectin inhibited farnesoid X receptor signaling in the ileum and the subsequent upregulation of Cyp7a1 in the liver. Despite an increase in BA synthesis, pectin reduced BA serum levels by promoting their intestinal excretion. In conclusion, pectin alleviates alcohol liver disease by modifying the BA cycle through effects on the intestinal microbiota and enhanced BA excretion.
Collapse
|
40
|
Day AW, Kumamoto CA. Gut Microbiome Dysbiosis in Alcoholism: Consequences for Health and Recovery. Front Cell Infect Microbiol 2022; 12:840164. [PMID: 35310839 PMCID: PMC8928144 DOI: 10.3389/fcimb.2022.840164] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Since the mid 1980's, the impact of gastrointestinal (GI) microbiome changes during alcohol use disorder has been an area of significant interest. This work has resulted in the identification of specific changes in the abundance of certain members of the GI microbiome and the role these changes play in a variety of alcohol related disorders (i.e. alcoholic liver disease). Interestingly, some findings suggest a possible role for the GI microbiome in alcohol addiction or withdrawal. Unfortunately, there is a significant gap in knowledge in this area. Here we describe differences in the GI microbiome of alcoholic and non-alcoholic individuals and discuss the possible impact of microbes on the gut-brain axis, which could impact alcohol related behaviors (i.e. addiction). Understanding the role of the GI microbiome in alcohol related disorders will potentially lead to the development of successful microbiome-targeted therapeutics to help mitigate these disorders.
Collapse
Affiliation(s)
- Andrew Whittier Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, United States
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, United States
| |
Collapse
|
41
|
Tan H, Nie S. From universal recipes to customerised choices: Innovations, challenges and prospects of the polysaccharides-based food. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Fisher BS, Fancher KA, Gustin AT, Fisher C, Wood MP, Gale M, Burwitz BJ, Smedley J, Klatt NR, Derby N, Sodora DL. Liver Bacterial Dysbiosis With Non-Tuberculosis Mycobacteria Occurs in SIV-Infected Macaques and Persists During Antiretroviral Therapy. Front Immunol 2022; 12:793842. [PMID: 35082782 PMCID: PMC8784802 DOI: 10.3389/fimmu.2021.793842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/16/2021] [Indexed: 01/26/2023] Open
Abstract
Liver disease is a significant contributor to morbidity and mortality in HIV-infected individuals, even during successful viral suppression with combination antiretroviral therapy (cART). Similar to HIV infection, SIV infection of rhesus macaques is associated with gut microbiome dysbiosis and microbial translocation that can be detected systemically in the blood. As microbes leaving the intestines must first pass through the liver via the portal vein, we evaluated the livers of both SIV-infected (SIV+) and SIV-infected cART treated (SIV+cART) rhesus macaques for evidence of microbial changes compared to uninfected macaques. Dysbiosis was observed in both the SIV+ and SIV+cART macaques, encompassing changes in the relative abundance of several genera, including a reduction in the levels of Lactobacillus and Staphylococcus. Most strikingly, we found an increase in the relative abundance and absolute quantity of bacteria within the Mycobacterium genus in both SIV+ and SIV+cART macaques. Multi-gene sequencing identified a species of atypical mycobacteria similar to the opportunistic pathogen M. smegmatis. Phosphatidyl inositol lipoarabinomannan (PILAM) (a glycolipid cell wall component found in atypical mycobacteria) stimulation in primary human hepatocytes resulted in an upregulation of inflammatory transcriptional responses, including an increase in the chemokines associated with neutrophil recruitment (CXCL1, CXCL5, and CXCL6). These studies provide key insights into SIV associated changes in hepatic microbial composition and indicate a link between microbial components and immune cell recruitment in SIV+ and SIV+cART treated macaques.
Collapse
Affiliation(s)
- Bridget S. Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Katherine A. Fancher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Andrew T. Gustin
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Cole Fisher
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Matthew P. Wood
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nichole R. Klatt
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Nina Derby
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Donald L. Sodora
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Although gut dysbiosis can hasten disease progression in end-stage liver disease and contribute to disease severity, morbidity and mortality, its impact during and after transplant needs further study. RECENT FINDINGS Changes in the microbiome are associated with hepatic decompensation. Immune homeostasis is further disrupted during transplant and with immunosuppressants required after transplant. There is increasing evidence of the role of microbiota in peri and posttransplant complications. SUMMARY Although transplant is highly successful with acceptable survival rates, infections, rejection, disease recurrence and death remain important complications. Prognostication and interventions involving the gut microbiome could be beneficial.
Collapse
Affiliation(s)
- Nikki Duong
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
44
|
Piacentino D, Grant-Beurmann S, Vizioli C, Li X, Moore CF, Ruiz-Rodado V, Lee MR, Joseph PV, Fraser CM, Weerts EM, Leggio L. Gut microbiome and metabolome in a non-human primate model of chronic excessive alcohol drinking. Transl Psychiatry 2021; 11:609. [PMID: 34853299 PMCID: PMC8636625 DOI: 10.1038/s41398-021-01728-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
A relationship between the gut microbiome and alcohol use disorder has been suggested. Excessive alcohol use produces changes in the fecal microbiome and metabolome in both rodents and humans. Yet, these changes can be observed only in a subgroup of the studied populations, and reversal does not always occur after abstinence. We aimed to analyze fecal microbial composition and function in a translationally relevant baboon model of chronic heavy drinking that also meets binge criteria (drinking too much, too fast, and too often), i.e., alcohol ~1 g/kg and blood alcohol levels (BALs) ≥ 0.08 g/dL in a 2-hour period, daily, for years. We compared three groups of male baboons (Papio anubis): L = Long-term alcohol drinking group (12.1 years); S = Short-term alcohol drinking group (2.7 years); and C = Control group, drinking a non-alcoholic reinforcer (Tang®) (8.2 years). Fecal collection took place during 3 days of Drinking (D), followed by a short period (3 days) of Abstinence (A). Fecal microbial alpha- and beta-diversity were significantly lower in L vs. S and C (p's < 0.05). Members of the commensal families Lachnospiraceae and Prevotellaceae showed a relative decrease, whereas the opportunistic pathogen Streptococcus genus showed a relative increase in L vs. S and C (p's < 0.05). Microbiota-related metabolites of aromatic amino acids, tricarboxylic acid cycle, and pentose increased in L vs. S and C (FDR-corrected p < 0.01), with the latter two suggesting high energy metabolism and enhanced glycolysis in the gut lumen in response to alcohol. Consistent with the long-term alcohol exposure, mucosal damage and oxidative stress markers (N-acetylated amino acids, 2-hydroxybutyrate, and metabolites of the methionine cycle) increased in L vs. S and C (FDR-corrected p < 0.01). Overall, S showed few differences vs. C, possibly due to the long-term, chronic alcohol exposure needed to alter the normal gut microbiota. In the three groups, the fecal microbiome barely differed between conditions D and A, whereas the metabolome shifted in the transition from condition D to A. In conclusion, changes in the fecal microbiome and metabolome occur after significant long-term excessive drinking and are only partially affected by acute forced abstinence from alcohol. These results provide novel information on the relationship between the fecal microbiome and metabolome in a controlled experimental setting and using a unique non-human primate model of chronic excessive alcohol drinking.
Collapse
Affiliation(s)
- Daria Piacentino
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Silvia Grant-Beurmann
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Carlotta Vizioli
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Xiaobai Li
- grid.94365.3d0000 0001 2297 5165Biostatistics and Clinical Epidemiology Services, National Institutes of Health, Bethesda, MD USA
| | - Catherine F. Moore
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Victor Ruiz-Rodado
- grid.94365.3d0000 0001 2297 5165Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr, Bethesda, MD 20892 USA
| | - Mary R. Lee
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Paule V. Joseph
- grid.420085.b0000 0004 0481 4802Sensory Science and Metabolism Unit, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute of Nursing Research Division of Intramural Research, 10 Center Dr, Bethesda, MD 20892 USA
| | - Claire M. Fraser
- grid.411024.20000 0001 2175 4264Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Elise M. Weerts
- grid.21107.350000 0001 2171 9311Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Nathan Shock Drive, Baltimore, MD 21224 USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center on Compulsive Behaviors, National Institutes of Health, 10 Center Dr, Bethesda, MD, 20892, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, 21224, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University School of Public Health, 121 South Main Street, Providence, RI, USA. .,Division of Addiction Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA. .,Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20007, USA.
| |
Collapse
|
45
|
Gao B, Zhu Y, Gao N, Shen W, Stärkel P, Schnabl B. Integrative Analysis of Metabolome and Microbiome in Patients with Progressive Alcohol-Associated Liver Disease. Metabolites 2021; 11:metabo11110766. [PMID: 34822424 PMCID: PMC8621614 DOI: 10.3390/metabo11110766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022] Open
Abstract
Alcohol-associated liver disease is one of the most prevalent diseases around the world, with 10–20% of patients developing progressive liver disease. To identify the complex and correlated nature of metabolic and microbial data types in progressive liver disease, we performed an integrated analysis of the fecal and serum metabolomes with the gut microbiome in a cohort of 38 subjects, including 15 patients with progressive liver disease, 16 patients with non-progressive liver disease, and 7 control subjects. We found that although patients were generally clustered in three groups according to disease status, metabolites showed better separation than microbial species. Furthermore, eight serum metabolites were correlated with two microbial species, among which seven metabolites were decreased in patients with progressive liver disease. Five fecal metabolites were correlated with three microbial species, among which four metabolites were decreased in patients with progressive liver disease. When predicting progressive liver disease from non-progressive liver disease using correlated metabolic and microbial signatures with the random forest model, correlated serum metabolites and microbial species showed great predictive power, with the area under the receiver operating characteristic curve achieving 0.91. The multi-omics signatures identified in this study are helpful for the early identification of patients with progressive alcohol-associated liver disease, which is a key step for therapeutic intervention.
Collapse
Affiliation(s)
- Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Nan Gao
- School of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China;
| | - Weishou Shen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Inovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China
| | - Peter Stärkel
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Hepato-Gastroenterology, St. Luc University Hospital, Université Catholique de Louvain, 1200 Brussels, Belgium
- Correspondence: (P.S.); (B.S.)
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Correspondence: (P.S.); (B.S.)
| |
Collapse
|
46
|
Kim SE, Park JW, Kim HS, Jang MK, Suk KT, Kim DJ. The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. Int J Mol Sci 2021; 22:11680. [PMID: 34769109 PMCID: PMC8584227 DOI: 10.3390/ijms222111680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is an important syndrome of liver failure that has a high risk of short-term mortality in patients with chronic liver disease. The development of ACLF is associated with proinflammatory precipitating events, such as infection, alcoholic hepatitis, and intense systemic inflammation. Recently, the role of the gut microbiome has increasingly emerged in human health and disease. Additionally, the gut microbiome might have a major role in the development of liver disease. In this review, we examine evidence to support the role of gut dysbiosis in cirrhosis and ACLF. Additionally, we explore the mechanism by which the gut microbiome contributes to the development of ACLF, with a focus on alcohol-induced liver disease.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ji Won Park
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Hyung Su Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Dong Joon Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon 24252, Korea; (S.-E.K.); (J.W.P.); (H.S.K.); (M.-K.J.); (K.T.S.)
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
47
|
Fu X, Chen T, Cai J, Liu B, Zeng Y, Zhang X. The Microbiome-Gut-Brain Axis, a Potential Therapeutic Target for Substance-Related Disorders. Front Microbiol 2021; 12:738401. [PMID: 34690981 PMCID: PMC8526971 DOI: 10.3389/fmicb.2021.738401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Substance addiction is a complex worldwide public health problem. It endangers both personal life and social stability, causing great loss on economy. Substance-related disorder is considered to be a complicated chronic brain disorder. It resulted from interactions among pharmacological properties of addictive substances, individual susceptibility, and social–environmental factors. Unfortunately, there is still no ideal treatment for this disorder. Recent lines of evidence suggest that gut microbiome may play an important role in the pathogenesis of neuropsychiatric disorders, including substance-related disorders. This review summarizes the research on the relationship between gut microbiome and substance-related disorders, including different types of substance, different individual susceptibility, and the occurrence and development of substance-induced mental disorders. We also discuss the potentiation of gut microbiome in the treatment of substance-related disorders, especially in the treatment of substance-induced mental disorders and manipulation on individuals’ responsiveness to addictive substances.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Ti Chen
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingda Cai
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Bo Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Yaohui Zeng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China.,National Technology Institute on Mental Disorders, Changsha, China.,Hunan Medical Center for Mental Health, Changsha, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China.,Mental Health Institute of Central South University, Changsha, China
| |
Collapse
|
48
|
Lu X, Wang F. Lactobacillus acidophilus and vitamin C attenuate ethanol-induced intestinal and liver injury in mice. Exp Ther Med 2021; 22:1005. [PMID: 34345287 PMCID: PMC8311231 DOI: 10.3892/etm.2021.10438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/14/2021] [Indexed: 11/05/2022] Open
Abstract
Ethanol exposure frequently induces intestinal and liver injury, dysbiosis of the gut microbiota and vitamin C (VC) deficiency. Gut microbiota-targeted therapy is emerging as an important adjuvant method for protecting the body against ethanol-induced injury, particularly probiotics containing Lactobacillus acidophilus (LA). However, the feasibility and efficiency of using synbiotics containing LA and VC against ethanol-induced injury remained largely undetermined. To examine the advantages of LA+VC, their effect was evaluated in an ethanol-fed mouse model. The results suggested that LA+VC restored gut microbiota homeostasis and reinstated the immune balance of colonic T-regulatory cells (CD4+CD45+forkhead box p3+). In addition, intestinal barrier disorders were improved via upregulating tight junction proteins (claudin-2, zona occludens-1 and occludin) and mucus secretion, which prevented the translocation of lipopolysaccharide into circulatory systems and subsequently reduced the expression of Toll-like receptor 4 in liver tissues. In this context, LA+VC treatment reduced the inflammatory response in the liver, which was likely responsible for the improved liver function in ethanol-challenged mice. Collectively, these results indicated that LA+VC treatment significantly protected the intestine and liver from ethanol damage by enhancing intestinal barrier function and reducing systemic inflammation. The present study paved the way for further exploration of synbiotics based on Lactobacillus species and VC.
Collapse
Affiliation(s)
- Xing Lu
- The Third Central Clinical College, Tianjin Medical University, Tianjin 300170, P.R. China
| | - Fengmei Wang
- The Third Central Clinical College, Tianjin Medical University, Tianjin 300170, P.R. China.,Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin 300170, P.R. China
| |
Collapse
|
49
|
Moreno-Gonzalez M, Beraza N. The Role of the Microbiome in Liver Cancer. Cancers (Basel) 2021; 13:2330. [PMID: 34066064 PMCID: PMC8150469 DOI: 10.3390/cancers13102330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy occuring in the context of chronic liver disease and is one of the main causes of cancer-derived death worldwide. The lack of effective treatments, together with the poor prognosis, underlines the urge to develop novel and multidisciplinary therapeutics. An increasing body of evidence shows that HCC associates with changes in intestinal microbiota abundance and composition as well as with impaired barrier function, leading to the release of bacteria and their metabolites to the liver. These factors trigger a cascade of inflammatory responses contributing to liver cirrhosis and constituting an ideal environment for the progression of HCC. Interestingly, the use of bacteriotherapy in human and preclinical studies of chronic liver disease and HCC has been shown to successfully modify the microbiota composition, reducing overall inflammation and fibrosis. In this review, we explore the existing knowledge on the characterisation of the intestinal microbial composition in humans and experimental murine chronic liver disease and HCC, as well as the use of antibiotics and bacteriotherapy as therapeutic options.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
50
|
Traub J, Reiss L, Aliwa B, Stadlbauer V. Malnutrition in Patients with Liver Cirrhosis. Nutrients 2021; 13:540. [PMID: 33562292 PMCID: PMC7915767 DOI: 10.3390/nu13020540] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Liver cirrhosis is an increasing public health threat worldwide. Malnutrition is a serious complication of cirrhosis and is associated with worse outcomes. With this review, we aim to describe the prevalence of malnutrition, pathophysiological mechanisms, diagnostic tools and therapeutic targets to treat malnutrition. Malnutrition is frequently underdiagnosed and occurs-depending on the screening methods used and patient populations studied-in 5-92% of patients. Decreased energy and protein intake, inflammation, malabsorption, altered nutrient metabolism, hypermetabolism, hormonal disturbances and gut microbiome dysbiosis can contribute to malnutrition. The stepwise diagnostic approach includes a rapid prescreen, the use of a specific screening tool, such as the Royal Free Hospital Nutritional Prioritizing Tool and a nutritional assessment by dieticians. General dietary measures-especially the timing of meals-oral nutritional supplements, micronutrient supplementation and the role of amino acids are discussed. In summary malnutrition in cirrhosis is common and needs more attention by health care professionals involved in the care of patients with cirrhosis. Screening and assessment for malnutrition should be carried out regularly in cirrhotic patients, ideally by a multidisciplinary team. Further research is needed to better clarify pathogenic mechanisms such as the role of the gut-liver-axis and to develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Traub
- Department of Clinical Medical Nutrition, University Hospital Graz, 8036 Graz, Austria; (J.T.); (L.R.)
| | - Lisa Reiss
- Department of Clinical Medical Nutrition, University Hospital Graz, 8036 Graz, Austria; (J.T.); (L.R.)
| | - Benard Aliwa
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| | - Vanessa Stadlbauer
- Department of Gastroenterology and Hepatology, Medical University of Graz, 8036 Graz, Austria;
| |
Collapse
|