1
|
Wang T, Shi X, Xu X, Zhang J, Ma Z, Meng C, Jiao D, Wang Y, Chen Y, He Z, Zhu Y, Liu HN, Zhang T, Jiang Q. Emerging prodrug and nano-drug delivery strategies for the detection and elimination of senescent tumor cells. Biomaterials 2025; 318:123129. [PMID: 39922127 DOI: 10.1016/j.biomaterials.2025.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/15/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
Tumor cellular senescence, characterized by reversible cell cycle arrest following anti-cancer therapies, presents a complex paradigm in oncology. Given that senescent tumor cells may promote angiogenesis, tumorigenesis, and metastasis, selective killing senescent cells (SCs)-a strategy termed senotherapy-has emerged as a promising approach to improve cancer treatment. However, the clinical implementation of senotherapy faces significant hurdles, including lack of precise methods for SCs identification and the potential for adverse effects associated with highly cytotoxic senolytic agents. In this account, we elucidate recent advancement in developing novel approaches for the detection and selective elimination of SCs, encompassing prodrugs, nanoparticles, and other cutting-edge drug delivery systems such as PROTAC technology and CAR T cell therapy. Furthermore, we explore the paradoxical nature of SCs, which can induce growth arrest in adjacent neoplastic cells and recruit immunomodulatory cells that contribute to tumor suppression. Therefore, we utilize SCs membrane as vehicles to elicit antitumor immunity and potentially augment existing anti-cancer therapies. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of SCs detection, elimination or utilization.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaolan Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaming Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengdi Ma
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chen Meng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dian Jiao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yubo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanfei Chen
- School of Hainan Provincial Drug Safety Evaluation Research Center, Hainan Medical University, Haikou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying Zhu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, 110002, China.
| | - He-Nan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Medical University, Haikou, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Salvarredi L, Agüero H, Millan ME, Marra MF, Callegari E, Castro C, Lopez L. Radiation-induced senescent melanoma cells secrete soluble factors that trigger bystander senescence. Int J Radiat Biol 2025:1-10. [PMID: 40397620 DOI: 10.1080/09553002.2025.2505525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Senescence is a key cellular response to ionizing radiation. Senescent cells experience irreversible growth arrest while remaining metabolically active and secrete a distinct set of proteins, collectively referred to as the senescence-associated secretory phenotype (SASP). These secreted factors influence neighboring non-irradiated cells through a mechanism known as the bystander effect. This study aimed to investigate and characterize the bystander effect in a melanoma cell model. MATERIAL AND METHODS Murine melanoma B16F0 cells were exposed to X-irradiation (10 Gy), and senescence was induced 3 days later. Conditioned media from the senescent cells was collected and used to culture non-irradiated B16F0 cells. Proliferation, viability, clonogenic capacity, DNA damage foci formation, apoptosis, and senescence were assessed. The composition of the senescence-associated secretory phenotype was analyzed using mass spectrometry and bioinformatics tools. RESULTS Conditioned media from senescent cells induced by radiation reduced growth and promoted senescence in tumor cell cultures not exposed to ionizing radiation. Mass spectrometry analysis revealed greater protein diversity and abundance in conditioned media from senescent cells compared to that from non-irradiated cells. Additionally, conditioned media from senescent cells contained higher concentrations of proteins related to immune response, cellular aging, and responses to oxidative stress. CONCLUSIONS Cells undergoing radiation-induced senescence promote bystander senescence by secreting soluble factors involved in the induction and maintenance of senescence.
Collapse
Affiliation(s)
- Leonardo Salvarredi
- Nuclear Medicine School Foundation, Mendoza, Argentina
- National Commission of Atomic Energy (CNEA), Mendoza, Argentina
- Balseiro Institute, National Commission of Atomic Energy & National University of Cuyo, Mendoza, Argentina
- Faculty of Medical Sciences, Institute of Biochemistry and Biotechnology, National University of Cuyo, Mendoza, Argentina
| | - Héctor Agüero
- Nuclear Medicine School Foundation, Mendoza, Argentina
- Balseiro Institute, National Commission of Atomic Energy & National University of Cuyo, Mendoza, Argentina
| | - María Elisa Millan
- Institute of Histology and Embryology of Mendoza (IHEM), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - María Fernanda Marra
- Institute of Histology and Embryology of Mendoza (IHEM), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, USA
| | - Claudia Castro
- Faculty of Medical Sciences, Institute of Biochemistry and Biotechnology, National University of Cuyo, Mendoza, Argentina
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Luis Lopez
- Institute of Histology and Embryology of Mendoza (IHEM), National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
3
|
Park SW, Shin J, Jeong BK, Byun S, Lee KS, Choi J. The Effects of Extracorporeal Shock Wave Therapy on Cutaneous Radiation Injury in a Mouse Model. Plast Reconstr Surg 2025; 155:813-825. [PMID: 39344004 DOI: 10.1097/prs.0000000000011782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Although radiation-induced skin injuries are a concern in patients receiving radiation therapy, there are few effective treatments. The aim of this study was to evaluate the protective effects of extracorporeal shock wave therapy (ESWT) on irradiated fibroblasts and mouse skin. METHODS In this in vitro study of human dermal fibroblasts, the experimental group was subjected to ESWT after irradiation (20 Gy). The control groups were only irradiated or only subjected to ESWT. At 24 or 48 hours after ESWT, cell viability, cell migration, and mRNA and protein expression were measured. In the in vivo study, the experimental group (7 mice) was treated with ESWT after irradiation (45 Gy). The control group (7 mice) was only irradiated. At 8 weeks after irradiation, dorsal skin was harvested for histopathologic examination and protein isolation. RESULTS In dermal fibroblasts, treatment with ESWT increased viability of irradiated cells compared with irradiated-only and untreated cells ( P = 0.005). ESWT increased cell migration 24 hours after irradiation ( P = 0.002) and decreased transforming growth factor-β (TGF-β) protein expression 48 hours after irradiation ( P = 0.024). In mice, ESWT decreased the level of radiation-related skin injury ( P = 0.006). Treatment of irradiated skin with ESWT decreased TGF-β1 ( P = 0.009) and phospho-Smad3 ( P = 0.009) protein expression, decreased myofibroblasts ( P = 0.047), and increased vessel density ( P < 0.001). CONCLUSION This study demonstrated that ESWT alleviated radiation-induced fibrosis by downregulating TGF-β1 expression, suggesting the potential of ESWT for the treatment of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Sang Woo Park
- From the Department of Plastic and Reconstructive Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine
| | - Jaebong Shin
- Department of Plastic and Reconstructive Surgery, Gyeongsang National University School of Medicine
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital
| | | | - Kyung Suk Lee
- Department of Plastic and Reconstructive Surgery, Gyeongsang National University School of Medicine
| | - Jaehoon Choi
- Plastic and Reconstructive Surgery, Keimyung University School of Medicine
| |
Collapse
|
4
|
Jiang H, Zhang Y, Ji P, Ming J, Li Y, Zhou Y. Surfactant protein D alleviates chondrocytes senescence by upregulating SIRT3/SOD2 pathway in osteoarthritis. Mol Med 2025; 31:161. [PMID: 40307686 PMCID: PMC12044875 DOI: 10.1186/s10020-025-01221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 04/21/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Osteoarthritis (OA) is an age-related degenerative disease that affects bones and joints. The hallmark pathogenesis of OA is associated with chondrocyte senescence. Surfactant protein D (SP-D) is a member of the innate immune proteins family, which can inhibit the immune inflammatory response of chondrocytes. However, the effect of SP-D on chondrocyte senescence phenotype is poorly studied. The present study investigated the phenotypic regulation of OA chondrocyte senescence mediated by SP-D and explored the underlying molecular mechanism. METHODS In this study, an in vitro senescence chondrocyte model was generated by subjecting chondrocytes to IL-1β treatment. Furthermore, the expression of aging-related biomarkers and mitochondrial functions in SP-D overexpressing chondrocytes was observed. Co-immunoprecipitation was conducted to verify the association between SP-D and the identifed proteins within chondrocytes. Moreover, a rat OA model was established by destabilization of the medial meniscus surgery, and the effect of SP-D on reversing the aging phenotype of OA cartilage was investigated. RESULTS The results indicated that SP-D significantly decreased senescence and enhanced mitochondrial functions in senescent chondrocytes. The RNA-sequencing analysis revealed that the SIRT3/SOD2 pathway predominantly modulated the effect of SP-D on alleviating senescence. In addition, SP-D overexpression mitigated chondrocyte senescence, suppressed senescence-associated secretory phenotype (SASP) secretion and ameliorated mitochondrial damage. In the rat OA model, SP-D inhibited aging-related pathological changes by upregulating SIRT3/SOD2 pathway, thereby protecting the cartilage tissue integrity. CONCLUSION These findings indicate that SP-D modulates the inhibition of chondrocyte senescence by upregulating SIRT3/SOD2 pathway. These data indicate that targeting SP-D and the SIRT3/SOD2 pathway might be a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Piyao Ji
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Casanova V, Rodríguez-Agustín A, Ayala-Suárez R, Moraga E, Maleno MJ, Mallolas J, Martínez E, Sánchez-Palomino S, Miró JM, Alcamí J, Climent N. HIV-Tat upregulates the expression of senescence biomarkers in CD4 + T-cells. Front Immunol 2025; 16:1568762. [PMID: 40342418 PMCID: PMC12058733 DOI: 10.3389/fimmu.2025.1568762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Current antiretroviral therapy (ART) for HIV infection reduces plasma viral loads to undetectable levels and has increased the life expectancy of people with HIV (PWH). However, this increased lifespan is accompanied by signs of accelerated aging and a higher prevalence of age-related comorbidities. Tat (Trans-Activator of Transcription) is a key protein for viral replication and pathogenesis. Tat is encoded by 2 exons, with the full-length Tat ranging from 86 to 101 aa (Tat101). Introducing a stop codon in position 73 generates a 1 exon, synthetic 72aa Tat (Tat72). Intracellular, full-length Tat activates the NF-κB pro-inflammatory pathway and increases antiapoptotic signals and ROS generation. These effects may initiate a cellular senescence program, characterized by cell cycle arrest, altered cell metabolism, and increased senescence-associated secretory phenotype (SASP) mediator release However, the precise role of HIV-Tat in inducing a cellular senescence program in CD4+ T-cells is currently unknown. Methods Jurkat Tetoff cell lines stably transfected with Tat72, Tat101, or an empty vector were used. Flow cytometry and RT-qPCR were used to address senescence biomarkers, and 105 mediators were assessed in cell supernatants with an antibody-based membrane array. Key results obtained in Jurkat-Tat cells were addressed in primary, resting CD4+ T-cells by transient electroporation of HIV-Tat-FLAG plasmid DNA. Results In the Jurkat cell model, expression of Tat101 increased the levels of the senescence biomarkers BCL-2, CD87, and p21, and increased the release of sCD30, PDGF-AA, and sCD31, among other factors. Tat101 upregulated CD30 and CD31 co-expression in the Jurkat cell surface, distinguishing these cells from Tat72 and Tetoff Jurkats. The percentage of p21+, p16+, and γ-H2AX+ cells were higher in Tat-expressing CD4+ T-cells, detected as a FLAG+ population compared to their FLAG- (Tat negative) counterparts. Increased levels of sCD31 and sCD26 were also detected in electroporated CD4+ T-cell supernatants. Discussion Intracellular, full-length HIV-Tat expression increases several senescence biomarkers in Jurkat and CD4+ T-cells, and SASP/Aging mediators in cell supernatants. Intracellular HIV-Tat may initiate a cellular senescence program, contributing to the premature aging phenotype observed in PWH.
Collapse
Affiliation(s)
- Víctor Casanova
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Andrea Rodríguez-Agustín
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rubén Ayala-Suárez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Elisa Moraga
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - María José Maleno
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Mallolas
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Esteban Martínez
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José M. Miró
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Infectious Diseases Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Reial Academia de Medicina de Catalunya (RAMC), Barcelona, Spain
| | - José Alcamí
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Núria Climent
- AIDS and HIV Infection Group, Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
- Department of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Chen L, Yi Y, Nie J. Multiomic insight into the involvement of cell aging related genes in the pathogenesis of endometriosis. Sci Rep 2025; 15:14103. [PMID: 40269081 PMCID: PMC12019183 DOI: 10.1038/s41598-025-96711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Endometriosis significantly impacts women's health and fertility, with cell aging playing a crucial role in its development. This study utilized a multi-omic summary Mendelian randomization (SMR) analysis, integrating genome-wide association studies (GWAS), expression quantitative trait loci (eQTLs), methylation quantitative trait loci (mQTLs), and protein quantitative trait loci (pQTLs). The goal was to identify genes that exhibit causal associations between cell aging and endometriosis. Validation was conducted using the FinnGen R10 and UK Biobank cohorts. The SMR and HEIDI tests evaluated the genetic variants linked to both cell aging and endometriosis risk. Colocalization analysis revealed shared genetic variants, uncovering significant associations between the two conditions. A total of 196 CpG sites in 78 genes, alongside 18 eQTL-associated genes and 7 pQTL-associated proteins, were identified. Notably, the MAP3K5 gene displayed contrasting methylation patterns linked to endometriosis risk. In validation cohorts, the THRB gene and ENG protein were confirmed as risk factors. The findings suggest a causal mechanism where specific methylation patterns downregulate the MAP3K5 gene, heightening endometriosis risk, highlighting it and associated pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Limei Chen
- Hysteroscopy center, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yunhua Yi
- Department of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Jichan Nie
- Department of Gynecology, Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
7
|
Zhou Y, Picchio ML, Nie Y, Wang L, Sanz O, Liu Y, Xu X, Prantl L, Felthaus O, Wang W, Calderón M, Ma N. Antioxidant and Anti-Senescence Polyvinyl Alcohol-Gallic Acid Supramolecular Hydrogels for Stem Cell Culture. Adv Healthc Mater 2025:e2402882. [PMID: 40243864 DOI: 10.1002/adhm.202402882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Replicative senescence presents a significant challenge in mesenchymal stem cell (MSC) expansion due to high reactive oxygen species (ROS) levels generated during culture. Elevated ROS levels lead to oxidative stress, cellular damage, and senescence, limiting the biomedical applications of MSCs. In this study, a supramolecular thermo-reversible hydrogel composed of the natural polyphenolic compound gallic acid (GA) and polyvinyl alcohol (PVA) was designed to scavenge ROS and mitigate MSC senescence. The PVA-GA hydrogel, stabilized by strong hydrogen bonding forces, exhibited an elastic modulus comparable to that of human soft tissue and facilitated the sustained release of GA over 14 days. It enhanced MSC survival, protected against oxidative stress, reduced intracellular ROS levels, diminished mitochondrial damage, and decreased cellular senescence. The hydrogel maintained the multilineage differentiation potential and typical phenotype of MSCs. Additionally, it preserved vascular endothelial growth factor (VEGF) secretion from MSCs under oxidative stress and enhanced their pro-angiogenic effect. The conditioned medium derived from MSCs in the hydrogel group promoted migration and tube formation of human umbilical vein endothelial cells (HUVECs). These findings suggest that the PVA-GA hydrogel holds significant promise for the biomedical applications of MSCs, potentially addressing the challenges posed by oxidative stress and cellular senescence.
Collapse
Affiliation(s)
- Yiduo Zhou
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Matías L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
- Universidad Tecnológica Nacional, Facultad Regional Villa María, Av. Universidad 450 (5900) Villa María, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, Buenos Aires, Argentina
| | - Yan Nie
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Lei Wang
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Oihane Sanz
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
| | - Yue Liu
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Xun Xu
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Weiwei Wang
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Nan Ma
- Institute of Chemistry and Biochemistry, Free University of Berlin, 14195, Berlin, Germany
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Institute of Functional Materials for Sustainability, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
| |
Collapse
|
8
|
Wang S, Wang L, Zhao Y. ALDH1A3 Regulates Cellular Senescence and Senescence-Associated Secretome in Prostate Cancer. Cancers (Basel) 2025; 17:1184. [PMID: 40227735 PMCID: PMC11987895 DOI: 10.3390/cancers17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Radiotherapy is a key treatment for cancer, effectively controlling local tumor growth through DNA damage that induces senescence or apoptosis in cancer cells. However, radiotherapy can trigger complex cellular reactions, such as cell senescence, which is characterized by irreversible cell cycle arrest and the secretion of pro-inflammatory factors known as the senescent-associated secretory phenotype (SASP). Methods: This study investigates the regulatory role of ALDH1A3, a key enzyme implicated in cancer cell metabolism and radiotherapy resistance, in the induction of senescence and SASP. Using in vitro models, we demonstrate that ALDH1A3 knockdown accelerates cellular senescent-like phenotype while regulating the SASP through the cGAS-STING immune response pathway. Results: Our results indicate that while ALDH1A3 knockdown promotes senescence, it reduces the secretion of pro-inflammatory factors via inhibition of the cGAS-STING pathway, potentially mitigating SASP-related tumor progression. Conclusions: These findings provide insights into the molecular mechanisms underlying prostate cancer cell senescence and suggest that ALDH1A3 could be a potential therapeutic target to enhance the efficacy of radiotherapy while controlling the adverse effects of SASP.
Collapse
Affiliation(s)
- Sen Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
| | - Lin Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China;
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China;
| |
Collapse
|
9
|
Scalora N, DeWane G, Drebot Y, Khan AA, Sinha S, Ghosh K, Robinson D, Cogswell P, Bellizzi AM, Snow AN, Breheny P, Chimenti MS, Tanas MR. EHE cell cultures: a platform for mechanistic and therapeutic investigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644191. [PMID: 40196670 PMCID: PMC11974726 DOI: 10.1101/2025.03.24.644191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epithelioid hemangioendothelioma (EHE) is a difficult to treat vascular sarcoma defined by TAZ- CAMTA1 or YAP-TFE3 fusion proteins. Human cell lines needed to further understand the pathogenesis of EHE have been lacking. Herein, we describe a method to generate EHE extended primary cell cultures. An integrated multi -omic and functional approach was used to characterize these cultures. The cell cultures, relatively homogenous by single cell RNA-Seq, demonstrated established characteristics of EHE including increased proliferation, anchorage independent growth, as well as the overall gene expression profile and secondary genetic alterations seen in EHE. Whole genome sequencing (WGS) identified links to epigenetic modifying complexes, metabolic processes, and pointed to the importance of the extracellular matrix (ECM) in these tumors. Bulk RNA-Seq demonstrated upregulation of pathways including PI3K-Akt signaling, ECM/ECM receptor interaction, and the Hippo signaling pathway. Development of these extended primary cell cultures allowed for single-cell profiling which demonstrated different cell compartments within the cultures. Furthermore, the cultures served as a therapeutic platform to test the efficacy of TEAD inhibitors in vitro . Overall, the development of EHE primary cell cultures will aid in the mechanistic understanding of this sarcoma and serve as a model system to test new therapeutic approaches.
Collapse
|
10
|
Xu J, Dong L, Xie X, Geng BD, Lu J, Dong Y, Hu Y, Liu C, Mao Y, Ge G, Ren Z. Human umbilical cord-derived mesenchymal stem cells improve thymus and spleen functions in D-galactose-induced aged mice. Sci Rep 2025; 15:9470. [PMID: 40108399 PMCID: PMC11923087 DOI: 10.1038/s41598-025-94364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
As aging progresses, the structures and functions of immune organs such as the thymus and spleen deteriorate, leading to impaired immune function and immune senescence. This study investigated the potential of umbilical cord mesenchymal stem cells (UC-MSCs) to mitigate D-galactose-induced immune senescence by enhancing the structural and functional integrity of aging immune organs and regulating the gut microbiota. The findings show that UC-MSCs treatment significantly delayed thymus and spleen atrophy and reduced the number of senescence-associated β-galactosidase (SA-β-gal) positive cells. At the molecular level, UC-MSCs treatment downregulated the expression of aging-related genes, including p16, p53, p21, and RB. It also boosted antioxidant enzyme activity, increasing the levels of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), while decreasing serum malondialdehyde (MDA) levels by activating the Nrf2/HO-1 pathway. Additionally, UC-MSCs treatment restored the balance of the gut microbiota. These results demonstrate that UC-MSCs significantly improve the structural and functional integrity of immune organs and enhance the composition of the gut microbiome, offering a potential strategy for delaying immune senescence.
Collapse
Affiliation(s)
- Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Xiaofen Xie
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Bill D Geng
- School of Natural Science, University of Texas at Austin, Austin, USA
| | - Junhou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Yongxi Dong
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yang Hu
- Children's Medical Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Can Liu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Guizhong Biotechnology Co., Ltd., Guiyang, China
| | - Yuanhu Mao
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Guo Ge
- Key Laboratory of Medical Biology, Guizhou Medical University, Ankang Avenue, Gui'an New District, China.
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China.
| | - Zhenkui Ren
- Clinical Laboratory, Second People's Hospital of Guizhou Province, 206 South Section of Xintian Avenue, Guiyang City, China.
| |
Collapse
|
11
|
Xu M, Xu H, Ling YW, Liu JJ, Song P, Fang ZQ, Yue ZS, Duan JL, He F, Wang L. Neutrophil extracellular traps-triggered hepatocellular senescence exacerbates lipotoxicity in non-alcoholic steatohepatitis. J Adv Res 2025:S2090-1232(25)00175-4. [PMID: 40068761 DOI: 10.1016/j.jare.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
INTRODUCTION Neutrophils are initial responders in inflammation and contribute to non-alcoholic fatty liver disease (NAFLD) progression to steatohepatitis (NASH). Neutrophil extracellular traps (NETs) are implicated in liver injury, yet their precise mechanisms in NASH progression remains unclear. OBJECTIVES This study investigates how NETs drive NASH progression by exacerbating hepatocyte lipotoxicity and explore the regulatory mechanism of NETs formation and its downstream effects on liver pathology. METHODS Clinical samples from NASH patients and diet-induced NASH mice were analyzed for NET levels. NETs were pharmacologically inhibited, and senescent cells were selectively eliminated in mice. Myeloid-specific RBP-J knockout mice were generated to disrupt Notch signaling, with subsequent evaluation of NET formation, senescence markers, steatosis, fibrosis, and inflammation. RESULTS NETs were elevated in NASH patients and mice, correlating with hepatocyte senescence and lipotoxicity. Pharmacological NET disruption reduced hepatocyte senescence, accompanied by attenuated steatosis and fibrosis. Senescent cell clearance replicated these improvements, confirming liver senescence emerges is a vital step for NETs to promote the progression of NASH. Myeloid-specific Notch signaling ablation suppressed NET generation, concurrently decreasing lipid deposition and liver inflammation. CONCLUSION Our findings elucidate a novel mechanism by which neutrophil-derived Notch driven NETs exacerbate NASH by promoting cell senescence, thereby contributing to hepatic steatosis and fibrosis. This insight may provide potential intervention strategies and therapeutic targets for NASH treatment.
Collapse
Affiliation(s)
- Ming Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Wei Ling
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Qiang Fang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen-Sheng Yue
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Fei He
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
12
|
Ziglari T, Calistri NL, Finan JM, Derrick DS, Nakayasu ES, Burnet MC, Kyle JE, Hoare M, Heiser LM, Pucci F. Senescent Cell-Derived Extracellular Vesicles Inhibit Cancer Recurrence by Coordinating Immune Surveillance. Cancer Res 2025; 85:859-874. [PMID: 39804967 PMCID: PMC11878441 DOI: 10.1158/0008-5472.can-24-0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/28/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Senescence is a nonproliferative survival state that cancer cells can enter to escape therapy. In addition to soluble factors, senescence cells secrete extracellular vesicles (EV), which are important mediators of intercellular communication. To explore the role of senescent cell (SC)-derived EVs (senEV) in inflammatory responses to senescence, we developed an engraftment-based senescence model in wild-type mice and genetically blocked senEV release in vivo, without significantly affecting soluble mediators. SenEVs were both necessary and sufficient to trigger immune-mediated clearance of SCs, thereby suppressing tumor growth. In the absence of senEVs, the recruitment of MHC-II+ antigen-presenting cells (APC) to the senescence microenvironment was markedly impaired. Blocking senEV release redirected the primary target of SC signaling from APCs to neutrophils. Comprehensive transcriptional and proteomic analyses identified six ligands specific to senEVs, highlighting their role in promoting APC-T cell adhesion and synapse formation. APCs activated CCR2+CD4+ TH17 cells, which seemed to inhibit B-cell activation, and CD4+ T cells were essential for preventing tumor recurrence. These findings suggest that senEVs complement the activity of secreted inflammatory mediators by recruiting and activating distinct immune cell subsets, thereby enhancing the efficient clearance of SCs. These conclusions may have implications not only for tumor recurrence but also for understanding senescence during de novo carcinogenesis. Consequently, this work could inform the development of early detection strategies for cancer based on the biology of cellular senescence. Significance: Chemotherapy-treated senescent tumor cells release extracellular vesicles that trigger an immune response and suppress tumor recurrence. See related commentary by Almeida and Melo, p. 833.
Collapse
Affiliation(s)
- Tahereh Ziglari
- Department of Otolaryngology – Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, US
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
- Current address: Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, US
| | - Nicholas L. Calistri
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Jennifer M. Finan
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
| | - Daniel S. Derrick
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, US
| | - Matthew Hoare
- Early Cancer Institute, University of Cambridge, Cambridge, UK
| | - Laura M. Heiser
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, US
| | - Ferdinando Pucci
- Department of Otolaryngology – Head and Neck Surgery, Oregon Health & Science University, Portland, Oregon, US
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon, US
| |
Collapse
|
13
|
Reid AN, Jayadev S, Prater KE. Microglial Responses to Alzheimer's Disease Pathology: Insights From "Omics" Studies. Glia 2025; 73:519-538. [PMID: 39760224 PMCID: PMC11801359 DOI: 10.1002/glia.24666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Human genetics studies lent firm evidence that microglia are key to Alzheimer's disease (AD) pathogenesis over a decade ago following the identification of AD-associated genes that are expressed in a microglia-specific manner. However, while alterations in microglial morphology and gene expression are observed in human postmortem brain tissue, the mechanisms by which microglia drive and contribute to AD pathology remain ill-defined. Numerous mouse models have been developed to facilitate the disambiguation of the biological mechanisms underlying AD, incorporating amyloidosis, phosphorylated tau, or both. Over time, the use of multiple technologies including bulk tissue and single cell transcriptomics, epigenomics, spatial transcriptomics, proteomics, lipidomics, and metabolomics have shed light on the heterogeneity of microglial phenotypes and molecular patterns altered in AD mouse models. Each of these 'omics technologies provide unique information and biological insight. Here, we review the literature on the approaches and findings of these methods and provide a synthesis of the knowledge generated by applying these technologies to mouse models of AD.
Collapse
Affiliation(s)
- Aquene N. Reid
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195
| | - Katherine E. Prater
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
14
|
Ji Y, Chen Z, Cai J. Roles and mechanisms of histone methylation in vascular aging and related diseases. Clin Epigenetics 2025; 17:35. [PMID: 39988699 PMCID: PMC11849368 DOI: 10.1186/s13148-025-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
The global aging trend has posed significant challenges, rendering healthcare for older adults a crucial focus in medical research. Among the numerous health concerns related to aging, vascular aging and dysfunction are important risk factors and underlying causes of age-related diseases. Histone methylation and demethylation, which are involved in gene expression and cellular senescence, are closely associated with the occurrence and development of vascular aging. Consequently, this review aimed to identify the role of histone methylation in the pathogenesis of vascular aging and its potential for treating age-related vascular diseases and provided new insights into therapeutic strategies targeting the vascular system.
Collapse
Affiliation(s)
- Yufei Ji
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhenzhen Chen
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Jun Cai
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Peking Union Medical College, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Osumi T, Nagano T, Iwasaki T, Nakanishi J, Miyazawa K, Kamada S. Lysine-specific demethylase 1 (LSD1) suppresses cellular senescence by riboflavin uptake-dependent demethylation activity. Sci Rep 2025; 15:6525. [PMID: 39988719 PMCID: PMC11847913 DOI: 10.1038/s41598-025-91004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Cellular senescence is defined as a permanent proliferation arrest caused by various stresses, including DNA damage. We have recently identified the riboflavin transporter SLC52A1, whose expression is increased in response to senescence-inducing stimuli. Interestingly, increased expression of SLC52A1 suppresses cellular senescence through the uptake of riboflavin and an increase in intracellular flavin adenine dinucleotide (FAD), an enzyme cofactor synthesized from riboflavin. However, how FAD suppresses cellular senescence has not been fully elucidated. Therefore, in this study, we focused on lysine-specific demethylase 1 (LSD1), which uses FAD as a cofactor. First, we found that LSD1 inhibition promoted DNA damage-induced cellular senescence, whereas ectopic expression of LSD1 suppressed cellular senescence, suggesting that LSD1 suppresses senescence. In addition, the demethylation activity of LSD1 against histone H3 and p53 was increased by senescence-inducing stress in a riboflavin uptake-dependent manner. Furthermore, it was revealed that the LSD1 demethylation activity was required for suppression of pro-senescence genes Sirtuin-4 and p21 whose expression is modified by methylation status of histone H3 and possibly p53, respectively. Collectively, these results suggest that the FAD increase by senescence-inducing stress leads to LSD1-mediated demethylation of histone H3 and p53, which results in the suppression of pro-senescence genes to inhibit senescence induction.
Collapse
Affiliation(s)
- Taiichi Osumi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Taiki Nagano
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Tetsushi Iwasaki
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Jotaro Nakanishi
- MIRAI Technology Institute, Business Core Technology Center, Shiseido Co., LTD, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Kazuyuki Miyazawa
- MIRAI Technology Institute, Business Core Technology Center, Shiseido Co., LTD, 1-2-11 Takashima, Nishi-ku, Yokohama, 220-0011, Japan
| | - Shinji Kamada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
16
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Zhang B, Pang Y. Exploring the genetic profiles linked to senescence in thyroid tumors: insights on predicting disease progression and immune responses. Front Oncol 2025; 15:1545656. [PMID: 39980566 PMCID: PMC11839597 DOI: 10.3389/fonc.2025.1545656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Thyroid cancer (THCA) is the most common endocrine tumor. Research on Cell Senescence Associated Genes (CSAGs), which impact many cancers, remains limited in the THCA field. Methods In this study, we downloaded THCA sample data from several public databases and selected a set of CSAGs for subsequent analysis. Differential expression genes (DEGs) obtained through differential analysis were intersected with prognostic genes identified by Cox regression analysis to explore the correlation among these crossed genes. We constructed a prognostic model using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and verified its efficacy. Kaplan-Meier survival curves were plotted, and Receiver Operating Characteristic (ROC) curves rigorously confirmed the accuracy of model predictions. Results To evaluate the predictive power of prognostic models across different phenotypic traits, we performed survival analysis, Gene Set Enrichment Analysis (GSEA), and immune-related differential analysis. Differences in tumor mutation burden (TMB) and treatment response between high-risk and low-risk patient groups were also analyzed. Finally, the predictive effect of our model on immunotherapy response was validated, showing promising results for THCA patients. Discussion Our study enhances the understanding of THCA cell senescence and provides new therapeutic insights. The proposed model not only accurately predicts patient survival but also reveals factors related to immunotherapy response, offering new perspectives for personalized medicine.
Collapse
Affiliation(s)
- Baoliang Zhang
- Department of Emergency, Tongji Hospital of Tongji University, Shanghai, China
| | - Yanping Pang
- Department of Ultrasound, Tongji Hospital of Tongji University, Shanghai, China
| |
Collapse
|
18
|
Gao M, Li H, Zhang J. RB functions as a key regulator of senescence and tumor suppression. Semin Cancer Biol 2025; 109:1-7. [PMID: 39675647 DOI: 10.1016/j.semcancer.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The Retinoblastoma (RB) protein is crucial for regulating gene transcription and chromatin remodeling, impacting cell cycle progression, cellular senescence, and tumorigenesis. Cellular senescence, characterized by irreversible growth arrest and phenotypic alterations, serves as a vital barrier against tumor progression and age-related diseases. RB is crucial in mediating senescence and tumor suppression by modulating the RB-E2F pathway and cross talking with other key senescence effectors such as p53 and p16INK4a. The interplay between RB-mediated cell cycle arrest and cellular senescence offers critical insights into tumorigenesis and potential therapeutic strategies. Leveraging RB-mediated senescence presents promising opportunities for cancer therapy, including novel approaches in tumor immunotherapy designed to enhance treatment efficacy. This review highlights recent advancements in the RB signaling pathway, focusing on its roles in cellular senescence and tumor suppression, and discusses its potential to improve tumor management and clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Haiou Li
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Tumor Biological Behavior/Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Zhan Y, Huang Q, Deng Z, Chen S, Yang R, Zhang J, Zhang Y, Peng M, Wu J, Gu Y, Zeng Z, Xie J. DNA hypomethylation-mediated upregulation of GADD45B facilitates airway inflammation and epithelial cell senescence in COPD. J Adv Res 2025; 68:201-214. [PMID: 38342401 PMCID: PMC11785585 DOI: 10.1016/j.jare.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024] Open
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease typically characterized by chronic airway inflammation, with emerging evidence highlighting the driving role of cellular senescence-related lung aging. Accelerated lung aging and inflammation mutually reinforce each other, creating a detrimental cycle that contributes to disease progression. Growth arrest and DNA damage-inducible (GADD45) family has been reported to involve in multiple biological processes, including inflammation and senescence. However, the role of GADD45 family in COPD remains elusive. OBJECTIVES To investigate the role and mechanism of GADD45 family in COPD pathogenesis. METHODS Expressions of GADD45 family were evaluated by bioinformatic analysis combined with detections in clinical specimens. The effects of GADD45B on inflammation and senescence were investigated via constructing cell model with siRNA transfection or overexpression lentivirus infection and animal model with Gadd45b knockout. Targeted bisulfite sequencing was performed to probe the influence of DNA methylation in GADD45B expression in COPD. RESULTS GADD45B expression was significantly increased in COPD patients and strongly associated with lung function, whereas other family members presented no changes. GADD45B upregulation was confirmed in mice exposed by cigarette smoke (CS) and HBE cells treated by CS extract as well. Moreover, experiments involving bidirectional modulation of GADD45B expression in HBE cells further substantiated its positive regulatory role in inflammatory response and cellular senescence. Mechanically, GADD45B-facilitated inflammation was directly mediated by p38 phosphorylation, while GADD45B interacted with FOS to promote cellular senescence in a p38 phosphorylation-independent manner. Furthermore, Gadd45b deficiency remarkably alleviated inflammation and senescence of lungs in CS-exposed mice, as well as improved emphysema and lung function. Eventually, in vivo and vitro experiments demonstrated that GADD45B overexpression was partially mediated by CS-induced DNA hypomethylation. CONCLUSION Our findings have shed light on the impact of GADD45B in the pathogenesis of COPD, thereby offering a promising target for intervention in clinical settings.
Collapse
Affiliation(s)
- Yuan Zhan
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhesong Deng
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Chen
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaheng Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yating Zhang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Maocuo Peng
- Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Jixing Wu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiya Gu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhilin Zeng
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Chen Y, Fu Y, Zou H, Wang P, Xu Y, Xie Q. Network pharmacology and molecular docking reveal the mechanism of action of Bergapten against non‑small cell lung cancer. Oncol Lett 2025; 29:87. [PMID: 39677411 PMCID: PMC11638938 DOI: 10.3892/ol.2024.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide, necessitating new treatment approaches with minimal side effects. In the present study, the potential of Bergapten (5-methoxypsoralen), a natural furanocoumarin compound, as a therapeutic agent against NSCLC was investigated by using network pharmacology, molecular docking and in vitro validation. Bergapten targets were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and SwissTarget databases, whilst lung cancer-related targets were sourced from GeneCards and DisGeNET. Protein-protein interaction analysis and molecular docking were performed to identify key targets. The inhibitory effects of Bergapten on lung cancer cells were assessed using Cell Counting Kit-8 assays, wound healing assays, cell migration experiments, flow cytometry and western blotting. SC79 was used to verify the regulation of Bergapten on the PI3K/AKT pathway. Network pharmacology identified 51 targets, one signaling pathway and four Gene Ontology projects associated with the action of Bergapten against NSCLC. Key targets identified included glycogen synthase kinase-3β, Janus kinase 2, phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α and protein tyrosine kinase 2. In vitro experiments demonstrated that Bergapten significantly inhibited cell viability, promoted apoptosis, induced cellular senescence and inhibited the PI3K/AKT signaling pathway in NSCLC cells. In conclusion, Bergapten exerts its anti-NSCLC effects through the PI3K/AKT pathway, promoting cell senescence and inhibiting inflammation. These findings suggest that Bergapten has potential as a therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yu Fu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Hongbo Zou
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Pingsong Wang
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Yao Xu
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Qichao Xie
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| |
Collapse
|
21
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
22
|
Foutadakis S, Soureas K, Roupakia E, Besta S, Avgeris M, Kolettas E. Identification of Oncogene-Induced Senescence-Associated MicroRNAs. Methods Mol Biol 2025; 2906:189-213. [PMID: 40082357 DOI: 10.1007/978-1-0716-4426-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Cellular senescence, a state of permanent cell cycle arrest, recapitulates the aging process at the cellular level. It can be triggered by intrinsic or extrinsic factors including telomere shortening (replicative senescence) and in response to various types of stresses such as oncogenic stress (oncogene-induced senescence, OIS). Senescence has been detected in vitro and in premalignant lesions in mice and humans expressing mutant oncogenes. MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression at the posttranscriptional level, and have been involved in both replicative senescence and OIS. Several methods have been used to identify miRNAs and compare their expression in normal versus oncogene-induced senescent cells, as well as to analyze their role and their targets in senescence. Here, we describe several methods that can be employed to identify miRNAs in cells undergoing OIS, including miRNA-sequencing, RT-qPCR-based detection and quantification of miRNAs and Nanostring miRNA analysis (nCounter miRNA Expression Assay). Moreover, we perform a meta-analysis of studies employing the above methodologies, pinpoint miRNAs with consistent expression changes across senescence models, and predict their target genes and the pathways in which they partake.
Collapse
Affiliation(s)
- Spyros Foutadakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Hellenic Institute for the Study of Sepsis, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
| | - Simoni Besta
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece
- International Oncology Institute, The first affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, and Institute of Biosciences, Centre for Research and Innovation, University of Ioannina, Ioannina, Greece.
- Molecular Cancer Biology & Senescence Group, Biomedical Research Institute, Foundation for Research and Technology, Ioannina, Greece.
| |
Collapse
|
23
|
Chen J, Yang J, Ma J, Sun X, Wang Y, Luan C, Chen J, Liu W, Shan Q, Ma X. Troxerutin Delays Skin Keratinocyte Senescence Induced by Ionizing Radiation Both In Vitro and In Vivo. J Cosmet Dermatol 2025; 24:e16584. [PMID: 39291439 PMCID: PMC11743059 DOI: 10.1111/jocd.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUNDS With the increasing demand for beauty and a healthy lifespan, studies regarding anti-skin aging have drawn much more attention than ever before. Skin cellular senescence, the primary cause of skin aging, is characterized by a cell cycle arrest in proliferating cells along with a senescence-associated secretory phenotype (SASP), which can be triggered by various internal or external stimuli. AIMS Recent studies have made significant progress in the fields of anti-senescence and anti-aging. However, little is known about the roles and functions of natural compounds, particularly flavonoids, in skin cellular senescence studies. METHODS In this study, using strategies including ionizing radiation (IR), senescence-associated β galactosidase assay (SA-β-Gal), immunofluorescence (IF), flow cytometry, PCR array, as well as in vivo experiments, we investigated the effects and roles of troxerutin (Trx), a natural flavonoid, in skin keratinocyte senescence. RESULTS We found that Trx delays skin keratinocyte senescence induced by IR. Mechanistically, Trx protects the skin keratinocyte cells from senescence by alleviating reactive oxygen species (ROS) accumulation, mitochondrial dysfunction, and DNA damage caused by IR. In addition, Trx was also proved to relieve skin senescence and SASP secretion in vivo induced by IR stimulation. CONCLUSIONS Altogether, our findings pointed to a new function of Trx in delaying stress-induced skin keratinocyte senescence, and should thus provide theoretical foundations for exploring novel strategies against skin aging.
Collapse
Affiliation(s)
- Juping Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jinghui Yang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Jiang Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xiaoming Sun
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Yuxuan Wang
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
- Department of DermatologyThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Changjiao Luan
- Department of LungThe Third People's Hospital of YangzhouYangzhouChina
| | - Jiaxiao Chen
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Weili Liu
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Qing Shan
- Department of GeriatricsThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| | - Xingjie Ma
- Department of the Central Laboratory, Department of Intensive CareThe Affiliated Hospital of Yangzhou University, Yangzhou UniversityYangzhouChina
| |
Collapse
|
24
|
Goyal K, Afzal M, Altamimi ASA, Babu MA, Ballal S, Kaur I, Kumar S, Kumar MR, Chauhan AS, Ali H, Shahwan M, Gupta G. Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target. Biogerontology 2024; 26:32. [PMID: 39725742 DOI: 10.1007/s10522-024-10173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling. The pathway is a key player in cellular senescence, apoptosis, and cell cycle regulation, which are all key to maintaining the health of the kidney. P53 is a transcription factor and a tumor suppressor protein that responds to cell stress and damage. Persistent activation of cell p53 can lead to the expression of p21, an inhibitor of the cell cycle known as a cyclin-dependent kinase. This causes cells to cease dividing and leads to senescence, where cells can no longer increase. The accumulation of senescent cells in the aging kidney impairs kidney function by altering the microenvironment. As the number of senescent cells increases, the capacity of the kidney to recover from injury decreases, accelerating the progression of end-stage renal disease. This article review extensively explores the relationship between the p53/p21 pathway and cellular senescence within an aging kidney and the emerging therapeutic strategies that target it to overcome the impacts of cellular senescence on CKD.
Collapse
Affiliation(s)
- Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
| | | | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, Punjab, 140307, India
| | - Ashish Singh Chauhan
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Haider Ali
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
25
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
26
|
Fujita Y, Biswas KB, Kawai Y, Takayama S, Masutani T, Iddamalgoda A, Sakamoto K. Mentha piperita leaf extract suppresses the release of ATP from epidermal keratinocytes and reduces dermal thinning as well as wrinkle formation. Int J Cosmet Sci 2024; 46:972-981. [PMID: 39049707 DOI: 10.1111/ics.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.
Collapse
Affiliation(s)
- Yukiko Fujita
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Satoru Takayama
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | | | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| |
Collapse
|
27
|
Zhang H, Xu J, Long Y, Maimaitijiang A, Su Z, Li W, Li J. Unraveling the Guardian: p53's Multifaceted Role in the DNA Damage Response and Tumor Treatment Strategies. Int J Mol Sci 2024; 25:12928. [PMID: 39684639 DOI: 10.3390/ijms252312928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
DNA damage can lead to mutations that can alter the function of oncogenes or tumor suppressor genes, thus promoting the development of cancer. p53 plays a multifaceted and complex role in the DNA damage response and cancer progression and is known as the 'guardian of the gene'. When DNA damage occurs, p53 is activated through a series of post-translational modifications, which stabilize the protein and enhance its function as a transcription factor. It regulates processes including cell cycle checkpoints, DNA repair and apoptosis, thereby preventing the spread of damaged DNA and maintaining genome integrity. On the one hand, p53 can initiate cell cycle arrest and induce cells to enter the G1/S and G2/M checkpoints, preventing cells with damaged DNA from continuing to proliferate and gaining time for DNA repair. At the same time, p53 can promote the activation of DNA repair pathways, including base excision repair, nucleotide excision repair and other repair pathways, to ensure the integrity of genetic material. If the damage is too severe to repair, p53 will trigger the apoptosis process to eliminate potential cancer risks in time. p53 also plays a pivotal role in cancer progression. Mutations in the p53 gene are frequently found in many cancers, and the mutated p53 not only loses its normal tumor suppressor function but may even acquire pro-cancer activity. Therefore, we also discuss therapeutic strategies targeting the p53 pathway, such as the use of small-molecule drugs to restore the function of wild-type p53, the inhibition of negative regulatory factors and synthetic lethality approaches for p53-deficient tumors. This review therefore highlights the important role of p53 in maintaining genomic stability and its potential in therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Han Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jianxiong Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yuxuan Long
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ayitila Maimaitijiang
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Zhengding Su
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Wenfang Li
- School of Pharmaceutical Science, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
28
|
Sun W, Gao Y, Wu Y, Wu W, Wang C, Chen J, Luan C, Hua M, Liu W, Gong W, Ma X. Targeted apoptosis of senescent cells by valproic acid alleviates therapy-induced cellular senescence and lung aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156131. [PMID: 39395326 DOI: 10.1016/j.phymed.2024.156131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Accumulation of senescent cells in tissues and their downstream effect programs have emerged as key drivers of aging and age-associated pathologies. Recent progresses in senotherapeutics indicated that either selectively killing senescent cells with senolytics or suppressing the senescence-associated secretory phenotype (SASP) secretion using senomorphics contributes to extending of the healthy lifespan and alleviating numerous age-related disorders in mice. PURPOSE However, the potential side-effects and long-term cytotoxicity of the above novel compounds have not yet been determined. Therefore, it seems to be more efficient to explore new senotherapeutical functions from approved drugs. METHODS The effects of valproic acid (VPA), a derivative of valine, in cellular senescence were evaluated by senescence-associated β galactosidase (SA-β-Gal) staining, flow cytometry and western blot (WB). The cell viability was tested using CCK-8 kits. Cell apoptosis was detected by Annexin V-EGFP/PI apoptosis detection kit. Cell autophagy was checked using GFP-RFP-LC3 ratiometric plasmid. The roles of VPA in lung aging were investigated by in vivo experiments using H&E and Masson staining, WB, as well as electronic microscope strategies. RESULTS Here we identified VPA was able to induce an over-accumulation of reactive oxygen species (ROS) (>1.5 times increasing) and apoptosis (>2 times increasing) of senescent cells. Mechanistically, VPA activated the phospholipid modifying enzyme membrane-bound O-acyltransferase domain-containing protein 1 (MBOAT1), which was repressed during senescence, then promoted mitochondrial autophagy and apoptosis. In addition, VPA was also found to alleviate therapy induced abnormal mitochondria and lung aging phenotype (>1.5 times decreasing of lung fibrosis markers and >2.5 times increasing of naïve/memory CD4+ or CD8+ T cells) in vivo. CONCLUSION Taken together, our study demonstrated that VPA was able to selectively kill senescent cells both in vitro and in vivo, and thus shedding light on new functions and novel potential application of VPA in anti-aging and anti-age-associated diseases.
Collapse
Affiliation(s)
- Wentao Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Yue Gao
- Department of Pathology, Northern Jiangsu People's Hospital, Yangzhou, PR China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, PR China
| | - Wei Wu
- Department of Science and Technology, Linyi Central Hospital, Linyi, PR China
| | - Chaofan Wang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - JiaXiao Chen
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Changjiao Luan
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, PR China
| | - Ming Hua
- Department of Intensive Care, Guannan Country District People's Hospital, Yancheng, PR China
| | - Weili Liu
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China
| | - Weijuan Gong
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
| | - Xingjie Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
| |
Collapse
|
29
|
Zhao Q, Huang Y, Fu N, Cui C, Peng X, Kang H, Xiao J, Ke G. Podocyte senescence: from molecular mechanisms to therapeutics. Ren Fail 2024; 46:2398712. [PMID: 39248407 PMCID: PMC11385655 DOI: 10.1080/0886022x.2024.2398712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As an important component of the glomerular filtration membrane, the state of the podocytes is closely related to kidney function, they are also key cells involved in aging and play a central role in the damage caused by renal aging. Therefore, understanding the aging process of podocytes will allow us to understand their susceptibility to injury and identify targeted protective mechanisms. In fact, the process of physiological aging itself can induce podocyte senescence. Pathological stresses, such as oxidative stress, mitochondrial damage, secretion of senescence-associated secretory phenotype, reduced autophagy, oncogene activation, altered transcription factors, DNA damage response, and other factors, play a crucial role in inducing premature senescence and accelerating aging. Senescence-associated-β-galactosidase (SA-β-gal) is a marker of aging, and β-hydroxybutyric acid treatment can reduce SA-β-gal activity to alleviate cellular senescence and damage. In addition, CCAAT/enhancer-binding protein-α, transforming growth factor-β signaling, glycogen synthase kinase-3β, cycle-dependent kinase, programmed cell death protein 1, and plasminogen activator inhibitor-1 are closely related to aging. The absence or elevation of these factors can affect aging through different mechanisms. Podocyte injury is not an independent process, and injured podocytes interact with the surrounding epithelial cells or other kidney cells to mediate the injury or loss of podocytes. In this review, we discuss the manifestations, molecular mechanisms, biomarkers, and therapeutic drugs for podocyte senescence. We included elamipretide, lithium, calorie restriction, rapamycin; and emerging treatment strategies, such as gene and immune therapies. More importantly, we summarize how podocyte interact with other kidney cells.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongzhang Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ningying Fu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Caixia Cui
- Department of Nephrology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xuan Peng
- Department of Nephrology, Affiliated Hospital/Clinical Medical College of Chengdu University, Chengdu, China
| | - Haiyan Kang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guibao Ke
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
31
|
Crugeiras J, Calls A, Contreras E, Alemany M, Navarro X, Yuste VJ, Casanovas O, Udina E, Bruna J. Oxygen matters: Unraveling the role of oxygen in the neuronal response to cisplatin. J Peripher Nerv Syst 2024; 29:528-536. [PMID: 39329299 PMCID: PMC11625991 DOI: 10.1111/jns.12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Cell culture is a fundamental experimental tool for understanding cell physiology. However, translating these findings to in vivo settings has proven challenging. Replicating donor tissue conditions, including oxygen levels, is crucial for achieving meaningful results. Nevertheless, oxygen culture conditions are often overlooked, particularly in the context of chemotherapy-induced neurotoxicity. METHODS In this study, we investigated the role of oxygen levels in primary neuronal cultures by comparing neuronal performance under cisplatin exposure (1 μg/mL) in supraphysiological normoxia (representing atmospheric conditions in a standard incubator; 18.5% O2) and physioxia (representing physiologic oxygen conditions in nervous tissue; 5% O2). Experiments were also conducted to assess survival, neurite development, senescence marker expression, and proinflammatory cytokine secretion. RESULTS Under control conditions, both oxygen concentration conditions exhibited similar behaviors. However, after cisplatin administration, sensory neurons cultured under supraphysiological normoxic conditions show higher mortality, exhibit an evolutionarily proinflammatory cytokine profile over time, and activate apoptotic-regulated neuron death markers. In contrast, under physiological conditions, neurons treated with cisplatin exhibited senescence marker expression and an attenuated inflammatory secretome. INTERPRETATION These results underscore the critical role of oxygen in neuronal culture, particularly in studying compounds where neuronal damage is mechanistically linked to oxidative stress. Even at identical doses of evaluated neurotoxic drugs, distinct cellular phenotypic fates can emerge, impacting translatability to the in vivo setting.
Collapse
Affiliation(s)
- Jose Crugeiras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Aina Calls
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Estefanía Contreras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Montse Alemany
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Victor J. Yuste
- Department of BiochemistryInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE ProgramCatalan Institute of Oncology, OncoBell Program, IDIBELLBarcelonaSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| |
Collapse
|
32
|
Niu Q, Li D, Zhang J, Piao Z, Xu B, Xi Y, Mohamed Kamal NNSN, Lim V, Li P, Yin Y. The new perspective of Alzheimer's Disease Research: Mechanism and therapeutic strategy of neuronal senescence. Ageing Res Rev 2024; 102:102593. [PMID: 39566741 DOI: 10.1016/j.arr.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD), commonly known as senile dementia, is a neurodegenerative disease with insidious onset and gradually worsening course. The brain is particularly sensitive to senescence, and neuronal senescence is an important risk factor for the occurrence of AD. However, the exact pathogenesis between neuronal senescence and AD has not been fully elucidated so far. Neuronal senescence is characterized by the permanent stagnation of the cell cycle, and the changes in its structure, function, and microenvironment are closely related to the pathogenesis and progression of AD. In recent years, studies such as the Aβ cascade hypothesis and Tau protein phosphorylation have provided new strategies for the therapy of AD, but due to the complexity of the etiology of AD, there are still no effective treatment measures. This article aims to deeply analyze the pathogenesis between AD and neuronal senescence, and sort out various existing therapeutic methods, to provide new ideas and references for the clinical treatment of AD.
Collapse
Affiliation(s)
- Qianqian Niu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Danjie Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Jiayin Zhang
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Zhengji Piao
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Bo Xu
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Yuting Xi
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia; Dementia Multidisciplinary Research Program of IPPT (DMR-IPPT), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Vuanghao Lim
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia.
| | - Peng Li
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, School of Pharmacy, Xinxiang 453003, China.
| | - Yaling Yin
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
33
|
Nam HY, Park SH, Lee GH, Kim EY, Lee S, Chang HW, Chang EJ, Choi KC, Kim SW. TIGAR coordinates senescence-associated secretory phenotype via lysosome repositioning and α-tubulin deacetylation. Exp Mol Med 2024; 56:2726-2738. [PMID: 39633033 DOI: 10.1038/s12276-024-01362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
TP53-induced glycolysis and apoptosis regulator (TIGAR) regulates redox homeostasis and provides the intermediates necessary for cell growth by reducing the glycolytic rate. During cellular senescence, cells undergo metabolic rewiring towards the glycolytic pathway, along with the development of the senescence-associated secretory phenotype (SASP), also known as the secretome. We observed that TIGAR expression increased during replicative senescence following the in vitro expansion of human mesenchymal stromal cells (MSCs) and that TIGAR knockout (KO) decreased SASP factors and triggered premature senescence with decelerated progression. Additionally, TIGAR KO impaired flexible lysosomal movement to the perinuclear region and decreased the autophagic flux of MSCs. Research on the mechanism of lysosomal movement revealed that, while native senescent MSCs presented low levels of Ac-α-tubulin (lysine 40) and increased sirtuin 2 (SIRT2) activity compared with those in growing cells, TIGAR KO-MSCs maintained Ac-α-tubulin levels and exhibited decreased SIRT2 activity despite being in a senescent state. The overexpression of SIRT2 reduced Ac-α-tubulin as a protein target of SIRT2 and induced the positioning of lysosomes at the perinuclear region, restoring the cytokine secretion of TIGAR KO-MSCs. Furthermore, TIGAR expression was positively correlated with SIRT2 activity, indicating that TIGAR affects SIRT2 activity partly by modulating the NAD+ level. Thus, our study demonstrated that TIGAR provides a foundation that translates the regulation of energy metabolism into lysosome positioning, affecting the secretome for senescence development. Considering the functional value of the cell-secretome in aging-related diseases, these findings suggest the feasibility of TIGAR for the regulation of secretory phenotypes.
Collapse
Affiliation(s)
- Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Seung-Ho Park
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Geun-Hee Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Young Kim
- Department Hematology and Medical Oncology, Whinship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - SangEun Lee
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Hyo Won Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Kyung-Chul Choi
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
| |
Collapse
|
34
|
Chen J, Ma J, Qi D, Wang Y, Sun X, Yang J, Sun W, Luan C, Shan Q, Liu W, Ma X. Inhibition of transglutaminase 2 inhibits ionizing radiation-induced cellular senescence in skin keratinocytes in vitro. IUBMB Life 2024; 76:1252-1263. [PMID: 39139071 DOI: 10.1002/iub.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024]
Abstract
Senescent cells are typically characterized by a stable proliferation arrested in dividing cells accompanied with a senescence-associated secretory phenotype (SASP). Skin cellular senescence is the primary cause of skin aging, whereas the lack of identified skin senescence markers limits our understanding of the mechanisms involved in skin aging. Recent studies have revealed that intracellular calcium signaling has emerged as a key player in regulating cellular senescence and aging. However, the implication and roles of calcium signaling in skin keratinocyte senescence remain only partially understood. In this study, we developed a model for skin keratinocyte senescence using ionizing radiation (I/R) stimulation and found that the calcium-associated gene transglutaminase 2 (TGM2) was significantly induced compared with normal control. Interestingly, inhibition of TGM2 was found to delay skin keratinocyte senescence by suppressing I/R-promoted intracellular calcium signaling, accumulation of reactive oxygen species (ROS), DNA damage, as well as NF-κB-mediated SASP secretion. Taken together, our findings demonstrate that inhibition of TGM2 contributes to bypassing I/R-induced skin keratinocyte senescence and sheds light on novel strategies against skin stresses caused by I/R.
Collapse
Affiliation(s)
- Juping Chen
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jiang Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dandan Qi
- Department of Dermatology, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yuxuan Wang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoming Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jinghui Yang
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Dermatology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wentao Sun
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Qing Shan
- Department of Geriatrics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Laboratory of Intensive Care, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
35
|
Jiang C, Wang W, Chen YL, Chen JH, Zhang ZW, Li J, Yang ZC, Li XC. Macrophage polarization and macrophage-related factor expression in hypertrophy of the ligamentum flavum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4476-4487. [PMID: 39375228 DOI: 10.1007/s00586-024-08513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Owing to the unknow types of infiltrating macrophages and the corresponded factors, we aimed to investigate the specific types of infiltrating macrophages involved in HLF and the expression of macrophage-related factors. METHODS The ligamentum flavum was obtained from patients with lumbar spinal stenosis (HLF group; n = 15) and lumbar disc herniation (non-hypertrophic ligamentum flavum [NLF] group; n = 15). Ligamentum flavum specimens were paraffin embedded, followed by histological and immunohistochemical staining to identify the macrophage type and expression of macrophage-related factors. RESULTS The HLF group demonstrated CD206 marker expression, while the NLF group did not (P < 0.0001; n = 11). CD68 marker was expressed in both groups (P > 0.05; n = 11). CCR7 was not expressed in either group. The expression levels of the extracellular matrix proteins aggrecan (Agg), type I collagen (Coll1), and type II collagen (Coll2) were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). The aging markers p21, p16, and p53 were expressed in the HLF group, but not in the NLF group (P < 0.0001; n = 11). The expression levels of the inflammatory factors TNF-α and IL-1β were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). Similarly, the expression level of the fibrosis factor TGF-β1 was higher in the HLF group than in the NLF group (P < 0.0001; n = 11). CONCLUSIONS The infiltration of M2 macrophages may be involved in HLF, while involvement of M1 macrophages may only occur early in inflammation. The expression of extracellular matrix proteins and macrophage-related factors was increased. Aging may also be associated with HLF.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China
| | - Wei Wang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Yong-Long Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jiong-Hui Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhen-Wu Zhang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jun Li
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhi-Chao Yang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Xiao-Chuan Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China.
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China.
| |
Collapse
|
36
|
Laumann M, Palombo P, Fieres J, Thomas M, Saretzki G, Bürkle A, Moreno-Villanueva M. Senescence-like Phenotype After Chronic Exposure to Isoproterenol in Primary Quiescent Immune Cells. Biomolecules 2024; 14:1528. [PMID: 39766235 PMCID: PMC11673961 DOI: 10.3390/biom14121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence. Peripheral blood mononuclear cells were isolated from whole blood. After repeated ex vivo treatment with isoproterenol, an epinephrine analog, well-established senescence biomarkers were assessed. We found (i) DNA double-strand break induction, (ii) telomere shortening, (iii) failure to proliferate, (iv) higher senescence-associated β-galactosidase activity, (v) decreases in caspases 3 and 7 activity, and (vi) strong upregulation of the proteoglycan versican accompanied by increased cellular adhesion suggesting the induction of a senescence-like phenotype. These results emphasize the complexity of the effect of isoproterenol on multiple cellular processes and provide insights into the molecular mechanisms of stress leading to immunosenescence.
Collapse
Affiliation(s)
- Michael Laumann
- Electron Microscopy Center, University of Konstanz, 78457 Konstanz, Germany;
| | - Philipp Palombo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Judy Fieres
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Mara Thomas
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
37
|
Vora S, Andrew A, Kumar RP, Nazareth D, Bonfim-Melo A, Lim Y, Ong XY, Fernando M, He Y, Hooper JD, McMillan NA, Urosevic J, Travers J, Saeh J, Kumar S, Jones MJ, Gabrielli B. Aurora B inhibitors promote RB hypophosphorylation and senescence independent of p53-dependent CDK2/4 inhibition. Cell Death Dis 2024; 15:810. [PMID: 39521795 PMCID: PMC11550316 DOI: 10.1038/s41419-024-07204-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Aurora B kinase (AURKB) inhibitors have been trialled in a range of different tumour types but are not approved for any indication. Expression of the human papilloma virus (HPV) oncogenes and loss of retinoblastoma (RB) protein function has been reported to increase sensitivity to AURKB inhibitors but the mechanism of their contribution to sensitivity is poorly understood. Two commonly reported outcomes of AURKB inhibition are polyploidy and senescence, although their relationship is unclear. Here we have investigated the major cellular targets of the HPV E6 and E7, p53 and RB, to determine their contribution to AURKB inhibitor induced polyploidy and senescence. We demonstrate that polyploidy is a universal feature of AURKB inhibitor treatment in all cell types including normal primary cells, but the subsequent outcomes are controlled by RB and p53. We demonstrate that p53 by regulating p21 expression is required for an initial cell cycle arrest by inhibiting both CDK2 and CDK4 activity, but this arrest is only triggered after cells have undergone two failed mitosis and cytokinesis. However, cells can enter senescence in the absence of p53. RB is essential for AURKB inhibitor-induced senescence. AURKB inhibitor induces rapid hypophosphorylation of RB independent of inhibition of CDK2 or CDK4 kinases and p53. This work demonstrates that p53 activation determines the timing of senescence onset, but RB is indispensable for senescence.
Collapse
Affiliation(s)
- Shivam Vora
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ariel Andrew
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | | | - Deborah Nazareth
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Alexis Bonfim-Melo
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Xin Yee Ong
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Madushan Fernando
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Nigel Aj McMillan
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Jelena Urosevic
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jon Travers
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jamal Saeh
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Mathew Jk Jones
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
38
|
Yang H, Zhang X, Xue B. New insights into the role of cellular senescence and chronic wounds. Front Endocrinol (Lausanne) 2024; 15:1400462. [PMID: 39558972 PMCID: PMC11570929 DOI: 10.3389/fendo.2024.1400462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Chronic or non-healing wounds, such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), pressure ulcers (PUs) and wounds in the elderly etc., impose significant biological, social, and financial burdens on patients and their families. Despite ongoing efforts, effective treatments for these wounds remain elusive, costing the United States over US$25 billion annually. The wound healing process is notably slower in the elderly, partly due to cellular senescence, which plays a complex role in wound repair. High glucose levels, reactive oxygen species, and persistent inflammation are key factors that induce cellular senescence, contributing to chronic wound failure. This suggests that cellular senescence may not only drive age-related phenotypes and pathology but also be a key mediator of the decreased capacity for trauma repair. This review analyzes four aspects: characteristics of cellular senescence; cytotoxic stressors and related signaling pathways; the relationship between cellular senescence and typical chronic non-healing wounds; and current and future treatment strategies. In theory, anti-aging therapy may influence the process of chronic wound healing. However, the underlying molecular mechanism is not well understood. This review summarizes the relationship between cellular senescence and chronic wound healing to contribute to a better understanding of the mechanisms of chronic wound healing.
Collapse
Affiliation(s)
- Huiqing Yang
- Institute of Evolution and Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
39
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
40
|
Papismadov N, Levi N, Roitman L, Agrawal A, Ovadya Y, Cherqui U, Yosef R, Akiva H, Gal H, Krizhanovsky V. p21 regulates expression of ECM components and promotes pulmonary fibrosis via CDK4 and Rb. EMBO J 2024; 43:5360-5380. [PMID: 39349844 PMCID: PMC11574164 DOI: 10.1038/s44318-024-00246-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 11/20/2024] Open
Abstract
Fibrosis and accumulation of senescent cells are common tissue changes associated with aging. Here, we show that the CDK inhibitor p21 (CDKN1A), known to regulate the cell cycle and the viability of senescent cells, also controls the expression of extracellular matrix (ECM) components in senescent and proliferating cells of the fibrotic lung, in a manner dependent on CDK4 and Rb phosphorylation. p21 knockout protects mice from the induction of lung fibrosis. Moreover, inducible p21 silencing during fibrosis development alleviates disease pathology, decreasing the inflammatory response and ECM accumulation in the lung, and reducing the amount of senescent cells. Furthermore, p21 silencing limits fibrosis progression even when introduced during disease development. These findings show that one common mechanism regulates both cell cycle progression and expression of ECM components, and suggest that targeting p21 might be a new approach for treating age-related fibrotic pathologies.
Collapse
Affiliation(s)
- Nurit Papismadov
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Naama Levi
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lior Roitman
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Amit Agrawal
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Yossi Ovadya
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ulysse Cherqui
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Reut Yosef
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Hagay Akiva
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Hilah Gal
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
41
|
Lu X, Que Y, Yang J, Le L, Cai Q, Xu B, Hong D, Liang Y, Zhang X. Targeting KIFC1 Promotes Senescence in Soft Tissue Sarcoma via FXR1-Dependent Regulation of MAD2L1 mRNA Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405611. [PMID: 39387242 PMCID: PMC11600285 DOI: 10.1002/advs.202405611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Patients diagnosed with soft tissue sarcoma (STS) often present at intermediate to advanced stages, with inherently limited therapeutic options available. There is an urgent need to identify novel therapeutic targets. In this study, by screening STS data from the Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases, KIFC1 is identified as a potential biomarker and a promising therapeutic target for STS. Notably, a significant increase in KIFC1 levels, which exhibited a strong correlation with a poor prognosis in STS patients is observed. The findings revealed that knockout of KIFC1 suppressed STS growth both in vitro and in vivo. Furthermore, KIFC1 is found to regulate cellular senescence in STS, which has not been reported before. that targeting KIFC1 induced cellular senescence via interacting with FXR1, an RNA-binding protein is discovered, thereby further stabilizing MAD2L1 mRNA in an m6A-dependent manner. Additionally, the suppression of KIFC1 markedly diminished the growth of patient-derived xenografts (PDX) and triggered senescence. This study provides the first evidence that KIFC1 inhibition induces cellular senescence through MAD2L1, underscoring KIFC1 as a novel prognostic biomarker and a potential therapeutic target for STS.
Collapse
Affiliation(s)
- Xiu‐Xia Lu
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yi Que
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Li‐Yuan Le
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Qi‐Yan Cai
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Bu‐Shu Xu
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Dong‐Chun Hong
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| | - Yao Liang
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
- Department of Gastric SurgerySun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- State Key Laboratory of Oncology in South ChinaGuangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapyGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060P. R. China
| |
Collapse
|
42
|
Abdelmohsen K, Mazan‐Mamczarz K, Munk R, Tsitsipatis D, Meng Q, Rossi M, Pal A, Shin CH, Martindale JL, Piao Y, Fan J, Yanai H, De S, Beerman I, Gorospe M. Identification of senescent cell subpopulations by CITE-seq analysis. Aging Cell 2024; 23:e14297. [PMID: 39143693 PMCID: PMC11561699 DOI: 10.1111/acel.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Cellular senescence, a state of persistent growth arrest, is closely associated with aging and age-related diseases. Deciphering the heterogeneity within senescent cell populations and identifying therapeutic targets are paramount for mitigating senescence-associated pathologies. In this study, proteins on the surface of cells rendered senescent by replicative exhaustion and by exposure to ionizing radiation (IR) were identified using mass spectrometry analysis, and a subset of them was further studied using single-cell CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) analysis. Based on the presence of proteins on the cell surface, we identified two distinct IR-induced senescent cell populations: one characterized by high levels of CD109 and CD112 (cluster 3), the other characterized by high levels of CD112, CD26, CD73, HLA-ABC, CD54, CD49A, and CD44 (cluster 0). We further found that cluster 0 represented proliferating and senescent cells in the G1 phase of the division cycle, and CITE-seq detection of cell surface proteins selectively discerned those in the senescence group. Our study highlights the heterogeneity of senescent cells and underscores the value of cell surface proteins as tools for distinguishing senescent cell programs and subclasses, paving the way for targeted therapeutic strategies in disorders exacerbated by senescence.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | | | - Rachel Munk
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Qiong Meng
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Martina Rossi
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Apala Pal
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Chang Hoon Shin
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jennifer L. Martindale
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Yulan Piao
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Jinshui Fan
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Hagai Yanai
- Translational Gerontology BranchNational Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Supriyo De
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Isabel Beerman
- Translational Gerontology BranchNational Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH)BaltimoreMarylandUSA
| | - Myriam Gorospe
- Laboratory of Genetics and GenomicsNational Institutes of Health (NIH)BaltimoreMarylandUSA
| |
Collapse
|
43
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
44
|
Liu J, Guo B, Liu Q, Zhu G, Wang Y, Wang N, Yang Y, Fu S. Cellular Senescence: A Bridge Between Diabetes and Microangiopathy. Biomolecules 2024; 14:1361. [PMID: 39595537 PMCID: PMC11591988 DOI: 10.3390/biom14111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cellular senescence is a state of permanent cell cycle arrest and plays an important role in many vascular lesions. This study found that the cells of diabetic patients have more characteristics of senescence, which may cause microvascular complications. Cell senescence, as one of the common fates of cells, links microangiopathy and diabetes. Cell senescence in a high-glucose environment can partially elucidate the mechanism of diabetic microangiopathy, and various types of cellular senescence induced by it can promote the progression of diabetic microangiopathy. Still, the molecular mechanism of microangiopathy-related cellular senescence has not yet been clearly studied. Building on recent research evidence, we herein summarize the fundamental mechanisms underlying the development of cellular senescence in various microangiopathies associated with diabetes. We gradually explain how cellular senescence serves as a key driver of diabetic microangiopathy. At the same time, the treatment of basic senescence mechanisms such as cellular senescence may have a great impact on the pathogenesis of the disease, may be more effective in preventing the development of diabetic microangiopathy, and may provide new ideas for the clinical treatment and prognosis of diabetic microangiopathy.
Collapse
Affiliation(s)
- Jiahui Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Buyu Guo
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Qianqian Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yaqi Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Na Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Yichen Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (J.L.); (B.G.); (Q.L.); (G.Z.); (Y.W.); (N.W.); (Y.Y.)
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Gansu Province Clinical Research Center for Endocrine Disease, Lanzhou 730000, China
| |
Collapse
|
45
|
Diaz Escarcega R, Marshall P, Tsvetkov AS. G-quadruplex DNA and RNA in cellular senescence. FRONTIERS IN AGING 2024; 5:1491389. [PMID: 39444378 PMCID: PMC11496277 DOI: 10.3389/fragi.2024.1491389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Normal cells divide, are damaged, and are repaired across their lifetime. As cells age, they enter cellular senescence, characterized by a permanent state of cell-cycle arrest triggered by various stressors. The molecular mechanisms that regulate senescent phenotypes have been actively investigated over the last several decades; however, one area that has been neglected is how G-quadruplex (G4) DNA and RNA (G4-DNA and G4-RNA) mediate senescence. These non-canonical four-stranded DNA and RNA structures regulate most normative DNA and RNA-dependent processes, such as transcription, replication, and translation, as well as pathogenic mechanisms, including genomic instability and abnormal stress granule function. This review also highlights the contribution of G4s to sex differences in age-associated diseases and emphasizes potential translational approaches to target senescence and anti-aging mechanisms through G4 manipulation.
Collapse
Affiliation(s)
- Rocio Diaz Escarcega
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Paul Marshall
- College of Health and Medicine, The Australian National University, Canberra, ACT, Australia
| | - Andrey S. Tsvetkov
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, United States
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
- UTHealth Consortium on Aging, The University of Texas McGovern Medical School, Houston, TX, United States
| |
Collapse
|
46
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
47
|
Zheng XM, Zhang XD, Tan LL, Zhang J, Wang TT, Ling Q, Wang H, Ouyang KW, Wang KW, Chang W, Li H, Zhu HL, Xiong YW, Wang H. Sirt1 m6A modification-evoked Leydig cell senescence promotes Cd-induced testosterone decline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116884. [PMID: 39153281 DOI: 10.1016/j.ecoenv.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased β-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Collapse
Affiliation(s)
- Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
48
|
Meng ZY, Lu CH, Li J, Liao J, Wen H, Li Y, Huang F, Zeng ZY. Identification and experimental verification of senescence-related gene signatures and molecular subtypes in idiopathic pulmonary arterial hypertension. Sci Rep 2024; 14:22157. [PMID: 39333589 PMCID: PMC11437103 DOI: 10.1038/s41598-024-72979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Evidences illustrate that cell senescence contributes to the development of pulmonary arterial hypertension. However, the molecular mechanisms remain unclear. Since there may be different senescence subtypes between PAH patients, consistent senescence-related genes (SRGs) were utilized for consistent clustering by unsupervised clustering methods. Senescence is inextricably linked to the immune system, and the immune cells in each cluster were estimated by ssGSEA. To further screen out more important SRGs, machine learning algorithms were used for identification and their diagnostic value was assessed by ROC curves. The expression of hub genes were verified in vivo and in vitro. Transcriptome analysis was used to assess the effects of silence of hub gene on different pathways. Three senescence molecular subtypes were identified by consensus clustering. Compared with cluster A and B, most immune cells and checkpoint genes were higher in cluster C. Thus, we identified senescence cluster C as the immune subtype. The ROC curves of IGF1, HOXB7, and YWHAZ were remarkable in both datasets. The expression of these genes was increased in vitro. Western blot and immunohistochemical analyses revealed that YWHAZ expression was also increased. Our transcriptome analysis showed autophagy-related genes were significantly elevated after silence of YWHAZ. Our research provided several prospective SRGs and molecular subtypes. Silence of YWHAZ may contribute to the clearance of senescent endothelial cells by activating autophagy.
Collapse
Affiliation(s)
- Zhong-Yuan Meng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chuang-Hong Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jing Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Juan Liao
- Ultrasound Department, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Yuan Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Feng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| | - Zhi-Yu Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
49
|
Zhang X, Chen H, Pang T, Liang K, Mei J, Zhu Y, Yang J. A preliminary study of sirtuin-1 on angiotensin II-induced senescence and inflammation in abdominal aortic aneurysms. Cytojournal 2024; 21:32. [PMID: 39411167 PMCID: PMC11474752 DOI: 10.25259/cytojournal_80_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Recent evidence suggests the involvement of senescence and inflammation in abdominal aortic aneurysm (AAA). Considering the role of sirtuin-1 (SIRT1) in delaying senescence, we aimed to preliminarily investigate the potential mechanism underlying the effects of SIRT1 in senescence and inflammation during AAA. Material and Methods A cell AAA model was established using angiotensin II (Ang II) as the inducer, which was applied to treat human aortic vascular smooth muscle cells (HASMCs). The senescence and cell cycle of treated HASMCs were evaluated based on senescence-associated (SA)-b-galactosidase (b-gal) assay and flow cytometry, respectively. The levels of inflammatory cytokines and proteins related to senescence-associated secretory phenotype (SASP), along with nuclear factor-kappa B (NF-kB) and mitogen-activated protein kinases (MAPK) pathways, as well as SIRT1, were gauged. The correlation between SIRT1 and NF-kB and MAPK pathway-related proteins was further estimated. Results In Ang II-treated HASMCs, reduced SIRT1 and B-cell lymphoma-2 levels yet increased levels of SASP-related proteins P16 and P21, inflammatory cytokines, as well as Bax and caspases were all visible. In the meantime, Ang II exposure enhanced the number of b-gal-positive HASMCs and promoted cell cycle arrest. SIRT1 was also repressed following Ang II treatment and negatively correlated with NF-kB and MAPK pathway-related proteins (P < 0.05). Furthermore, the overexpression of SIRT1 diminished the levels of SASP-related proteins and reduced the phosphorylation of extracellular regulated kinase 1/2 and P65 in Ang II-treated HASMCs (P < 0.05). Conclusion Taken together, our results indicate that SIRT1 overexpression attenuates the inflammatory and senescent responses of HASMCs in the Ang II-induced AAA cell model. This finding suggests that SIRT1 can be a highly promising target for clinical treatment of AAA.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianshu Pang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhua Mei
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuefeng Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Liu Y, Ji J, Zheng S, Wei A, Li D, Shi B, Han X, Chen X. Senescent lung-resident mesenchymal stem cells drive pulmonary fibrogenesis through FGF-4/FOXM1 axis. Stem Cell Res Ther 2024; 15:309. [PMID: 39289765 PMCID: PMC11409797 DOI: 10.1186/s13287-024-03866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an age-related disease featured with abnormal fibrotic response and compromised lung function. Cellular senescence is now considered as an essential driving mechanism for IPF. Given the poor knowledge of the mechanisms underpinning IPF progression, understanding the cellular processes and molecular pathways is critical for developing effective therapies of IPF. METHODS Lung fibrosis was induced using bleomycin in C57BL/6 mice. Cellular senescence was measured by immunofluorescence. The effects of FGF-4 on fibroblast activation markers and signaling molecules were assessed with western blot and qPCR. RESULTS We demonstrated elevated abundance of senescent mesenchymal stem cells (MSCs) in IPF lung tissues, which was tightly correlated with the severity of pulmonary fibrosis in vivo. In addition, senescent MSCs could effectively induce the phenotype of pulmonary fibrosis both in vitro and in vivo. To further confirm how senescent MSCs regulate IPF progression, we demonstrate that FGF-4 is significantly elevated in senescent MSCs, which can induce the activation of pulmonary fibroblasts. In vitro, FGF-4 can activate Wnt signaling in a FOXM1-dependent manner. Inhibition of FOXM1 via thiostrepton effectively impairs FGF-4-induced activation of pulmonary fibroblast and dramatically suppresses the development of pulmonary fibrosis. CONCLUSION These findings reveal that FGF-4 plays a crucial role in senescent MSCs-mediated pulmonary fibrogenesis, and suggests that strategies aimed at deletion of senescent MSCs or blocking the FGF-4/FOXM1 axis could be effective in the therapy of IPF.
Collapse
Affiliation(s)
- Yuxin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ji
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Shudan Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Ai Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Shi
- Pulmonary and Critical Care Medicine, Suqian People's Hospital of Nanjing Gulou Hospital Group, Suqian Scientific Research Institute of Nanjing University Medical School, Nanjing University, Suqian, Jiangsu, 223800, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Xiang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China.
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224008, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| |
Collapse
|