1
|
Demcsák A, Sahin-Tóth M. Heterozygous Spink1 Deficiency Promotes Trypsin-dependent Chronic Pancreatitis in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101361. [PMID: 38768901 PMCID: PMC11292374 DOI: 10.1016/j.jcmgh.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND & AIMS Heterozygous SPINK1 mutations are strong risk factors for chronic pancreatitis in humans, yet heterozygous disruption of mouse Spink1 yielded no pancreatic phenotype. To resolve this contradiction, we used CRISPR/Cas9-mediated genome editing to generate heterozygous Spink1-deleted mice (Spink1-KOhet) in the C57BL/6N strain and studied the effect of this allele in trypsin-independent and trypsin-dependent pancreatitis models. METHODS We investigated severity of acute pancreatitis and progression to chronic pancreatitis in Spink1-KOhet mice after transient (10 injections) and prolonged (2 × 8 injections) cerulein hyperstimulation. We crossed Spink1-KOhet mice with T7D23A and T7D22N,K24R mice that carry strongly autoactivating trypsinogen mutants and exhibit spontaneous chronic pancreatitis. RESULTS Prolonged but not transient cerulein stimulation resulted in increased intrapancreatic trypsin activity and more severe acute pancreatitis in Spink1-KOhet mice relative to the C57BL/6N control strain. After the acute episode, Spink1-KOhet mice developed progressive disease with chronic pancreatitis-like features, whereas C57BL/6N mice recovered rapidly. Trypsinogen mutant mice carrying the Spink1-KOhet allele exhibited strikingly more severe chronic pancreatitis than the respective parent strains. CONCLUSIONS Heterozygous Spink1 deficiency caused more severe acute pancreatitis after prolonged cerulein stimulation and promoted chronic pancreatitis after the cerulein-induced acute episode, and in two strains of trypsinogen mutant mice with spontaneous disease. In contrast, acute pancreatitis induced with limited cerulein hyperstimulation was unaffected by heterozygous Spink1 deletion, in agreement with recent observations that trypsin activity does not mediate pathologic responses in this model. Taken together, the findings strongly support the notion that loss-of-function SPINK1 mutations in humans increase chronic pancreatitis risk in a trypsin-dependent manner.
Collapse
Affiliation(s)
- Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, California
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Walker J, Babyok OL, Saloman JL, Phillips AE. Recent advances in the understanding and management of chronic pancreatitis pain. JOURNAL OF PANCREATOLOGY 2024; 7:35-44. [PMID: 38524856 PMCID: PMC10959534 DOI: 10.1097/jp9.0000000000000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/09/2023] [Indexed: 03/26/2024] Open
Abstract
Abdominal pain is the most common symptom of chronic pancreatitis (CP) and is often debilitating for patients and very difficult to treat. To date, there exists no cure for the disease. Treatment strategies focus on symptom management and on mitigation of disease progression by reducing toxin exposure and avoiding recurrent inflammatory events. Traditional treatment protocols start with medical management followed by consideration of procedural or surgical intervention on selected patients with severe and persistent pain. The incorporation of adjuvant therapies to treat comorbidities including psychiatric disorders, exocrine pancreatic insufficiency, mineral bone disease, frailty, and malnutrition, are in its early stages. Recent clinical studies and animal models have been designed to improve investigation into the pathophysiology of CP pain, as well as to improve pain management. Despite the array of tools available, many therapeutic options for the management of CP pain provide incomplete relief. There still remains much to discover about the neural regulation of pancreas-related pain. In this review, we will discuss research from the last 5 years that has provided new insights into novel methods of pain phenotyping and the pathophysiology of CP pain. These discoveries have led to improvements in patient selection for optimization of outcomes for both medical and procedural management, and identification of potential future therapies.
Collapse
Affiliation(s)
- Jessica Walker
- Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Olivia L. Babyok
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jami L. Saloman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Pain Research, Center for Neuroscience, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anna Evans Phillips
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Morales Granda NC, Toldi V, Miczi M, Lassoued M, Szabó A. Inhibition of mouse trypsin isoforms by SPINK1 and effect of human pancreatitis-associated mutations. Pancreatology 2023:S1424-3903(23)00137-0. [PMID: 37149461 DOI: 10.1016/j.pan.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Serine protease inhibitor Kazal type 1 (SPINK1) is a trypsin-selective inhibitor protein secreted by the exocrine pancreas. Loss-of-function SPINK1 mutations predispose to chronic pancreatitis through either reduced expression, secretion, or impaired trypsin inhibition. In this study, we aimed to characterize the inhibitory activity of mouse SPINK1 against cationic (T7) and anionic (T8, T9, T20) mouse trypsin isoforms. Kinetic measurements with a peptide substrate, and digestion experiments with β-casein indicated that the catalytic activity of all mouse trypsins is comparable. Human SPINK1 and its mouse ortholog inhibited mouse trypsins with comparable efficiency (KD range 0.7-2.2 pM), with the sole exception of T7 trypsin, which was inhibited less effectively by the human inhibitor (KD 21.9 pM). Characterization of four chronic pancreatitis-associated human SPINK1 mutations in the context of the mouse inhibitor revealed that the reactive-loop mutations R42N (human K41N) and I43M (human I42M) impaired SPINK1 binding to trypsin (KD 60 nM and 47.5 pM, respectively), whereas mutations D35S (human N34S) and A56S (human P55S) had no impact on trypsin inhibition. Our results confirmed that high-affinity trypsin inhibition by SPINK1 is conserved in the mouse, and the functional consequences of human pancreatitis-associated SPINK1 mutations can be replicated in the mouse inhibitor.
Collapse
Affiliation(s)
- Nataly C Morales Granda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Márió Miczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Meriam Lassoued
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Tanoglu EG. Differential expressions of miR-223, miR-424, miR-145, miR-200c, miR-139 in experimental rat chronic pancreatitis model and their relationship between oxidative stress, endoplasmic reticulum stress, and apoptosis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1301-1306. [PMID: 35083018 PMCID: PMC8751743 DOI: 10.22038/ijbms.2021.57664.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVES This study aimed to research the roles of miR-139, miR-221, miR-200c, miR-145, miR-223, miR-424, and miR-377 in endoplasmic reticulum stress (ERS), oxidative stress (OS), fibrosis, and apoptosis processes in chronic pancreatitis (CP) rat model. MATERIALS AND METHODS Fourteen rats were randomized into 2 groups (Group 1, sham group (n=7) and Group 2, CP group (n=7)). TGF-beta and malondialdehyde concentrations were measured in rat blood samples. qRT-PCR was used to investigate the expression levels of 7 miRNAs in the pancreas tissues. The correlations of mRNA undergoing significant changes with inflammation (TNF-α, IL-6), ERS (Ire1-α, Perk), apoptosis (Caspase 3, Bcl-2), OS (Cat, Gpx1), and fibrosis (α-Sma) were investigated . RESULTS The biochemical results and histopathological scores in Group 1 were statistically significantly high compared with Group 2 (P<0.5). Expression levels of seven miRNAs (miR-200c, miR-145, miR-223, miR-424) were significantly higher, while miR-139 was significantly lower in CP. In our study, we found that miR-200c, miR-145, and miR-139 may contribute to CP progression and cellular processes based on the correlation between ERS, OS, apoptosis, and inflammation with miRNA expression levels. CONCLUSION miR-200c, miR-145, miR-139, miR-223, and miR-424 play roles in the CP model. They may be used as candidate biomarkers for the CP process.
Collapse
Affiliation(s)
- Esra Guzel Tanoglu
- University of Health Sciences Turkey, Institution of Medical Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey, University of Health Sciences Turkey, Experimental Medicine Research and Application Center, Uskudar, 34662, Istanbul, Turkey,Corresponding author: Esra Guzel Tanoglu. University of Health Sciences, Institution of Health Sciences, Department of Molecular Biology and Genetics, Istanbul, Turkey. Tel: +905558921416;
| |
Collapse
|
5
|
El-Hamoly T, Hajnády Z, Nagy-Pénzes M, Bakondi E, Regdon Z, Demény MA, Kovács K, Hegedűs C, Abd El-Rahman SS, Szabó É, Maléth J, Hegyi P, Virág L. Poly(ADP-Ribose) Polymerase 1 Promotes Inflammation and Fibrosis in a Mouse Model of Chronic Pancreatitis. Int J Mol Sci 2021; 22:3593. [PMID: 33808340 PMCID: PMC8037143 DOI: 10.3390/ijms22073593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by ductal obstructions, tissue fibrosis, atrophy and exocrine and endocrine pancreatic insufficiency. However, our understanding is very limited concerning the disease's progression from a single acute inflammation, via recurrent acute pancreatitis (AP) and early CP, to the late stage CP. Poly(ADP-ribose) polymerase 1 (PARP1) is a DNA damage sensor enzyme activated mostly by oxidative DNA damage. As a co-activator of inflammatory transcription factors, PARP1 is a central mediator of the inflammatory response and it has also been implicated in acute pancreatitis. Here, we set out to investigate whether PARP1 contributed to the pathogenesis of CP. We found that the clinically used PARP inhibitor olaparib (OLA) had protective effects in a murine model of CP induced by multiple cerulein injections. OLA reduced pancreas atrophy and expression of the inflammatory mediators TNFα and interleukin-6 (IL-6), both in the pancreas and in the lungs. Moreover, there was significantly less fibrosis (Masson's trichrome staining) in the pancreatic sections of OLA-treated mice compared to the cerulein-only group. mRNA expression of the fibrosis markers TGFβ, smooth muscle actin (SMA), and collagen-1 were markedly reduced by OLA. CP was also induced in PARP1 knockout (KO) mice and their wild-type (WT) counterparts. Inflammation and fibrosis markers showed lower expression in the KO compared to the WT mice. Moreover, reduced granulocyte infiltration (tissue myeloperoxidase activity) and a lower elevation of serum amylase and lipase activity could also be detected in the KO mice. Furthermore, primary acinar cells isolated from KO mice were also protected from cerulein-induced toxicity compared to WT cells. In summary, our data suggest that PARP inhibitors may be promising candidates for repurposing to treat not only acute but chronic pancreatitis as well.
Collapse
Affiliation(s)
- Tarek El-Hamoly
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, 11787 Cairo, Egypt
| | - Zoltán Hajnády
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté Nagy-Pénzes
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Edina Bakondi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Máté A. Demény
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Katalin Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt;
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - József Maléth
- First Department of Medicine, University of Szeged, 6720 Szeged, Hungary;
- HAS-USZ Momentum Epithel Cell Signalling and Secretion Research Group, 6720 Szeged, Hungary
- Department of Public Health, University of Szeged, 6720 Szeged, Hungary
| | - Péter Hegyi
- János Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary;
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences, University of Szeged, 6720 Szeged, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (T.E.-H.); (Z.H.); (M.N.-P.); (E.B.); (Z.R.); (K.K.); (C.H.)
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary;
| |
Collapse
|
6
|
Yildirim M, Kaplan M, Duzenli T, Tanoglu A, Kucukodaci Z, Onal Tastan Y, Cakir Guney B, Serindag Z. Pentoxifylline has favorable preventive effects on experimental chronic pancreatitis model. Scand J Gastroenterol 2020; 55:236-241. [PMID: 31942828 DOI: 10.1080/00365521.2020.1712471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: To investigate the protective efficacy of pentoxifylline through biochemical parameters and histopathological scores in a caerulein- and alcohol-induced experimental model of chronic pancreatitis in rats.Methods: A model of chronic pancreatitis with caerulein and alcohol was created in female rats of the genus Sprague Dawley. Pentoxifylline was administered in doses of 25 mg/kg (low dose) and 50 mg/kg (high dose) as a protective agent. Each group contained 8 animals. The groups were: group 1 (control group); caerulein + alcohol, group 2 (low-dose pentoxifylline group); caerulein + alcohol + pentoxifylline 25 mg/kg, group 3 (high-dose pentoxifylline group); caerulein + alcohol + pentoxifylline 50 mg/kg, group 4 (placebo); caerulein + alcohol + saline, group 5 (sham group); only saline injection.Rats were sacrificed 12 h after the last injection, and TNF-α, TGF-β, MDA, and GPx concentrations were measured in blood samples. The histopathologic examination was conducted by a pathologist who was unaware of the groups.Results: The biochemical results of the treatment groups (group 2 and group 3) were statistically significantly lower compared with the control group (group 1) (p < .05). The difference between the low-dose treatment group (group 2) and high-dose treatment group (group 3) was significant in terms of biochemical parameters (p < .05). The difference between group 2 and the control group was not significant in terms of histopathologic scores (p > .05), whereas the difference between the group 3 and the control group was statistically significant (p < .05).Conclusions: As a result, pentoxifylline, which has anti-inflammatory and antioxidant properties, was shown to have protective efficacy in an experimentally generated model of chronic pancreatitis.
Collapse
Affiliation(s)
- Muhammed Yildirim
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Kaplan
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Tolga Duzenli
- Department of Gastroenterology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Alpaslan Tanoglu
- Department of Gastroenterology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Zafer Kucukodaci
- Department of Pathology, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Yesim Onal Tastan
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Basak Cakir Guney
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Zeliha Serindag
- Department of Internal Medicine, Sultan Abdulhamid Han Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
7
|
Saloman JL, Albers KM, Cruz-Monserrate Z, Davis BM, Edderkaoui M, Eibl G, Epouhe AY, Gedeon JY, Gorelick FS, Grippo PJ, Groblewski GE, Husain SZ, Lai KK, Pandol SJ, Uc A, Wen L, Whitcomb DC. Animal Models: Challenges and Opportunities to Determine Optimal Experimental Models of Pancreatitis and Pancreatic Cancer. Pancreas 2019; 48:759-779. [PMID: 31206467 PMCID: PMC6581211 DOI: 10.1097/mpa.0000000000001335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At the 2018 PancreasFest meeting, experts participating in basic research met to discuss the plethora of available animal models for studying exocrine pancreatic disease. In particular, the discussion focused on the challenges currently facing the field and potential solutions. That meeting culminated in this review, which describes the advantages and limitations of both common and infrequently used models of exocrine pancreatic disease, namely, pancreatitis and exocrine pancreatic cancer. The objective is to provide a comprehensive description of the available models but also to provide investigators with guidance in the application of these models to investigate both environmental and genetic contributions to exocrine pancreatic disease. The content covers both nongenic and genetically engineered models across multiple species (large and small). Recommendations for choosing the appropriate model as well as how to conduct and present results are provided.
Collapse
Affiliation(s)
- Jami L. Saloman
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Kathryn M. Albers
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition; Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian M. Davis
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Mouad Edderkaoui
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Ariel Y. Epouhe
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Jeremy Y. Gedeon
- Department of Neurobiology, Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases & Department of Cell Biology Yale University School of Medicine; Veterans Affairs Connecticut Healthcare, West Haven, CT
| | - Paul J. Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, UI Cancer Center, University of Illinois at Chicago, Chicago, IL
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | | | - Keane K.Y. Lai
- Department of Pathology (National Medical Center), Department of Molecular Medicine (Beckman Research Institute), and Comprehensive Cancer Center, City of Hope, Duarte, CA
| | - Stephen J. Pandol
- Department of Surgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Li Wen
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | | |
Collapse
|
8
|
Saluja A, Dudeja V, Dawra R, Sah RP. Early Intra-Acinar Events in Pathogenesis of Pancreatitis. Gastroenterology 2019; 156:1979-1993. [PMID: 30776339 DOI: 10.1053/j.gastro.2019.01.268] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Premature activation of digestive enzymes in the pancreas has been linked to development of pancreatitis for more than a century. Recent development of novel models to study the role of pathologic enzyme activation has led to advances in our understanding of the mechanisms of pancreatic injury. Colocalization of zymogen and lysosomal fraction occurs early after pancreatitis-causing stimulus. Cathepsin B activates trypsinogen in these colocalized organelles. Active trypsin increases permeability of these organelles resulting in leakage of cathepsin B into the cytosol leading to acinar cell death. Although trypsin-mediated cell death leads to pancreatic injury in early stages of pancreatitis, multiple parallel mechanisms, including activation of inflammatory cascades, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction in the acinar cells are now recognized to be important in driving the profound systemic inflammatory response and extensive pancreatic injury seen in acute pancreatitis. Chymotrypsin, another acinar protease, has recently been shown be play critical role in clearance of pathologically activated trypsin protecting against pancreatic injury. Mutations in trypsin and other genes thought to be associated with pathologic enzyme activation (such as serine protease inhibitor 1) have been found in familial forms of pancreatitis. Sustained intra-acinar activation of nuclear factor κB pathway seems to be key pathogenic mechanism in chronic pancreatitis. Better understanding of these mechanisms will hopefully allow us to improve treatment strategies in acute and chronic pancreatitis.
Collapse
|
9
|
Midttun HLE, Ramsay A, Mueller-Harvey I, Williams AR. Cocoa procyanidins modulate transcriptional pathways linked to inflammation and metabolism in human dendritic cells. Food Funct 2018; 9:2883-2890. [DOI: 10.1039/c8fo00387d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A mechanistic insight into the immunomodulatory effects of a purified procyanidin fraction from cocoa beans.
Collapse
Affiliation(s)
- Helene L. E. Midttun
- Department of Veterinary and Animal Sciences
- University of Copenhagen
- Frederiksberg
- Denmark
| | - Aina Ramsay
- Chemistry and Biochemistry Laboratory
- School of Agriculture
- Policy and Development
- University of Reading
- Reading
| | - Irene Mueller-Harvey
- Chemistry and Biochemistry Laboratory
- School of Agriculture
- Policy and Development
- University of Reading
- Reading
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences
- University of Copenhagen
- Frederiksberg
- Denmark
| |
Collapse
|
10
|
P2X7R Blockade Prevents NLRP3 Inflammasome Activation and Pancreatic Fibrosis in a Mouse Model of Chronic Pancreatitis. Pancreas 2017; 46:1327-1335. [PMID: 28930866 DOI: 10.1097/mpa.0000000000000928] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the role of P2X7R (purinergic 2X7 receptor) and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome activation in the process of pancreatic fibrosis in a mouse model of chronic pancreatitis (CP). METHODS Chronic pancreatitis was induced by repeated intraperitoneal injections of 50 μg/kg cerulein for 6 weeks in mice. P2X7R antagonist oxidized ATP (OxATP) or brilliant blue G (BBG) was administered after the last cerulein injection for 2 weeks. Pancreatic chronic inflammation and fibrosis were evaluated by histological score, Sirius red staining, and alpha-smooth muscle actin immunohistochemical staining. We further determined pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, interleukin 1β (IL-1β), and IL-18. RESULTS The pancreatic P2X7R, NLRP3, and caspase-1 expressions in gene and protein levels and the pancreatic concentrations of caspase-1, IL-1β, and IL-18 were all reduced significantly in both the OxATP and BBG groups (P < 0.05). The pancreatic chronic inflammation and the fibrosis indices were all remarkably attenuated (P < 0.05). CONCLUSIONS P2X7R antagonist OxATP and BBG significantly decreased pancreatic chronic inflammation and fibrosis in a mouse CP model and suggested that blockade of P2X7R-NLRP3 inflammasome signaling pathway may represent a novel therapeutic strategy for CP and its fibrotic process.
Collapse
|
11
|
Bynigeri RR, Jakkampudi A, Jangala R, Subramanyam C, Sasikala M, Rao GV, Reddy DN, Talukdar R. Pancreatic stellate cell: Pandora's box for pancreatic disease biology. World J Gastroenterol 2017; 23:382-405. [PMID: 28210075 PMCID: PMC5291844 DOI: 10.3748/wjg.v23.i3.382] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/09/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic stellate cells (PSCs) were identified in the early 1980s, but received much attention after 1998 when the methods to isolate and culture them from murine and human sources were developed. PSCs contribute to a small proportion of all pancreatic cells under physiological condition, but are essential for maintaining the normal pancreatic architecture. Quiescent PSCs are characterized by the presence of vitamin A laden lipid droplets. Upon PSC activation, these perinuclear lipid droplets disappear from the cytosol, attain a myofibroblast like phenotype and expresses the activation marker, alpha smooth muscle actin. PSCs maintain their activated phenotype via an autocrine loop involving different cytokines and contribute to progressive fibrosis in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC). Several pathways (e.g., JAK-STAT, Smad, Wnt signaling, Hedgehog etc.), transcription factors and miRNAs have been implicated in the inflammatory and profibrogenic function of PSCs. The role of PSCs goes much beyond fibrosis/desmoplasia in PDAC. It is now shown that PSCs are involved in significant crosstalk between the pancreatic cancer cells and the cancer stroma. These interactions result in tumour progression, metastasis, tumour hypoxia, immune evasion and drug resistance. This is the rationale for therapeutic preclinical and clinical trials that have targeted PSCs and the cancer stroma.
Collapse
|
12
|
Li X, Nania S, Fejzibegovic N, Moro CF, Klopp-Schulze L, Verbeke C, Löhr JM, Heuchel RL. Cerulein-induced pancreatic fibrosis is modulated by Smad7, the major negative regulator of transforming growth factor-β signaling. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1839-1846. [DOI: 10.1016/j.bbadis.2016.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 01/12/2023]
|
13
|
Pham H, Birtolo C, Chheda C, Yang W, Rodriguez MD, Liu ST, Gugliotta G, Lewis MS, Cirulli V, Pandol SJ, Ptasznik A. Essential Role of Lyn in Fibrosis. Front Physiol 2016; 7:387. [PMID: 27630579 PMCID: PMC5006658 DOI: 10.3389/fphys.2016.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
Fibrotic disorders involve replacement of normal parenchyma with myofibroblasts, which deposit connective tissue, leading to obliteration of the function of the underlying organ. The treatment options are inadequate and reflect the fact that signaling targets in myofibroblasts are unknown. Here we identify the hyperactive Lyn signaling in myofibroblasts of patients with chronic pancreatitis-induced fibrosis. Lyn activation coexpress with markers of activated myofibroblasts, and is increased ~11-fold in chronic pancreatitis compared to normal tissue. Inhibition of Lyn with siRNA or INNO-406 leads to the substantial decrease of migration and proliferation of human chronic pancreatitis myofibroblasts in vitro, while leaving migration and proliferation of normal myofibroblasts only slightly affected. Furthermore, inhibition of Lyn prevents synthesis of procollagen and collagen in myofibroblasts in a mouse model of chronic pancreatitis-induced fibrosis. We conclude that Lyn, as a positive regulator of myofibroblast migration, proliferation, and collagen production, is a key target for preventing fibrosis.
Collapse
Affiliation(s)
- Hung Pham
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical CenterLos Angeles, CA, USA; Department of Veterans AffairsLos Angeles, CA, USA; Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Chiara Birtolo
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical CenterLos Angeles, CA, USA; Department of Internal Medicine, University of BolognaBologna, Italy
| | - Chintan Chheda
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Wendy Yang
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Maria D Rodriguez
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | - Sandy T Liu
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical CenterLos Angeles, CA, USA; Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Gabriele Gugliotta
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical CenterLos Angeles, CA, USA; Department of Internal Medicine, University of BolognaBologna, Italy
| | - Michael S Lewis
- Department of Veterans AffairsLos Angeles, CA, USA; Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Vincenzo Cirulli
- Department of Medicine, Institute of Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical CenterLos Angeles, CA, USA; Department of Veterans AffairsLos Angeles, CA, USA; Department of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| | - Andrzej Ptasznik
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center Los Angeles, CA, USA
| |
Collapse
|
14
|
Shahid RA, Wang DQH, Fee BE, McCall SJ, Romac JMJ, Vigna SR, Liddle RA. Endogenous elevation of plasma cholecystokinin does not prevent gallstones. Eur J Clin Invest 2015; 45:237-46. [PMID: 25641074 PMCID: PMC4342269 DOI: 10.1111/eci.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Regular gall bladder contraction reduces bile stasis and prevents gallstone formation. Intraduodenal administration of exogenous pancreatic secretory trypsin inhibitor-I (PSTI-I, also known as monitor peptide) causes cholecystokinin (CCK) secretion. DESIGN We proposed that stimulation of CCK release by PSTI would produce gall bladder contraction and prevent gallstones in mice fed a lithogenic diet. Therefore, we tested the effect of overexpression of rat PSTI-I in pancreatic acinar cells on plasma CCK levels and gall bladder function in a transgenic mouse line (TgN[Psti1]; known hereafter as PSTI-I tg). RESULTS Importantly, PSTI tg mice had elevated fasting and fed plasma CCK levels compared to wild-type (WT) mice. Only mice fed the lithogenic diet developed gallstones. Both fasting and stimulated plasma CCK levels were substantially reduced in both WT and PSTI-I tg mice on the lithogenic diet. Moreover, despite higher CCK levels PSTI-I tg animals developed more gallstones than WT animals. CONCLUSIONS Together with the previously observed decrease in CCK-stimulated gall bladder emptying in mice fed a lithogenic diet, our findings suggest that a lithogenic diet causes gallstone formation by impaired CCK secretion in addition to reduced gall bladder sensitivity to CCK.
Collapse
Affiliation(s)
- Rafiq A Shahid
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
OBJECTIVES Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. METHODS The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. RESULTS Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). CONCLUSIONS These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.
Collapse
|
16
|
Athwal T, Huang W, Mukherjee R, Latawiec D, Chvanov M, Clarke R, Smith K, Campbell F, Merriman C, Criddle D, Sutton R, Neoptolemos J, Vlatković N. Expression of human cationic trypsinogen (PRSS1) in murine acinar cells promotes pancreatitis and apoptotic cell death. Cell Death Dis 2014; 5:e1165. [PMID: 24722290 PMCID: PMC5424103 DOI: 10.1038/cddis.2014.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023]
Abstract
Hereditary pancreatitis (HP) is an autosomal dominant disease that displays the features of both acute and chronic pancreatitis. Mutations in human cationic trypsinogen (PRSS1) are associated with HP and have provided some insight into the pathogenesis of pancreatitis, but mechanisms responsible for the initiation of pancreatitis have not been elucidated and the role of apoptosis and necrosis has been much debated. However, it has been generally accepted that trypsinogen, prematurely activated within the pancreatic acinar cell, has a major role in the initiation process. Functional studies of HP have been limited by the absence of an experimental system that authentically mimics disease development. We therefore developed a novel transgenic murine model system using wild-type (WT) human PRSS1 or two HP-associated mutants (R122H and N29I) to determine whether expression of human cationic trypsinogen in murine acinar cells promotes pancreatitis. The rat elastase promoter was used to target transgene expression to pancreatic acinar cells in three transgenic strains that were generated: Tg(Ela-PRSS1)NV, Tg(Ela-PRSS1*R122H)NV and Tg(Ela-PRSS1*N29I)NV. Mice were analysed histologically, immunohistochemically and biochemically. We found that transgene expression is restricted to pancreatic acinar cells and transgenic PRSS1 proteins are targeted to the pancreatic secretory pathway. Animals from all transgenic strains developed pancreatitis characterised by acinar cell vacuolisation, inflammatory infiltrates and fibrosis. Transgenic animals also developed more severe pancreatitis upon treatment with low-dose cerulein than controls, displaying significantly higher scores for oedema, inflammation and overall histopathology. Expression of PRSS1, WT or mutant, in acinar cells increased apoptosis in pancreatic tissues and isolated acinar cells. Moreover, studies of isolated acinar cells demonstrated that transgene expression promotes apoptosis rather than necrosis. We therefore conclude that expression of WT or mutant human PRSS1 in murine acinar cells induces apoptosis and is sufficient to promote spontaneous pancreatitis, which is enhanced in response to cellular insult.
Collapse
Affiliation(s)
- T Athwal
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
| | - W Huang
- Liverpool NIHR Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
- Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - R Mukherjee
- Liverpool NIHR Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - D Latawiec
- Liverpool NIHR Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - M Chvanov
- Department of Cellular and Molecular Physiology, Institute for Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Clarke
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
| | - K Smith
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
| | - F Campbell
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, UK
| | - C Merriman
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
| | - D Criddle
- Department of Cellular and Molecular Physiology, Institute for Translational Medicine, University of Liverpool, Liverpool, UK
| | - R Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
- Liverpool NIHR Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - J Neoptolemos
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
- Liverpool NIHR Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - N Vlatković
- Department of Molecular and Clinical Cancer Medicine, Institute for Translational Medicine, University of Liverpool, Cancer Research Centre, Liverpool, UK
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW In this article, we review important advances in our understanding of the mechanisms of pancreatitis. RECENT FINDINGS The relative contributions of intrapancreatic trypsinogen activation and nuclear factor kappa B (NFκB) activation, the two major early independent cellular events in pancreatitis, have been investigated using novel genetic models. Trypsinogen activation has traditionally held the spotlight for many decades as the central pathogenic event of pancreatitis. However, recent experimental evidence points to the role of trypsin activation in early acinar cell damage but not in the inflammatory response of acute pancreatitis, which was shown to be induced by NFκB activation. Further, chronic pancreatitis developed independently of trypsinogen activation in the caerulein model. Sustained NFκB activation, but not persistent intra-acinar expression of active trypsin, was shown to result in chronic pancreatitis. Calcineurin-NFAT (nuclear factor of activated T-cells) signaling was shown to mediate downstream effects of pathologic rise in intracellular calcium. Interleukin-6 was identified as a key cytokine mediating pancreatitis-associated lung injury. SUMMARY Recent advances challenge the long-believed trypsin-centered understanding of pancreatitis. It is becoming increasingly clear that activation of intense inflammatory signaling mechanisms in acinar cells is crucial to the pathogenesis of pancreatitis, which may explain the strong systemic inflammatory response in pancreatitis.
Collapse
|
18
|
Marchbank T, Mahmood A, Playford RJ. Pancreatic secretory trypsin inhibitor causes autocrine-mediated migration and invasion in bladder cancer and phosphorylates the EGF receptor, Akt2 and Akt3, and ERK1 and ERK2. Am J Physiol Renal Physiol 2013; 305:F382-9. [PMID: 23698120 DOI: 10.1152/ajprenal.00357.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pancreatic secretory trypsin inhibitor (PSTI) is expressed in most bladder carcinomas, where its pathophysiological relevance is unclear. Using recombinant normal sequence PSTI/tumor-associated trypsin inhibitor (TATI), a variant associated with familial pancreatitis (N34S), an active site-inactivated variant (R18/V19), and immunoneutralization and RNA interference-mediated knockdown techniques, we investigated the actions of PSTI/TATI on cell migration (wounding monolayers), collagen invasion (gel invasion assays), and proliferation (Alamar blue) on 253J, RT4, and HT1376 human bladder carcinoma cell lines. All three forms of PSTI/TATI stimulated migration twofold, and normal sequence PSTI/TATI showed synergistic promigratory effects when added with EGF. Addition of structurally unrelated soybean trypsin inhibitor had no promigratory activity. Similar results were seen using collagen invasion assays, although the active site mutated variant had no proinvasive activity, probably due to reduced Akt2 activation. PSTI/TATI did not stimulate proliferation despite acting, at least partially, through the EGF receptor, as effects of PSTI/TATI were truncated by the addition of an EGF receptor blocking antibody or the tyrosine kinase inhibitor tyrphostin. Cell lines produced endogenous PSTI/TATI, and PSTI/TATI RNA interference knockdown or the addition of PSTI/TATI, EGF receptor, or tyrphostin blocking agents reduced migration and invasion below baseline. PSTI/TATI induced phosphorylation of the EGF receptor, ERK1 and ERK2, Akt2 and Akt3, JNK1, MKK3, and ribosomal protein S6 kinase 1. This profile was more limited than that induced by EGF and did not include Akt1, probably explaining the lack of proproliferative activity. Our findings of autocrine stimulation and synergistic responses between EGF and PSTI/TATI at concentrations found in urine and tissue suggest that PSTI/TATI has pathophysiological relevance.
Collapse
Affiliation(s)
- Tania Marchbank
- Office of the Vice Chancellor, Plymouth University, Plymouth, UK
| | | | | |
Collapse
|
19
|
Sah RP, Dudeja V, Dawra RK, Saluja AK. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology 2013; 144:1076-1085.e2. [PMID: 23354015 PMCID: PMC3928043 DOI: 10.1053/j.gastro.2013.01.041] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/02/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Premature activation of trypsinogen activation can cause pancreatic injury and has been associated with chronic pancreatitis (CP). Mice that lack intra-acinar activation of trypsinogen, such as trypsinogen-7-null (T(-/-)) and cathepsin B-null (CB(-/-)) mice, have been used to study trypsin-independent processes of CP development. We compared histologic features and inflammatory responses of pancreatic tissues from these mice with those from wild-type mice after the development of CP. METHODS CP was induced in wild-type, T(-/-), and CB(-/-) mice by twice-weekly induction of acute pancreatitis for 10 weeks; acute pancreatitis was induced by hourly intraperitoneal injections of cerulein (50 μg/kg × 6). Pancreatic samples were collected and evaluated by histologic and immunohistochemical analyses. Normal human pancreas samples, obtained from the islet transplant program at the University of Minnesota, were used as controls and CP samples were obtained from surgical resections. RESULTS Compared with pancreatic tissues from wild-type mice, those from T(-/-) and CB(-/-) mice had similar levels of atrophy, histomorphologic features of CP, and chronic inflammation. All samples had comparable intra-acinar activation of nuclear factor (NF)-κB, a transcription factor that regulates the inflammatory response, immediately after injection of cerulein. Pancreatic tissue samples from patients with CP had increased activation of NF-κB (based on nuclear translocation of p65 in acinar cells) compared with controls. CONCLUSIONS Induction of CP in mice by cerulein injection does not require intra-acinar activation of trypsinogen. Pancreatic acinar cells of patients with CP have increased levels of NF-κB activation compared with controls; regulation of the inflammatory response by this transcription factor might be involved in the pathogenesis of CP.
Collapse
|
20
|
Nakamura Y, Kanai T, Saeki K, Takabe M, Irie J, Miyoshi J, Mikami Y, Teratani T, Suzuki T, Miyata N, Hisamatsu T, Nakamoto N, Yamagishi Y, Higuchi H, Ebinuma H, Hozawa S, Saito H, Itoh H, Hibi T. CCR2 knockout exacerbates cerulein-induced chronic pancreatitis with hyperglycemia via decreased GLP-1 receptor expression and insulin secretion. Am J Physiol Gastrointest Liver Physiol 2013; 304:G700-7. [PMID: 23449669 DOI: 10.1152/ajpgi.00318.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) promotes insulin release; however, the relationship between the GLP-1 signal and chronic pancreatitis is not well understood. Here we focus on chemokine (C-C motif) ligand 2 (CCL2) and its receptor (CCR2) axis, which regulates various immune cells, including macrophages, to clarify the mechanism of GLP-1-mediated insulin secretion in chronic pancreatitis in mice. One and multiple series of repetitive cerulein administrations were used to induce acute and chronic cerulein pancreatitis, respectively. Acute cerulein-administered CCR2-knockout (KO) mice showed suppressed infiltration of CD11b(+)Gr-1(low) macrophages and pancreatic inflammation and significantly upregulated insulin secretion compared with paired wild-type (WT) mice. However, chronic cerulein-administered CCR2-KO mice showed significantly increased infiltration of CD11b(+)/Gr-1(-) and CD11b(+)/Gr-1(high) cells, but not CD11b(+)/Gr-1(low) cells, in pancreas with severe inflammation and significantly decreased insulin secretion compared with their WT counterparts. Furthermore, although serum GLP-1 levels in chronic cerulein-administered WT and CCR2-KO mice were comparably upregulated after cerulein administrations, GLP-1 receptor levels in pancreases of chronic cerulein-administered CCR2-KO mice were significantly lower than in paired WT mice. Nevertheless, a significantly higher hyperglycemia level in chronic cerulein-administered CCR2-KO mice was markedly restored by treatment with a GLP-1 analog to a level comparable to the paired WT mice. Collectively, the CCR2/CCL2 axis-mediated CD11b(+)-cell migration to the pancreas is critically involved in chronic pancreatitis-mediated hyperglycemia through the modulation of GLP-1 receptor expression and insulin secretion.
Collapse
Affiliation(s)
- Yuji Nakamura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Romac JMJ, Shahid RA, Choi SS, Karaca GF, Westphalen CB, Wang TC, Liddle RA. Pancreatic secretory trypsin inhibitor I reduces the severity of chronic pancreatitis in mice overexpressing interleukin-1β in the pancreas. Am J Physiol Gastrointest Liver Physiol 2012; 302:G535-41. [PMID: 22173919 PMCID: PMC3311433 DOI: 10.1152/ajpgi.00287.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/13/2011] [Indexed: 01/31/2023]
Abstract
IL-1β is believed to play a pathogenic role in the development of pancreatitis. Expression of human IL-1β in pancreatic acinar cells produces chronic pancreatitis, characterized by extensive intrapancreatic inflammation, atrophy, and fibrosis. To determine if activation of trypsinogen is important in the pathogenesis of chronic pancreatitis in this model, we crossed IL-1β transgenic [Tg(IL1β)] mice with mice expressing a trypsin inhibitor that is normally produced in rat pancreatic acinar cells [pancreatic secretory trypsin inhibitor (PTSI) I]. We previously demonstrated that transgenic expression of PSTI-I [Tg(Psti1)] increased pancreatic trypsin inhibitor activity by 190%. Tg(IL1β) mice were found to have marked pancreatic inflammation, characterized by histological changes, including acinar cell loss, inflammatory cell infiltration, and fibrosis, as well as elevated myeloperoxidase activity and elevated pancreatic trypsin activity, as early as 6 wk of age. In contrast to Tg(IL1β) mice, pancreatitis was significantly less severe in dual-transgenic [Tg(IL1β)-Tg(Psti1)] mice expressing IL-1β and PSTI-I in pancreatic acinar cells. These findings indicate that overexpression of PSTI-I reduces the severity of pancreatitis and that pancreatic trypsin activity contributes to the pathogenesis of an inflammatory model of chronic pancreatitis.
Collapse
Affiliation(s)
- Joelle M-J Romac
- Department of Medicine, Duke University and Durham Veterans Affairs Medical Centers, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ceppa EP, Lyo V, Grady EF, Knecht W, Grahn S, Peterson A, Bunnett NW, Kirkwood KS, Cattaruzza F. Serine proteases mediate inflammatory pain in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1033-42. [PMID: 21436316 PMCID: PMC3774216 DOI: 10.1152/ajpgi.00305.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute pancreatitis is a life-threatening inflammatory disease characterized by abdominal pain of unknown etiology. Trypsin, a key mediator of pancreatitis, causes inflammation and pain by activating protease-activated receptor 2 (PAR(2)), but the isoforms of trypsin that cause pancreatitis and pancreatic pain are unknown. We hypothesized that human trypsin IV and rat P23, which activate PAR(2) and are resistant to pancreatic trypsin inhibitors, contribute to pancreatic inflammation and pain. Injections of a subinflammatory dose of exogenous trypsin increased c-Fos immunoreactivity, indicative of spinal nociceptive activation, but did not cause inflammation, as assessed by measuring serum amylase and myeloperoxidase activity and by histology. The same dose of trypsin IV and P23 increased some inflammatory end points and caused a more robust effect on nociception, which was blocked by melagatran, a trypsin inhibitor that also inhibits polypeptide-resistant trypsin isoforms. To determine the contribution of endogenous activation of trypsin and its minor isoforms, recombinant enterokinase (ENK), which activates trypsins in the duodenum, was administered into the pancreas. Intraductal ENK caused nociception and inflammation that were diminished by polypeptide inhibitors, including soybean trypsin inhibitor and a specific trypsin inhibitor (type I-P), and by melagatran. Finally, the secretagogue cerulein induced pancreatic nociceptive activation and nocifensive behavior that were reversed by melagatran. Thus trypsin and its minor isoforms mediate pancreatic pain and inflammation. In particular, the inhibitor-resistant isoforms trypsin IV and P23 may be important in mediating prolonged pancreatic inflammatory pain in pancreatitis. Our results suggest that inhibitors of these isoforms could be novel therapies for pancreatitis pain.
Collapse
Affiliation(s)
- Eugene P. Ceppa
- 1Department of Surgery, Duke University Medical Center, Durham, North Carolina;
| | | | | | - Wolfgang Knecht
- 4Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal, Sweden
| | | | - Anders Peterson
- 4Molecular Pharmacology and Lead Generation, AstraZeneca Research and Development, Mölndal, Sweden
| | - Nigel W. Bunnett
- Departments of 2Surgery and ,3Physiology, University of California, San Francisco, San Francisco, California; and
| | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review focuses on studies from the past year that highlight molecular and cellular mechanisms of pancreatic injury arising from acute and chronic pancreatitis. RECENT FINDINGS Factors that induce or ameliorate injury as well as cellular pathways involved have been examined. Causative or sensitizing factors include refluxed bile acids, hypercalcemia, ethanol, hypertriglyceridemia, and acidosis. In addition, the diabetes drug exendin-4 has been associated with pancreatitis, whereas other drugs may reduce pancreatic injury. The intracellular events that influence disease severity are better understood. Cathepsin-L promotes injury through an antiapoptotic effect, rather than by trypsinogen activation. In addition, specific trypsinogen mutations lead to trypsinogen misfolding, endoplasmic reticulum stress, and injury. Endogenous trypsin inhibitors and upregulation of proteins including Bcl-2, fibroblast growth factor 21, and activated protein C can reduce injury. Immune cells, however, have been shown to increase injury via an antiapoptotic effect. SUMMARY The current findings are critical to understanding how causative factors initiate downstream cellular events resulting in pancreatic injury. Such knowledge will aid in the development of targeted treatments for pancreatitis. This review will first discuss factors influencing pancreatic injury, and then conclude with studies detailing the cellular mechanisms involved.
Collapse
Affiliation(s)
- Edwin C. Thrower
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, USA
| | - Fred S. Gorelick
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven
- Department of Cell Biology, Yale University School of Medicine, New Haven
- Veterans Administration Connecticut Healthcare, West Haven, Connecticut, USA
| | - Sohail Z. Husain
- Department of Pediatrics, Yale University School of Medicine, New Haven
| |
Collapse
|