1
|
Ysebaert L, Mouchel PL, Laurent C, Quillet-Mary A. The multi-faceted roles of MYC in the prognosis of chronic lymphocytic leukemia. Leuk Lymphoma 2025; 66:805-817. [PMID: 39743868 DOI: 10.1080/10428194.2024.2447362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
In this review, we focus on the pro-oncogene MYC, the modes of deregulation in mouse and human B-cells, its undisputable importance in the evaluation of biological prognostication of patients, but also how it impacts on response to modern therapeutics, and how it should be targeted to improve the overall survival of chronic lymphocytic lymphoma (CLL) patients. After an overview of the current understanding of the molecular dysregulation of c-MYC, we will show how CLL, both in its indolent and transformed phases, has developed among other B-cell lymphomas a tight regulation of its expression through the chronic activation of B-Cell Receptors (among others). This is particularly important if one desires to understand the mechanisms at stake in the over-expression of c-MYC especially in the lymph nodes compartment. So doing, we will show how this oncogene orchestrates pivotal cellular functions such as metabolism, drug resistance, proliferation and histologic transformation (Richter syndrome).
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Prognosis
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Animals
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Loic Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | | | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
- Department of Hematology, IUC Toulouse-Oncopole, Toulouse, France
| | - Anne Quillet-Mary
- Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France
- Laboratoire d'Excellence 'TOUCAN-2', Toulouse, France
| |
Collapse
|
2
|
Chen BJ, Kuo YT, Chang ST, Win KT, Chen SW, Hsiao SY, Feng YH, Hsieh YC, Chuang SS. Frequent association of malignant effusions in plasmablastic lymphoma: a single-institutional experience of nine cases in Taiwan. Blood Res 2025; 60:22. [PMID: 40192961 PMCID: PMC11977078 DOI: 10.1007/s44313-025-00070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
PURPOSE Plasmablastic lymphoma (PBL) is a rare, aggressive lymphoma that is characterized by terminal B-cell differentiation. In the West, PBL usually occurs in patients with immunodeficiencies, particularly those induced by human immunodeficiency virus (HIV) infection. We investigated the clinicopathological features of PBL at a single institute in Taiwan, where HIV infection is rare. METHODS This retrospective chart review identified PBL cases that were treated at a single institute in southern Taiwan between 2008 and 2024. RESULTS We identified nine patients (four males and five females; median age 71 years). Of the eight patients tested for HIV, only one tested positive. Pathologically, the tumors showed plasmablastic morphology and immunophenotype, and three (33%) cases tested positive for Epstein-Barr virus. Six (67%) patients presented with Stage IV disease, including five (56%) with malignant effusion. Six patients were treated with chemotherapy and the remaining three received only supportive care. During a median follow-up of 10 months, five patients died of progressive disease, two died of unrelated diseases, and two were alive with PBL relapse. CONCLUSION In Taiwan, PBL constitutes a rare and aggressive clinical condition and is frequently associated with malignant effusion. In contrast to Western patients, the PBL in most patients from Taiwan was unrelated to HIV infection.
Collapse
Affiliation(s)
- Bo-Jung Chen
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Kuo
- Department of Radiology, Chi Mei Medical Center, Tainan, Taiwan
| | - Sheng-Tsung Chang
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan
| | - Khin-Than Win
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Shang-Wen Chen
- Division of Hemato-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Sheng-Yen Hsiao
- Division of Hemato-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yin-Hsun Feng
- Division of Hemato-Oncology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yen-Chuan Hsieh
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
3
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Hofer KD, Wolfensberger N, Bachofner A, Schneidawind C, Stühler C, Bühler MM, Abela IA, Müller NJ, Zenz T, Manz MG, Rösler W, Khanna N, Schneidawind D. B-cell maturation antigen-directed bispecific antibodies in plasmablastic lymphoma. Br J Haematol 2024; 205:722-725. [PMID: 38782604 DOI: 10.1111/bjh.19571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Kevin D Hofer
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Nathan Wolfensberger
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Adrian Bachofner
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Corina Schneidawind
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Stühler
- Infection Biology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marco M Bühler
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Irene A Abela
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, Zürich, Switzerland
- Institute of Medical Virology, University of Zürich, Zürich, Switzerland
| | - Nicolas J Müller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zürich, Zürich, Switzerland
| | - Thorsten Zenz
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Wiebke Rösler
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Nina Khanna
- Infection Biology Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University and University Hospital Basel, Basel, Switzerland
| | - Dominik Schneidawind
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Ramirez-Gamero A, Martínez-Cordero H, Beltrán BE, Florindez J, Malpica L, Castillo JJ. Plasmablastic lymphoma: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:1586-1594. [PMID: 38767403 DOI: 10.1002/ajh.27376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
DISEASE OVERVIEW Plasmablastic lymphoma (PBL) is a rare CD20-negative aggressive lymphoma with a poor prognosis under standard treatment options. Though PBL is associated with human immunodeficiency virus infection and other immunosuppressed states, it can also affect immunocompetent individuals. DIAGNOSIS The diagnosis requires a high clinical suspicion and pathological confirmation. EBER expression and MYC gene rearrangements are frequently detected. The differential diagnosis includes EBV+ diffuse large B-cell lymphoma, extracavitary primary effusion lymphoma, ALK+ DLBCL, and HHV8+ large B-cell lymphoma, among others. RISK STRATIFICATION Age ≥60 years, advanced clinical stage, and high intermediate and high International Prognostic Index scores are associated with worse survival. MANAGEMENT Combination chemotherapy regimens, such as EPOCH, are recommended. The addition of bortezomib, lenalidomide, or daratumumab might improve outcomes. Including PBL patients and their participation in prospective clinical trials is warranted.
Collapse
MESH Headings
- Humans
- Plasmablastic Lymphoma/diagnosis
- Plasmablastic Lymphoma/therapy
- Plasmablastic Lymphoma/drug therapy
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Risk Assessment
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Doxorubicin/administration & dosage
- Vincristine/therapeutic use
- Vincristine/administration & dosage
- Prednisone/therapeutic use
- Lenalidomide/therapeutic use
- Lenalidomide/administration & dosage
- Prognosis
- Bortezomib/therapeutic use
- Bortezomib/administration & dosage
- Diagnosis, Differential
- Disease Management
- Middle Aged
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antibodies, Monoclonal
- Etoposide
Collapse
Affiliation(s)
- Andres Ramirez-Gamero
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Brady E Beltrán
- Department of Oncology and Radiotherapy, Hospital Edgardo Rebagliati Martins and Instituto de Ciencias Biomedicas, Universidad Ricardo Palma, Lima, Peru
| | - Jorge Florindez
- Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luis Malpica
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Witte H, Künstner A, Gebauer N. Update: The molecular spectrum of virus-associated high-grade B-cell non-Hodgkin lymphomas. Blood Rev 2024; 65:101172. [PMID: 38267313 DOI: 10.1016/j.blre.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The vast spectrum of aggressive B-cell non-Hodgkin neoplasms (B-NHL) encompasses several infrequent entities occurring in association with viral infections, posing diagnostic challenges for practitioners. In the emerging era of precision oncology, the molecular characterization of malignancies has acquired paramount significance. The pathophysiological comprehension of specific entities and the identification of targeted therapeutic options have seen rapid development. However, owing to their rarity, not all entities have undergone exhaustive molecular characterization. Considerable heterogeneity exists in the extant body of work, both in terms of employed methodologies and the scale of cases studied. Presently, therapeutic strategies are predominantly derived from observations in diffuse large B-cell lymphoma (DLBCL), the most prevalent subset of aggressive B-NHL. Ongoing investigations into the molecular profiles of these uncommon virus-associated entities are progressively facilitating a clearer distinction from DLBCL, ultimately paving the way towards individualized therapeutic approaches. This review consolidates the current molecular insights into aggressive and virus-associated B-NHL, taking into consideration the recently updated 5th edition of the WHO classification of hematolymphoid tumors (WHO-5HAEM) and the International Consensus Classification (ICC). Additionally, potential therapeutically targetable susceptibilities are highlighted, offering a comprehensive overview of the present scientific landscape in the field.
Collapse
Affiliation(s)
- H Witte
- Department of Hematology and Oncology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany; Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - A Künstner
- University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany; Medical Systems Biology Group, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - N Gebauer
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein (UKSH) Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; University Cancer Center Schleswig-Holstein (UCCSH), Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
7
|
Li JW, Peng HL, Zhou XY, Wang JJ. Plasmablastic lymphoma: current knowledge and future directions. Front Immunol 2024; 15:1354604. [PMID: 38415257 PMCID: PMC10896986 DOI: 10.3389/fimmu.2024.1354604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 02/29/2024] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive non-Hodgkin lymphoma associated with HIV infection and immunodeficiency. However, PBL can also be seen immunocompetent individuals in recent studies. PBL was characterized by distinct clinical and pathological features, such as plasmablastic morphology and universal expression of plasma cell markers. The clinicopathologic features were different between HIV-negative and HIV-positive patients. Gene expression analysis identified the unique molecular feature in PBL, including frequent c-MYC rearrangement and downregulation of BCR signaling pathway. Despite the recent advances in the treatment of PBL, the prognosis of PBL patients remains dismal. The objectives of this review are to summarize the current knowledge on the epidemiology, molecular profiles, clinical and pathological features, differential diagnosis, treatment strategies, prognostic factors, and potential novel therapeutic approaches in PBL patients.
Collapse
Affiliation(s)
- Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Ling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pathology, Fudan University, Shanghai, China
| | - Jing-Jing Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
López de Cáceres CVB, Sant'Ana MSP, Roman Tager EMJ, Burbano RMR, de Almeida OP, Vargas PA, Fonseca FP. Extracavitary Primary Effusion Lymphoma Affecting the Oral Cavity: A Rare Case Report. Int J Surg Pathol 2024; 32:119-132. [PMID: 37150962 DOI: 10.1177/10668969231167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Primary effusion lymphoma (PEL) is an aggressive neoplasm often diagnosed in immunosuppressed patients demonstrating peritoneal, pleural, or pericardial effusions. This high-grade lymphoma is strongly associated with human herpesvirus 8 (HHV8) infection and most of the lesions also show the presence of Epstein-Barr virus in tumor cells, which lacks CD20 expression and reveals a plasmablastic morphology and phenotype. The extracavitary or solid variant of PEL is even rarer and usually affects the lymph nodes and is currently considered a clinical manifestation of the classic PEL. In the oral cavity, extracavitary PEL is extremely rare and only a few patients have been previously reported, with no detailed clinicopathological description. The recognition of oral extracavitary PEL is even more important given the occurrence of plasmablastic lymphoma in the oral mucosa, which shares many clinical, microscopic, and phenotypic features with PEL, therefore, demanding from pathologists the search for HHV8, especially in immunosuppressed patients, and an appropriate clinical evaluation. In this report, we aim to describe a very rare extracavitary PEL affecting the palate of a 36-year-old patient and to review the literature regarding the extracavitary presentation of this aggressive lymphoma. This report demonstrates the importance of searching for HHV8 infection in oral lymphomas with plasmablastic features.
Collapse
Affiliation(s)
- Cinthia V B López de Cáceres
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria S P Sant'Ana
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elena M J Roman Tager
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Oslei P de Almeida
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Pablo A Vargas
- Department of Oral Diagnosis, Area of Pathology, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Felipe P Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Li L, Zhang D, Cao X. EBF1, PAX5, and MYC: regulation on B cell development and association with hematologic neoplasms. Front Immunol 2024; 15:1320689. [PMID: 38318177 PMCID: PMC10839018 DOI: 10.3389/fimmu.2024.1320689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.
Collapse
Affiliation(s)
- Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Chen BJ, Hsieh TH, Yuan CT, Wang RC, Yang CF, Chuang WY, Su YZ, Ho CH, Lin CH, Chuang SS. Clinicopathological and genetic landscape of plasmablastic lymphoma in Taiwan. Pathol Res Pract 2024; 253:155059. [PMID: 38160484 DOI: 10.1016/j.prp.2023.155059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plasmablastic lymphoma (PBL) is an aggressive large B-cell lymphoma with a terminal B-cell differentiation phenotype and is frequently associated with immunodeficiency. We aimed to investigate the clinicopathological and immunophenotypic features, genetic alterations, and mutational landscape of PBL in Taiwan. We retrospectively recruited 26 cases. Five (5/18; 28%) patients were HIV-positive and 21 (81%) presented extranodally. There were two morphological groups: one with purely monomorphic large cells (85%) and the other comprising large cells admixed with plasmacytic cells (15%). Phenotypically, the tumors expressed MYC (8/10; 80%), CD138 (20/26; 77%), and MUM1 (20/20; 100%), but not CD20 (n = 26; 0%). Fourteen (54%) cases were positive for EBV by in situ hybridization; the EBV-positive cases were more frequently HIV infected (p = 0.036), with extranodal presentation (p = 0.012) and CD79a expression (p = 0.012), but less frequent light chain restriction (p = 0.029). Using fluorescence in situ hybridization, we identified 13q14 deletion, MYC rearrangement, and CCND1 rearrangement in 74%, 30%, and 5% cases, respectively, without any cases having rearranged BCL6 or IGH::FGFR3 fusion. In the 15 cases with adequate tissue for whole exome sequencing, the most frequent recurrent mutations were STAT3 (40%), NRAS (27%), and KRAS (20%). In conclusion, most PBL cases in Taiwan were HIV-unrelated. Around half of the cases were positive for EBV, with distinct clinicopathological features. Deletion of chromosome 13q14 was frequent. The PBL cases in Taiwan showed recurrent mutations involving JAK-STAT, RAS-MAPK, epigenetic regulation, and NOTCH signaling pathways, findings similar to that from the West.
Collapse
Affiliation(s)
- Bo-Jung Chen
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ren Ching Wang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ching-Fen Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yu Chuang
- School of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Zhen Su
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
11
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 1-Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Prognostic Factors, and Special Populations. Mediterr J Hematol Infect Dis 2024; 16:e2024007. [PMID: 38223486 PMCID: PMC10786126 DOI: 10.4084/mjhid.2024.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
This two-part review aims to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first section, as presented in this paper, reviews epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. Plasmablastic lymphoma (PBL) is a rare and aggressive form of lymphoma. Previous and modern studies have demonstrated a significant association between the human immunodeficiency virus (HIV) and the development of the disease. The limited occurrence of PBL contributes to a need for a more comprehensive understanding of the molecular mechanisms involved in its etiology. Consequently, the diagnostic procedure for PBL poses a significant difficulty. Among the group of CD20-negative large B-cell lymphomas, PBL can be correctly diagnosed by identifying its exact clinical characteristics, anatomical location, and morphological characteristics. PBL cells do not express CD20 or PAX5 but possess plasmacytic differentiation markers such as CD38, CD138, MUM1/IRF4, Blimp1, and XBP1. PBL must be distinguished from other B-cell malignancies that lack the CD20 marker, including primary effusion lymphoma, anaplastic lymphoma kinase-positive large B-cell lymphoma, and large B-cell lymphoma (LBCL). This condition is frequently associated with infections caused by the Epstein-Barr virus and genetic alterations involving the MYC gene. Despite advances in our comprehension of this disease, the prognosis remains dismal, resulting in a low overall survival rate, although recent reports suggest an apparent tendency towards substantial improvement.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Rome, Italy
| |
Collapse
|
12
|
Dotlic S, Gibson SE, Hartmann S, Hsi ED, Klimkowska M, Rodriguez-Pinilla SM, Sabattini E, Tousseyn TA, de Jong D, Dojcinov S. Lymphomas with plasmablastic features: a report of the lymphoma workshop of the 20th meeting of the European Association for Haematopathology. Virchows Arch 2023; 483:591-609. [PMID: 37561194 DOI: 10.1007/s00428-023-03585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
Lymphomas with plasmablastic features are a heterogeneous group of aggressive and mostly uncommon neoplasms of varied aetiologies, presenting in immunocompetent individuals as well as in immunodeficiency, associated with EBV and Kaposi sarcoma virus infections, and some as progression from indolent B-cell lymphomas. They show overlapping diagnostic features and pose a differential diagnosis with other aggressive B-cell lymphomas that can downregulate the B-cell expression programme. The spectrum of rare reactive proliferations and all lymphomas defined by plasmablastic features, together with an expanding range of poorly characterised, uncommon conditions at the interface between reactive lymphoid proliferations and neoplasia submitted to the session V of the 20th European Association for Haematopathology/Society for Hematopathology lymphoma workshop are summarised and discussed in this paper.
Collapse
Affiliation(s)
- Snjezana Dotlic
- Department of Pathology and Cytology, University Hospital Centre Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Sarah E Gibson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Eric D Hsi
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, USA
| | - Monika Klimkowska
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Thomas A Tousseyn
- Department of Imaging and Pathology and Translational Cell and Tissue Research Laboratory, Louvain, Belgium
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC, Location VUMC, Amsterdam, The Netherlands
| | - Stefan Dojcinov
- Department of Pathology, Morriston Hospital, Swansea Bay University Health Board/Swansea University, Swansea, UK.
| |
Collapse
|
13
|
Kaur S, Kollimuttathuillam S. Plasmablastic Lymphoma: Past, Present, and Future. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:e253-e259. [PMID: 37453866 DOI: 10.1016/j.clml.2023.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 07/18/2023]
Abstract
Plasmablastic Lymphoma is a rare large B-cell lymphoma with unique immunohistochemical and morphological features. It was most commonly associated with HIV infection; however, it's now seen in other immunosuppressed states like autoimmune conditions, post-transplant settings, and even in elderly immunocompetent individuals. Although rare, it is an aggressive lymphoma with unfavorable outcomes. The aim of this manuscript is to have an in-depth review of the current knowledge of epidemiology, pathophysiology, prognostic markers, and treatment approaches currently in use and in clinical trials for this challenging disease.
Collapse
Affiliation(s)
- Supreet Kaur
- University of Texas Health Science Center San Antonio, TX.
| | | |
Collapse
|
14
|
Song J, Zhu K, Wang X, Yang Q, Yu S, Zhang Y, Fu Z, Wang H, Zhao Y, Lin K, Yuan G, Guo J, Shi Y, Liu C, Ai J, Zhang H, Zhang W. Utility of clinical metagenomics in diagnosing malignancies in a cohort of patients with Epstein-Barr virus positivity. Front Cell Infect Microbiol 2023; 13:1211732. [PMID: 37674580 PMCID: PMC10477599 DOI: 10.3389/fcimb.2023.1211732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 09/08/2023] Open
Abstract
Backgrounds Differentiation between benign and malignant diseases in EBV-positive patients poses a significant challenge due to the lack of efficient diagnostic tools. Metagenomic Next-Generation Sequencing (mNGS) is commonly used to identify pathogens of patients with fevers of unknown-origin (FUO). Recent studies have extended the application of Next-Generation Sequencing (NGS) in identifying tumors in body fluids and cerebrospinal fluids. In light of these, we conducted this study to develop and apply metagenomic methods to validate their role in identifying EBV-associated malignant disease. Methods We enrolled 29 patients with positive EBV results in the cohort of FUO in the Department of Infectious Diseases of Huashan Hospital affiliated with Fudan University from 2018 to 2019. Upon enrollment, these patients were grouped for benign diseases, CAEBV, and malignant diseases according to their final diagnosis, and CNV analysis was retrospectively performed in 2022 using samples from 2018 to 2019. Results Among the 29 patients. 16 of them were diagnosed with benign diseases, 3 patients were diagnosed with CAEBV and 10 patients were with malignant diseases. 29 blood samples from 29 patients were tested for mNGS. Among all 10 patients with malignant diagnosis, CNV analysis suggested neoplasms in 9 patients. Of all 19 patients with benign or CAEBV diagnosis, 2 patients showed abnormal CNV results. The sensitivity and specificity of CNV analysis for the identification for tumors were 90% and 89.5%, separately. Conclusions The application of mNGS could assist in the identification of microbial infection and malignancies in EBV-related diseases. Our results demonstrate that CNV detection through mNGS is faster compared to conventional oncology tests. Moreover, the convenient collection of peripheral blood samples adds to the advantages of this approach.
Collapse
Affiliation(s)
- Jieyu Song
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kun Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaojia Wang
- Medical Department, Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qingluan Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglei Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhangfan Fu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanhan Zhao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ke Lin
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guanmin Yuan
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingqi Shi
- Medical Department, Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Chao Liu
- Medical Department, Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Huashan Institute of Microbes and Infections, Shanghai, China
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
15
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
16
|
Alonso AM, Saxton AS, Lin RY, Basile EJ, Yang Y. Clinical Importance of Differentiating Epstein-Barr Virus (EBV)-Positive Plasmacytoma From Plasmablastic Lymphoma: Another Unique Case of EBV-Positive Plasmacytoma in an Immunocompetent Patient. Cureus 2023; 15:e40021. [PMID: 37425541 PMCID: PMC10323494 DOI: 10.7759/cureus.40021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Epstein-Barr virus (EBV)-positive plasmacytoma is a rare and unique plasma cell neoplasm that could arise in immunocompetent individuals. Given the molecular and immunohistochemical similarity of EBV-positive plasmacytomas to their significantly more aggressive counterpart, plasmablastic lymphoma (PBL), providers must distinguish between the two neoplasms. This case elucidates a presentation of EBV-positive plasmacytomas in a healthy, immunocompetent individual originating in the C4/C5 cervical neck region. The patient's clinical presentation, in combination with the surgical pathology from the mass biopsy, pointed toward EBV-positive plasmacytoma. Factors such as cellular proliferation rate, cellular atypia, and immunohistochemical staining help differentiate the two diseases. This case will further help providers in the oncologic world to identify these masses.
Collapse
Affiliation(s)
- Adrian M Alonso
- Internal Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Alyssa S Saxton
- Internal Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Rick Y Lin
- Internal Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Eric J Basile
- Internal Medicine, University of Florida College of Medicine, Gainesville, USA
| | - Yu Yang
- Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, USA
| |
Collapse
|
17
|
Frontzek F, Hailfinger S, Lenz G. Plasmablastic lymphoma: from genetics to treatment. Leuk Lymphoma 2022; 64:799-807. [PMID: 36577021 DOI: 10.1080/10428194.2022.2162341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmablastic lymphoma (PBL) represents a rare distinct lymphoma entity with plasmablastic morphology and plasmacytic immunophenotype that is characterized by an aggressive clinical course. Standard chemotherapeutic regimens often remain insufficient to cure affected patients. Recently, comprehensive molecular analyses of large cohorts of primary PBL samples have revealed the mutational landscape as well as the pattern of copy number alterations of this rare lymphoma subtype. Identification of recurrent aberrations affecting the JAK-STAT, RAS-RAF, NOTCH, IRF4, and MYC signaling pathways drive the molecular pathogenesis of PBL and hold great potential for novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Shi D, Gao L, Wan XC, Li J, Tian T, Hu J, Zhang QL, Su YF, Zeng YP, Hu ZJ, Yu BH, Li XQ, Wei P, Li JW, Zhou XY. Clinicopathologic features and abnormal signaling pathways in plasmablastic lymphoma: a multicenter study in China. BMC Med 2022; 20:483. [PMID: 36522654 PMCID: PMC9753322 DOI: 10.1186/s12916-022-02683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plasmablastic lymphoma (PBL) is a rare but aggressive B-cell lymphoma subtype with poor prognosis. Knowledge about the etiology, clinicopathologic and molecular features, and outcomes of PBL is limited. This study aimed to examine the clinicopathologic characteristics, therapeutic approaches, and clinical outcomes of PBL patients in a Chinese population. METHODS A total of 102 PBL patients were recruited from three cancer centers. The pathologic features and clinical outcomes of 56 patients with available treatment details and follow-up data were reviewed and analyzed. RNA sequencing was performed in 6 PBL and 11 diffuse large B-cell lymphoma (DLBCL) patients. RESULTS Most patients in our cohort were male (n = 36, 64.3%), and 35 patients presented with Ann Arbor stage I/II disease at diagnosis. All these patients showed negative findings for human immunodeficiency virus, and the vast majority of patients in our cohort were immunocompetent. Lymph nodes (n = 13, 23.2%) and gastrointestinal tract (n = 10, 17.9%) were the most commonly involved site at presentation. Post-treatment complete remission (CR) was the only prognostic factor affecting overall survival (OS) and progression-free survival (PFS) in the multivariate analysis. RNA-seq demonstrated that B-cell receptor (BCR), T-cell receptor (TCR), P53, calcium signaling, and Wnt signaling pathways were significantly downregulated in PBLs compared with GCB (or non-GCB) DLBCLs. CONCLUSIONS In this multicenter study in the Chinese population, PBL mainly occurred in immunocompetent individuals and most patients present with early-stage disease at diagnosis. Post-treatment CR was an important prognostic factor affecting OS and PFS. RNA-seq showed that the B-cell receptor (BCR), P53, calcium signaling, cell adhesion molecules, and Wnt signaling pathways significantly differed between PBL and GCB (or non-GCB) DLBCL, which provided theoretical basis for its pathogenesis and future treatment.
Collapse
Affiliation(s)
- Di Shi
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Lin Gao
- GenePlus-Shenzhen, Shenzhen, 518000, People's Republic of China.,Institute of Microbiology, Chinese Academy of Sciences, Beijing, 102199, China
| | - Xiao-Chun Wan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Jin Li
- Department of Oncology, Hunan Cancer Hospital, Changsha, 410000, China
| | - Tian Tian
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Jue Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qun-Ling Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Yi-Fan Su
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Yu-Peng Zeng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Zi-Juan Hu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Bao-Hua Yu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Ping Wei
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Ji-Wei Li
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Otsuka-Kamakura N, Sugiura Y, Yamazaki T, Shimizu N, Hiruta N. Case report: Plasmablastic neoplasm with multinucleated giant cells—Analysis of stemness of the neoplastic multinucleated giant cells. Front Oncol 2022; 12:1023785. [DOI: 10.3389/fonc.2022.1023785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer stem cells have the capability of self-renewal and multipotency and are, therefore, associated with tumor heterogeneity, resistance to chemoradiation therapy, and metastasis. The hypothesis that multinucleated giant cells, which often emerge following chemo- and/or radiotherapy, serve as cancer stem cells has not been fully evaluated. Although a previous study demonstrated that these cells functioned as stem cells, only low levels of Yamanaka factors were expressed, contrasting with the high expression seen from their gestated first-generation mononuclear cells. Herein, we report a case of a plasmablastic neoplasm with multinucleated giant cells that were analyzed for stemness to test the above hypothesis. The patient was a male in his 80s who had a plasmablastic neoplasm that was not easily distinguishable as plasmablastic lymphoma versus plasma cell myeloma of plasmablastic type. Lymph node biopsy showed predominant mononuclear cell proliferation with admixed multinucleated giant cells. Immunohistochemistry and in situ hybridization showed that both multinucleated and mononuclear cells had the same profile: CD138(+), light chain restriction of κ>λ, cyclin D1(+), CD68(-), EBER-ISH (+). These results suggested that both cell types were neoplastic. In accordance with the previous study, the multinucleated giant cells showed low expression of Yamanaka factors, which were highly expressed in some of the mononuclear cells. Furthermore, the multinucleated giant cells showed a much lower proliferative activity (Mib1/Ki67 index) than the mononuclear cells. Based on these results, the multinucleated giant cells were compatible with cancer stem cells. This case is expected to expand the knowledge base regarding biology of cancer stem cells.
Collapse
|
20
|
Dubey H, Gupta S, Jha T, Tanwar K, Verma S, Ranjan A, Tanwar P. Therapy related complications in plasmablastic lymphoma in immunocompetent individual. AMERICAN JOURNAL OF BLOOD RESEARCH 2022; 12:168-171. [PMID: 36419572 PMCID: PMC9677181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plasmablastic lymphoma (PBL) is a rare and aggressive subtype of diffuse large B-cell lymphoma seen in immunocompromised individuals. It has a diffuse growth pattern, with no standard therapy and a poor survival rate. Due to overlap in presenting features with lymphoma and myeloma, PBL is often a diagnostic dilemma. We present a case of PBL in a young immunocompetent female who developed treatment associated complications. CASE REPORT A 36-year-old presented with a lesion extending from the oral cavity to the pharynx and involving the angle of the mandible. Radiology and laryngoscopy described a growth pattern that was diagnosed to be PBL on histopathology. The patient underwent chemotherapy using level II DA-EPOCH (dose-adjusted-etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) and prophylactic granulocyte-colony stimulating factor along with radiotherapy and ultimately, achieved metabolic response. However, she developed several episodes of paralytic ileus, cytopenia, oral ulcers, dermatitis and long-standing hypothyroidism as therapy-related complications and has been on treatment for the same ever since. CONCLUSIONS Thus, a high index of suspicion is necessary for early diagnosis and rapid initiation of therapy. Further, there is a need to detect and address therapy related complications early to prevent long-standing, therapy-related side effects from developing and deteriorating the patient's quality of life.
Collapse
Affiliation(s)
- Harshita Dubey
- Laboratory Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Swati Gupta
- Laboratory Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Tanvi Jha
- Laboratory Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Khushi Tanwar
- Indian Institute of Science Education and Research (IISR)Mohali, Punjab, India
| | - Saransh Verma
- All India Institute of Medical SciencesNew Delhi, India
| | - Amar Ranjan
- Laboratory Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology, Dr. B R Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| |
Collapse
|
21
|
Zhou T, Cheng J, Karrs J, Davies-Hill T, Pack SD, Xi L, Tyagi M, Kim J, Jaffe ES, Raffeld M, Pittaluga S. Clinicopathologic and Molecular Characterization of Epstein-Barr Virus-positive Plasmacytoma. Am J Surg Pathol 2022; 46:1364-1379. [PMID: 35650679 PMCID: PMC9481705 DOI: 10.1097/pas.0000000000001923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Epstein-Barr virus (EBV)-positive plasmacytoma is a rare plasma cell neoplasm. It remains unclear whether EBV-positive plasmacytoma represents a distinct entity or a variant of plasmacytoma. It shares morphologic features with plasmablastic lymphoma (PBL) and may cause diagnostic uncertainty. To better understand EBV-positive plasmacytoma and explore diagnostic criteria, this study describes 19 cases of EBV-positive plasmacytoma, compared with 27 cases of EBV-negative plasmacytoma and 48 cases of EBV-positive PBL. We reviewed the clinicopathologic findings and performed immunohistochemistry, in situ hybridization for EBV, fluorescence in situ hybridization for MYC , and next-generation sequencing. We found that 63.2% of patients with EBV-positive plasmacytoma were immunocompromised. Anaplastic features were observed in 7/19 cases. MYC rearrangement was found in 25.0% of them, and extra copies of MYC in 81.3%. EBV-positive and EBV-negative plasmacytomas possessed similar clinicopathologic features, except more frequent cytologic atypia, bone involvement and MYC aberrations in the former group. The survival rate of patients with EBV-positive plasmacytoma was comparable to that of patients with EBV-negative plasmacytoma. In comparison to PBL, EBV-positive plasmacytoma is less commonly associated with a "starry-sky" appearance, necrosis, absence of light chain expression, and a high Ki67 index (>75%). The most recurrently mutated genes/signaling pathways in EBV-positive plasmacytoma are epigenetic regulators, MAPK pathway, and DNA damage response, while the most frequently reported mutations in PBL are not observed. Collectively, EBV-positive plasmacytoma should be regarded as a biological variant of plasmacytoma. Thorough morphologic examination remains the cornerstone for distinguishing EBV-positive plasmacytoma and PBL, and molecular studies can be a valuable complementary tool.
Collapse
Affiliation(s)
- Ting Zhou
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jinjun Cheng
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jeremiah Karrs
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Theresa Davies-Hill
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Svetlana D. Pack
- Molecular Diagnostics and Bioinformatics, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Liqiang Xi
- Molecular Diagnostics and Bioinformatics, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Manoj Tyagi
- Molecular Diagnostics and Bioinformatics, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Jung Kim
- Molecular Diagnostics and Bioinformatics, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Mark Raffeld
- Molecular Diagnostics and Bioinformatics, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
22
|
EBV-positive follicular lymphoma and concurrent EBV-negative diffuse large B-cell lymphoma illustrating branched evolution model and “Hit and Run” hypothesis. J Hematop 2022. [DOI: 10.1007/s12308-022-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
23
|
Targeting CD38 with Daratumumab Plus Chemotherapy for Patients with Advanced-Stage Plasmablastoid Large B-Cell Lymphoma. J Clin Med 2022; 11:jcm11164928. [PMID: 36013165 PMCID: PMC9409851 DOI: 10.3390/jcm11164928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is a rare and aggressive form of large B-cell lymphoma (LBCL) most commonly seen in the setting of chronic immunosuppression or autoimmune disease. The prognosis is poor and CHOP-like regimens often fail to produce durable remission; therefore, there is no established standard of care treatment. However, PBL demonstrates substantial morphologic and immunophenotypic overlap with multiple myeloma (MM), suggesting that MM therapeutics might prove useful in treating PBL. We studied the effects of treatment using the first-in-class monoclonal antibody directed against CD38, daratumumab, in combination with chemotherapy in seven patients with advanced-stage LBCL with plasmablastic features. Treatment was safe and well-tolerated. Among six evaluable patients, six patients had complete response after treatment, and four patients who met strict WHO criteria for PBL had durable response (12-31 months and ongoing).
Collapse
|
24
|
Bühler MM, Martin‐Subero JI, Pan‐Hammarström Q, Campo E, Rosenquist R. Towards precision medicine in lymphoid malignancies. J Intern Med 2022; 292:221-242. [PMID: 34875132 PMCID: PMC11497354 DOI: 10.1111/joim.13423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Careful histopathologic examination remains the cornerstone in the diagnosis of the clinically and biologically heterogeneous group of lymphoid malignancies. However, recent advances in genomic and epigenomic characterization using high-throughput technologies have significantly improved our understanding of these tumors. Although no single genomic alteration is completely specific for a lymphoma entity, some alterations are highly recurrent in certain entities and thus can provide complementary diagnostic information when integrated in the hematopathological diagnostic workup. Moreover, other alterations may provide important information regarding the clinical course, that is, prognostic or risk-stratifying markers, or response to treatment, that is, predictive markers, which may allow tailoring of the patient's treatment based on (epi)genetic characteristics. In this review, we will focus on clinically relevant diagnostic, prognostic, and predictive biomarkers identified in more common types of B-cell malignancies, and discuss how diagnostic assays designed for comprehensive molecular profiling may pave the way for the implementation of precision diagnostics/medicine approaches. We will also discuss future directions in this rapidly evolving field, including the application of single-cell sequencing and other omics technologies, to decipher clonal dynamics and evolution in lymphoid malignancies.
Collapse
Affiliation(s)
- Marco M. Bühler
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
| | - José I. Martin‐Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | | | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Hematopathology SectionLaboratory of PathologyHospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomedica en Red de Cancer (CIBERONC)MadridSpain
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University LaboratoryKarolinska University HospitalSolnaSweden
| |
Collapse
|
25
|
Bortezomib, Lenalidomide and Dexamethasone Combination Induced Complete Remission in Relapsed/Refractory Plasmablastic Lymphoma: Case Report of a Potential Novel Treatment Approach. Curr Oncol 2022; 29:5042-5053. [PMID: 35877259 PMCID: PMC9323819 DOI: 10.3390/curroncol29070399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Plasmablastic lymphoma is a rare subtype of large B-cell lymphoma characterised by an aggressive clinical course with frequent relapses and refractoriness to chemotherapy. It is usually associated with HIV, however, it can also be seen in immunocompetent patients. It has distinct pathological characteristics, such as plasmablastic morphology and lack of CD20 expression. These characteristics pose a clinical and pathological challenge. There is no standard of care established in this entity. In this case report, we described a novel bortezomib-based plasma cell targeted regimen in a HIV-negative patient refractory to chemotherapy.
Collapse
|
26
|
Daratumumab, Lenalidomide, and Dexamethasone (DRD), an Active Regimen in the Treatment of Immunosuppression-Associated Plasmablastic Lymphoma (PBL) in the Setting of Gorham’s Lymphangiomatosis: Review of the Literature. Case Rep Hematol 2022; 2022:8331766. [PMID: 35795542 PMCID: PMC9252825 DOI: 10.1155/2022/8331766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Characterized by an aggressive course with a poor overall survival due to treatment refractoriness, plasmablastic lymphoma (PBL) is a rare variant of diffuse large cell B cell lymphoma. Gorham’s lymphangiomatosis or Gorham–Stout disease (GSD) is a rare skeletal condition of unknown etiology characterized by progressive bone loss and nonmalignant proliferation of vascular and lymphatic channels within the affected bone. Neither disease has a standard of care. We present a 23-year-old HIV-negative woman with GSD, managed medically with octreotide and sirolimus, who developed PBL. After progressing on V-EPOCH (bortezomib, etoposide, vincristine, cyclophosphamide, doxorubicin, and prednisone), she was treated with daratumumab, lenalidomide, and dexamethasone (DRD) therapy and achieved complete remission after two cycles with progression after eight cycles. This is a report of treatment of PBL with DRD therapy. Clinical investigations of the DRD regimen in PBL in conjunction with other agents to improve both depth and durability of response are warranted.
Collapse
|
27
|
Plasmablastic myeloma in Taiwan frequently presents with extramedullary and extranodal mass mimicking plasmablastic lymphoma. Virchows Arch 2022; 481:283-293. [PMID: 35657404 DOI: 10.1007/s00428-022-03342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/13/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
Plasmablastic myeloma (PBM) is a blastic morphologic variant of plasma cell myeloma with less favorable prognosis than those with non-blastic morphology. PBM is rare, without clear-cut definition and detailed clinicopathologic features in the literature. PBM may mimic plasmablastic lymphoma (PBL) as they share nearly identical morphology and immunophenotype. Using the criteria of ≥ 30% plasmablasts in tissue sections, we retrospectively recruited PBM cases and analyzed their clinical, imaging, and pathologic findings, with emphasis on extramedullary involvement. We performed immunohistochemistry, in situ hybridization for Epstein-Barr virus (EBER), and fluorescence in situ hybridization (FISH) for lymphoma- and myeloma-associated genetic alterations. Of the 25 recruited cases, 15 (60%) had extramedullary involvement, which occurred as initial presentation in nine cases. The most common extramedullary sites were soft tissue and/or skin (10/15, 67%), followed by pleural effusion, the lungs, and lymph nodes. Immunohistochemically, tumor cells expressed MYC (74%; 17/23), CD56 (56%; 14/25), and cyclin D1 (16%; 4/25), while CD117 was all negative (n = 25). Of the 20 cases stained with p53, four (20%) cases were diffusely positive, and the remaining 16 cases showed a heterogeneous pattern. EBER was negative in all 24 cases examined. Of the 13 cases examined with FISH, the genetic aberrations identified included del(13q14)(92%; 12/13), gain of chromosome 1q (90%; 9/10), loss of chromosome 1p (60%; 6/10), IGH-FGFR3 reciprocal translocation (23%; 3/13), rearranged MYC (15%; 2/13), and rearranged CCND1 (8%; 1/13), while there were no cases with TP53 deletion (n = 10) or rearrangement of BCL2 (n = 13) or BCL6 (n = 13). The prognosis was dismal regardless of the presence or absence of extramedullary involvement. In conclusion, PBM in Taiwan frequently presented as extramedullary and extranodal lesions, particularly in soft tissue and/or skin, mimicking PBL. FISH for targeted genetic alterations such as del(13q14), gain of chromosome 1q, loss of chromosome 1p, and IGH-FGFR3 might be helpful for the differential diagnoses. Larger studies are warranted to investigate the genetic alterations between PBM and PBL.
Collapse
|
28
|
Tsutsumi Y, Kitano S, Yanagita S, Tachibana M. Epstein-Barr virus-positive mucocutaneous ulcer, plasmablastic type, associated with nodal CD4+ angioimmunoblastic T-cell lymphoma and generalised pruritus: a self-limiting lymphoproliferative disorder resembling cutaneous plasmablastic lymphoma. BMJ Case Rep 2022; 15:e247430. [PMID: 35523507 PMCID: PMC9083435 DOI: 10.1136/bcr-2021-247430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 12/16/2022] Open
Abstract
A woman in her 80s reported of generalised pruritus, which was treated with phototherapy and steroid administration. Two months after onset, lymph node biopsy revealed CD4+ angioimmunoblastic T-cell lymphoma with systemic superficial nodal involvement. Intractable prurigo was judged as T-cell lymphoma related. After effective chemotherapy (7 months later), skin nodules appeared multifocally, including on the lip, thumb and lower leg. The biopsied infiltrative lesion on the right lower leg microscopically revealed subcutaneous growth of atypical plasmablasts with nearly 100% Ki-67 labelling and Epstein-Barr virus (EBV)-encoded small nuclear RNA positivity. Plasmablastic lymphoma (CD45/CD19/CD38/CD138/MUM1+, CD20/CD79a/PAX5-) was suspected. Immunoglobulin light-chain restriction and nuclear expression of c-myc protein were undetectable, and the ulcers were spontaneously epithelialised by the cessation of steroid administration. After 10 months, non-progressive prurigos persisted on the extremities, but without regrowth of nodal T-cell lymphoma and cutaneous lymphoproliferative lesion. Reactive nature of the EBV-induced mucocutaneous plasmablastic growth (EBV-positive mucocutaneous ulcer, plasmablastic type) is discussed.
Collapse
Affiliation(s)
- Yutaka Tsutsumi
- Division of Diagnostic Pathology, Tsutsumi Byori Shindanka Clinic, Inazawa, Aichi, Japan
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Yokkaichi, Mie, Japan
| | - Seiya Kitano
- Department of Dermatology, Shimada General Medical Center, Shimada, Shizuoka, Japan
| | - Soshi Yanagita
- Department of Hematology, Shimada General Medical Center, Shimada, Shizuoka, Japan
| | - Mitsuhiro Tachibana
- Department of Diagnostic Pathology, Shimada General Medical Center, Shimada, Shizuoka, Japan
| |
Collapse
|
29
|
Zanelli M, Palicelli A, Sanguedolce F, Zizzo M, Filosa A, Ricci L, Cresta C, Martino G, Bisagni A, Zanetti E, di Donato F, Melli B, Soriano A, Cimino L, Cavazza A, Vivian LF, Ascani S. Cutaneous Involvement in Diseases with Plasma Cell Differentiation: Diagnostic Approach. Curr Oncol 2022; 29:3026-3043. [PMID: 35621636 PMCID: PMC9139249 DOI: 10.3390/curroncol29050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Neoplasms with plasma cell differentiation may occasionally involve the skin. Cutaneous lesions may represent the first sign of an underlying systemic plasma cell malignancy, such as multiple myeloma, or the skin itself may be the primary site of occurrence of a hematological tumor with plasma cell differentiation. Starting from examples encountered in our daily practice, we discussed the diagnostic approach pathologists and clinicians should use when faced with cutaneous lesions with plasma cell differentiation. Cases of primary cutaneous marginal zone lymphoma, localized primary amyloidosis/amyloidoma, and cutaneous manifestations (secondary either to multiple myeloma or to plasmablastic lymphoma) are discussed, focusing on the importance of the adequate patient's work-up and precise clinicopathological correlation to get to the correct diagnosis and appropriate treatment. The pertinent literature has been reviewed, and the clinical presentation, pathological findings, main differential diagnoses, treatment, and outcome of neoplasms with plasma cell differentiation involving the skin are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (E.Z.); (A.C.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (E.Z.); (A.C.)
| | | | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Filosa
- Section of Pathological Anatomy, United Hospitals Ancona, 60126 Ancona, Italy;
| | - Linda Ricci
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (G.M.); (S.A.)
| | - Camilla Cresta
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (G.M.); (S.A.)
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (G.M.); (S.A.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (E.Z.); (A.C.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (E.Z.); (A.C.)
| | - Francesco di Donato
- Department of Biomedical and Neuromotor Sciences, School of Anatomic Pathology, Bellaria Hospital, University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Department of Obstetrics and Gynaecology, Fertility Center, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Luca Cimino
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (A.B.); (E.Z.); (A.C.)
| | | | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (G.M.); (S.A.)
| |
Collapse
|
30
|
Witte HM, Künstner A, Hertel N, Bernd HW, Bernard V, Stölting S, Merz H, von Bubnoff N, Busch H, Feller AC, Gebauer N. Integrative genomic and transcriptomic analysis in plasmablastic lymphoma identifies disruption of key regulatory pathways. Blood Adv 2022; 6:637-651. [PMID: 34714908 PMCID: PMC8791589 DOI: 10.1182/bloodadvances.2021005486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a clinically heterogeneous subtype of aggressive B-cell non-Hodgkin lymphoma. Targeted-sequencing studies and a single-center whole-exome sequencing (WES) study in HIV-positive patients recently revealed several genes associated with PBL pathogenesis; however, the global mutational landscape and transcriptional profile of PBL remain elusive. To inform on disease-associated mutational drivers, mutational patterns, and perturbed pathways in HIV-positive and HIV-negative PBL, we performed WES and transcriptome sequencing (RNA-sequencing) of 33 PBL tumors. Integrative analysis of somatic mutations and gene expression profiles was performed to acquire insights into the divergent genotype-phenotype correlation in Epstein-Barr virus-positive (EBV+) and EBV- PBL. We describe a significant accumulation of mutations in the JAK signal transducer and transcription activator (OSMR, STAT3, PIM1, and SOCS1), as well as receptor tyrosine-kinase RAS (ERBB3, NRAS, PDGFRB, and NTRK) pathways. We provide further evidence of frequent perturbances of NF-κB signaling (NFKB2 and BTK). Induced pathways, identified by RNA-sequencing, closely resemble the mutational profile regarding alterations accentuated in interleukin-6/JAK/STAT signaling, NF-κB activity, and MYC signaling. Moreover, class I major histocompatibility complex-mediated antigen processing and cell cycle regulation were significantly affected by EBV status. An almost exclusive upregulation of phosphatidylinositol 3-kinase/AKT/mTOR signaling in EBV+ PBL and a significantly induced expression of NTRK3 in concert with recurrent oncogenic mutations in EBV- PBL hint at a specific therapeutically targetable mechanism in PBL subgroups. Our characterization of a mutational and transcriptomic landscape in PBL, distinct from that of diffuse large B-cell lymphoma and multiple myeloma, substantiates the pathobiological independence of PBL in the spectrum of B-cell malignancies and thereby refines the taxonomy for aggressive lymphomas.
Collapse
Affiliation(s)
- Hanno M. Witte
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Department of Hematology and Oncology, Federal Armed Forces Hospital Ulm, Ulm, Germany
| | - Axel Künstner
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Nadine Hertel
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Heinz-Wolfram Bernd
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Stephanie Stölting
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Hauke Busch
- Medical Systems Biology Group, and
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| | - Alfred C. Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany; and
| |
Collapse
|
31
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Gozzi F, Cimino L, Masia F, Moretti M, Foroni M, De Marco L, Pellegrini D, De Raeve H, Ricci S, Tamagnini I, Tafuni A, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 3). Cancers (Basel) 2021; 13:6021. [PMID: 34885131 PMCID: PMC8656853 DOI: 10.3390/cancers13236021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 12/28/2022] Open
Abstract
EBV is the first known oncogenic virus involved in the development of several tumors. The majority of the global population are infected with the virus early in life and the virus persists throughout life, in a latent stage, and usually within B lymphocytes. Despite the worldwide diffusion of EBV infection, EBV-associated diseases develop in only in a small subset of individuals often when conditions of immunosuppression disrupt the balance between the infection and host immune system. EBV-driven lymphoid proliferations are either of B-cell or T/NK-cell origin, and range from disorders with an indolent behavior to aggressive lymphomas. In this review, which is divided in three parts, we provide an update of EBV-associated lymphoid disorders developing in the gastrointestinal tract, often representing a challenging diagnostic and therapeutic issue. Our aim is to provide a practical diagnostic approach to clinicians and pathologists who face this complex spectrum of disorders in their daily practice. In this part of the review, the chronic active EBV infection of T-cell and NK-cell type, its systemic form; extranodal NK/T-cell lymphoma, nasal type and post-transplant lymphoproliferative disorders are discussed.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Francesco Masia
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Marina Moretti
- Dipartimento di Medicina, Università degli Studi di Perugia, 05100 Terni, Italy; (F.M.); (M.M.)
| | - Moira Foroni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - David Pellegrini
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| | - Hendrik De Raeve
- Pathology, University Hospital Brussels, 1090 Brussels, Belgium;
- Pathology, O.L.V. Hospital Aalst, 9300 Aalst, Belgium
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Ione Tamagnini
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (M.F.); (L.D.M.); (S.R.); (I.T.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (D.P.); (S.A.)
| |
Collapse
|
32
|
Verdu-Bou M, Tapia G, Hernandez-Rodriguez A, Navarro JT. Clinical and Therapeutic Implications of Epstein-Barr Virus in HIV-Related Lymphomas. Cancers (Basel) 2021; 13:5534. [PMID: 34771697 PMCID: PMC8583310 DOI: 10.3390/cancers13215534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022] Open
Abstract
The incidence of lymphomas is increased in people living with HIV (PLWH). Aggressive B-cell non-Hodgkin lymphomas (NHLs) are the most common and are considered an AIDS-defining cancer (ADC). Although Hodgkin lymphoma (HL) is not considered an ADC, its incidence is also increased in PLWH. Among all HIV-related lymphomas (HRL), the prevalence of Epstein-Barr virus (EBV) is high. It has been shown that EBV is involved in different lymphomagenic mechanisms mediated by some of its proteins, contributing to the development of different lymphoma subtypes. Additionally, cooperation between both HIV and EBV can lead to the proliferation of aberrant B-cells, thereby being an additional lymphomagenic mechanism in EBV-associated HRL. Despite the close relationship between EBV and HRL, the impact of EBV on clinical aspects has not been extensively studied. These lymphomas are treated with the same therapeutic regimens as the general population in combination with cART. Nevertheless, new therapeutic strategies targeting EBV are promising for these lymphomas. In this article, the different types of HRL are extensively reviewed, focusing on the influence of EBV on the epidemiology, pathogenesis, clinical presentation, and pathological characteristics of each lymphoma subtype. Moreover, novel therapies targeting EBV and future strategies to treat HRL harboring EBV are discussed.
Collapse
Affiliation(s)
- Miriam Verdu-Bou
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
| | - Gustavo Tapia
- Department of Pathology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Agueda Hernandez-Rodriguez
- Department of Microbiology, Germans Trias i Pujol Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Jose-Tomas Navarro
- Lymphoid Neoplasms Group, Josep Carreras Leukaemia Research Institute, Can Ruti Campus, 08916 Badalona, Spain;
- Department of Hematology, Institut Català d’Oncologia-Germans Trias i Pujol Hospital, 08916 Badalona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
33
|
Dlouhy I, Karube K, Enjuanes A, Salaverria I, Nadeu F, Ramis-Zaldivar JE, Valero JG, Rivas-Delgado A, Magnano L, Martin-García D, Pérez-Galán P, Clot G, Rovira J, Jares P, Balagué O, Giné E, Mozas P, Briones J, Sancho JM, Salar A, Mercadal S, Alcoceba M, Valera A, Campo E, López-Guillermo A. Revised International Prognostic Index and genetic alterations are associated with early failure to R-CHOP in patients with diffuse large B-cell lymphoma. Br J Haematol 2021; 196:589-598. [PMID: 34632572 DOI: 10.1111/bjh.17858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/28/2022]
Abstract
Relapsed or refractory diffuse large B-cell lymphoma (DLBCL) cases have a poor outcome. Here we analysed clinico-biological features in 373 DLBCL patients homogeneously treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), in order to identify variables associated with early failure to treatment (EF), defined as primary refractoriness or relapse within 12 months from diagnosis. In addition to clinical features, mutational status of 106 genes was studied by targeted next-generation sequencing in 111 cases, copy number alterations in 87, and gene expression profile (GEP) in 39. Ninety-seven cases (26%) were identified as EF and showed significantly shorter overall survival (OS). Patients with B symptoms, advanced stage, high levels of serum lactate dehydrogenase (LDH) or β2-microglobulin, low lymphocyte/monocyte ratio and higher Revised International Prognostic Index (R-IPI) scores, as well as those with BCL2 rearrangements more frequently showed EF, with R-IPI being the most important in logistic regression. Mutations in NOTCH2, gains in 5p15·33 (TERT), 12q13 (CDK2), 12q14·1 (CDK4) and 12q15 (MDM2) showed predictive importance for EF independently from R-IPI. GEP studies showed that EF cases were significantly enriched in sets related to cell cycle regulation and inflammatory response, while cases in response showed over-representation of gene sets related to extra-cellular matrix and tumour microenvironment.
Collapse
Affiliation(s)
- Ivan Dlouhy
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Kennosuke Karube
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Cell Biology & Pathology Department, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Anna Enjuanes
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Itziar Salaverria
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Enric Ramis-Zaldivar
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan G Valero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alfredo Rivas-Delgado
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Laura Magnano
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - David Martin-García
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Guillem Clot
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordina Rovira
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | - Pedro Jares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Olga Balagué
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eva Giné
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic, Barcelona, Spain
| | | | | | | | | | - Miguel Alcoceba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Hospital Clínico Universitario, Salamanca, Spain
| | - Alexandra Valera
- Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elías Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,Institut d`Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | - Armando López-Guillermo
- Department of Hematology, Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Tumores Hematológicos, Madrid, Spain.,University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Plasmablastic Lymphoma or Plasmablastic Myeloma: A Case of Post-Transplant Lymphoproliferative Disorder. Case Rep Hematol 2021; 2021:4354941. [PMID: 34616575 PMCID: PMC8490046 DOI: 10.1155/2021/4354941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmablastic lymphomas and plasmablastic myelomas are malignancies with overlapping clinical and pathological features which pose a diagnostic dilemma and are known to be aggressive with a poor outcome. CD38 is a common immunophenotypic maker for both these malignancies and provides a rationale for using daratumumab-based regimes. We describe a 57-year-old male with a history of end-stage renal disease who underwent a deceased-donor renal transplant maintained on chronic immunosuppression who presented with ascites and was found to have abdominal adenopathy and a lytic lesion in the humerus and diagnosed with a post-transplant lymphoproliferative disorder with features intermediate between plasmablastic lymphoma and plasmablastic myeloma. The patient was subsequently treated with a daratumumab-based regime with an excellent response. This case highlights a rare scenario that poses a diagnostic and therapeutic challenge. As there is no standard of care for the treatment of both these malignancies, this case report also describes the use of daratumumab with a good long-term outcome, especially when the pathological distinction between the two entities is difficult.
Collapse
|
35
|
Ramburan A, Kriel R, Govender D. Plasmablastic lymphomas show restricted EBV latency profile and MYC gene aberrations. Leuk Lymphoma 2021; 63:370-376. [PMID: 34612761 DOI: 10.1080/10428194.2021.1986218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The pathogenesis of plasmablastic lymphoma (PBL) involves the Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), and MYC gene aberrations. We aimed to determine the EBV latent infection pattern and frequency of MYC gene aberrations in PBLs. Immunohistochemistry was performed using antibodies for EBNA1, EBNA2, and LMP1 while fluorescence in situ hybridization was performed using a MYC probe. The patient cohort comprised 49 adult cases (44 were HIV-positive and three were HIV-negative). Forty-one cases were EBV-positive with 11 EBNA1-positive cases, all cases EBNA2-negative, and four LMP1-positive cases. Latency 0 was determined in 29 cases, latency I in eight cases, and latency II in four cases. The MYC gene was rearranged in eight cases, showed copy number alterations in 11 cases and, no rearrangement in 11 cases. This is the largest cohort of PBLs from South Africa to show a predominantly restricted EBV latency pattern with MYC gene aberrations as a common finding.
Collapse
Affiliation(s)
- Amsha Ramburan
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Raymond Kriel
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,PathCare, Cape Town, South Africa
| |
Collapse
|
36
|
Zhou J, Nassiri M. Lymphoproliferative Neoplasms With Plasmablastic Morphology: An Overview and Diagnostic Approach. Arch Pathol Lab Med 2021; 146:407-414. [PMID: 34559873 DOI: 10.5858/arpa.2021-0117-ra] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Plasmablastic morphology can be seen in several uncommon lymphoproliferative neoplasms. Sometimes it is difficult to distinguish these neoplasms from each other. OBJECTIVE.— To review the current understanding of major lymphoproliferative neoplasms with plasmablastic morphology; summarize the clinical, morphologic, immunophenotypic, cytogenetic, and molecular characteristics of each disease entity; and highlight a practical approach for differential diagnosis. DATA SOURCES.— Peer-reviewed medical literature and the authors' personal experience. CONCLUSIONS.— Plasmablastic lymphoma; plasmablastic myeloma; primary effusion lymphoma; human herpesvirus 8-positive diffuse large B-cell lymphoma, not otherwise specified; and anaplastic lymphoma kinase (ALK)-positive large B-cell lymphoma are major lymphoproliferative neoplasms with plasmablastic morphology. These neoplasms share many common morphologic and immunophenotypic characteristics. Definitive diagnosis requires a thorough understanding of disease phenotype and diagnostic criteria of each category. Recognition of expression pattern of Epstein-Barr virus-encoded small RNA, human herpesvirus 8, and ALK in these neoplasms is critical for diagnosis in cases with typical presentation. Additional ancillary studies and clinical findings may help in difficult cases.
Collapse
Affiliation(s)
- Jiehao Zhou
- From the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis
| | - Mehdi Nassiri
- From the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
37
|
Zanelli M, Sanguedolce F, Palicelli A, Zizzo M, Martino G, Caprera C, Fragliasso V, Soriano A, Valle L, Ricci S, Gozzi F, Cimino L, Cavazza A, Merli F, Pileri SA, Ascani S. EBV-Driven Lymphoproliferative Disorders and Lymphomas of the Gastrointestinal Tract: A Spectrum of Entities with a Common Denominator (Part 2). Cancers (Basel) 2021; 13:4527. [PMID: 34572754 PMCID: PMC8469260 DOI: 10.3390/cancers13184527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) is a common pathogen infecting people primarily early in life. The virus has the ability to persist throughout a person's life, usually in B lymphocytes. Conditions of immunodeficiency as well as the introduction of immunosuppressive therapies and the advent of transplant technologies has brought immunodeficiency-associated lymphoproliferative disorders into view, which are often driven by EBV. The group of EBV-associated lymphoproliferative disorders includes different entities, with distinct biological features, ranging from indolent disorders, which may even spontaneously regress, to aggressive lymphomas requiring prompt and adequate treatment. These disorders are often diagnostically challenging due to their overlapping morphology and immunophenotype. Both nodal and extra-nodal sites, including the gastrointestinal tract, may be involved. This review, divided in three parts, summarizes the clinical, pathological, molecular features and treatment strategies of EBV-related lymphoproliferative disorders occurring in the gastrointestinal tract and critically analyzes the major issues in the differential diagnosis. In this part of the review, we discuss plasmablastic lymphoma, extra-cavitary primary effusion lymphoma and Burkitt lymphoma.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | | | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Valle
- Anatomic Pathology, Department of Integrated Surgical and Diagnostic Sciences (DISC), University of Genoa and Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (F.G.); (L.C.)
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.P.); (S.R.); (A.C.)
| | - Francesco Merli
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Stefano A. Pileri
- Haematopathology Division, European Institute of Oncology-IEO IRCCS Milan, 20141 Milan, Italy;
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy; (G.M.); (C.C.); (S.A.)
| |
Collapse
|
38
|
Molecular and functional profiling identifies therapeutically targetable vulnerabilities in plasmablastic lymphoma. Nat Commun 2021; 12:5183. [PMID: 34465776 PMCID: PMC8408158 DOI: 10.1038/s41467-021-25405-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/04/2021] [Indexed: 12/20/2022] Open
Abstract
Plasmablastic lymphoma (PBL) represents a rare and aggressive lymphoma subtype frequently associated with immunosuppression. Clinically, patients with PBL are characterized by poor outcome. The current understanding of the molecular pathogenesis is limited. A hallmark of PBL represents its plasmacytic differentiation with loss of B-cell markers and, in 60% of cases, its association with Epstein-Barr virus (EBV). Roughly 50% of PBLs harbor a MYC translocation. Here, we provide a comprehensive integrated genomic analysis using whole exome sequencing (WES) and genome-wide copy number determination in a large cohort of 96 primary PBL samples. We identify alterations activating the RAS-RAF, JAK-STAT, and NOTCH pathways as well as frequent high-level amplifications in MCL1 and IRF4. The functional impact of these alterations is assessed using an unbiased shRNA screen in a PBL model. These analyses identify the IRF4 and JAK-STAT pathways as promising molecular targets to improve outcome of PBL patients. Plasmablastic lymphoma (PBL) is an aggressive lymphoma subtype characterized by poor prognosis but the molecular knowledge of the disease is limited. Here, the authors perform whole exome sequencing and copy number determination of primary samples highlighting IRF4 and JAK-STAT pathways as therapeutic targets for PBL.
Collapse
|
39
|
Dehuri P, Mohapatra D, Das P. An Unusual Presentation of Extra-Oral Plasmablastic Lymphoma With Unique Cytomorphology. Cureus 2021; 13:e16562. [PMID: 34430164 PMCID: PMC8380040 DOI: 10.7759/cureus.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Plasmablastic lymphomas are high-grade lymphomas most commonly observed in the oral cavity. Their association with HIV-infected patients is now well-known. The occurrence of plasmablastic lymphomas in extra-oral sites in immunocompetent patients is exceedingly rare. We aim to document such a rare case in a 69-year- old female in the gastrointestinal tract along with lymphomatous effusion of the pleural cavity. The discussed case also needs a mention for its unique cytomorphological features. The diagnosis was confirmed by immunohistochemical stains, which play a vital role in the accurate diagnosis of plasmablastic lymphomas and their distinction from other anaplastic non-Hodgkin lymphomas.
Collapse
Affiliation(s)
| | - Debahuti Mohapatra
- Pathology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, IND
| | - Prateek Das
- Pathology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, IND
| |
Collapse
|
40
|
Dzobo K. What to Do for Increasing Cancer Burden on the African Continent? Accelerating Public Health Diagnostics Innovation for Prevention and Early Intervention on Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:567-579. [PMID: 34399067 DOI: 10.1089/omi.2021.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
No other place illustrates the increasing burden of cancer than in Africa and in particular, sub-Saharan Africa. Many of the individuals to be diagnosed with cancer will be in low-resource settings in the future due to, for example, an increase in populations and aging, and high co-morbidity with infections with viruses such as human immunodeficiency virus (HIV) and human papillomavirus (HPV), as well as the presence of infectious agents linked to cancer development. Due to lack of prevention and diagnostic innovation, patients present with advanced cancers, leading to poor survival and increased mortality. HIV infection-associated cancers such as B cell lymphomas, Kaposi's sarcoma, and HPV-associated cancers such as cervical cancer are particularly noteworthy in this context. Recent reports show that a host of other cancers are also associated with viral infection and these include lung, oral cavity, esophageal, and pharyngeal, hepatocellular carcinoma, and anal and vulvar cancers. This article examines the ways in which diagnostic innovation empowered by integrative biology and informed by public health priorities can improve cancer prevention or early intervention in Africa and beyond. In addition, I argue that because diagnostic biomarkers can often overlap with novel therapeutic targets, diagnostics research and development can have broader value for and impact on medical innovation.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Fonseca FP, Robinson L, van Heerden MB, van Heerden WFP. Oral plasmablastic lymphoma: A clinicopathological study of 113 cases. J Oral Pathol Med 2021; 50:594-602. [PMID: 34091967 DOI: 10.1111/jop.13210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Plasmablastic lymphoma (PBL) is an aggressive neoplasm that commonly develops in HIV-positive patients, usually affecting the oral cavity. EBV is present in the majority of cases, therefore, playing an important role in the pathogenesis of this neoplasm. METHODS PBL diagnosed from 2000 to 2020 were retrieved from the archives of the Department of Oral Pathology and Oral Biology at the University of Pretoria, South Africa. The patients' clinical information including gender, age, tumour location and HIV status was obtained from the original histopathology request forms. A morphological description was assessed using H&E-stained slides, with diagnoses confirmed by immunohistochemistry, and EBV detection performed via in situ hybridisation. RESULTS During the 20 years period investigated, 113 PBL were found. Males outnumbered females (M:F ratio of 3:1), with a median age of 41 years (range 8-62). The gingiva (50 cases or 44.2%) and the palate (23 cases or 20.4%) were the most affected sites. All cases with available information were HIV positive. The tumours were composed of a diffuse proliferation of immunoblasts or plasmablasts in all cases. A starry-sky pattern, tissue necrosis, cellular pleomorphism and mitotic figures were common microscopic findings. IHC for CD3 and CD20 were negative in all cases, while positivity for CD38, CD138 and MUM1 was observed in 70.2%, 79.2% and 98.9%, respectively. EBV was present in 100% of the cases. CONCLUSION PBL is a frequent diagnosis in South Africa, due to the country's HIV burden, where it usually affects the oral cavity and is always associated with EBV infection.
Collapse
Affiliation(s)
- Felipe Paiva Fonseca
- Department of Oral Biology and Oral Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liam Robinson
- Department of Oral Biology and Oral Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marlene B van Heerden
- Department of Oral Biology and Oral Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Willie F P van Heerden
- Department of Oral Biology and Oral Pathology, School of Dentistry, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
43
|
Ramis-Zaldivar JE, Gonzalez-Farre B, Nicolae A, Pack S, Clot G, Nadeu F, Mottok A, Horn H, Song JY, Fu K, Wright G, Gascoyne RD, Chan WC, Scott DW, Feldman AL, Valera A, Enjuanes A, Braziel RM, Smeland EB, Staudt LM, Rosenwald A, Rimsza LM, Ott G, Jaffe ES, Salaverria I, Campo E. MAP-kinase and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 2021; 106:2682-2693. [PMID: 33951889 PMCID: PMC8485662 DOI: 10.3324/haematol.2020.271957] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large cell morphology and plasmacytic differentiation. The differential diagnosis with Burkitt lymphoma (BL), plasma cell myeloma (PCM) and some variants of diffuse large B-cell lymphoma (DLBCL) may be challenging due to the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated thirty-four PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2-q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, EBVnegative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors related to EBV infection.
Collapse
Affiliation(s)
- Joan Enric Ramis-Zaldivar
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Blanca Gonzalez-Farre
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Alina Nicolae
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Svetlana Pack
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Guillem Clot
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Anja Mottok
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - George Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Randy D Gascoyne
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - David W Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Alexandra Valera
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Anna Enjuanes
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Rita M Braziel
- Department of Clinical Pathology, Oregon Health and Science University, Oregon
| | - Erlend B Smeland
- Department of Immunology and Centre for Cancer Biomedicine, University of Oslo and Oslo University Hospital, Oslo
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda
| | | | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Itziar Salaverria
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.
| |
Collapse
|
44
|
Pather S, Mashele T, Willem P, Patel M, Perner Y, Motaung M, Nagiah N, Waja F, Philip V, Lakha A, Hale MJ. MYC status in HIV-associated plasmablastic lymphoma: dual-colour CISH, FISH and immunohistochemistry. Histopathology 2021; 79:86-95. [PMID: 33450085 DOI: 10.1111/his.14336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
AIMS We utilised chromogenic and fluorescence in-situ hybridisation (CISH and FISH) to evaluate MYC gene copy numbers and rearrangements within HIV-associated plasmablastic lymphomas (PBLs). Thereafter, clinicopathological features were explored retrospectively. METHODS AND RESULTS Sixty-seven (n = 67) patients were included and the HIV seropositive status was confirmed in 98% (63 of 64) with a median viral load of 55 587 (IQR 273 582) copies/ml and median CD4 count of 170 (IQR 249) cells/µl. The mean age was 41 ± 10.1 years and females comprised 54%. PBL was documented predominantly at extra-oronasal topographic regions. Starry-sky (SS) appearance was evident in 33% in association with monomorphic morphology (P-value 0.02). c-MYC protein was expressed in 81% and latent EBV infection was detected in 90%. EBER ISH-positive status and MYC rearrangement occurred in 67% of HIV PBL. MYC aberrations included MYC rearrangement (70%), low-level increase in MYC gene copy numbers (43%), concurrent MYC rearrangement and increased MYC gene copy numbers (49%) as well as low-level chromosome 8 polysomy (6%). MYC aberrations in HIV PBLs were significantly associated with SS appearance (P -0.01), monomorphic morphology (P - 0.03), c-MYC protein expression ≥40% (P - 0.03) and mortality (P - 0.03). There was advanced stage (Ann Arbor III/IV) at presentation (77%) and the median overall survival for HIV PBL was 75 days (95% CI 14-136). CONCLUSION Majority of the HIV-associated PBL tumours harbour MYC aberrations. Due to the persistently inferior survival outcome of HIV-associated PBL in the era of antiviral treatment, targeted and/or intensified therapy of oncogenic MYC may need to be explored in future.
Collapse
Affiliation(s)
- Sugeshnee Pather
- Division of Anatomical Pathology, Faculty of Health Sciences, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Thembi Mashele
- Division of Anatomical Pathology, Faculty of Health Sciences, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Pascale Willem
- Department of Haematology and Molecular Medicine, Somatic Cell Genetics Unit, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Moosa Patel
- Department of Medicine, Clinical Haematology unit, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Yvonne Perner
- Faculty of Health Sciences, Division of Anatomical Pathology, National Health Laboratory Service, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Mantoa Motaung
- Division of Anatomical Pathology, Faculty of Health Sciences, National Health Laboratory Service, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Natasha Nagiah
- Department of Haematology and Molecular Medicine, Somatic Cell Genetics Unit, Faculty of Health Sciences, National Health Laboratory Service, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Faadil Waja
- Department of Medicine, Clinical Haematology unit, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Vinitha Philip
- Department of Medicine, Clinical Haematology unit, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Atul Lakha
- Department of Medicine, Clinical Haematology unit, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Soweto, Gauteng, South Africa
| | - Martin J Hale
- Faculty of Health Sciences, Division of Anatomical Pathology, National Health Laboratory Service, University of the Witwatersrand, Soweto, Gauteng, South Africa
| |
Collapse
|
45
|
Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S, Loghavi S, Gomez Mediavilla A, Tonda R, Beltran S, Gut M, Pereña Gonzalez A, d'Ámore E, Visco C, Khoury JD, Montes-Moreno S. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 2021; 106:1120-1128. [PMID: 32273478 PMCID: PMC8018103 DOI: 10.3324/haematol.2020.251579] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The mutational profile of plasmablastic lymphoma has not been described. We performed a targeted, exonic next-generation sequencing analysis of 30 plasmablastic lymphoma cases with a Bcell lymphoma-dedicated panel and fluorescence in situ hybridization for the detection of MYC rearrangements. Complete phenotyping of the neoplastic and microenvironmental cell populations was also performed. We identified an enrichment in recurrent genetic events in MYC (69% with MYC translocation or amplification and three cases with missense point mutations), PRDM1/Blimp1 and STAT3 mutations. These gene mutations were more frequent in Epstein-Barr virus (EBV)-positive disease. Other genetic events included mutations in BRAF, EP300, BCR (CD79A and CD79B), NOTCH pathway (NOTCH2, NOTCH1 and SGK1) and MYD88pL265P. Immunohistochemical analysis showed consistent MYC expression, which was higher in cases with MYC rearrangements, together with phospho-STAT3 (Tyr705) overexpression in cases with STAT3 SH2 domain mutations. Microenvironmental cell populations were heterogeneous and unrelated to EBV, with enrichment of tumor-associated macrophages (TAM) and PD1-positive T cells. PD-L1 was expressed in all cases in the TAM population but only in the neoplastic cells in five cases (4 of 14 EBV-positive cases). HLA expression was absent in the majority of cases of plasmablastic lymphoma. In summary, the mutational profile of plasmablastic lymphoma is heterogeneous and related to EBV infection. Genetic events in MYC, STAT3 and PRDM1/Blimp1 are more frequent in EBV-positive disease. An enrichment in TAM and PD1 reactive T lymphocytes is found in the microenvironment of plasmablastic lymphoma and a fraction of the neoplastic cells express PD-L1.
Collapse
Affiliation(s)
- Julia Garcia-Reyero
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | | | | | - Sanam Loghavi
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raul Tonda
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Emanuele d'Ámore
- Departments of Pathology and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, San Bortolo Hospital, Italy
| | - Joseph D Khoury
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | - Santiago Montes-Moreno
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| |
Collapse
|
46
|
Plummer RM, Linden MA, Beckman AK. Update on B-cell lymphoproliferative disorders of the gastrointestinal tract. Semin Diagn Pathol 2021; 38:14-20. [PMID: 33863577 DOI: 10.1053/j.semdp.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal (GI) tract is home to a significant portion of the immune system, which interacts daily with the antigenic milieu of its contents. Therefore, the presence of white blood cells within the walls of the GI tract upon histologic examination is a familiar sight on GI biopsies-both in health and disease. The GI tract is the most common site of extranodal lymphomas, most of which are B-cell neoplasms. Here, we review common and uncommon B-cell neoplasms of the GI tract - extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma), mantle cell lymphoma, duodenal-type follicular lymphoma, diffuse large B-cell lymphoma, plasmablastic lymphoma, EBV-positive mucocutaneous ulcer, and post-transplant lymphoproliferative disorders - with special focus on literature published during the past five years. Along with the other articles in this edition of Seminars in Diagnostic Pathology, it is the authors' hope that this review proves to be a useful resource in the workup of the array of hematopoietic processes that can involve the GI tract.
Collapse
Affiliation(s)
- Regina M Plummer
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Amy K Beckman
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
48
|
Primary Effusion Lymphoma: A Clinicopathological Study of 70 Cases. Cancers (Basel) 2021; 13:cancers13040878. [PMID: 33669719 PMCID: PMC7922633 DOI: 10.3390/cancers13040878] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Primary effusion lymphoma (PEL) is a rare HHV8 driven large B-cell lymphoma. It is often associated with HIV infection and seldom occurs in HIV-negative immunocompromised patients. Patients with PEL usually present with effusion only, but occasionally with an extracavitary mass, or both. This retrospective study aimed to better characterize the clinicopathological features of PEL by comparing effusion-only PEL versus the extracavitary-only PEL and HIV-positive versus HIV-negative cases in a large cohort of 70 patients. All 70 (100%) cases were positive for HHV8. Fifty-six (80%) patients had HIV infection. Patients presenting with effusion only versus extracavitary disease were associated with different clinicopathologic features. After a median follow-up time of 40 months (range 0–96), 26 of 52 (50%) patients with clinical follow-up died, and the median survival was 42.5 months. PEL is an aggressive lymphoma with a poor prognosis, regardless of extracavitary presentation or HIV status. Abstract Primary effusion lymphoma (PEL) is a rare type of large B-cell lymphoma associated with human herpesvirus 8 (HHV8) infection. Patients with PEL usually present with an effusion, but occasionally with an extracavitary mass. In this study, we reported a cohort of 70 patients with PEL: 67 men and 3 women with a median age of 46 years (range 26–91). Of these, 56 (80%) patients had human immunodeficiency virus (HIV) infection, eight were HIV-negative, and six had unknown HIV status. Nineteen (27%) patients had Kaposi sarcoma. Thirty-five (50%) patients presented with effusion only, 27 (39%) had an extracavitary mass or masses only, and eight (11%) had both effusion and extracavitary disease. The lymphoma cells showed plasmablastic, immunoblastic, or anaplastic morphology. All 70 (100%) cases were positive for HHV8. Compared with effusion-only PEL, patients with extracavitary-only PEL were younger (median age, 42 vs. 52 years, p = 0.001), more likely to be HIV-positive (88.9% vs. 68.6%, p = 0.06) and EBV-positive (76.9% vs. 51.9%, p = 0.06), and less often positive for CD45 (69.2% vs. 96.2%, p = 0.01), EMA (26.7% vs. 100%, p = 0.0005), and CD30 (60% vs. 81.5%, p = 0.09). Of 52 (50%) patients with clinical follow-up, 26 died after a median follow-up time of 40.0 months (range 0–96), and the median overall survival was 42.5 months. The median OS for patients with effusion-only and with extracavitary-only PEL were 30.0 and 37.9 months, respectively (p = 0.34), and patients with extracavitary-only PEL had a lower mortality rate at the time of last follow-up (35% vs. 61.5%, p = 0.07). The median OS for HIV-positive and HIV-negative patients were 42.5 and 6.8 months, respectively (p = 0.57), and they had a similar mortality rate of 50% at last follow-up. In conclusion, patients presenting with effusion-only versus extracavitary-only disease are associated with different clinicopathologic features. PEL is an aggressive lymphoma with a poor prognosis, regardless of extracavitary presentation or HIV status.
Collapse
|
49
|
Wu S, Subtil A, Gru AA. Epidermotropic Epstein-Barr virus-Positive Diffuse Large B-Cell Lymphoma: A Series of 3 Cases of a Very Unusual High-Grade Lymphoma. Am J Dermatopathol 2021; 43:51-56. [PMID: 32649345 DOI: 10.1097/dad.0000000000001718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Sam Wu
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| | - Antonio Subtil
- Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | - Alejandro A Gru
- Department of Pathology, University of Virginia, Charlottesville, VA; and
| |
Collapse
|
50
|
Foukas PG, Bisig B, de Leval L. Recent advances upper gastrointestinal lymphomas: molecular updates and diagnostic implications. Histopathology 2020; 78:187-214. [PMID: 33382495 DOI: 10.1111/his.14289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
Approximately one-third of extranodal non-Hodgkin lymphomas involve the gastrointestinal (GI) tract, with the vast majority being diagnosed in the stomach, duodenum, or proximal small intestine. A few entities, especially diffuse large B-cell lymphoma and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue, represent the majority of cases. In addition, there are diseases specific to or characteristic of the GI tract, and any type of systemic lymphoma can present in or disseminate to these organs. The recent advances in the genetic and molecular characterisation of lymphoid neoplasms have translated into notable changes in the classification of primary GI T-cell neoplasms and the recommended diagnostic approach to aggressive B-cell tumours. In many instances, diagnoses rely on morphology and immunophenotype, but there is an increasing need to incorporate molecular genetic markers. Moreover, it is also important to take into consideration the endoscopic and clinical presentations. This review gives an update on the most recent developments in the pathology and molecular pathology of upper GI lymphoproliferative diseases.
Collapse
Affiliation(s)
- Periklis G Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Bettina Bisig
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurence de Leval
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| |
Collapse
|