1
|
Lenning OB, Myhre R, Vadla MS, Omdal R, Martínez Jarreta B, Gómez Moreno Á, De Blas I, Braut GS. Do genetic variants of the Y chromosome affect mortality from COVID-19. Scand J Public Health 2025:14034948251333236. [PMID: 40230068 DOI: 10.1177/14034948251333236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
AIMS During the early stages of the COVID-19 pandemic, significant differences in mortality patterns emerged based on sex and geographical regions. While we were studying on the heredity of variants of the Y chromosome, we observed that regional variations in mortality rates appeared to correlate with the geographical distribution of certain variants of the Y chromosome. This observation led us to propose that some genes on the Y chromosome, with an influence on immune responses, may represent a confounding factor in the observed geographical mortality differences. METHODS In this analysis, we investigate the potential associations between COVID-19 morbidity and disease-specific mortality and specific Y chromosome variants. The study is based on publicly available pandemic data validated by state authorities or presented in scientific literature documented in PubMed and Medline. RESULTS We find that Y chromosome haplogroups in different populations exhibit wave-like patterns corresponding with persistent global disparities in COVID-19-related mortality. CONCLUSIONS These findings warrant further research to uncover possible new pathophysiological mechanisms.
Collapse
Affiliation(s)
- Ole Bernt Lenning
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Ronny Myhre
- Norwegian Institute of Public Health, Division of Health Data and Digitalization, Department of Genetics and Bioinformatics (HDGB), Oslo, Norway
| | | | - Roald Omdal
- Research Department, Stavanger University Hospital, Clinical Immunology Research Group, Stavanger, Norway
| | - Begoña Martínez Jarreta
- Facultad de Medicina/Faculty of Medicine, Universidad de Zaragoza/University of Zaragoza, Zaragoza (Spain), Spain
| | - Ángel Gómez Moreno
- Dpto. of Hispanic Literature and Bibliography, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio De Blas
- Facultad of Veterinary Sciences, Instituto Universitario de Investigación Mixto, Agroalimentario de Aragón (IA2), Universidad de Zaragoza, Zaragoza, Spain
| | - Geir Sverre Braut
- Research Department, Stavanger University Hospital and Department of Social Science, Western Norway University of Applied Sciences, Stavanger, Norway
| |
Collapse
|
2
|
Collins CP, Herzog C, Vick LV, Nielsen R, Harville YI, Longo DL, Arthur JM, Murphy WJ. Sequential SARS-CoV-2 mRNA Vaccination Induces Anti-Idiotype (Anti-ACE2) Antibodies in K18 Human ACE2 Transgenic Mice. Vaccines (Basel) 2025; 13:224. [PMID: 40266063 PMCID: PMC11946769 DOI: 10.3390/vaccines13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Novel mRNA vaccines have been successfully utilized to curtail the SARS-CoV-2 pandemic. However, the immunology underlying CoV2 vaccinations, particularly with repeated boosting, has not been properly characterized due to limitations in the preclinical modeling of SARS-CoV-2 infection/vaccinations as well as constantly changing vaccine formulations. The immunoregulatory aspects involved in such vaccine approaches remain unclear. Antibodies, due to inherent immunogenicity by VDJ gene rearrangement, have the potential to induce antibodies directed towards them called anti-idiotype antibodies, which can play a downregulatory role in responses. The paratope of some of these anti-idiotype antibodies can also act as a mirror to the original antigen, which, in the case of SARS-CoV-2 vaccines, would be to the spike protein and, therefore, also be capable of binding its target, ACE2, potentially causing adverse effects. METHODS To investigate if sequential SARS-CoV-2 mRNA vaccination can induce anti-idiotype antibody responses, K18 hACE2 transgenic mice were serially vaccinated with a SARS-CoV-2 mRNA construct to determine the kinetics of anti-spike and anti-ACE2 responses via custom-made ELISAs. RESULTS While sequential vaccination produced robust anti-spike responses, anti-ACE2 levels were also detected and gradually amplified with each boost. These anti-ACE2 antibodies persisted for 3 months after the final vaccination and showed evidence of hACE2 binding, as levels were lower in K18 mice in comparison to the wild type. CONCLUSIONS These data would suggest that sequential SARS-CoV-2 mRNA vaccination has the potential to induce anti-ACE2 antibodies in mice, with each boost amplifying the amount of antibody.
Collapse
Affiliation(s)
- Craig P. Collins
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Christian Herzog
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - Logan V. Vick
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Ryan Nielsen
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
| | - Yanping Izak Harville
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - Dan L. Longo
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - John M. Arthur
- Department of Internal Medicine Nephrology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.H.); (Y.I.H.); (J.M.A.)
| | - William J. Murphy
- School of Medicine, University of California, Davis, CA 95817, USA; (C.P.C.); (L.V.V.); (R.N.)
- Department of Internal Medicine, Division of Hematology and Oncology, School of Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Lee P, Yan N, Fan G, Hu X, Mai Q, Zhou C, Li Y. Predicting ART outcomes: The role of ovarian RAS and VEGF in follicular fluid of dominant follicles. J Reprod Immunol 2025; 167:104393. [PMID: 39602953 DOI: 10.1016/j.jri.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
As tissue and intracellular RAS have been reported in different organs and systems. there is local RAS in the ovary, called the ovarian renin-angiotensin system (OVRAS). In this study, we investigated the correlation between RAS (total renin, AngII, Ang1-7), vascular endothelial growth factor (VEGF) and E2 in dominant follicular fluid and ovarian reserve capacity and patient age. Moreover, we analyzed its predictive value for assisted reproductive technology (ART) related outcomes. We observed that the concentrations of VEGF in the follicular fluid of dominant follicles in the ≥ 38 year old group were markedly higher than those in the < 30 year old group (P < 0.05). Total renin and AngII levels were positively correlated with normal fertilization rate (P < 0.05). Ang1-7 levels were positively correlated with the number of mature oocytes, oocyte maturation rate and number of 2PN fertilized cells (P < 0.05). Expressions of VEGF were negatively correlated with number of 2PN fertilized cells, number of D3 embryos for blastocyst culture, number of blastocysts formed, number of available embryos and number of high-quality embryos (P < 0.05). Thus, the expressions of OVRAS (total renin, AngII, Ang1-7 and VEGF) in dominant follicular fluid are correlated with ART outcomes.
Collapse
Affiliation(s)
- Pingyin Lee
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Niwei Yan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoqing Fan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaokun Hu
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingyun Mai
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yubin Li
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Moharram FA, Ibrahim RR, Mahgoub S, Abdel-Aziz MS, Said AM, Huang HC, Chen LY, Lai KH, Hashad N, Mady MS. Secondary metabolites of Alternaria alternate appraisal of their SARS-CoV-2 inhibitory and anti-inflammatory potentials. PLoS One 2025; 20:e0313616. [PMID: 39854441 PMCID: PMC11760621 DOI: 10.1371/journal.pone.0313616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 01/26/2025] Open
Abstract
This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells. Two novel compounds, altenuline (1), phthalic acid bis (7'/7'' pentyloxy) isohexyl ester (2), along with 1-deoxyrubralactone (3) alternariol-5-O-methyl ether (4) and alternariol (5) were identified. Molecular docking and in vitro studies showed that compounds 2 and 4 were promising to counteract SARS-CoV-2 attachment to human ACE-2. Thus, they are considered promising natural anti-viral agents. SwissADME in silico analysis was conducted to predict the drug-like potential. Immunoblotting analysis confirmed that the tested compounds (1-4) demonstrated downregulation of ACE-2 expression in the endothelial cells from the lungs with variable degrees. Furthermore, the tested compounds (1-4) showed promising anti-inflammatory activities through TNF-α: TNFR2 inhibitory activity and their inhibitory effect on the proinflammatory cytokines (TNF-α and IL-6) in LPS-stimulated monocytes. In conclusion, our study, for the first time, provides beneficial experimental confirmation for the efficiency of the A. alternate secondary metabolites for the treatment of COVID-19 as they hinder SARS-CoV-2 infection and lower inflammatory responses initiated by SARS-CoV-2. A. alternate and its metabolites are considered in developing preventative and therapeutic tactics for COVID-19.
Collapse
Affiliation(s)
- Fatma A. Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Reham R. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Shahenda Mahgoub
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Abdel-Aziz
- Genetic Engineering and Biotechnology Division, Microbial Chemistry Department, National Research Centre, Giza, Egypt
| | - Ahmed M. Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lo-Yun Chen
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nashwa Hashad
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohamed S. Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
5
|
Yao Y, Yang Y, Wu Q, Liu M, Bao W, Wang Q, Cheng M, Chen Y, Yu Y, Cai Y, Zhang M, Yao J, He H, Jin C, Zheng C, Jin T, Tong D. Neutralizing antibody test supports booster strategy for young individuals after SARS-CoV-2 Omicron breakthrough. Eur J Med Res 2025; 30:7. [PMID: 39757187 DOI: 10.1186/s40001-024-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND The SARS-CoV-2 Omicron variant, since its initial detection, has rapidly spread across the globe, becoming the dominant strain. It is important to study the immune response of SARS-CoV-2 Omicron variant due to its remarkable ability to escape the majority of existing SARS-CoV-2 neutralizing antibodies. The surge in SARS-CoV-2 Omicron infections among most Chinese residents by the end of 2022 provides a unique opportunity to understand immune system's response to Omicron in populations with limited exposure to prior SARS-CoV-2 variants. METHODS We tested the levels of IgG, IgA, and IgM specific to the prototype SARS-CoV-2 RBD (receptor-binding domain) in blood samples from 636 individuals by chemical luminescence assay, ELISA and pseudovirus-based neutralization assay. RESULTS Inoculation with inactivated prototype SARS-CoV-2 vaccines or recombinant protein vaccines showed higher IgG levels after infection than the unvaccinated individuals. Moreover, the age resulted in different IgG levels after the Omicron infection as IgG level of the patients aged > 60 years was lower than that of patients aged < 60 years. This indicates that the IgG induced by SARS-CoV-2 Omicron breakthrough infection was different between old and young individuals. We found that a booster dose of the prototype SARS-CoV-2 vaccine led to a significant increase in the neutralizing immune response against the prototype SARS-CoV-2 and helped induce neutralizing antibodies against BA.5 and BF.7 variants after an Omicron breakthrough infection in young individuals, which is different from a previous report on older people. CONCLUSIONS These data suggest that the prototype SARS-CoV-2 booster vaccination helps induce high levels of neutralizing antibodies against Omicron BA.5 and BF.7 variants after Omicron breakthrough infection in young individuals. TRIAL REGISTRATION This study is a purely observational study.
Collapse
Affiliation(s)
- Yichuan Yao
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yunru Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qiqin Wu
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyao Liu
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Bao
- Institute of Public Health Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qiutong Wang
- The Hospital of USTC, University of Science and Technology of China, Hefei, 230026, China
| | - Meijun Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China
| | - Yunuo Chen
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yiting Yu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230031, China
| | - Yuan Cai
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Mei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230026, China
| | - Jingxue Yao
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Hongliang He
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Changjiang Jin
- The Hospital of USTC, University of Science and Technology of China, Hefei, 230026, China
| | - Changcheng Zheng
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- School of Life Science, West Campus University of Science and Technology of China, Room 718, No.443 Huangshan Road, Hefei, 230022, Anhui, China.
| | - Tengchuan Jin
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- School of Life Science, West Campus University of Science and Technology of China, Room 718, No.443 Huangshan Road, Hefei, 230022, Anhui, China.
| | - Dali Tong
- Department of Ophthalmology, The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- School of Life Science, West Campus University of Science and Technology of China, Room 718, No.443 Huangshan Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Gasmi A, Kassym L, Menzel A, Anzar W, Dadar M, Semenova Y, Arshad M, Bihunyak T, Meguid NA, Peana M, Bekbergenova Z, Bjørklund G. Genetic and Epigenetic Determinants of COVID-19 Susceptibility: A Systematic Review. Curr Med Chem 2025; 32:753-770. [PMID: 38251695 DOI: 10.2174/0109298673267890231221100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence. METHODS This study conducted a systematic review to examine the genetic and epigenetic susceptibility to COVID-19 using a comprehensive approach. Through systematic searches and applying relevant keywords across prominent online databases, including Scopus, PubMed, Web of Science, and Science Direct, we compiled all pertinent papers and reports published in English between December 2019 and June 2023. RESULTS The findings reveal that the host's HLA genotype plays a substantial role in determining how viral protein antigens are showcased and the subsequent immune system reaction to these antigens. Within females, genes responsible for immune system regulation are found on the X chromosome, resulting in reduced viral load and inflammation levels when contrasted with males. Possessing blood group A may contribute to an increased susceptibility to contracting COVID-19 as well as a heightened risk of mortality associated with the disease. The capacity of SARS-CoV-2 involves inhibiting the antiviral interferon (IFN) reactions, resulting in uncontrolled viral multiplication. CONCLUSION There is a notable absence of research into the gender-related predisposition to infection, necessitating a thorough examination. According to the available literature, a significant portion of individuals affected by the ailment or displaying severe ramifications already had suppressed immune systems, categorizing them as a group with elevated risk.
Collapse
Affiliation(s)
- Amin Gasmi
- Department of Research, Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Laura Kassym
- Department of Research, Astana Medical University, Astana, Kazakhstan
| | - Alain Menzel
- Department of Research, Laboratoires Réunis, Junglinster, Luxembourg
| | - Wajiha Anzar
- Department of Research, Dow University of Health Sciences, Karachi, Pakistan
| | - Maryam Dadar
- Department of Research, CONEM Iran Microbiology Research Group, Tehran, Iran
| | - Yuliya Semenova
- Department of Research, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Mehreen Arshad
- Department of Research, National University of Sciences and Technology, Islamabad, Pakistan
| | - Tetyana Bihunyak
- Department of Research, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nagwa Abdel Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Center, Giza, Egypt
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | | | - Geir Bjørklund
- Department of Research, Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
7
|
Šerý O, Dziedzinska R. Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review. Physiol Res 2024; 73:S655-S669. [PMID: 39808169 PMCID: PMC11827061 DOI: 10.33549/physiolres.935476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 01/18/2025] Open
Abstract
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart. Highlighting SARS-CoV-2's broad organ tropism, especially its effects on cardiomyocytes via ACE2 and TMPRSS2, the review addresses how these interactions exacerbate cardiovascular issues in patients with pre-existing conditions such as diabetes and hypertension. Additionally, we assess both direct and indirect mechanisms of virus-induced cardiac damage, including myocarditis, arrhythmias, and long-term complications such as 'long COVID'. This review underscores the complexity of SARS-CoV-2's impact on the heart, emphasizing the need for ongoing research to fully understand its long-term effects on cardiovascular health. Key words: COVID-19, Heart, ACE2, Spike protein, Cardiomyocytes, Myocarditis, Long COVID.
Collapse
Affiliation(s)
- O Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
8
|
Tsuchiya H, Mizogami M. Characteristics of Oral Adverse Effects following COVID-19 Vaccination and Similarities with Oral Symptoms in COVID-19 Patients: Taste and Saliva Secretory Disorders. Med Princ Pract 2024; 34:101-120. [PMID: 39701050 PMCID: PMC11936456 DOI: 10.1159/000543182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024] Open
Abstract
Although coronavirus disease 2019 (COVID-19) vaccines exhibit diverse side effects, taste and saliva secretory disorders have remained poorly understood despite their negative impact on the overall quality of life. The present study aimed to characterize oral adverse effects following COVID-19 vaccination and assess their similarities with oral symptoms in COVID-19 patients. A literature search was conducted in databases, including PubMed, LitCovid, and Google Scholar, to retrieve relevant studies. The narrative review indicated that a certain number of vaccinated people develop ageusia, dysgeusia, hypogeusia, xerostomia, and dry mouth, while they are rare compared with COVID-19 oral symptoms. The prevalence of oral adverse effects varies by country/region and such geographical differences may be related to the type of vaccine used. Similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19 vaccination adversely affects taste perception and salivary secretion in females and older subjects more frequently than in males and younger subjects. Their impairments mostly appear within 3 days of vaccination, and bitter taste is specifically impaired in some cases. Considering that oral adverse effects following COVID-19 vaccination share some characteristics with oral symptoms in COVID-19 patients, it is speculated that the spike protein derived from COVID-19 vaccination and SARS-CoV-2 infection may be pathophysiologically responsible for taste and saliva secretory disorders. This is because such spike protein has the potential to interact with ACE2 expressed on the relevant cells, produce proinflammatory cytokines, and form antiphospholipid antibodies. Our results do not deny the advantages of COVID-19 vaccination, but attention should be paid to post-vaccination oral effects in addition to COVID-19 oral symptoms. Although coronavirus disease 2019 (COVID-19) vaccines exhibit diverse side effects, taste and saliva secretory disorders have remained poorly understood despite their negative impact on the overall quality of life. The present study aimed to characterize oral adverse effects following COVID-19 vaccination and assess their similarities with oral symptoms in COVID-19 patients. A literature search was conducted in databases, including PubMed, LitCovid, and Google Scholar, to retrieve relevant studies. The narrative review indicated that a certain number of vaccinated people develop ageusia, dysgeusia, hypogeusia, xerostomia, and dry mouth, while they are rare compared with COVID-19 oral symptoms. The prevalence of oral adverse effects varies by country/region and such geographical differences may be related to the type of vaccine used. Similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, COVID-19 vaccination adversely affects taste perception and salivary secretion in females and older subjects more frequently than in males and younger subjects. Their impairments mostly appear within 3 days of vaccination, and bitter taste is specifically impaired in some cases. Considering that oral adverse effects following COVID-19 vaccination share some characteristics with oral symptoms in COVID-19 patients, it is speculated that the spike protein derived from COVID-19 vaccination and SARS-CoV-2 infection may be pathophysiologically responsible for taste and saliva secretory disorders. This is because such spike protein has the potential to interact with ACE2 expressed on the relevant cells, produce proinflammatory cytokines, and form antiphospholipid antibodies. Our results do not deny the advantages of COVID-19 vaccination, but attention should be paid to post-vaccination oral effects in addition to COVID-19 oral symptoms.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Japan
| | - Maki Mizogami
- Department of Anesthesiology, Central Japan International Medical Center, Minokamo, Japan
| |
Collapse
|
9
|
Dos Reis RS, Selvam S, Ayyavoo V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev Med Virol 2024; 34:e70009. [PMID: 39558491 DOI: 10.1002/rmv.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/24/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 triggered a swift global spread, leading to a devastating pandemic. Alarmingly, approximately one in four individuals diagnosed with coronavirus disease 2019 (COVID-19) experience varying degrees of cognitive impairment, raising concerns about a potential increase in neurological sequelae cases. Neuroinflammation seems to be the key pathophysiological hallmark linking mild respiratory COVID-19 to cognitive impairment, fatigue, and neurological sequelae in COVID-19 patients, highlighting the interaction between the nervous and immune systems following SARS-CoV-2 infection. Several hypotheses have been proposed to explain how the virus disrupts physiological pathways to trigger inflammation within the CNS, potentially leading to neuronal damage. These include neuroinvasion, systemic inflammation, disruption of the lung and gut-brain axes, and reactivation of latent viruses. This review explores the potential origins of neuroinflammation and the underlying neuroimmune cross-talk, highlighting important unanswered questions in the field. Addressing these fundamental issues could enhance our understanding of the virus's impact on the CNS and inform strategies to mitigate its detrimental effects.
Collapse
Affiliation(s)
- Roberta S Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sathish Selvam
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Velpandi Ayyavoo
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Zhang X, Wen R, Chen H, Liu J, Wu Y, Xu M, Wang R, Zeng X. COVID-19 and diabetes research: Where are we now and what does the future hold? A bibliometric visualization analysis. Heliyon 2024; 10:e37615. [PMID: 39315181 PMCID: PMC11417241 DOI: 10.1016/j.heliyon.2024.e37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Background & objective The extensive spread of Coronavirus disease 2019 (COVID-19) worldwide has caused a dramatic negative impact on many individuals' health. This study aims to systematically and comprehensively analyze the current status and possible future directions of diabetes mellitus (DM) and COVID-19 research. Methods We obtained publications about COVID-19 and DM from the Web of Science Core Collection (WoSCC) using the search terms "COVID-19″ and similar terms combined with "DM" and similar terms, with a date range of January 2020 to May 2024. And we used CiteSpace V 6.3.R2 to perform the bibliometric visualization analysis. Results The search enrolled 6266 publications. The USA is a country with the most publications; Harvard University was the most productive institution in this field. The highest-ranked journal was the PLOS ONE, and the most cited journal was Lancet. The 20 most cited journals have all been cited 28754 times, accounting for 28 % of the total cites; the range of those journals was 790-3197. Publications on COVID-19 and DM research exhibited a distinct trajectory, shifting from an initial emphasis on understanding the impact of diabetes on COVID-19 infection and its associated pathophysiological mechanisms to a focus on analyzing the differential responses of diverse patient populations. Subsequently, research has progressed to examine the effects of medications and vaccines, as well as the long-term consequences of COVID-19 in diabetic individuals. Throughout this research endeavor, the exploration of diverse therapeutic interventions, their efficacy, and ultimate outcomes have consistently remained a paramount focus. And " metabolic syndrome," " long COVID," and " gestational diabetes" are still likely to be the hotspots and frontiers of research in the future. Conclusions This bibliometric analysis related to DM in COVID-19 illuminates the current research situation and developmental trends, supporting researchers in the exploration of prospective directions for research.
Collapse
Affiliation(s)
- Xunlan Zhang
- Zunyi Medical University, No.6 Xuefu West Road, Xinpu District, 563000, Zunyi City, China
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Ru Wen
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Hengzhi Chen
- Zunyi Medical University, No.6 Xuefu West Road, Xinpu District, 563000, Zunyi City, China
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Jian Liu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Yu Wu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Min Xu
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People Hospital, No.83, East Zhongshan Road, Nanming District, 550002, Guiyang City, China
| |
Collapse
|
11
|
Song J, Lee N, Yang HJ, Lee MS, Kopalli SR, Kim YU, Lee Y. The beneficial potential of ginseng for menopause. J Ginseng Res 2024; 48:449-453. [PMID: 39263310 PMCID: PMC11385173 DOI: 10.1016/j.jgr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 09/13/2024] Open
Abstract
Korean Red Ginseng (KRG) has long been used not only as a food supplement but also as a treatment for various diseases. Ginseng originated in South Korea, which later spread to China and Japan, has a wide range of pharmacological activities including immune, endocrine, cardiovascular, and central nervous system effects. KRG is produced by repetitions of steaming and drying of ginseng to extend preservation. During this steaming process, the components of ginseng undergo physio-chemical changes forming a variety of potential active constituents including ginsenoside-Rg3, a unique compound in KRG. Pandemic Coronavirus disease 2019 (COVID-19), has affected both men and women differentially. In particular, women were more vulnerable to COVID-related distress which in turn could aggravate menopause-related disturbances. Complementary and alternative medicinal plants could have aided middle-aged women for several menopause-related symptoms during and post COVID-19 pandemic. This review aimed to explore the beneficial effects of KRG on menopausal symptoms and gynecological cancer.
Collapse
Affiliation(s)
- JiHyeon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Namkyu Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Gyeongsan, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
13
|
Ahmed G, Abdelgadir Y, Abdelghani A, Simpson P, Barbeau J, Basel D, Barrios CS, Smith BA, Schilter KF, Udani R, Reddi HV, Willoughby RE. Reduction in ACE2 expression in peripheral blood mononuclear cells during COVID-19 - implications for post COVID-19 conditions. BMC Infect Dis 2024; 24:663. [PMID: 38956476 PMCID: PMC11221185 DOI: 10.1186/s12879-024-09321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Severe COVID-19 is uncommon, restricted to 19% of the total population. In response to the first virus wave (alpha variant of SARS-CoV-2), we investigated whether a biomarker indicated severity of disease and, in particular, if variable expression of angiotensin converting enzyme 2 (ACE2) in blood might clarify this difference in risk and of post COVID -19 conditions (PCC). METHODS The IRB-approved study compared patients hospitalized with severe COVID-19 to healthy controls. Severe infection was defined requiring oxygen or increased oxygen need from baseline at admission with positive COVID-19 PCR. A single blood sample was obtained from patients within a day of admission. ACE2 RNA expression in blood cells was measured by an RT-PCR assay. Plasma ACE1 and ACE2 enzyme activities were quantified by fluorescent peptides. Plasma TIMP-1, PIIINP and MMP-9 antigens were quantified by ELISA. Data were entered into REDCap and analyzed using STATA v 14 and GraphPad Prism v 10. RESULTS Forty-eight patients and 72 healthy controls were recruited during the pandemic. ACE2 RNA expression in peripheral blood mononuclear cells (PBMC) was rarely detected acutely during severe COVID-19 but common in controls (OR for undetected ACE2: 12.4 [95% CI: 2.62-76.1]). ACE2 RNA expression in PBMC did not determine plasma ACE1 and ACE2 activity, suggesting alternative cell-signaling pathways. Markers of fibrosis (TIMP-1 and PIIINP) and vasculopathy (MMP-9) were additionally elevated. ACE2 RNA expression during severe COVID-19 often responded within hours to convalescent plasma. Analogous to oncogenesis, we speculate that potent, persistent, cryptic processes following COVID-19 (the renin-angiotensin system (RAS), fibrosis and vasculopathy) initiate or promote post-COVID-19 conditions (PCC) in susceptible individuals. CONCLUSIONS This work elucidates biological and temporal plausibility for ACE2, TIMP1, PIIINP and MMP-9 in the pathogenesis of PCC. Intersection of these independent systems is uncommon and may in part explain the rarity of PCC.
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | - Pippa Simpson
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jody Barbeau
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Donald Basel
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Rupa Udani
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Honey V Reddi
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Rodney E Willoughby
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
- Pediatric Infectious Diseases, C450, Medical College of Wisconsin, PO Box 1997, Milwaukee, WI 53201-1997, USA.
| |
Collapse
|
14
|
Xiao H, Wei J, Yuan L, Li J, Zhang C, Liu G, Liu X. Sex hormones in COVID-19 severity: The quest for evidence and influence mechanisms. J Cell Mol Med 2024; 28:e18490. [PMID: 38923119 PMCID: PMC11194454 DOI: 10.1111/jcmm.18490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Studies have reported variable effects of sex hormones on serious diseases. Severe disease and mortality rates in COVID-19 show marked gender differences that may be related to sex hormones. Sex hormones regulate the expression of the viral receptors ACE2 and TMPRSS2, which affect the extent of viral infection and consequently cause variable outcomes. In addition, sex hormones have complex regulatory mechanisms that affect the immune response to viruses. These hormones also affect metabolism, leading to visceral obesity and severe disease can result from complications such as thrombosis. This review presents the latest researches on the regulatory functions of hormones in viral receptors, immune responses, complications as well as their role in COVID-19 progression. It also discusses the therapeutic possibilities of these hormones by reviewing the recent findings of clinical and assay studies.
Collapse
Affiliation(s)
- Haiqing Xiao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayi Wei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Lunzhi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Jiayuan Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Chang Zhang
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, Institute of Artificial Intelligence, School of Public HealthXiamen UniversityXiamenChina
| | - Xuan Liu
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen)Fudan UniversityXiamenChina
| |
Collapse
|
15
|
Sun J, Edsfeldt A, Svensson J, Ruge T, Goncalves I, Swärd P. ADAM-17 Activity and Its Relation to ACE2: Implications for Severe COVID-19. Int J Mol Sci 2024; 25:5911. [PMID: 38892098 PMCID: PMC11172796 DOI: 10.3390/ijms25115911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
There is a lack of studies aiming to assess cellular a disintegrin and metalloproteinase-17 (ADAM-17) activity in COVID-19 patients and the eventual associations with the shedding of membrane-bound angiotensin-converting enzyme 2 (mACE2). In addition, studies that investigate the relationship between ACE2 and ADAM-17 gene expressions in organs infected by SARS-CoV-2 are lacking. We used data from the Massachusetts general hospital COVID-19 study (306 COVID-19 patients and 78 symptomatic controls) to investigate the association between plasma levels of 33 different ADAM-17 substrates and COVID-19 severity and mortality. As a surrogate of cellular ADAM-17 activity, an ADAM-17 substrate score was calculated. The associations between soluble ACE2 (sACE2) and the ADAM-17 substrate score, renin, key inflammatory markers, and lung injury markers were investigated. Furthermore, we used data from the Genotype-Tissue Expression (GTEx) database to evaluate ADAM-17 and ACE2 gene expressions by age and sex in ages between 20-80 years. We found that increased ADAM-17 activity, as estimated by the ADAM-17 substrates score, was associated with COVID-19 severity (p = 0.001). ADAM-17 activity was also associated with increased mortality but did not reach statistical significance (p = 0.06). Soluble ACE2 showed the strongest positive correlation with the ADAM-17 substrate score, follow by renin, interleukin-6, and lung injury biomarkers. The ratio of ADAM-17 to ACE2 gene expression was highest in the lung. This study indicates that increased ADAM-17 activity is associated with severe COVID-19. Our findings also indicate that there may a bidirectional relationship between membrane-bound ACE2 shedding via increased ADAM-17 activity, dysregulated renin-angiotensin system (RAS) and immune signaling. Additionally, differences in ACE2 and ADAM-17 gene expressions between different tissues may be of importance in explaining why the lung is the organ most severely affected by COVID-19, but this requires further evaluation in prospective studies.
Collapse
Affiliation(s)
- Jiangming Sun
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
| | - Andreas Edsfeldt
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, 221 00 Lund, Sweden
| | - Joel Svensson
- Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden;
| | - Toralph Ruge
- Department of Emergency and Internal Medicine, Skånes University Hospital, 214 28 Malmö, Sweden;
- Department of Clinical Sciences Malmö, Lund University, 214 28 Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Isabel Goncalves
- Cardiovascular Research-Translational Studies, Department of Clinical Sciences Malmö, Lund University, 205 02 Malmö, Sweden; (J.S.); (A.E.); (I.G.)
- Department of Cardiology, Skåne University Hospital, 205 02 Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02 Malmö, Sweden
| |
Collapse
|
16
|
Zhang Y, Chen S, Tian Y, Fu X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front Cell Infect Microbiol 2024; 14:1407261. [PMID: 38846354 PMCID: PMC11155306 DOI: 10.3389/fcimb.2024.1407261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
SARS-CoV-2 is the causative virus of the devastating COVID-19 pandemic that results in an unparalleled global health and economic crisis. Despite unprecedented scientific efforts and therapeutic interventions, the fight against COVID-19 continues as the rapid emergence of different SARS-CoV-2 variants of concern and the increasing challenge of long COVID-19, raising a vast demand to understand the pathomechanisms of COVID-19 and its long-term sequelae and develop therapeutic strategies beyond the virus per se. Notably, in addition to the virus itself, the replication cycle of SARS-CoV-2 and clinical severity of COVID-19 is also governed by host factors. In this review, we therefore comprehensively overview the replication cycle and pathogenesis of SARS-CoV-2 from the perspective of host factors and host-virus interactions. We sequentially outline the pathological implications of molecular interactions between host factors and SARS-CoV-2 in multi-organ and multi-system long COVID-19, and summarize current therapeutic strategies and agents targeting host factors for treating these diseases. This knowledge would be key for the identification of new pathophysiological aspects and mechanisms, and the development of actionable therapeutic targets and strategies for tackling COVID-19 and its sequelae.
Collapse
Affiliation(s)
| | | | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, Sichuan, Chengdu, China
| |
Collapse
|
17
|
Liu HH, Xie Y, Yang BP, Wen HY, Yang PH, Lu JE, Liu Y, Chen X, Qu MM, Zhang Y, Hong WG, Li YG, Fu J, Wang FS. Safety, immunogenicity and protective effect of sequential vaccination with inactivated and recombinant protein COVID-19 vaccine in the elderly: a prospective longitudinal study. Signal Transduct Target Ther 2024; 9:129. [PMID: 38740763 PMCID: PMC11091094 DOI: 10.1038/s41392-024-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
The safety and efficacy of COVID-19 vaccines in the elderly, a high-risk group for severe COVID-19 infection, have not been fully understood. To clarify these issues, this prospective study followed up 157 elderly and 73 young participants for 16 months and compared the safety, immunogenicity, and efficacy of two doses of the inactivated vaccine BBIBP-CorV followed by a booster dose of the recombinant protein vaccine ZF2001. The results showed that this vaccination protocol was safe and tolerable in the elderly. After administering two doses of the BBIBP-CorV, the positivity rates and titers of neutralizing and anti-RBD antibodies in the elderly were significantly lower than those in the young individuals. After the ZF2001 booster dose, the antibody-positive rates in the elderly were comparable to those in the young; however, the antibody titers remained lower. Gender, age, and underlying diseases were independently associated with vaccine immunogenicity in elderly individuals. The pseudovirus neutralization assay showed that, compared with those after receiving two doses of BBIBP-CorV priming, some participants obtained immunological protection against BA.5 and BF.7 after receiving the ZF2001 booster. Breakthrough infection symptoms last longer in the infected elderly and pre-infection antibody titers were negatively associated with the severity of post-infection symptoms. The antibody levels in the elderly increased significantly after breakthrough infection but were still lower than those in the young. Our data suggest that multiple booster vaccinations at short intervals to maintain high antibody levels may be an effective strategy for protecting the elderly against COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/prevention & control
- COVID-19/immunology
- Female
- Male
- Aged
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- Prospective Studies
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/adverse effects
- Vaccines, Inactivated/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Aged, 80 and over
- Adult
- Vaccination
- Longitudinal Studies
- Middle Aged
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/administration & dosage
- Immunogenicity, Vaccine/immunology
- Immunization, Secondary
Collapse
Affiliation(s)
- Hong-Hong Liu
- Out-patient Department of Day Diagnosis and Treatment, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yunbo Xie
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Bao-Peng Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Huan-Yue Wen
- Hunyuan County People's Hospital, Datong, 037499, Shanxi Province, China
| | - Peng-Hui Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Institute of Hepatobiliary Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin-E Lu
- Hunyuan County People's Hospital, Datong, 037499, Shanxi Province, China
| | - Yan Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Xi Chen
- Out-patient Department of Day Diagnosis and Treatment, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Meng-Meng Qu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yang Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Wei-Guo Hong
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Yong-Gang Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100039, China.
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
18
|
Sun Y, Huang ZL, Chen WX, Zhang YF, Lei HT, Huang QJ, Lun ZR, Qu LH, Zheng LL. GateView: A Multi-Omics Platform for Gene Feature Analysis of Virus Receptors within Human Normal Tissues and Tumors. Biomolecules 2024; 14:516. [PMID: 38785923 PMCID: PMC11118183 DOI: 10.3390/biom14050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Viruses are obligate intracellular parasites that rely on cell surface receptor molecules to complete the first step of invading host cells. The experimental method for virus receptor screening is time-consuming, and receptor molecules have been identified for less than half of known viruses. This study collected known human viruses and their receptor molecules. Through bioinformatics analysis, common characteristics of virus receptor molecules (including sequence, expression, mutation, etc.) were obtained to study why these membrane proteins are more likely to become virus receptors. An in-depth analysis of the cataloged virus receptors revealed several noteworthy findings. Compared to other membrane proteins, human virus receptors generally exhibited higher expression levels and lower sequence conservation. These receptors were found in multiple tissues, with certain tissues and cell types displaying significantly higher expression levels. While most receptor molecules showed noticeable age-related variations in expression across different tissues, only a limited number of them exhibited gender-related differences in specific tissues. Interestingly, in contrast to normal tissues, virus receptors showed significant dysregulation in various types of tumors, particularly those associated with dsRNA and retrovirus receptors. Finally, GateView, a multi-omics platform, was established to analyze the gene features of virus receptors in human normal tissues and tumors. Serving as a valuable resource, it enables the exploration of common patterns among virus receptors and the investigation of virus tropism across different tissues, population preferences, virus pathogenicity, and oncolytic virus mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Liang-Hu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.S.); (Z.-L.H.); (W.-X.C.); (Y.-F.Z.); (H.-T.L.); (Q.-J.H.); (Z.-R.L.)
| | - Ling-Ling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (Y.S.); (Z.-L.H.); (W.-X.C.); (Y.-F.Z.); (H.-T.L.); (Q.-J.H.); (Z.-R.L.)
| |
Collapse
|
19
|
Kardiasyah A, Syarani F, Bihar S, Lubis ND, Mutiara E, Syahputra H. Relationship between interleukin-6 (IL-6) levels and chest X-ray severity scoring in COVID-19 patients. NARRA J 2024; 4:e690. [PMID: 38798831 PMCID: PMC11125309 DOI: 10.52225/narra.v4i1.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2024] [Indexed: 05/29/2024]
Abstract
The severity of coronavirus disease 2019 (COVID-19) may be measured by interleukin-6 (IL-6) and chest X-rays. Brixia score of the chest radiographs is usually used to monitor COVID-19 patients' lung problems. The aim of this study was to demonstrate the relationship between IL-6 levels and chest radiographs (Brixia score) that represent COVID-19 severity. A retrospective cohort study was conducted among COVID-19 patients who had a chest X-ray and examination of IL-6 levels at H. Adam Malik General Hospital, Medan, Indonesia. A multinomial logistic regression analysis was conducted to evaluate the association between IL-6 levels and the severity of the chest radiograph. A total of 76 COVID-19 patients were included in the study and 39.5% of them were 60-69 years old, with more than half were female (52.6%). A total of 17.1%, 48.7%, and 34.2% had IL-6 level of <7 pg/mL, 7-50 pg/mL and >50 pg/mL, respectively. There were 39.5%, 36.8% and 23.7% of the patients had mild, moderate and severe chest X-rays based on Brixia score, respectively. Statistics analysis revealed that moderate (OR: 1.77; 95% CI: 1.05- 3.32) and severe (OR: 1.33; 95% CI: 1.03-3.35) lung conditions in the chest X-rays were significantly associated with IL-6 levels of 7-50 pg/mL. IL-6 more than 50 pg/mL was associated with severe chest X-ray condition (OR: 1.97; 95% CI: 1.15-3.34). In conclusion, high IL-6 levels significantly reflected COVID-19 severity through chest X-rays in COVID-19 patients.
Collapse
Affiliation(s)
- Alzi Kardiasyah
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara General Hospital, Medan, Indonesia
| | - Fajrinur Syarani
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara General Hospital, Medan, Indonesia
| | - Syamsul Bihar
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Sumatera Utara General Hospital, Medan, Indonesia
| | - Netty D. Lubis
- Department of Radiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Radiology, Universitas Sumatera Utara General Hospital, Medan, Indonesia
| | - Erna Mutiara
- Department of Community and Preventive Medicine, Faculty of Public Health, Universitas Sumatera Utara, Medan, Indonesia
| | - Hafid Syahputra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
20
|
Alkhawaldeh O, Jarrar Y, Gharaibeh M, Abudahab S, Abulebdah D, Jarrar B. Alterations in the gene expression of SARS-COV-2 entry receptors and enzymes in lungs and hearts of controlled and uncontrolled diabetic mice. Fundam Clin Pharmacol 2024; 38:328-340. [PMID: 37950353 DOI: 10.1111/fcp.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The entry of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cell is carried out by specific receptors and enzymes, including human angiotensin-converting enzyme 2 receptor (ACE2), transmembrane serine protease 2 (TMPRSS2), and cathepsin-L (CTSL). COVID-19 patients with comorbidities, such as diabetes mellitus (DM), are more prone to severe symptoms and have a higher risk of mortality. AIMS The present study aimed to investigate the impact of controlled and uncontrolled type 1 DM (T1DM) on the gene expression of mouse Ace2, Tmprss2, and Ctsl and correlate it with the pathological alterations in the lungs and the heart of DM mice. METHODS Balb/c mice were administered a single dose of 240 mg/kg streptozocin to induce T1DM. The blood glucose level was measured to confirm the induction of DM. Normalization of blood glucose levels in T1DM mice was achieved using 0.1 mL/kg Mixtard® insulin therapy. The mice's lungs and hearts were harvested, and the mRNA was extracted and converted to cDNA. The gene expression of Ace2, Tmprss2, Ctsl, Cyp4a11, and Adrb1 genes, which play a role in the homeostasis of lungs and hearts, were measured using quantitative real-time polymerase chain reaction (RT-PCR). The pathological alterations in the hearts and lungs induced by T1DM were evaluated using the relative heart and lung weights, in addition to the pathohistological examination. RESULTS After inducing T1DM for 14 days, we observed a significant reduction in the total weight of uncontrolled DM (UDM) mice (P < 0.05). Pathohistological examination of UDM lung tissues revealed thickening of the alveolar walls with narrowing of the surface of the alveolar sacs. Additionally, we found that UDM mice exhibited downregulation of Ace2 gene expression (P < 0.05) in their lungs, while both UDM and control DM (CDM) mice showed upregulation of Ctsl gene expression in their hearts (P < 0.05). Notably, Cyp4a12 gene expression was significantly downregulated (P < 0.05) in UDM mice but returned to normal levels in CDM mice. CONCLUSIONS We conclude from this study that T1DM downregulates Ace2 receptor and Cyp4a12 gene expression, which is correlated with the thickening of alveolar walls and narrowing of the surface of alveolar sacs in the lungs. Insulin administration for controlling T1DM ameliorated these pathological alterations. These results can help increase our understanding of the impact of controlled and uncontrolled T1DM on the lungs and may explain, at least in part, why DM patients with COVID-19 experience exacerbation of symptoms.
Collapse
Affiliation(s)
- Ohood Alkhawaldeh
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Yazun Jarrar
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Munir Gharaibeh
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Sara Abudahab
- Deparment of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dina Abulebdah
- Department of Pharmaceutical Science, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Bashir Jarrar
- Nanobiology Unit, Department of Biology, College of Science, Jerash University, Jerash, Jordan
| |
Collapse
|
21
|
Gaber DA, Shokr M, Shaker O, Zaki KA, Khalil HS, Wahb AM. Serum ACE2 and S19P gene polymorphism in Egyptian patients with COVID-19 infection: correlation with disease severity. Sci Rep 2024; 14:5846. [PMID: 38462662 PMCID: PMC10925588 DOI: 10.1038/s41598-024-56260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
The expression of ACE2 is linked to disease severity in COVID-19 patients. The ACE2 receptor gene polymorphisms are considered determinants for SARS-CoV-2 infection and its outcome. In our study, serum ACE2 and its genetic variant S19P rs73635825 polymorphism were investigated in 114 SARS-CoV-2 patients. The results were compared with 120 control subjects. ELISA technique and allele discrimination assay were used for measuring serum ACE2 and genotype analysis of ACE2 rs73635825. Our results revealed that serum ACE2 was significantly lower in SARS-CoV-2 patients (p = 0.0001), particularly in cases with hypertension or diabetes mellitus. There was a significant difference in the genotype distributions of ACE2 rs73635825 A > G between COVID-19 patients and controls (p-value = 0.001). A higher frequency of the heterozygous AG genotype (65.8%) was reported in COVID-19 patients. The G allele was significantly more common in COVID-19 patients (p < 0.0001). The AG and GG genotypes were associated with COVID-19 severity as they were correlated with abnormal laboratory findings, GGO, CXR, and total severity scores with p < 0.05. Our results revealed that the ACE2 S19P gene variant is correlated with the incidence of infection and its severity, suggesting the usefulness of this work in identifying the susceptible population groups for better disease control.
Collapse
Affiliation(s)
- Dalia A Gaber
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
- College of Medicine, Gulf Medical University, Ajman, UAE.
| | - Mohamed Shokr
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, MUST University, Cairo, Egypt
| | - Olfat Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Kamelia Ahmed Zaki
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, MUST University, Cairo, Egypt
| | - Haidy Samir Khalil
- Medical Microbiology and Immunology, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Amany M Wahb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
22
|
Yoshihara F. Association between blood pressure and COVID-19 severity. Hypertens Res 2024; 47:683-684. [PMID: 38145992 DOI: 10.1038/s41440-023-01557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Fumiki Yoshihara
- National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
| |
Collapse
|
23
|
Melek Arsoy HE, Elmas B, Tarim A, Dervişoğlu Çavdar P, Orhan MF, Yazar H. The Relationship between Soluble Angiotensin-Converting Enzyme Level and Coronavirus Disease 2019 in Children: A Prospective Cohort Study. J PEDIAT INF DIS-GER 2024; 19:089-100. [DOI: 10.1055/s-0043-1777840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
Objective Our objective was to investigate soluble angiotensin-converting enzyme (sACE) levels in pediatric patients with coronavirus disease 2019 (COVID-19) and to identify factors associated with the occurrence and severity of pediatric COVID-19.
Methods This was a prospective cohort study conducted between April 2020 and July 2020. The study population consisted of 143 children (between 1 month and 18 years old), 103 of whom had COVID-19 and 40 of whom were negative for COVID-19 (randomly selected). The sACE levels and other laboratory data of all participants were measured at admission (day 0, baseline). Repeat measurements were performed in patients on the 5th day. Disease severity was documented at baseline and on the 5th day, and the change in severity between these time points was recorded.
Results Age and sex distribution were similar in the two groups. At baseline, 31 (30.1%) of the patients were asymptomatic, 58 (56.3%) had mild disease, and 14 (13.6%) had moderate disease. Baseline sACE levels were similar in the groups (p = 0.120). Higher weight was independently associated with low sACE levels in children (p = 0.037). The sACE level of patients on the 5th day was significantly lower compared with baseline (p = 0.007). Patients who experienced a decrease in disease severity were compared with those who did not demonstrate a decrease. Baseline sACE levels were significantly lower in those who experienced decreased severity (p = 0.039). Multiple linear regression revealed that COVID-19 severity at baseline was independently associated with the low sACE level at baseline (p = 0.023).
Conclusion Lower sACE at diagnosis was associated with COVID-19 severity in children. However, no strong evidence was found that could suggest the sACE level as an important predictor for the occurrence or severity of COVID-19 in children.
Collapse
Affiliation(s)
| | - Bahri Elmas
- Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ayşe Tarim
- Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Pınar Dervişoğlu Çavdar
- Division of Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mehmet Fatih Orhan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Hayrullah Yazar
- Department of Medical Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
24
|
Cimolai N. COVID-19 among infants: key clinical features and remaining controversies. Clin Exp Pediatr 2024; 67:1-16. [PMID: 38013408 PMCID: PMC10764668 DOI: 10.3345/cep.2023.00794] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 09/19/2023] [Indexed: 11/29/2023] Open
Abstract
Infants aged <1 year represent a seemingly more susceptible pediatric subset for infections. Despite this, coronavirus disease 2019 (COVID-19) infection has not been proven as more serious in this age group (outside the very early neonatal period) than in others. Indeed, a considerable number of asymptomatic infections have been recorded, and the symptoms and morbidity associated with COVID- 19 differ minimally from those of other respiratory viral infections. Whether due to an abundance of caution or truly reduced susceptibility, infections in infants have not raised the same profile as those in other age groups. In addition to direct severe acute respiratory syndrome coronavirus 2 diagnostic tests, laboratory markers that differentiate COVID-19 from other viral infections lack specificity in infants. Gastrointestinal presentations are common, and the neurological complications of infection mirror those of other respiratory viral infections. There have been relatively few reports of infant deaths. Under appropriate precautions, breastfeeding in the context of maternal infections has been associated with tangible but infrequent complications. Vaccination during pregnancy provides protection against infection in infants, at least in the early months of life. Multi-inflammatory syndrome in children and multi-inflammatory syndrome in neonates are commonly cited as variants of COVID-19; however, their clinical definitions remain controversial. Similarly, reliable definitions of long COVID in the infant group are controversial. This narrative review examines the key clinical and laboratory features of COVID-19 in infants and identifies several areas of science awaiting further clarification.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia and Children’s and Women’s Health Centre of British Columbia, Vancouver, Canada
| |
Collapse
|
25
|
Choi CY, Gadhave K, Villano J, Pekosz A, Mao X, Jia H. Generation and characterization of a humanized ACE2 mouse model to study long-term impacts of SARS-CoV-2 infection. J Med Virol 2024; 96:e29349. [PMID: 38185937 PMCID: PMC10783855 DOI: 10.1002/jmv.29349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Although the COVID-19 pandemic has officially ended, the persistent challenge of long-COVID or post-acute COVID sequelae (PASC) continues to impact societies globally, highlighting the urgent need for ongoing research into its mechanisms and therapeutic approaches. Our team has recently developed a novel humanized ACE2 mouse model (hACE2ki) designed explicitly for long-COVID/PASC research. This model exhibits human ACE2 expression in tissue and cell-specific patterns akin to mouse Ace2. When we exposed young adult hACE2ki mice (6 weeks old) to various SARS-CoV-2 lineages, including WA, Delta, and Omicron, at a dose of 5 × 105 PFU/mouse via nasal instillation, the mice demonstrated distinctive phenotypes characterized by differences in viral load in the lung, trachea, and nasal turbinate, weight loss, and changes in pro-inflammatory cytokines and immune cell profiles in bronchoalveolar lavage fluid. Notably, no mortality was observed in this age group. Further, to assess the model's relevance for long-COVID studies, we investigated tau protein pathologies, which are linked to Alzheimer's disease, in the brains of these mice post SARS-CoV-2 infection. Our findings revealed the accumulation and longitudinal propagation of tau, confirming the potential of our hACE2ki mouse model for preclinical studies of long-COVID.
Collapse
Affiliation(s)
- Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| | - Kundlik Gadhave
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Xiaobo Mao
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Department of Material Science and Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School, of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Yilmaz D, Ekemen Keles Y, Emiroglu M, Duramaz BB, Ugur C, Aldemir Kocabas B, Celik T, Ozdemir H, Bayturan S, Turel O, Erdeniz EH, Cakici O, Cakmak Taskin E, Erbas İC, Genceli M, Sari EE, Caymaz C, Kizil MC, Sutcu M, Demirbuga A, Alkan G, Bagcı Z, Timurtas Dayar G, Ozkan EA, Tekin Yilmaz A, Akca M, Yesil E, Kara SS, Akturk H, Yasar B, Umit Z, Uygun H, Erdem N, Buyukcam A, Karadag Oncel E, Tuter Oz SK, Cetin HS, Anil AB, Yilmaz R, Zengin N, Uzuner S, Albayrak H, Borakay O, Topal S, Arslan G, Yazar A, Ozer A, Kendirli T, Kara EM, Demirkol D, Battal F, Kosker M, Metin Akcan O, Kihtir HS, Gul D, Zararci K, Alakaya M, Kula N, Celik E, Petmezci E, Evren G, Kara Aksay A, Konca C, Sert A, Arslan D, Bornaun H, Tekeli O, Bal A, Sahin IO, Demir S, Sap F, Akyol MB, Tanidir IC, Donmez YN, Ucar T, Coban S, Arga G, Hancerli Torun S, Karpuz D, Celik SF, Varan C, Elmali F, Oncel S, Belet N, Hatipoglu N, Dalgic Karabulut N, Turgut M, Somer A, Kuyucu N, Dinleyici EC, Ciftci E, Kara A. Evaluation of 601 children with multisystem inflammatory syndrome (Turk MISC study). Eur J Pediatr 2023; 182:5531-5542. [PMID: 37782350 DOI: 10.1007/s00431-023-05207-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Due to its link with the 2019 coronavirus, the multisystem inflammatory syndrome in children (MISC) has garnered considerable international interest. The aim of this study, in which MISC patients were evaluated multicenter, and the data of the third period of the Turk-MISC study group, to compare the clinical and laboratory characteristics and outcomes of MISC patients who did and did not require admission to an intensive care unit (ICU). METHODS This retrospective multicenter observational study was carried out between June 11, 2021, and January 01, 2022. The demographics, complaints, laboratory results, system involvements, and outcomes of the patients were documented. RESULTS A total of 601 patients were enrolled; 157 patients (26.1%) required hospitalization in the intensive care unit (ICU). Median age was 8 years (interquartile range (IQR) 4.5-11.3 years. The proportion of Kawasaki disease-like features in the ICU group was significantly higher than in the non-ICU group (56.1% vs. 43.2% p = 0.006). The ICU group had considerably lower counts of both lymphocytes and platelets (lymphocyte count 900 vs. 1280 cells × μL, platelet count 153 vs. 212 cells × 103/ μL, all for p< 0.001). C-reactive protein, procalcitonin, and ferritin levels were significantly higher in the ICU group (CRP 164 vs. 129 mg/L, procalcitonin 9.2 vs. 2.2 μg/L, ferritin 644 vs. 334 μg/L, all for p< 0.001). Being between ages 5-12 and older than 12 increased the likelihood of hospitalization in the ICU by four [95% confidence intervals (CI)1.971-8.627] and six times (95% CI 2.575-14.654), respectively, compared to being between the ages 0-5. A one-unit increase in log D-dimer (µg/L) and log troponin (ng/L) was also demonstrated to increase the need for intensive care by 1.8 (95% CI 1.079-3.233) and 1.4 times (95% CI 1.133-1.789), respectively. Conclusion: By comparing this study to our other studies, we found that the median age of MISC patients has been rising. Patients requiring an ICU stay had considerably higher levels of procalcitonin, CRP, and ferritin but significantly lower levels of lymphocyte and thrombocyte. In particular, high levels of procalcitonin in the serum might serve as a valuable laboratory marker for anticipating the need for intensive care. WHAT IS KNOWN • Lymphopenia and thrombocytopenia were an independent predictor factors in patients with MISC who needed to stay in intensive care unit. • The possibility of the need to stay in the intensive care unit in patients with MISC who had Kawasaki disease-like findings was controversial compared with those who did not. WHAT IS NEW • A one-unit increase log D dimer and log troponin was demonstrated to require for intensive care unit by 1.8 and 1.4 times, respectively. • Serum procalcitonin levels had the best performance to predict stay in the intensive care unit stay.
Collapse
Affiliation(s)
| | - Yildiz Ekemen Keles
- Health Sciences University Tepecik Training and Research Hospital, Clinic of Pediatric Infectious Diseases, Gaziler Street Number: 468, 35020, Yenisehir Konak/Izmir, Turkey.
| | | | | | - Cuneyt Ugur
- University of Health Sciences Konya Health Application and Research Center, Konya, Turkey
| | | | - Talyan Celik
- Canakkale On Sekiz Mart University Hospital, Canakkale, Turkey
| | - Halil Ozdemir
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | - Ozden Turel
- Bezmialem Vakif University Hospital, Istanbul, Turkey
| | | | | | | | | | | | - Emine Ergul Sari
- Health Science University İstanbul Bakırkoy Dr. Sadi Konuk Training and Research Hospital TR, Istanbul, Turkey
| | - Canan Caymaz
- Başakşehir Cam ve Sakura City Hospital, Istanbul, Turkey
| | | | - Murat Sutcu
- İstinye University Hospital, Istanbul, Turkey
| | | | | | - Zafer Bagcı
- University of Health Sciences Konya Health Application and Research Center, Konya, Turkey
| | | | | | | | | | | | | | | | - Belma Yasar
- Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | | | - Hatice Uygun
- Adıyaman Research and Training Hospital, Adiyaman, Turkey
| | | | - Ayse Buyukcam
- Ankara Gulhane Research and Training Hospital, Ankara, Turkey
| | - Eda Karadag Oncel
- Health Sciences University Tepecik Training and Research Hospital, Clinic of Pediatric Infectious Diseases, Gaziler Street Number: 468, 35020, Yenisehir Konak/Izmir, Turkey
| | | | | | - Ayse Berna Anil
- Health Sciences University Tepecik Training and Research Hospital, Clinic of Pediatric Infectious Diseases, Gaziler Street Number: 468, 35020, Yenisehir Konak/Izmir, Turkey
- Pediatric Intensive Care, Health Sciences University Tepecik Training and Research Hospital, Izmir, Izmir, Turkey
| | | | | | - Selcuk Uzuner
- Bezmialem Vakif University Hospital, Istanbul, Turkey
| | | | | | - Sevgi Topal
- Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Gazi Arslan
- Dokuz Eylül University Hospital, Izmir, Turkey
| | - Abdullah Yazar
- Necmettin Erbakan University, Meram Hospital, Konya, Turkey
| | - Arife Ozer
- Health Sciences University Van Training and Research Hospital, Van, Turkey
| | - Tanil Kendirli
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
- Pediatric Intensive Care, Ankara University Hospital, Ankara, Turkey
| | | | | | - Fatih Battal
- Canakkale On Sekiz Mart University Hospital, Canakkale, Turkey
| | | | | | | | - Doruk Gul
- İstinye University Hospital, Istanbul, Turkey
| | | | | | - Nilgun Kula
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Elif Celik
- Aydin Adnan Menderes University Hospital, Aydin, Turkey
| | - Ercument Petmezci
- Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | | | - Ahu Kara Aksay
- Health Sciences University Tepecik Training and Research Hospital, Clinic of Pediatric Infectious Diseases, Gaziler Street Number: 468, 35020, Yenisehir Konak/Izmir, Turkey
| | - Capan Konca
- Adiyaman University Hospital, Adiyaman, Turkey
| | - Ahmet Sert
- Selcuk University Hospital, Konya, Turkey
| | - Derya Arslan
- University of Health Sciences Konya Health Application and Research Center, Konya, Turkey
| | - Helen Bornaun
- Kanuni Sultan Süleyman Training and Research Hospital, Istanbul, Turkey
| | - Onur Tekeli
- Antalya Training and Research Hospital, Antalya, Turkey
| | - Alkan Bal
- Celal Bayar University Hospital, Manisa, Turkey
| | | | - Selcan Demir
- Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Fatih Sap
- Necmettin Erbakan University, Meram Hospital, Konya, Turkey
| | - Mehmet Bedir Akyol
- Health Science University İstanbul Bakırkoy Dr. Sadi Konuk Training and Research Hospital TR, Istanbul, Turkey
| | | | | | - Tayfun Ucar
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
- Pediatric Cardiology, Ankara University Hospital, Ankara, Turkey
| | - Senay Coban
- Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Gul Arga
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | - Celal Varan
- Adiyaman University Hospital, Adiyaman, Turkey
| | | | - Selim Oncel
- Kocaeli University Hospital, Kocaeli, Turkey
| | | | - Nevin Hatipoglu
- Health Science University İstanbul Bakırkoy Dr. Sadi Konuk Training and Research Hospital TR, Istanbul, Turkey
| | - Nazan Dalgic Karabulut
- Health Sciences University Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | | | - Ayper Somer
- Istanbul University Hospital, Istanbul, Turkey
| | | | | | - Ergin Ciftci
- Department of Pediatric Infectious Diseases, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ates Kara
- Hacettepe University Hospital, Ankara, Turkey
| |
Collapse
|
27
|
Liu X, Guo Y, Pan W, Xue Q, Fu J, Qu G, Zhang A. Exogenous Chemicals Impact Virus Receptor Gene Transcription: Insights from Deep Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18038-18047. [PMID: 37186679 DOI: 10.1021/acs.est.2c09837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.
Collapse
Affiliation(s)
- Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
28
|
Wang B, Chen Z, Huang Y, Ding J, Lin Y, Wang M, Li X. Mitochondrial mass of circulating NK cells as a novel biomarker in severe SARS-CoV-2 infection. Int Immunopharmacol 2023; 124:110839. [PMID: 37639852 DOI: 10.1016/j.intimp.2023.110839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Severe SARS-CoV-2 infection results in lymphopenia and impaired function of T, B, and NK (TBNK-dominant) lymphocytes. Mitochondria are essential targets of SARS-CoV-2 and the efficacy of lymphocyte mitochondrial function for immunosurveillance in COVID-19 patients has not been evaluated. METHODS Multi-parametric flow cytometry was used to characterize mitochondrial function, including mitochondrial mass (MM) and low mitochondrial membrane potential (MMPlow), in TBNK-dominant lymphocytes from severe (n = 93) and moderate (n = 77) hospitalized COVID-19 patients. We compared the role of novel lymphocyte mitochondrial indicators and routine infection biomarkers as early predictors of severity and death in COVID-19 patients. We then developed a mortality decision tree prediction model based on immunosurveillance indicators through machine learning. RESULTS At admission, the MM of circulating NK cells (NK-MM) was the best discriminator of severe/moderate disease (AUC = 0.8067) compared with the routine infection biomarkers. The NK cell count and NK-MM displayed superior diagnostic effects to distinguish patients with non-fatal or fatal outcomes. Interestingly, NK-MM was significantly polarized in non-survivors, with some patients showing a decrease and others showing an abnormal increase. Kaplan-Meier analysis showed that NK-MM had the optimal predictive efficacy (hazard ratio = 11.66). The decision tree model has the highest proportion of importance for NK-MM, which is superior to the single diagnostic effect of the above indicators (AUC = 0.8900). CONCLUSION NK-MM was not only associated with disease severity, its abnormal increases or decreases also predicted mortality risk. The resulting decision tree prediction model is the first to focus on immune monitoring indicators to provide decision-making clues for COVID-19 clinical management.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhenni Chen
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yiran Huang
- School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiayi Ding
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yingrui Lin
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Min Wang
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xianping Li
- Department of Laboratory Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
29
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
30
|
Fayek M, Ebrahim HY, Abdel-Aziz MS, Taha H, Moharram FA. Bioactive metabolites identified from Aspergillus terreus derived from soil. AMB Express 2023; 13:107. [PMID: 37789186 PMCID: PMC10547674 DOI: 10.1186/s13568-023-01612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Aspergillus terreus has been reported to produce many bioactive metabolites that possess potential activities including anti-inflammatory, cytotoxic, and antimicrobial activities. In the present study, we report the isolation and identification of A. terreus from a collected soil sample. The metabolites existing in the microbial ethyl acetate extract were tentatively identified by HPLC/MS and chemically categorized into alkaloids, terpenoids, polyketides, γ-butyrolactones, quinones, and peptides. In addition, a new triglyceride (1) and a diketopiperazine derivative namely asterrine (4), together with two known butyrolactone (2-3) were purified from the extract. The chemical skeleton of the purified compounds was established by comprehensive analysis of their ESI/MS, 1 and 2D-NMR data. The extract and compounds 3,4 exhibited a strong inhibitory activity for the binding of ACE2 to SARS-CoV-2 spike-protein receptor with IC50 7.4, 9.5, and 8.5 µg/mL, respectively. In addition, the extract, 1 and 2 displayed a potent anti-inflammatory effect with IC50 51.31 and 37.25 pg/mL (Il-6) and 87.97, 68.22 pg/mL (TNF-α), respectively, in comparison to LPS control. In addition, the extract and compound 4 displayed an antimicrobial effect towards S. aureus by MIC 62.5 and 125 μg/mL, while the extract exhibited a potent effect against C. albicans (MIC of 125 μg/mL). Collectively, our data introduce novel bioactivities for the secondary metabolites produced by the terrestrial fungus Aspergillus terreus.
Collapse
Affiliation(s)
- Menna Fayek
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Hassan Y Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Mohamed S Abdel-Aziz
- Department of Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Giza, 12622, Egypt
| | - Heba Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
31
|
Wang Z, Cheng F, Xu Y, Li X, Meng S. Role of innate immunity in SARS-CoV-2 infection. BIOSAFETY AND HEALTH 2023; 5:280-288. [PMID: 40078906 PMCID: PMC11894970 DOI: 10.1016/j.bsheal.2023.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 03/14/2025] Open
Abstract
During severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, activated macrophages, dendritic cells (D.C.), neutrophils, and natural killer (N.K.) cells are the first defense against infection. These immune effectors trap and ingest the virus, kill infected epithelial cells, or produce anti-viral cytokines. Evidence suggests that aging, obesity, and mental illness can lead to weakened innate immunity and, thus, are all associated with elevated infection and severe disease progression of coronavirus disease 2019 (COVID-19). Innate immune defense networks play a fundamental role in suppressing viral replication, infection establishment, and viral pathogenesis of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Zihao Wang
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Cheng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiu Xu
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Li
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songdong Meng
- Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Beam TA, Klepser DG, Klepser ME, Bright DR, Klepser N, Schuring H, Wheeler S, Langerveld A. COVID-19 host genetic risk study conducted at community pharmacies: Implications for public health, research and pharmacists' scope of practice. Res Social Adm Pharm 2023; 19:1360-1364. [PMID: 37567834 PMCID: PMC10264161 DOI: 10.1016/j.sapharm.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 08/13/2023]
Abstract
Community pharmacists serve a large, diverse population of patients, resulting in the potential to utilize community pharmacies as recruitment sites for clinical research. Beyond traditional roles as one of the most accessible health care professionals in the US healthcare system, pharmacists have played a major role in the response to the COVID-19 pandemic, administering hundreds of thousands of vaccines and tests. However, less emphasis is placed on the ability to leverage community pharmacies as research-focused partners for clinical studies. In this study, we demonstrate the feasibility and workflow of recruiting study participants from community pharmacies and confirm genetic markers of COVID-19 susceptibility. Specific genetic markers include those associated with COVID-19 infection risk (ACE2, TMEM27, and RAVER1), difficulty breathing (NOTCH4), and hospitalization (OAS3). In addition, collaboration with a clinical laboratory allowed for a more seamless consenting process without substantial training needs or workflow disruption at the community pharmacy site. The COVID-19 pandemic has demonstrated that the expansion of pharmacists' scope of practice is a key factor in managing the population health crisis; this study demonstrates that pharmacies can also advance clinical research studies by serving as sites for patient recruitment from a large, diverse, and ambulatory study population.
Collapse
Affiliation(s)
- Teresa A Beam
- Manchester University College of Pharmacy, Natural and Health Sciences 10627 Diebold Road, Fort Wayne, IN, 46845, USA.
| | - Donald G Klepser
- University of Nebraska Medical Center, 986120, Omaha, NE, 68198-6120, USA.
| | - Michael E Klepser
- Ferris State University College of Pharmacy, 1000 Oakland Drive, Kalamazoo, MI, 49008, USA.
| | - David R Bright
- Ferris State University College of Pharmacy, 220 Ferris Dr, Big Rapids, MI, 49307, USA.
| | - Nicklas Klepser
- Genemarkers, 126 East South Street, Kalamazoo, MI, 49007, USA; 15811 Louis Dr, Omaha, NE, 68118, USA.
| | - Hannah Schuring
- Genemarkers, 126 East South Street, Kalamazoo, MI, 49007, USA.
| | | | - Anna Langerveld
- Genemarkers, 126 East South Street, Kalamazoo, MI, 49007, USA.
| |
Collapse
|
33
|
Murdaca G, Paladin F, Martino G, Gangemi S. Impact of Immunosenescence on Viral Infections with an Emphasis on COVID-19. FRONT BIOSCI-LANDMRK 2023; 28:225. [PMID: 37796718 DOI: 10.31083/j.fbl2809225] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
During aging, the immune system (IS) undergoes remarkable changes known as immunosenescence, a multifactorial and dynamic phenomenon that affects both natural and acquired immunity and plays an important role in most chronic diseases in older people. Among the determinants of immunosenescence, we find a low-grade sterile chronic inflammation, known as "inflamm-aging". This condition of chronic inflammation causes a progressive reduction in the ability to trigger antibody and cellular responses effective against infections and vaccinations. In this review, we wanted to explore the role of immunosenescence and inflamm-aging as determinants of the immunological aging process and predisposing viral infections phenomena, with a particular reference to cytomegalovirus (CMV), varicella zoster virus (VZV), influenza virus (IFV) diseases and SARS-CoV2. IS aging is also reflected in a reduction in the antibody response to vaccinations, hence there is a need to expand trials to elderly patients, in order to identify the most appropriate methods for developing effective and safe vaccination and preventive strategies.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesca Paladin
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriella Martino
- Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
34
|
Suzuki E, Kuronuma K, Murai R, Fujiya Y, Saito A, Chiba H, Takahashi S. Serum Testosterone Is Associated With the Severity of COVID-19. In Vivo 2023; 37:2314-2319. [PMID: 37652515 PMCID: PMC10500529 DOI: 10.21873/invivo.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND/AIM Coronavirus disease 2019 (COVID-19) is more likely to be severe in men than in women. Its association with sex hormones as an aggravating factor for male patients has been attracting attention. This study aimed to investigate whether serum testosterone is associated with the aggravation of COVID-19. PATIENTS AND METHODS Serum testosterone concentrations in 116 male patients with COVID-19 and residual serum were measured and examined upon their admission to Sapporo Medical University Hospital between February 1, 2020 and March 31, 2021. RESULTS Blood samples collected from these patients with COVID-19 were analyzed. The serum testosterone levels were 2.19±1.35, 1.29±0.88, and 0.75±0.58 ng/ml in mild, moderate, and severe groups, respectively. Patients with severe COVID-19 on admission had lower testosterone levels (p<0.001). At a cutoff level of 1.31 ng/ml, the area under the curve for the comparison of severe with non-severe cases was 0.825. Furthermore, serum testosterone levels negatively correlated with C-reactive protein and serum amyloid A levels but positively correlated with calcium, zinc, C3, and C4. CONCLUSION In male patients with COVID-19, low serum testosterone levels correlated with disease severity, accompanied by a strong inflammatory reaction and proportion of complement consumption.
Collapse
Affiliation(s)
- Ema Suzuki
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Koji Kuronuma
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan;
| | - Ryosei Murai
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Yoshihiro Fujiya
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Saito
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Takahashi
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
35
|
Zhang L, Sun X, Feng Y, Ma F. Association of the androgens with COVID-19 prognostic outcomes: a systematic review. Arch Public Health 2023; 81:152. [PMID: 37605265 PMCID: PMC10440898 DOI: 10.1186/s13690-023-01168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVE The coronavirus disease 2019 was a global public health emergency in later years (from 2020 to early 2022), and androgens have been associated with infection and prognostic outcomes. However, the relationship between low serum testosterone levels and prognostic outcomes remains inconclusive. This systematic review aimed to investigate the relationship between serum testosterone levels and prognostic outcomes in patients with COVID-19. METHODS We searched PubMed, MEDLINE, EMBASE and Web of Science electronic databases for all literature from January 1, 2020, to September 1, 2022. In addition, we also searched literature manually. The search terms were COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), androgens, and testosterone. There were no language restrictions for retrieval. RESULTS Our search identified 2285 articles, resulting in a full-text analysis of 16 studies, including 12 cohort studies and four case-control studies. Low serum testosterone levels were observed to be statistically associated with a higher probability of intensive care unit (ICU) admission in seven studies. In eight studies, higher hospital mortality was associated with lower serum testosterone levels. Six studies found that low serum testosterone levels were associated with a statistically significant difference in lung function impairment. Only four studies found that among living patients, those with lower serum testosterone levels had longer hospital stays. All but one of the included studies had a low risk of bias. CONCLUSIONS Based on available data, low serum testosterone levels are associated with higher rates of ICU admission, hospital mortality, risk of lung failure, inflammatory markers, and longer hospital stays in patients with COVID-19 compared with those having normal serum testosterone levels.
Collapse
Affiliation(s)
- Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
36
|
Hejenkowska ED, Mitash N, Donovan JE, Chandra A, Bertrand C, De Santi C, Greene CM, Mu F, Swiatecka-Urban A. TGF-β1 Inhibition of ACE2 Mediated by miRNA Uncovers Novel Mechanism of SARS-CoV-2 Pathogenesis. J Innate Immun 2023; 15:629-646. [PMID: 37579743 PMCID: PMC10601633 DOI: 10.1159/000533606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, utilizes receptor binding domain (RBD) of spike glycoprotein to interact with angiotensin (Ang)-converting enzyme 2 (ACE2). Altering ACE2 levels may affect entry of SARS-CoV-2 and recovery from COVID-19. Decreased cell surface density of ACE2 leads to increased local levels of Ang II and may contribute to mortality resulting from acute lung injury and fibrosis during COVID-19. Studies published early during the COVID-19 pandemic reported that people with cystic fibrosis (PwCF) had milder symptoms, compared to people without CF. This finding was attributed to elevated ACE2 levels and/or treatment with the high efficiency CFTR modulators. Subsequent studies did not confirm these findings reporting variable effects of CFTR gene mutations on ACE2 levels. Transforming growth factor (TGF)-β signaling is essential during SARS-CoV-2 infection and dominates the chronic immune response in severe COVID-19, leading to pulmonary fibrosis. TGF-β1 is a gene modifier associated with more severe lung disease in PwCF but its effects on the COVID-19 course in PwCF is unknown. To understand whether TGF-β1 affects ACE2 levels in the airway, we examined miRNAs and their gene targets affecting SARS-CoV-2 pathogenesis in response to TGF-β1. Small RNAseq and micro(mi)RNA profiling identified pathways uniquely affected by TGF-β1, including those associated with SARS-CoV-2 invasion, replication, and the host immune responses. TGF-β1 inhibited ACE2 expression by miR-136-3p and miR-369-5p mediated mechanism in CF and non-CF bronchial epithelial cells. ACE2 levels were higher in two bronchial epithelial cell models expressing the most common CF-causing mutation in CFTR gene F508del, compared to controls without the mutation. After TGF-β1 treatment, ACE2 protein levels were still higher in CF, compared to non-CF cells. TGF-β1 prevented the modulator-mediated rescue of F508del-CFTR function while the modulators did not prevent the TGF-β1 inhibition of ACE2 levels. Finally, TGF-β1 reduced the interaction between ACE2 and the recombinant spike RBD by lowering ACE2 levels and its binding to RBD. Our data demonstrate novel mechanism whereby TGF-β1 inhibition of ACE2 in CF and non-CF bronchial epithelial cells may modulate SARS-CoV-2 pathogenicity and COVID-19 severity. By reducing ACE2 levels, TGF-β1 may decrease entry of SARS-CoV-2 into the host cells while hindering the recovery from COVID-19 due to loss of the anti-inflammatory and regenerative effects of ACE2. The above outcomes may be modulated by other, miRNA-mediated effects exerted by TGF-β1 on the host immune responses, leading to a complex and yet incompletely understood circuitry.
Collapse
Affiliation(s)
| | - Nilay Mitash
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joshua E. Donovan
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Anvita Chandra
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Carol Bertrand
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine M. Greene
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Fangping Mu
- Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
37
|
Ahmadi S, Khaledi S. Brain Renin-Angiotensin System: From Physiology to Pathology in Neuronal Complications Induced by SARS-CoV-2. Anal Cell Pathol (Amst) 2023; 2023:8883492. [PMID: 37575318 PMCID: PMC10421715 DOI: 10.1155/2023/8883492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 07/15/2023] [Indexed: 08/15/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2), a key enzyme in the renin-angiotensin system (RAS), is expressed in various tissues and organs, including the central nervous system (CNS). The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease-2019 (COVID-19), binds to ACE2, which raises concerns about the potential for viral infection in the CNS. There are numerous reports suggesting a link between SARS-CoV-2 infection and neurological manifestations. This study aimed to present an updated review of the role of brain RAS components, especially ACE2, in neurological complications induced by SARS-CoV-2 infection. Several routes of SARS-CoV-2 entry into the brain have been proposed. Because an anosmia condition appeared broadly in COVID-19 patients, the olfactory nerve route was suggested as an early pathway for SARS-CoV-2 entry into the brain. In addition, a hematogenous route via disintegrations in the blood-brain barrier following an increase in systemic cytokine and chemokine levels and retrograde axonal transport, especially via the vagus nerve innervating lungs, have been described. Common nonspecific neurological symptoms in COVID-19 patients are myalgia, headache, anosmia, and dysgeusia. However, more severe outcomes include cerebrovascular diseases, cognitive impairment, anxiety, encephalopathy, and stroke. Alterations in brain RAS components such as angiotensin II (Ang II) and ACE2 mediate neurological manifestations of SARS-CoV-2 infection, at least in part. Downregulation of ACE2 due to SARS-CoV-2 infection, followed by an increase in Ang II levels, leads to hyperinflammation and oxidative stress, which in turn accelerates neurodegeneration in the brain. Furthermore, ACE2 downregulation in the hypothalamus induces stress and anxiety responses by increasing corticotropin-releasing hormone. SARS-CoV-2 infection may also dysregulate the CNS neurotransmission, leading to neurological complications observed in severe cases of COVID-19. It can be concluded that the neurological manifestations of COVID-19 may be partially associated with changes in brain RAS components.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Shiler Khaledi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
38
|
Shahraki K, Najafi A, Ashoori N, Razzaghpour N, Shahraki K. Arteritic Anterior Ischemic Optic Neuropathy (AAION) Associated with COVID-19 Infection: A Case Report and Review of the Literature. Case Rep Ophthalmol Med 2023; 2023:9009925. [PMID: 37492646 PMCID: PMC10365912 DOI: 10.1155/2023/9009925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
Anterior ischemic optic neuropathy (AION) is the most frequent cause of acute optic nerve damage in the elderly, usually causing acute, unilateral, and painless permanent visual loss. Arteritic anterior ischemic optic neuropathy (AAION) is a result of endothelial cell inflammation and the subsequent thrombosis and occlusion in the blood-supplying arteries of the optic nerve head. AAION accounts only for 5-10% of all AION cases that are associated with vasculitis which usually takes place in the course of a giant cell arteritis (GCA). In this paper, we report a case of AAION following a COVID-19 respiratory infection. Although it is uncertain whether SARS-CoV-2 infection triggered the AAION or was coincidental, the possible association of the events is concerning.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Surgery, School of Medicine and Allied Medical Sciences, Imam Reza Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Negin Ashoori
- Department of Surgery, School of Medicine and Allied Medical Sciences, Imam Reza Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nayyereh Razzaghpour
- Department of Surgery, School of Medicine and Allied Medical Sciences, Imam Reza Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
39
|
Kaya Ö, Keskinkaya Z, Işık Mermutlu S, Oğuz Kılıç S, Öztürk S. Long-Term Omalizumab Therapy in Patients with Chronic Spontaneous Urticaria: Does it Increase the Risk of COVID-19? Dermatol Pract Concept 2023; 13:e2023145. [PMID: 37557113 PMCID: PMC10412006 DOI: 10.5826/dpc.1303a145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Based on the existing literature, omalizumab (OMZ) is considered a safe treatment modality in chronic spontaneous urticaria (CSU) during the coronavirus disease 19 (COVID-19) era. OBJECTIVES The aim of this study is to evaluate the effects of OMZ on CSU patients regarding COVID-19 infection. METHODS In this retrospective study, files of CSU patients using OMZ during the COVID-19 pandemic were reviewed in terms of demographic features, medical history including COVID-19 vaccination status, clinical characteristics, pretreatment laboratory parameters, duration, and dosing regimen of OMZ treatment. Patients with a history of COVID-19 infection while on OMZ therapy and patients without COVID-19 history were compared with respect to these parameters. The urticaria activations following COVID-19 infection or vaccination were also recorded. RESULTS Sixty-eight patients with CSU (female:male ratio = 1.8:1; mean age = 47.2 ± 15.1 years) continued to receive OMZ treatment. The median duration of OMZ treatment was 12 months (range: 6-60). Twelve patients (17.6%) were diagnosed with COVID-19 showing no exacerbation in urticaria. The duration of OMZ treatment was significantly higher in the group with COVID-19 infection history compared to patients with no history of COVID-19 (P = 0.01). Among 51 patients (75%) vaccinated against COVID-19, urticaria activation occurred in 4 patients without any recurrence following booster vaccinations. CONCLUSIONS Considering the likelihood of increased COVID-19 infection risk in the setting of long-term OMZ in CSU patients, the duration of OMZ therapy might be kept at a minimum, or a temporary interruption of the treatment period might be preferred, particularly in high-risk patients regarding COVID-19.
Collapse
Affiliation(s)
- Özge Kaya
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Zeynep Keskinkaya
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Selda Işık Mermutlu
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Sevilay Oğuz Kılıç
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| | - Sevgi Öztürk
- Department of Dermatology and Venereology, Çanakkale Onsekiz Mart University Faculty of Medicine, Çanakkale, Turkey
| |
Collapse
|
40
|
Chen C, Wang J, Liu YM, Hu J. Single-cell analysis of adult human heart across healthy and cardiovascular disease patients reveals the cellular landscape underlying SARS-CoV-2 invasion of myocardial tissue through ACE2. J Transl Med 2023; 21:358. [PMID: 37259108 DOI: 10.1186/s12967-023-04224-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The distribution of ACE2 and accessory proteases (ANAD17 and CTSL) in cardiovascular tissue and the host cell receptor binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial to understanding the virus's cell invasion, which may play a significant role in determining the viral tropism and its clinical manifestations. METHODS We conducted a comprehensive analysis of the cell type-specific expression of ACE2, ADAM17, and CTSL in myocardial tissue from 10 patients using RNA sequencing. Our study included a meta-analysis of 2 heart single-cell RNA-sequencing studies with a total of 90,024 cells from 250 heart samples of 10 individuals. We used co-expression analysis to locate specific cell types that SARS-CoV-2 may invade. RESULTS Our results revealed cell-type specific associations between male gender and the expression levels of ACE2, ADAM17, and CTSL, including pericytes and fibroblasts. AGT, CALM3, PCSK5, NRP1, and LMAN were identified as potential accessory proteases that might facilitate viral invasion. Enrichment analysis highlighted the extracellular matrix interaction pathway, adherent plaque pathway, vascular smooth muscle contraction inflammatory response, and oxidative stress as potential immune pathways involved in viral infection, providing potential molecular targets for therapeutic intervention. We also found specific high expression of IFITM3 and AGT in pericytes and differences in the IFN-II signaling pathway and PAR signaling pathway in fibroblasts from different cardiovascular comorbidities. CONCLUSIONS Our data indicated possible high-risk groups for COVID-19 and provided emerging avenues for future investigations of its pathogenesis. TRIAL REGISTRATION (Not applicable).
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
41
|
Awatade NT, Wark PAB, Chan ASL, Mamun SMAA, Mohd Esa NY, Matsunaga K, Rhee CK, Hansbro PM, Sohal SS. The Complex Association between COPD and COVID-19. J Clin Med 2023; 12:jcm12113791. [PMID: 37297985 DOI: 10.3390/jcm12113791] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is significant cause of morbidity and mortality worldwide. There is mounting evidence suggesting that COPD patients are at increased risk of severe COVID-19 outcomes; however, it remains unclear whether they are more susceptible to acquiring SARS-CoV-2 infection. In this comprehensive review, we aim to provide an up-to-date perspective of the intricate relationship between COPD and COVID-19. We conducted a thorough review of the literature to examine the evidence regarding the susceptibility of COPD patients to COVID-19 infection and the severity of their disease outcomes. While most studies have found that pre-existing COPD is associated with worse COVID-19 outcomes, some have yielded conflicting results. We also discuss confounding factors such as cigarette smoking, inhaled corticosteroids, and socioeconomic and genetic factors that may influence this association. Furthermore, we review acute COVID-19 management, treatment, rehabilitation, and recovery in COPD patients and how public health measures impact their care. In conclusion, while the association between COPD and COVID-19 is complex and requires further investigation, this review highlights the need for careful management of COPD patients during the pandemic to minimize the risk of severe COVID-19 outcomes.
Collapse
Affiliation(s)
- Nikhil T Awatade
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
| | - Peter A B Wark
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle 2305, Australia
| | - Andrew S L Chan
- Department of Respiratory and Sleep Medicine, Royal North Shore Hospital, St. Leonards 2065, Australia
- Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - S M Abdullah Al Mamun
- Department of Respiratory Medicine & Sleep Medicine, Evercare Hospitals Dhaka, Dhaka 1229, Bangladesh
| | | | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube 755-8505, Japan
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and University of Newcastle, Newcastle 2305, Australia
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney 2050, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7248, Australia
| |
Collapse
|
42
|
Kuo CW, Su PL, Huang TH, Lin CC, Chen CW, Tsai JS, Liao XM, Chan TY, Shieh CC. Cigarette smoke increases susceptibility of alveolar macrophages to SARS-CoV-2 infection through inducing reactive oxygen species-upregulated angiotensin-converting enzyme 2 expression. Sci Rep 2023; 13:7894. [PMID: 37193781 DOI: 10.1038/s41598-023-34785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Alveolar macrophages (AMs) are the drivers of pulmonary cytokine storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to investigate clinical-regulatory factors for the entrance protein of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) in AMs. Human AMs were collected from 56 patients using bronchoalveolar lavage. ACE2 expression in AMs was positively correlated with smoking pack-year (Spearman's r = 0.347, P = 0.038). In multivariate analysis, current smoking was associated with increased ACE2 in AMs (β-coefficient: 0.791, 95% CI 0.019-1.562, P = 0.045). In vitro study, ex-vivo human AMs with higher ACE2 were more susceptible to SARS-CoV-2 pseudovirus (CoV-2 PsV). Treating human AMs using cigarette smoking extract (CSE) increases the ACE2 and susceptibility to CoV-2 PsV. CSE did not significantly increase the ACE2 in AMs of reactive oxygen species (ROS) deficient Cybb-/- mice; however, exogenous ROS increased the ACE2 in Cybb-/- AMs. N-acetylcysteine (NAC) decreases ACE2 by suppressing intracellular ROS in human AMs. In conclusion, cigarette smoking increases the susceptibility to SARS-CoV-2 by increasing ROS-induced ACE2 expression of AMs. Further investigation into the preventive effect of NAC on the pulmonary complications of COVID-19 is required.
Collapse
Affiliation(s)
- Chin-Wei Kuo
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lan Su
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tang-Hsiu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chung Lin
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chian-Wei Chen
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jeng-Shiuan Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Min Liao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yi Chan
- Division of Chest Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chang Shieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan.
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
43
|
Al-Kuraishy HM, Al-Gareeb AI, Alarfaj SJ, Al-Akeel RK, Faidah H, El-Bouseary MM, Sabatier JM, De Waard M, El-Masry TA, Batiha GES. Long COVID and risk of erectile dysfunction in recovered patients from mild to moderate COVID-19. Sci Rep 2023; 13:5977. [PMID: 37045862 PMCID: PMC10092929 DOI: 10.1038/s41598-023-32211-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) were shown to have reduced serum testosterone levels compared to healthy individuals. Low testosterone levels are linked with the development of erectile dysfunction (ED). In this case-controlled study, 20 healthy controls and 39 patients with ED 3 months after recovering from mild-to-moderate COVID-19 pneumonia were studied. The patients ranged in age from 31 to 47 years. To identify early and late COVID-19 infections, real-time polymerase-chain reaction (RT-PCR) and COVID-19 antibody testing were done. The levels of luteinizing hormone (LH), follicular stimulating hormone (FSH), total testosterone (TT), free testosterone (FT), free androgenic index (FAI), and sex hormone-binding globulin (SHBG) were measured. The sexual health inventory for patients (SHIM) score was used to measure the erectile function of the patients and controls. When compared to the controls, the TT serum level in long COVID-19 (LC) patients with ED was low (p = 0.01). In contrast to controls, FT and FAI were both lower in LC patients with ED. (p = 0.001). FSH serum levels did not significantly differ (p = 0.07), but in ED patients, LH serum levels were elevated. SHIM scores were associated with low TT (p = 0.30), FT (p = 0.09), and high LH (p = 0.76) in LC patients with ED. Male patients with decreased serum levels of LH and testosterone may have hypothalamic-pituitary-gonadal axis dysfunction, which could lead to the development of LC-induced ED. Therefore, an in-depth research is necessary to confirm the causal link between COVID-19 and ED in LC patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Sumaiah J Alarfaj
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Rasha Khalifah Al-Akeel
- Department of Zoology, Faculty of Entomology and Parasitology, King Saud University, Riyadh, Saudi Arabia
| | - Hani Faidah
- Microbiolgy Department Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Jean-Marc Sabatier
- CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), Aix-Marseille Université, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Michel De Waard
- Smartox Biotechnology, 6 Rue Des Platanes, 38120, Saint-Egrève, France
- L'institut du Thorax, INSERM, CNRS, UNIV NANTES, 44007, Nantes, France
- LabEx «Ion Channels, Science & Therapeutics», Université de Nice Sophia-Antipolis, 06560, Valbonne, France
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
44
|
Lott N, Gebhard CE, Bengs S, Haider A, Kuster GM, Regitz-Zagrosek V, Gebhard C. Sex hormones in SARS-CoV-2 susceptibility: key players or confounders? Nat Rev Endocrinol 2023; 19:217-231. [PMID: 36494595 PMCID: PMC9734735 DOI: 10.1038/s41574-022-00780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.
Collapse
Affiliation(s)
- Nicola Lott
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Gabriela M Kuster
- Department of Cardiology and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Cardiology, Inselspital Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
45
|
Yun YF, Feng ZY, Zhang JJ. COVID-19 and liver dysfunction in children: Current views and new hypotheses. World J Hepatol 2023; 15:353-363. [PMID: 37034238 PMCID: PMC10075013 DOI: 10.4254/wjh.v15.i3.353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses an extremely serious global impact on public healthcare for individuals of all ages, including children. Increasing evidence has shown that liver abnormalities are commonly found in children with COVID-19, and age-related features in innate and adaptive response have been demonstrated. However, there are few reports and studies on COVID-19 related liver injury in children, and the data are scattered. So that many contradictions have arose. This situation is not only due to the serious ethical issues in studying pediatric patients with COVID-19, but also because of the short duration and wide coverage of the COVID-19 epidemic, the severity and complexity of clinical cases varied, as did the inclusion criteria for case reporting and patient outcomes. Therefore, we totaled the incidences, characteristics and pathomechanism of liver injury in children since the COVID-19 outbreak. The etiology of COVID-19-related liver injury is divided into three categories: (1) The direct mechanism involves severe acute respiratory syndrome coronavirus 2 binding to angiotensin-converting enzyme 2 in the liver or bile duct to exert direct toxicity; (2) the indirect mechanisms include an inflammatory immune response and hypoxia; and (3) COVID-19-related treatments, such as mechanical ventilation and antiviral drugs, may cause liver injury. In summary, this minireview provides fundamental insights into COVID-19 and liver dysfunction in children.
Collapse
Affiliation(s)
- Yang-Fang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Zhi-Yuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| | - Jing-Jing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
46
|
Humbert M, Olofsson A, Wullimann D, Niessl J, Hodcroft EB, Cai C, Gao Y, Sohlberg E, Dyrdak R, Mikaeloff F, Neogi U, Albert J, Malmberg KJ, Lund-Johansen F, Aleman S, Björkhem-Bergman L, Jenmalm MC, Ljunggren HG, Buggert M, Karlsson AC. Functional SARS-CoV-2 cross-reactive CD4 + T cells established in early childhood decline with age. Proc Natl Acad Sci U S A 2023; 120:e2220320120. [PMID: 36917669 PMCID: PMC10041119 DOI: 10.1073/pnas.2220320120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (β-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.
Collapse
Affiliation(s)
- Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - David Wullimann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, 0379Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, 0372Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, 0372Oslo, Norway
| | - Soo Aleman
- Unit for Infectious Diseases and Dermatology, I73, Karolinska University Hospital, Huddinge, 141 86Stockholm, Sweden
- Infectious Diseases and Dermatology Unit, Department of Medicine, Huddinge, Karolinska Institutet, 141 86Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83Huddinge, Sweden
- Palliative Medicine, Stockholms Sjukhem, 112 19Stockholm, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83Linköping, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| |
Collapse
|
47
|
Bombaci B, Passanisi S, Sorrenti L, Salzano G, Lombardo F. Examining the associations between COVID-19 infection and pediatric type 1 diabetes. Expert Rev Clin Immunol 2023; 19:489-497. [PMID: 36888906 DOI: 10.1080/1744666x.2023.2189587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
INTRODUCTION The COVID-19 pandemic represents an unprecedented challenge for public health worldwide, not only for the very high number of cases and deaths but also due to a wide variety of indirect consequences. Among these, the possible relationship between SARS-CoV-2 infection and type 1 diabetes (T1D) in pediatric age has aroused notable interest in the scientific community. AREAS COVERED This perspective article aims to focus on the epidemiological trend of T1D during the pandemic, the diabetogenic role of SARS-CoV-2, and the influence of preexisting T1D on COVID-19 outcomes. EXPERT OPINION The incidence of T1D has considerably changed during the COVID-19 pandemic, but any direct role of SARS-CoV-2 is uncertain. It is more likely that SARS-CoV-2 infection acts as an accelerator of pancreatic β-cell immunological destruction, which is activated by known viral triggers whose spread has been abnormal during these pandemic years. Another interesting aspect to consider is the role of immunization as a potential protective factor both for T1D development and the risk of severe outcomes in already diagnosed patients. Future studies are still required to address unmet needs, including the early use of antiviral drugs to reduce the risk of metabolic decompensation in children with T1D.
Collapse
Affiliation(s)
- Bruno Bombaci
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Stefano Passanisi
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Lacrima Sorrenti
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Giuseppina Salzano
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Fortunato Lombardo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| |
Collapse
|
48
|
Iglesias J, Vassallo A, Ilagan J, Ang SP, Udongwo N, Mararenko A, Alshami A, Patel D, Elbaga Y, Levine JS. Acute Kidney Injury Associated with Severe SARS-CoV-2 Infection: Risk Factors for Morbidity and Mortality and a Potential Benefit of Combined Therapy with Tocilizumab and Corticosteroids. Biomedicines 2023; 11:845. [PMID: 36979824 PMCID: PMC10045336 DOI: 10.3390/biomedicines11030845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common complication in patients with severe COVID-19. METHODS We retrospectively reviewed 249 patients admitted to an intensive care unit (ICU) during the first wave of the pandemic to determine risk factors for AKI. Demographics, comorbidities, and clinical and outcome variables were obtained from electronic medical records. RESULTS Univariate analysis revealed older age, higher admission serum creatinine, elevated Sequential Organ Failure Assessment (SOFA) score, elevated admission D-Dimer, elevated CRP on day 2, mechanical ventilation, vasopressor requirement, and azithromycin usage as significant risk factors for AKI. Multivariate analysis demonstrated that higher admission creatinine (p = 0.0001, OR = 2.41, 95% CI = 1.56-3.70), vasopressor requirement (p = 0.0001, OR = 3.20, 95% CI = 1.69-5.98), elevated admission D-Dimer (p = 0.008, OR = 1.0001, 95% CI = 1.000-1.001), and elevated C-reactive protein (CRP) on day 2 (p = 0.033, OR = 1.0001, 95% CI = 1.004-1.009) were independent risk factors. Conversely, the combined use of Tocilizumab and corticosteroids was independently associated with reduced AKI risk (p = 0.0009, OR = 0.437, 95% CI = 0.23-0.81). CONCLUSION This study confirms the high rate of AKI and associated mortality among COVID-19 patients admitted to ICUs and suggests a role for inflammation and/or coagulopathy in AKI development. One should consider the possibility that early administration of anti-inflammatory agents, as is now routinely conducted in the management of COVID-19-associated acute respiratory distress syndrome, may improve clinical outcomes in patients with AKI.
Collapse
Affiliation(s)
- Jose Iglesias
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
- Department of Nephrology, Community Medical Center, RWJBarnabas Health, Toms River, NJ 08757, USA
- Department of Medicine, Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Andrew Vassallo
- Department of Pharmacy, Community Medical Center, RWJBarnabas Health, Toms River, NJ 08757, USA
| | - Justin Ilagan
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Song Peng Ang
- Department of Medicine, Community Medical Center, RWJBarnabas Health, Toms River, NJ 08757, USA
| | - Ndausung Udongwo
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Anton Mararenko
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Abbas Alshami
- Department of Medicine, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Dylon Patel
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Yasmine Elbaga
- Department of Pharmacy, Monmouth Medical Center Southern Campus, RWJBarnabas Health, 600 River Ave., Lakewood, NJ 08701, USA
| | - Jerrold S. Levine
- Department of Medicine, Division of Nephrology, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Medicine, Division of Nephrology, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
49
|
Importance of ACE2 for SARS-CoV-2 Infection of Kidney Cells. Biomolecules 2023; 13:biom13030472. [PMID: 36979408 PMCID: PMC10046276 DOI: 10.3390/biom13030472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In late 2019, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of coronavirus disease 2019 (COVID-19) emerged in China and spread rapidly around the world, causing an ongoing pandemic of global concern. COVID-19 proceeds with moderate symptoms in most patients, whereas others experience serious respiratory illness that requires intensive care treatment and may end in death. The severity of COVID-19 is linked to several risk factors including male sex, comorbidities, and advanced age. Apart from respiratory complications, further impairments by COVID-19 affecting other tissues of the human body are observed. In this respect, the human kidney is one of the most frequently affected extrapulmonary organs and acute kidney injury (AKI) is known as a direct or indirect complication of SARS-CoV-2 infection. The aim of this work was to investigate the importance of the protein angiotensin-converting enzyme 2 (ACE2) for a possible cell entry of SARS-CoV-2 into human kidney cells. First, the expression of the cellular receptor ACE2 was demonstrated to be decisive for viral SARS-CoV-2 cell entry in human AB8 podocytes, whereas the presence of the transmembrane protease serine 2 (TMPRSS2) was dispensable. Moreover, the ACE2 protein amount was well detectable by mass spectrometry analysis in human kidneys, while TMPRSS2 could be detected only in a few samples. Additionally, a negative correlation of the ACE2 protein abundance to male sex and elderly aged females in human kidney tissues was demonstrated in this work. Last, the possibility of a direct infection of kidney tubular renal structures by SARS-CoV-2 was demonstrated.
Collapse
|
50
|
Ahmad A, Makhmutova Z, Cao W, Majaz S, Amin A, Xie Y. Androgen receptor, a possible anti-infective therapy target and a potent immune respondent in SARS-CoV-2 spike binding: a computational approach. Expert Rev Anti Infect Ther 2023; 21:317-327. [PMID: 36757420 DOI: 10.1080/14787210.2023.2179035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Although androgen in gender disparity of COVID-19 has been implied, no direct link has been provided. RESEARCH DESIGN AND METHODS Here, we applied AlphaFold multimer, network and single cells database analyses to highlight specificity of Androgen receptor (AR) against spike receptor binding protein (RBD) of SARS-CoV-2. RESULTS LXXL motifs in spike RBD are essential for AR binding. RBD LXXA mutation complex with the AR depicting slightly reduced binding energy, as LXXLL motif usually mediates nuclear receptor binding to coregulators. Moreover, AR preferred to bind a LYRL motif in specificity and interaction interface, and showed reduced affinity against Omicron compared to other variants (alpha, beta, gamma, and delta). Importantly, RBD LYRL motif is a conserved antigenic epitope (9 residues) for T-cell response. Network analysis of AR-related genes against COVID-19 database showed T-cell signaling regulation, and CD8+ T-cell spatial location in AR+ single cells, which is consistent with the AR binding motif LYRL in epitope function. CONCLUSIONS We provided the potent mechanisms of AR binding to RBD linking to immune response and vaccination shift. AR could be an anti-infective therapy target for anti-Omicron new lineages.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Zhandaulet Makhmutova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Wenwen Cao
- Respiratory Department, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, Shandong, China
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Amr Amin
- Biology Department, UAE University, Al Ain, UAE
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|