1
|
Guan Y, Cheng H, Zhang N, Cai Y, Zhang Q, Jiang X, Wang A, Zeng H, Jia B. The role of the esophageal and intestinal microbiome in gastroesophageal reflux disease: past, present, and future. Front Immunol 2025; 16:1558414. [PMID: 40061946 PMCID: PMC11885504 DOI: 10.3389/fimmu.2025.1558414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Gastroesophageal reflux disease (GERD) is one of the common diseases of the digestive system, and its incidence is increasing year by year, in addition to its typical symptoms of acid reflux and heartburn affecting the quality of patients' survival. The pathogenesis of GERD has not yet been clarified. With the development of detection technology, microbiome have been studied in depth. Normal microbiome are symbiotic with the host and can assist the host to fulfill the roles of digestion and absorption, and promote the development of the host. Dysbiosis of the microbiome forms a new internal environment, under which it may affect the development of GERD from the perspectives of molecular mechanisms: microbial activation of Toll-like receptors, microbial stimulation of cyclooxygenase-2 expression, microbial stimulation of inducible nitrous oxide synthase, and activation of the NLRP3 inflammatory vesicle; immune mechanisms; and impact on the dynamics of the lower gastrointestinal tract. This review will explore the esophageal microbiome and intestinal microbiome characteristics of GERD and the mechanisms by which dysbiotic microbiome induces GERD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Boyi Jia
- Department of Spleen and Stomach Diseases, Fangshan Traditional Medical Hospital of Beijing, Beijing, China
| |
Collapse
|
2
|
Lok KY, Teng JL, Fong JY, Peng Y, Fan HS, Ma Y, Li TT, Lau SK, Chau PP, El-Nezami H, Ip P, Tarrant M, Tun HM, Woo PC. Influence of Feeding Practices on Intestinal Microbiota Composition in Healthy Chinese Infants: A Prospective Cohort Study. J Pediatr Health Care 2025; 39:14-21. [PMID: 39283281 DOI: 10.1016/j.pedhc.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 12/16/2024]
Abstract
INTRODUCTION This study investigates the impact of different feeding methods (direct breastfeeding, expressed milk feeding, formula feeding) on the infant microbiota at 6 weeks of age. METHODS A total of 217 healthy infants stool samples were collected from Hong Kong between August 2018 and December 2019. RESULTS Various microbial taxa, including the genera Enterobacter and Raoultella were identified in the expressed breast milk feeding group. The richness and composition of the major bacterial phyla showed similar abundance between direct breastfeeding and expressed breast milk. DISCUSSION These findings suggests that these bacteria may have colonized the milk during expression or could be introduced from other external sources. The mode of breastfeeding did not significantly alter microbiota parameters in the infant gut at 6 weeks.
Collapse
Affiliation(s)
- Kris Yw Lok
- Kris YW Lok, Heidi SL Fan and Patsy PH Chau, School of Nursing, the University of Hong Kong, Hong Kong, China.
| | - Jade Ll Teng
- Jade LL Teng, Faculty of Dentistry, the University of Hong Kong, Hong Kong, China
| | - Jordan Yh Fong
- Jordan YH Fong, Yuanchao Ma, Tsz Tuen Li, Susanna KP Lau, Patrick CY Woo, Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Ye Peng
- Ye Peng, Hein M Tun, The Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China; Ye Peng, Hein M Tun, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Heidi Sl Fan
- Kris YW Lok, Heidi SL Fan and Patsy PH Chau, School of Nursing, the University of Hong Kong, Hong Kong, China
| | - Yuanchao Ma
- Jordan YH Fong, Yuanchao Ma, Tsz Tuen Li, Susanna KP Lau, Patrick CY Woo, Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Tsz Tuen Li
- Jordan YH Fong, Yuanchao Ma, Tsz Tuen Li, Susanna KP Lau, Patrick CY Woo, Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Susanna Kp Lau
- Jordan YH Fong, Yuanchao Ma, Tsz Tuen Li, Susanna KP Lau, Patrick CY Woo, Department of Microbiology, the University of Hong Kong, Hong Kong, China
| | - Patsy Ph Chau
- Kris YW Lok, Heidi SL Fan and Patsy PH Chau, School of Nursing, the University of Hong Kong, Hong Kong, China
| | - Hani El-Nezami
- Hani El-Nezami, School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Patrick Ip
- Patrick Ip, Department of Pediatric & Adolescent Medicine, the University of Hong Kong
| | - Marie Tarrant
- Marie Tarrant, School of Nursing, The University of British Columbia, Okanagan Campus, Canada
| | - Hein M Tun
- Ye Peng, Hein M Tun, The Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong SAR, China; Ye Peng, Hein M Tun, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Cy Woo
- Jordan YH Fong, Yuanchao Ma, Tsz Tuen Li, Susanna KP Lau, Patrick CY Woo, Department of Microbiology, the University of Hong Kong, Hong Kong, China; PhD Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Xie W, Sharma A, Kaushik H, Sharma L, Nistha, Anwer MK, Sachdeva M, Elossaily GM, Zhang Y, Pillappan R, Kaur M, Behl T, Shen B, Singla RK. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024; 10:e35336. [PMID: 39170494 PMCID: PMC11336605 DOI: 10.1016/j.heliyon.2024.e35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Hitesh Kaushik
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Nistha
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Yingbo Zhang
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Ramkumar Pillappan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka, India
| | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, lovely Professional University, Phagwara, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Bairong Shen
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
| |
Collapse
|
4
|
Hou T, Wang Q, Dai H, Hou Y, Zheng J, Wang T, Lin H, Wang S, Li M, Zhao Z, Chen Y, Xu Y, Lu J, Liu R, Ning G, Wang W, Xu M, Bi Y. Interactive Association Between Gut Microbiota and Thyroid Cancer. Endocrinology 2023; 165:bqad184. [PMID: 38051644 DOI: 10.1210/endocr/bqad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
CONTEXT The association between the gut microbiota and thyroid cancer remains controversial. OBJECTIVE We aimed to systematically investigate the interactive causal relationships between the abundance and metabolism pathways of gut microbiota and thyroid cancer. METHODS We leveraged genome-wide association studies for the abundance of 211 microbiota taxa from the MiBioGen study (N = 18 340), 205 microbiota metabolism pathways from the Dutch Microbiome Project (N = 7738), and thyroid cancer from the Global Biobank Meta-analysis Initiative (N cases = 6699 and N participants = 1 620 354). We performed a bidirectional Mendelian randomization (MR) to investigate the causality from microbiota taxa and metabolism pathways to thyroid cancer and vice versa. We performed a systematic review of previous observational studies and compared MR results with observational findings. RESULTS Eight taxa and 12 metabolism pathways had causal effects on thyroid cancer, where RuminococcaceaeUCG004 genus (P = .001), Streptococcaceae family (P = .016), Olsenella genus (P = .029), ketogluconate metabolism pathway (P = .003), pentose phosphate pathway (P = .016), and L-arginine degradation II in the AST pathway (P = .0007) were supported by sensitivity analyses. Conversely, thyroid cancer had causal effects on 3 taxa and 2 metabolism pathways, where the Holdemanella genus (P = .015) was supported by sensitivity analyses. The Proteobacteria phylum, Streptococcaceae family, Ruminococcus2 genus, and Holdemanella genus were significantly associated with thyroid cancer in both the systematic review and MR, whereas the other 121 significant taxa in observational results were not supported by MR. DISCUSSIONS These findings implicated the potential role of host-microbiota crosstalk in thyroid cancer, while the discrepancy among observational studies calls for further investigations.
Collapse
Affiliation(s)
- Tianzhichao Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huajie Dai
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanan Hou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mian Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiyun Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yufang Bi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Almeida C, Gonçalves-Nobre JG, Alpuim Costa D, Barata P. The potential links between human gut microbiota and cardiovascular health and disease - is there a gut-cardiovascular axis? FRONTIERS IN GASTROENTEROLOGY 2023; 2. [DOI: 10.3389/fgstr.2023.1235126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut-heart axis is an emerging concept highlighting the crucial link between gut microbiota and cardiovascular diseases (CVDs). Recent studies have demonstrated that gut microbiota is pivotal in regulating host metabolism, inflammation, and immune function, critical drivers of CVD pathophysiology. Despite a strong link between gut microbiota and CVDs, this ecosystem’s complexity still needs to be fully understood. The short-chain fatty acids, trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly involved in the development and prognosis of CVDs. This review explores the relationship between gut microbiota metabolites and CVDs, focusing on atherosclerosis and hypertension, and analyzes personalized microbiota-based modulation interventions, such as physical activity, diet, probiotics, prebiotics, and fecal microbiota transplantation, as a promising strategy for CVD prevention and treatment.
Collapse
|
6
|
Gao X, Zhao J, Chen W, Zhai Q. Food and drug design for gut microbiota-directed regulation: Current experimental landscape and future innovation. Pharmacol Res 2023; 194:106867. [PMID: 37499703 DOI: 10.1016/j.phrs.2023.106867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Most diets and medications enhance host health via microbiota-dependent ways, but it is in the present situation of untargeted regulation. Non-targeted regulation may lead to the ineffectiveness of dietary supplements or drug treatment. Microbiota-directed food, aiming to improve diseases by targeting specific microbes without affecting other bacteria, have been proposed to deal with this problem. However, there is currently no universally applicable method to explore such foods or drugs. In this review, thirty studies on recent efforts in microbiota directed diets and medications are summarized from various databases. The methods used to find new foods and medications are primarily divided into four groups depending on the experimental models: in vivo and in vitro, as well as predictions based on bioinformatics. We also discuss their implementation, interpretation, and respective limitations, and describe the present situation. We further put forward a framework for microbiota-directed foods and medicine according to above methods and other microbiome manipulation, which will spur precision medicine.
Collapse
Affiliation(s)
- Xiaoxiang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Wang C, Li PF, Hu DG, Wang H. Effect of Clostridium butyricum on intestinal microbiota and resistance to Vibrio alginolyticus of Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 138:108790. [PMID: 37169113 DOI: 10.1016/j.fsi.2023.108790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
In order to evaluate the effect of Clostridium butyricum (C. butyricum) feeding on intestinal microorganisms and protection against infection by Vibrio alginolyticus (V. alginolyticus) in Penaeus vannamei (P. vannamei). We set up two groups, CG30 (fed normal feed) and CB30 (fed feed supplemented with C. butyricum), for the 30d C. butyricum feeding test, and four groups, CG (CG30 group injected with PBS), CB (CB30 group injected with PBS), VACG (CG30 group injected with V. alginolyticus), and VACB (CB30 group injected with V. alginolyticus), for the 24h infection test. The protective effect of C. butyricum against acute V. alginolyticus infection in P. vannamei was explained in terms of survival, histopathology, changes in enzyme activity, transcriptome analysis, and immune-related genes. We found that feeding C. butyricum significantly altered intestinal microbial populations' abundance and significantly reduced Vibrio spp. In the V. alginolyticus stress test, C. butyricum improved the survival rate and alleviated pathological changes in hepatopancreatic tissues, alleviated the reduction of superoxide dismutase (SOD) and phenoloxidase (PO) activity caused by infection, and increased the lysozyme content in P. vannamei. VACB group compared with the VACG group, 1730 up-regulated differentially expressed genes (DEGs) and 2029 down-regulated DEGs were screened. Quantitative real-time PCR (qRT-PCR) showed that dietary supplementation with C. butyricum suppressed the upregulation of alkaline phosphatase (AKP) transcription factors and the downregulation of prophenoloxidase (proPO), alpha-2-macroglobulin (A2M), and anti-lipopolysaccharide factor (ALF) induced by V. alginolyticus infection. In conclusion, feed supplementation with C. butyricum changed P. vannamei's population ratio of intestinal microorganisms. Moreover, C. butyricum has the potential to act as an inhibitor of V. alginolyticus infection and enhance the resistance of P. vannamei to V. alginolyticus infection.
Collapse
Affiliation(s)
- Chen Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China
| | - Peng-Fei Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Department of Horticulture, Agriculture College, Shihezi University, Shihezi, 832003, PR China.
| | - Hui Wang
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation, Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
8
|
Li J, Fang P, Yi X, Kumar V, Peng M. Probiotics Bacillus cereus and B. subtilis reshape the intestinal microbiota of Pengze crucian carp (Carassius auratus var. Pengze) fed with high plant protein diets. Front Nutr 2022; 9:1027641. [PMID: 36337612 PMCID: PMC9627213 DOI: 10.3389/fnut.2022.1027641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
The intestinal dysfunction induced by high plant protein diets is frequently observed in farmed fish, and probiotics of Bacillus genus were documented to benefit the intestinal health through the modulation of intestinal microbiota without clearness in its underlying mechanism yet. Fusobacteria, Proteobacteria, and Firmicutes were observed to be the dominate phyla, but their proportion differentiated in the intestinal bacterial community of Pengze crucian carp (Carassius auratus var. Pengze) fed different diets in this study. Dietary supplementation of B. cereus and B. subtilis could reshape the intestinal bacterial community altered by high plant protein diets through a notable reduction in opportunistic pathogen Aeromonas together with an increase in Romboutsia and/or Clostridium_sensu_stricto from Firmicutes. Due to the alteration in the composition of bacterial community, Pengze crucian carp exhibited characteristic ecological networks dominated by cooperative interactions. Nevertheless, the increase in Aeromonas intensified the competition within bacterial communities and reduced the number of specialists within ecological network, contributing to the microbial dysbiosis induced by high plant protein diets. Two probiotics diets promoted the cooperation within the intestinal bacterial community and increased the number of specialists preferred to module hubs, and then further improved the homeostasis of the intestinal microbiota. Microbial dysbiosis lead to microbial dysfunction, and microbial lipopolysaccharide biosynthesis was observed to be elevated in high plant protein diets due to the increase in Aeromonas, gram-negative microbe. Probiotics B. cereus and B. subtilis restored the microbial function by elevating their amino acid and carbohydrate metabolism together with the promotion in the synthesis of primary and secondary bile acids. These results suggested that dietary supplementation of probiotics B. cereus and B. subtilis could restore the homeostasis and functions of intestinal microbiota in Pengze crucian carp fed high plant protein diets.
Collapse
Affiliation(s)
- Jiamin Li
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Peng Fang
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinwen Yi
- Shenzhen Aohua Group Co., Ltd., Shenzhen, China
| | - Vikas Kumar
- Department of Animal, Veterinary and Food Sciences, Aquaculture Research Institute, University of Idaho, Moscow, ID, United States
| | - Mo Peng
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Mo Peng
| |
Collapse
|
9
|
Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr 2022; 65:439-447. [PMID: 34942687 PMCID: PMC9441613 DOI: 10.3345/cep.2021.00955] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
During early life, the gut microbial composition rapidly changes by maternal microbiota composition, delivery mode, infant feeding mode, antibiotic usage, and various environmental factors, such as the presence of pets and siblings. An integrative study on the diet, the microbiota, and genomic activity at the transcriptomic level may give an insight into the role of diet in shaping the human/microbiome relationship. Disruption in the gut microbiota (i.e., gut dysbiosis) has been linked to necrotizing enterocolitis in infancy, as well as some chronic diseases in later, including obesity, diabetes, inflammatory bowel disease, cancer, allergies, and asthma. Therefore, understanding the impact of maternal-to-infant transfer of dysbiotic microbes and then modifying infant early colonization or correcting early-life gut dysbiosis might be a potential strategy to overcome chronic health conditions.
Collapse
Affiliation(s)
- Sujin Jeong
- Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| |
Collapse
|
10
|
Boudar Z, Sehli S, El Janahi S, Al Idrissi N, Hamdi S, Dini N, Brim H, Amzazi S, Nejjari C, Lloyd-Puryear M, Ghazal H. Metagenomics Approaches to Investigate the Neonatal Gut Microbiome. Front Pediatr 2022; 10:886627. [PMID: 35799697 PMCID: PMC9253679 DOI: 10.3389/fped.2022.886627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
Early infancy is critical for the development of an infant's gut flora. Many factors can influence microbiota development during the pre- and postnatal periods, including maternal factors, antibiotic exposure, mode of delivery, dietary patterns, and feeding type. Therefore, investigating the connection between these variables and host and microbiome interactions in neonatal development would be of great interest. As the "unculturable" era of microbiome research gives way to an intrinsically multidisciplinary field, microbiome research has reaped the advantages of technological advancements in next-generation sequencing, particularly 16S rRNA gene amplicon and shotgun sequencing, which have considerably expanded our knowledge about gut microbiota development during early life. Using omics approaches to explore the neonatal microbiome may help to better understand the link between the microbiome and newborn diseases. Herein, we summarized the metagenomics methods and tools used to advance knowledge on the neonatal microbiome origin and evolution and how the microbiome shapes early and late individuals' lives for health and disease. The way to overcome limitations in neonatal microbiome studies will be discussed.
Collapse
Affiliation(s)
- Zakia Boudar
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sofia Sehli
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Sara El Janahi
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Najib Al Idrissi
- Department of Surgery, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Salsabil Hamdi
- Laboratory of Genomics and Bioinformatics, School of Pharmacy, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nouzha Dini
- Mother and Child Department, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Hassan Brim
- Department of Pathology, Howard University, Washington, DC, United States
| | - Saaïd Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Chakib Nejjari
- Department of Epidemiology and Biostatistics, International School of Public Health, Mohammed VI University of Health Sciences, Casablanca, Morocco
- Department of Epidemiology and Public Health, Faculty of Medicine, University Sidi Mohammed Ben Abdellah, Fez, Morocco
| | | | - Hassan Ghazal
- Department of Fundamental Sciences, School of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
- National Center for Scientific and Technical Research, Rabat, Morocco
| |
Collapse
|
11
|
Cleal JK, Poore KR, Lewis RM. The placental exposome, placental epigenetic adaptations and lifelong cardio-metabolic health. Mol Aspects Med 2022; 87:101095. [DOI: 10.1016/j.mam.2022.101095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022]
|
12
|
Changes to Gut Microbiota Following Systemic Antibiotic Administration in Infants. Antibiotics (Basel) 2022; 11:antibiotics11040470. [PMID: 35453221 PMCID: PMC9025670 DOI: 10.3390/antibiotics11040470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Long-term antibiotic use can have consequences on systemic diseases, such as obesity, allergy, and depression, implicating the causal role of gut microbiome imbalance. However, the evaluation of the effect of antibiotics in early infancy on alterations to the gut microbiome remains poorly understood. This study aimed to evaluate the gut microbiome state in infancy following systemic antibiotic treatment. Twenty infants under 3 months of age who had received antibiotics for at least 3 days were enrolled, and their fecal samples were collected 4 weeks after antibiotic administration finished. Thirty-four age-matched healthy controls without prior exposure to antibiotics were also assessed. The relative bacterial abundance in feces was obtained via sequencing of 16 S rRNA genes, and alpha and beta diversities were evaluated. At the genus level, the relative abundance of Escherichia/Shigella and Bifidobacterium increased (p = 0.03 and p = 0.017, respectively) but that of Bacteroides decreased (p = 0.02) in the antibiotic treatment group. The microbiome of the antibiotic treatment group exhibited an alpha diversity lower than that of the control group. Thus, systemic antibiotic administration in early infancy affects the gut microbiome composition even after a month has passed; long-term studies are needed to further evaluate this.
Collapse
|
13
|
Kaur A, Ojo BA, Wong SY, Alake SE, Pastor M, Rassi GDE, Lin D, Smith BJ, Lucas EA. Montmorencytart cherry supplementation improved markers of glucose homeostasis but has modest effects on indicators of gut health in mice fed a Western diet. Nutr Res 2022; 99:66-77. [DOI: 10.1016/j.nutres.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 10/19/2022]
|
14
|
Abstract
As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, it is considered to be a full-fledged endocrine organ. The microbiota plays a major role in the reproductive endocrine system throughout a woman's lifetime by interacting with estrogen, androgens, insulin, and other hormones. Imbalance of the gut microbiota composition can lead to several diseases and conditions, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome (PCOS), endometriosis, and cancer; however, research on the mechanisms is limited. More effort should be concentrated on exploring the potential causes and underlying the mechanisms of microbiota-hormone-mediated disease, and providing novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Xinyu Qi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
| | - Chuyu Yun
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,CONTACT Yanli Pang M.D.,Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China,Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, China,Jie Qiao M.D., Ph.D Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
15
|
Aan FJ, Glibetic N, Montoya-Uribe V, Matter ML. COVID-19 and the Microbiome: The Gut-Lung Connection. COMPREHENSIVE GUT MICROBIOTA 2022. [PMCID: PMC8131000 DOI: 10.1016/b978-0-12-819265-8.00048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Hamad AJ, Albdairi AJ, Alkemawy SNY, Khudair SA, Abdulhadi NR. Assessment of the incidence and etiology of nosocomial diarrhea in a medical ward in Iraq. J Med Life 2022; 15:132-137. [PMID: 35186147 PMCID: PMC8852629 DOI: 10.25122/jml-2021-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/10/2022] [Indexed: 11/05/2022] Open
Abstract
This study aimed to detect the incidence, etiology, risk factors, and severity of nosocomial diarrhea among adult inpatients in a medical ward in Iraq. The study was conducted among patients admitted to the medical ward from June 1, 2019, to January 31, 2020, in AL-Sader medical city. The surveillance for nosocomial diarrhea was performed by monitoring every patient in the ward 3 times/week. 1050 patients were admitted to the medical ward in AL-Sader medical city. Of these, 52 patients (mean age 58±12.91 years, range 32 to 80) developed new-onset diarrhea during hospitalization. There was a significant relationship between the severity of diarrhea and age, residence, antibiotic use, including number and duration of antibiotics, immunosuppressive agents (steroids/chemotherapy), duration of hospital stay, level of consciousness, and enema use. Nosocomial diarrhea is a significant clinical problem that complicates about 5% of all admission in the medical ward. Various microorganisms account for nosocomial diarrhea, including E. histolytica, G. lamblia, and Candida. Several risk factors associated with the severe form of nosocomial diarrhea include old age, antibiotic use, immunosuppressive use, and length of hospital stay.
Collapse
Affiliation(s)
- Ammar Jabbar Hamad
- Department of Medicine, College of Medicine, University of Kufa, Al-Najaf, Iraq
| | | | | | - Safaa Ali Khudair
- Department of Medicine, College of Medicine, University of Kufa, Al-Najaf, Iraq
| | | |
Collapse
|
17
|
Zhu WJ, Liu Y, Cao YN, Peng LX, Yan ZY, Zhao G. Insights into Health-Promoting Effects of Plant MicroRNAs: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14372-14386. [PMID: 34813309 DOI: 10.1021/acs.jafc.1c04737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant-derived microRNAs (miRNAs) play a significant role in human health and are "dark nutrients", as opposed to traditional plant nutrients, as well as important components of food diversification. Studies have revealed that multiple plant-derived miRNA pathways affect human health. First, plant miRNAs regulate plant growth and development and accumulation of metabolites, which alters the food quality and thus indirectly interferes with the health of the host. Moreover, when absorbed in vivo, some miRNAs may target the host cell mRNAs to affect protein expression. In addition, plant miRNAs target and reshape the human gut microbiota (GM), which interferes with the physiology and metabolism of the host. Therefore, miRNAs play a significant role in the cross-kingdom communication of plants, GM, and the host and in maintaining a balance of the three. Future contributions of plant miRNAs can bring new perspectives and opportunities to better understand food nutrition and health care research, which will facilitate the right exploitation of plant resources.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yu Liu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Zhu-Yun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs; Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
18
|
Differential Effect of Light and Dark Period Sleep Fragmentation on Composition of Gut Microbiome and Inflammation in Mice. Life (Basel) 2021; 11:life11121283. [PMID: 34947814 PMCID: PMC8709399 DOI: 10.3390/life11121283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bi-directional interactions amongst the gut microbiota, immune system, and brain function are thought to be critical mediators of health and disease. The role sleep plays in mediating these interactions is not known. We assessed the effects of sleep fragmentation (SF) on the microbiota–gut–brain axis. Male C57BL/6NCrl mice (4 to 5 per cage, fed standard lab chow) experienced SF via mechanical stimulation at 2 min intervals during the light (SF) and dark (DD, dark disturbances) periods. Home cage (HC) controls were undisturbed. After 10 days, fecal samples were collected at light onset, midday, light offset, and midnight. Samples were also collected after 10 days without SF. Subsequently, the mice were randomized across groups and allowed 20 additional days of recovery followed by 10 days of SF or DD. To assess effects on the microbiota, 16S rRNA sequencing was used, and mesenteric lymph nodes (MLNs) and cortex and medial prefrontal cortex were analyzed using cytokine arrays. SF and DD produced significant alterations in the microbiota compared to HC, and DD had greater impact than SF on some organisms. SF produced marked suppression in MLNs of chemokines that regulate inflammation (CCL3, CCL4 and their receptor CCR5) and maintain the immune mucosal barrier (Cxcl13) at the same time that cortical cytokines (IL-33) indicated neuroinflammation. DD effects on immune responses were similar to HC. These data suggest that SF alters the microbiome and suppresses mucosal immunity at the same time that mediators of brain inflammation are upregulated. The translational implications for potential application to clinical care are compelling.
Collapse
|
19
|
Zhu D, Lu L, Zhang Z, Qi D, Zhang M, O'Connor P, Wei F, Zhu YG. Insights into the roles of fungi and protist in the giant panda gut microbiome and antibiotic resistome. ENVIRONMENT INTERNATIONAL 2021; 155:106703. [PMID: 34139588 DOI: 10.1016/j.envint.2021.106703] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The mammal gut is a rich reservoir of antibiotic resistance genes (ARGs), and the relationship between bacterial communities and ARGs has been widely studied. Despite ecological significance of microeukaryotes (fungi and protists), our understanding of their roles in the mammal gut microbiome and antibiotic resistome is still limited. Here, we used amplicon sequencing, metagenomic sequencing and high-throughput quantitative PCR to examine microbiomes and antibiotic resistomes of 41 giant panda fecal samples from individuals with different genders, ages, sampling sites and diet. Our results show that diverse protists inhabit in the giant panda gut ecosystem, dominated by consumers. Higher abundance of protistan consumers was detected in the elder compared to sub-adult and adult giant pandas. Diet is the main driving factor of variation in ARGs in the giant panda gut microbiome. Weighted correlation network analysis identified two key microbial modules from multitrophic communities, which all contributed to the variation in ARGs in the giant panda gut. Protists occupied an important position in the two modules which were dominated by fungal taxa. Deterministic processes made a more important contribution to microbial community assembly of the two modules than to bacterial, fungal and protistan communities. This study sheds new light on how key microbial modules contribute to the variation in ARGs, which is crucial in understanding dynamics of antibiotic resistome in the mammal gut, particularly endangered species.
Collapse
Affiliation(s)
- Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lu Lu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Zejun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Dunwu Qi
- Chengdu Research Base of Giant Panda Breeding, Chengdu 611081, China
| | - Mingchun Zhang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611830, China
| | - Patrick O'Connor
- Centre for Global Food and Resources, University of Adelaide, Adelaide 5005, Australia
| | - Fuwen Wei
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
20
|
Chen J, Wang W, Guo Z, Huang S, Lei H, Zang P, Lu B, Shao J, Gu P. Associations between gut microbiota and thyroidal function status in Chinese patients with Graves' disease. J Endocrinol Invest 2021; 44:1913-1926. [PMID: 33481211 DOI: 10.1007/s40618-021-01507-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The imbalance of gut microbiota has been linked to manifold endocrine diseases, but the association with Graves' disease (GD) is still unclear. The purpose of this study was to investigate the correlation between human gut microbiota and clinical characteristics and thyroidal functional status of GD. METHODS 14 healthy volunteers (CG) and 15 patients with primary GD (HG) were recruited as subjects. 16SrDNA high-throughput sequencing was performed on IlluminaMiSeq platform to analyze the characteristics of gut microbiota in patients with GD. Among them, the thyroid function of 13 patients basically recovered after treatment with anti-thyroid drugs (oral administration of Methimazole for 3-5 months). The fecal samples of patients after treatment (TG) were sequenced again, to further explore and investigate the potential relationship between dysbacteriosis and GD. RESULTS In terms of alpha diversity index, the observed OTUs, Simpson and Shannon indices of gut microbiota in patients with GD were significantly lower than those in healthy volunteers (P < 0.05).The difference of bacteria species was mainly reflected in the genus level, in which the relative abundance of Lactobacillus, Veillonella and Streptococcus increased significantly in GD. After the improvement of thyroid function, a significant reduction at the genus level were Blautia, Corynebacter, Ruminococcus and Streptococcus, while Phascolarctobacterium increased significantly (P < 0.05). According to Spearman correlation analysis, the correlation between the level of thyrotropin receptor antibody (TRAb) and the relative abundance of Lactobacillus and Ruminococcus was positive, while Synergistetes and Phascolarctobacterium showed a negative correlation with TRAb. Besides, there were highly significant negative correlation between Synergistetes and clinical variables of TRAb, TPOAb and TGAb (P < 0.05, R < - 0.6). CONCLUSIONS This study revealed that functional status and TRAb level in GD were associated with composition and biological function in the gut microbiota, with Synergistetes and Phascolarctobacterium protecting the thyroid probably, while Ruminococcus and Lactobacillus may be novel biomarkers of GD.
Collapse
Affiliation(s)
- J Chen
- Department of Endocrinology, Jinling Hospital, Southeast Univ, Sch Med, Nanjing, China
| | - W Wang
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China
| | - Z Guo
- Department of Endocrinology, Jinling Hospital, Nanjing Med Univ, Nanjing, China
| | - S Huang
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China
| | - H Lei
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - P Zang
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China
| | - B Lu
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China
| | - J Shao
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China.
| | - P Gu
- Department of Endocrinology, Jinling Hospital, Nanjing Univ, Sch Med, Nanjing, China.
| |
Collapse
|
21
|
Jeong S. Early Life Events and Development of Gut Microbiota in Infancy. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2021. [DOI: 10.4166/kjg.2021.408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- SuJin Jeong
- Division of Gastroenterology and Nutrition of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
22
|
Deng J, Ding QM, Jia MX, Li W, Zuberi Z, Wang JH, Ren JL, Fu D, Zeng XX, Luo JF. Biosafety risk assessment of nanoparticles: Evidence from food case studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116662. [PMID: 33582638 DOI: 10.1016/j.envpol.2021.116662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Nanotechnology provides a wide range of benefits in the food industry in improving food tastes, textures, sensations, quality, shelf life, and food safety. Recently, potential adverse effects such as toxicity and safety concerns have been associated with the increasing use of engineered nanoparticles in food industry. Additionally, very limited information is known concerning the behavior, properties and effects of food nano-materials in the gastrointestinal tract. There is explores the current advances and provides insights of the potential risks of nanoparticles in the food industry. Specifically, characteristics of food nanoparticles and their absorption in the gastrointestinal tract, the effects of food nanoparticles against the gastrointestinal microflora, and the potential toxicity mechanisms in different organs and body systems are discussed. This review would provide references for further investigation of nano-materials toxicity effect in foods and their molecular mechanisms. It will help to develop safer foods and expand nano-materials applications in safe manner.
Collapse
Affiliation(s)
- Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Quan Ming Ding
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ming Xi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar Es Salaam Institute of Technology, P.O. Box 2958, Dar Es Salaam, Tanzania
| | - Jian Hui Wang
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Jia Li Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiao Xi Zeng
- College of Packaging and Material Engineering, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Fei Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
23
|
Carcelén F, López M, Martín FS, Ara M, Bezada S, Ruiz-García L, Sandoval-Monzón R, López S, Guevara J. Effect of probiotics administration at different levels on the productive parameters of guinea pigs for fattening ( Cavia porcellus). Open Vet J 2021; 11:222-227. [PMID: 34307079 PMCID: PMC8288744 DOI: 10.5455/ovj.2021.v11.i2.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Background For more than 50 years, antibiotics have been used to maintain animal welfare and improve efficiency. Recently, antibiotics were found in the muscle, liver, and kidney of guinea pig carcasses put up for sale and human consumption, which is a public health issue. Probiotics are supplements of live microorganisms that, when administered in adequate doses, could replace growth-promoting antibiotics. Aim This study analyzed the effect of the administration of an oral probiotic mixture on the guinea pigs productive performance (Cavia porcellus). Methods Fifty male guinea pigs, weaned at 14 days of age, were distributed in a completely randomized design of five treatments with ten repetitions for each group. The treatments were CONTROL group without probiotic; PROB 1 given 1 ml of probiotic; PROB 2 with 2 ml of probiotic; PROB 3 with 3 ml of probiotic; and antibiotic growth promoter (AGP) was given 300 ppm zinc bacitracin. The microorganisms used in the probiotic were Enterococcus hirae, Lactobacillus reuteri, Lactobacillus frumenti, Lactobacillus johnsoni, Streptococcus thoraltensis, and Bacillus pumilus. Productive parameters were evaluated from weaning to 70 days of age. Results No statistically significant difference was found between the treatments on forage dry matter intake (DMI), concentrateconcentrate DMI, or total concentrate DMI (p > 0.05). Similarly, no statistical difference was found between the treatments in terms of final weight or weight gain (p > 0.05). Regarding the feed conversion ratio (FCR), there was a significant difference between treatments (p = 0.045); the CONTROL group had the highest FCR, followed by the AGP group, with the best FCR observed in the PROB 3 group (p < 0.05). In addition, significant statistical differences were found between CONTROL and PROB 2 (p < 0.05). Likewise, a significant linear effect of increasing doses of the probiotic was found (p = 0.01), which indicated that the feed conversion was better with a higher dose. Conclusion The treatments evaluated in this study significantly impacted the FCR in guinea pigs for fattening. Increasing doses of probiotics had a linear effect on FCR.
Collapse
Affiliation(s)
- Fernando Carcelén
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Melissa López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Felipe San Martín
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Miguel Ara
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sandra Bezada
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Luis Ruiz-García
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Rocío Sandoval-Monzón
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Sofía López
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jorge Guevara
- Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Perú
| |
Collapse
|
24
|
Amoxicillin-Clavulanic Acid Resistance in the Genus Bifidobacterium. Appl Environ Microbiol 2021; 87:AEM.03137-20. [PMID: 33483308 DOI: 10.1128/aem.03137-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/10/2021] [Indexed: 12/31/2022] Open
Abstract
Amoxicillin-clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding 6 months. Moreover, we evaluated AMC sensitivity by MIC test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains that exhibit a high level of AMC insensitivity, which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch cultures.IMPORTANCE Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, which also affected the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genomes revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in vitro experiments revealed that one strain, i.e., Bifidobacterium breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.
Collapse
|
25
|
Obesity, Early Life Gut Microbiota, and Antibiotics. Microorganisms 2021; 9:microorganisms9020413. [PMID: 33671180 PMCID: PMC7922584 DOI: 10.3390/microorganisms9020413] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a major public health problem that continues to be one of the leading risk factors for premature death. Early life is a critical period of time when the gut microbiota and host metabolism are developing in tandem and significantly contribute to long-term health outcomes. Dysbiosis of the gut microbiota, particularly in early life, can have detrimental effects on host health and increase the susceptibility of developing obesity later in life. Antibiotics are an essential lifesaving treatment; however, their use in early life may not be without risk. Antibiotics are a leading cause of intestinal dysbiosis, and early life administration is associated with obesity risk. The following review explores the relevant literature that simultaneously examines antibiotic-induced dysbiosis and obesity risk. Current evidence suggests that disruptions to the composition and maturation of the gut microbiota caused by antibiotic use in early life are a key mechanism linking the association between antibiotics and obesity. Without compromising clinical practice, increased consideration of the long-term adverse effects of antibiotic treatment on host health, particularly when used in early life is warranted. Novel adjunct interventions should be investigated (e.g., prebiotics) to help mitigate metabolic risk when antibiotic treatment is clinically necessary.
Collapse
|
26
|
Elbaz AM, Ibrahim NS, Shehata AM, Mohamed NG, Abdel-Moneim AME. Impact of multi-strain probiotic, citric acid, garlic powder or their combinations on performance, ileal histomorphometry, microbial enumeration and humoral immunity of broiler chickens. Trop Anim Health Prod 2021; 53:115. [PMID: 33438056 DOI: 10.1007/s11250-021-02554-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Heat stress, one of the critical obstacles to poultry sector in subtropical and tropical countries, reduces performance, immune response, and animal welfare. This study examined the effect of dietary inclusion of probiotic (PRO), citric acid (CIT), garlic powder (GAR) or their combinations on growth, blood constituents, ileal microflora and morphology and humoral immunity of broiler chickens subjected to cyclic heat stress. Four hundred ninety one-day-old Ross-308 broiler chicks were randomly allocated to 7 groups with 7 replicates of 10 birds each as follows: control (C) group received the basal diet without supplements, PRO, CIT and GAR groups supplemented with 0.5 g kg-1 multi-strain probiotic mixture (MPM), citric acid and garlic powder, respectively. PRO-CIT and PRO-GAR groups treated with 0.5 g kg-1 MPM, and 0.5 g kg-1 citric acid and garlic powder, while CIT-GAR group fed diet with 0.5 g kg-1 of citric acid and garlic powder. Results revealed that dietary supplements and their combinations improved (P < 0.001) growth performance and decreased abdominal fat of heat-stressed birds. Dietary supplements decreased (P < 0.01) serum concentrations of cholesterol, triglycerides and LDL, while HDL was elevated (P < 0.05). Feed additives reduced (P < 0.01) ileal enumeration of Escherichia coli and total coliform while Lactobacillus count was increased (P < 0.05) only in MPM-enriched groups. Supplementation of these natural products improved (P < 0.01) ileal architecture while humoral immune response was not significantly influenced except antibody titre against Newcastle disease virus which was increased (P < 0.05) in MPM-supplemented groups. Conclusively, addition of the dietary supplements and their combinations, particularly, probiotic and citric acid combination can improve productive performance, and intestinal flora and histomorphometry of broilers exposed to cyclic heat stress.
Collapse
Affiliation(s)
| | - Nashaat S Ibrahim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt.,Department of Dairy Science & Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Noureldeen G Mohamed
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt.
| |
Collapse
|
27
|
Ghaemi F, Fateh A, Sepahy AA, Zangeneh M, Ghanei M, Siadat SD. Intestinal Microbiota Composition in Iranian Diabetic, Pre-diabetic and Healthy Individuals. J Diabetes Metab Disord 2020; 19:1199-1203. [PMID: 33520834 PMCID: PMC7843695 DOI: 10.1007/s40200-020-00625-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Type 2 diabetes, as the most prevalent metabolic disorder, is one of the leading causes of death worldwide. Recent studies showed a significant association between intestinal microbiota and type 2 diabetes. These studies have shared evidences that alteration in the composition of intestinal microbiota can disrupt the balance of the host homeostasis and lead to metabolic disorders such as type 2 diabetes. In the present study, we compared the intestinal microbiota composition in three groups of type 2 diabetes patients, pre-diabetic patients and healthy individuals of Iranian population. METHODS After obtaining informed consent, stool samples were collected from 90 individuals of three studied groups. The DNA was extracted using column-based method. Intestinal microbiota composition was evaluated by quantitative real-time PCR using specific bacterial 16S rRNA primers. The difference of bacterial load was compared between three groups. RESULTS The prevalence of Akkermansia muciniphila and Bifidobacteria species in healthy group was higher than type 2 diabetes group (P Value 0.006 and 0.001, respectively). In contrast, the load of Lactobacillus (P Value 0.044), Escherichia coli (P Value 0.005), and Bacteroides fragilis (P Value 0.017) in type 2 diabetes group, and the frequency of E. coli (P Value 0.001) and Bacteroides fragilis (P Value 0.004) in pre-diabetic group was significantly higher than healthy group. Moreover, the frequency of Faecalibacterium prausnitzii in healthy group was significantly higher compared to two other groups (P Value 0.005). CONCLUSION There is a correlation between intestinal microbiota composition and type 2 diabetes. Determination and restoration of this microbiota composition pattern may have a possible role in prevention and control of type 2 diabetes in a certain population.
Collapse
Affiliation(s)
- Farahnaz Ghaemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, 1316943551 Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Akhavan Sepahy
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Mehrangiz Zangeneh
- Department of Infectious Diseases, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, No. 358, 12th Farvardin Ave, Jomhhoori St, Tehran, 1316943551 Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Słabuszewska-Jóźwiak A, Szymański JK, Ciebiera M, Sarecka-Hujar B, Jakiel G. Pediatrics Consequences of Caesarean Section-A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8031. [PMID: 33142727 PMCID: PMC7662709 DOI: 10.3390/ijerph17218031] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cesarean section is a surgical procedure, which is the most frequently performed in gynecology and obstetrics. It is commonly believed that an operative delivery is a less painful and safer mode of delivery, which translates into an increasing number of the procedures performed without medical indications. The maternal sequelae of cesarean sections are well elucidated and widely discussed in the literature, while long-term neonatal consequences still remain the issue of research and scientific dispute. The aim of the present paper was to perform a systematic review of current literature regarding pediatrics consequences of cesarean section. METHODS We reviewed available data from PubMed, Science Direct as well as Google Scholar bases concerning early and long-term neonatal sequelae of operative deliveries. The following key words were used: "cesarean section", "caesarean section", "neonatal outcomes", "respiratory disorders", "asthma", "obesity", "overweight", and "neurological disorders". A total of 1636 papers were retrieved out of which 27 were selected for the final systematic review whereas 16 articles provided data for meta-analysis. Statistical analyses were performed using RevMan 5.4. To determine the strength of association between the caesarean section and respiratory tract infections, asthma, diabetes type 1 as well as obesity the pooled odds ratios (OR) with the 95% confidence intervals (CI) were calculated. RESULTS Conducted meta-analyses revealed that caesarean section is a risk factor for respiratory tract infections (pooled OR = 1.30 95%CI 1.06-1.60, p = 0.001), asthma (pooled OR = 1.23 95%CI 1.14-1.33, p < 0.00001) as well as obesity (pooled OR = 1.35 95%CI 1.29-1.41, p < 0.00001) in offspring. CONCLUSIONS The results of the studies included indicated that children delivered by cesarean section more commonly developed respiratory tract infections, obesity and the manifestations of asthma than children delivered vaginally. The risk of developing diabetes mellitus type 1 or neurological disorders in offspring after caesarean section is still under discussion.
Collapse
Affiliation(s)
- Aneta Słabuszewska-Jóźwiak
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| | - Jacek Krzysztof Szymański
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Cegłowska 80 Street, 01-809 Warsaw, Poland;
| | - Beata Sarecka-Hujar
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3 Street, 41-200 Sosnowiec, Poland;
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynaecology, Centre of Postgraduate Medical Education, Żelazna 90 Street, 01-004 Warsaw, Poland; (J.K.S.); (G.J.)
| |
Collapse
|
29
|
Ray P, Pandey U, Aich P. Comparative analysis of beneficial effects of vancomycin treatment on Th1- and Th2-biased mice and the role of gut microbiota. J Appl Microbiol 2020; 130:1337-1356. [PMID: 32955795 DOI: 10.1111/jam.14853] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aim was to understand the time-dependent antibiotic-induced perturbation pattern of gut microbiota and its effect on the innate immune and metabolic profile of the host. METHODS AND RESULTS Vancomycin was administered at 50 mg kg-1 of body weight twice daily for six consecutive days to perturb the gut microbiota of C57BL/6 (Th1-biased) and BALB/c (Th2-biased) mice. Following treatment with vancomycin, we observed a reduction in the abundance of phyla Firmicutes and Bacteroides and an increase in Proteobacteria in the gut for both strains of mice following treatment with vancomycin till day 4. Abundance of Akkermansia muciniphila of Verrucomicrobia phylum also increased, from day 5 onwards following vancomycin treatment. The time-dependent variation of gut microbiota was associated with increased (i) expression of toll-like receptors and inflammatory genes such as TNF-α, IL-6, and IL-17, (ii) gut barrier permeability and (iii) blood glucose level of the host. The results also showed that (i) transplantation of cecal microbiota from vancomycin-treated day 6 mice to day 3 vancomycin-treated mice helped in restoring blood glucose level in C57BL/6 mice and (ii) short-chain fatty acids like acetate, butyrate and propionate changed with the alteration of gut microbiota to induce differential regulation of host immune response. CONCLUSIONS The current results revealed that an increase in A. muciniphila led to decreased inflammation and increased rate of glucose tolerance in the host. The treatment, with vancomycin till day 4, increased expression of inflammatory genes. The continuation of vancomycin for two more days reversed the effects. The effects were significantly more in C57BL/6 than BALB/c mice. SIGNIFICANCE AND IMPACT OF THE STUDY The current study established that the treatment with vancomycin till day 4 increased pathogenic bacteria but day 5 onwards provided significant health-related benefits to the host by increasing A. muciniphila more in C57BL/6 than BALB/c mice.
Collapse
Affiliation(s)
- P Ray
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - U Pandey
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - P Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| |
Collapse
|
30
|
Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes (Basel) 2020; 11:1041. [PMID: 32899315 PMCID: PMC7563178 DOI: 10.3390/genes11091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract hosts the natural reservoir of microbiota since birth. The microbiota includes various bacteria that establish a progressively mutual relationship with the host. Of note, the composition of gut microbiota is rather individual-specific and, normally, depends on both the host genotype and environmental factors. The study of the bacterial profile in the gut demonstrates that dominant and minor phyla are present in the gastrointestinal tract with bacterial density gradually increasing in oro-aboral direction. The cross-talk between bacteria and host within the gut strongly contributes to the host metabolism, to structural and protective functions. Dysbiosis can develop following aging, diseases, inflammatory status, and antibiotic therapy. Growing evidences show a possible link between the microbiota and Familial Mediterranean Fever (FMF), through a shift of the relative abundance in microbial species. To which extent such perturbations of the microbiota are relevant in driving the phenotypic manifestations of FMF with respect to genetic background, remains to be further investigated.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy;
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - David Q. H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
31
|
Haberecht S, Bajagai YS, Moore RJ, Van TTH, Stanley D. Poultry feeds carry diverse microbial communities that influence chicken intestinal microbiota colonisation and maturation. AMB Express 2020; 10:143. [PMID: 32803529 PMCID: PMC7429634 DOI: 10.1186/s13568-020-01077-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial colonisation of the gastrointestinal tract of newly hatched chicks starts at hatch, seeded from the immediate hatching environment, and quickly results in dense colonisation. The role of ecological factors in gut colonisation has been extensively investigated, as well as the role of micro- and macronutrients in supporting and selecting for bacterial species highly adapted for utilising those nutrients. However, the microbial community contained in poultry feed and its influence on colonisation and maturation of gut microbiota has not been directly addressed. In this study, we compared the microbiota found in poultry feed, with the microbiota of ileum, cecum and excreta, to identify substantial overlap in core microbiotas of the compared groups. We then investigated the microbiota present in raw feedstuffs: meat and bone meal, wheat, corn, canola, barley, soybean, millrun, sorghum, poultry oil, oats, limestone and bloodmeal from four geographically distinct feedstuff suppliers. Each of the feedstuffs had diverse microbial communities. The meat and bone meal and bloodmeal samples had the most complex and distinct microbial populations. There was substantial overlap in the phylogenetic composition found in the grain and seed samples: barley, canola, corn, millrun, oats, sorghum, soybean meal and wheat. Issues related to methodology, viability of microbial communities in the gut and feed, and the implications for biosecurity are discussed.![]()
Collapse
|
32
|
Mosa IF, Abd HH, Abuzreda A, Assaf N, Yousif AB. Bio-evaluation of the role of chitosan and curcumin nanoparticles in ameliorating genotoxicity and inflammatory responses in rats' gastric tissue followed hydroxyapatite nanoparticles' oral uptake. Toxicol Res (Camb) 2020; 9:493-508. [PMID: 32905138 DOI: 10.1093/toxres/tfaa054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/30/2020] [Indexed: 11/14/2022] Open
Abstract
Hydroxyapatite has been extensively used in tissue engineering due to its osteogenic potency, but its present toxicological facts are relatively insufficient. Here, the possible gastric toxicity of hydroxyapatite nanoparticles was evaluated biochemically to determine oxidant and antioxidant parameters in rats' stomach tissues. At results, hydroxyapatite nanoparticles have declined stomach antioxidant enzymes and reduced glutathione level, while an induction in lipid peroxidation and nitric oxide has been observed. Furthermore, DNA oxidation was analyzed by the suppression of toll-like receptors 2, nuclear factor-kappa B and Forkhead box P3 gene expression and also 8-Oxo-2'-deoxyguanosine level as a genotoxicity indicator. Various pro-inflammatory gene products have been identified that intercede a vital role in proliferation and apoptosis suppression, among these products: tumor suppressor p53, tumor necrosis factor-α and interliukin-6. Moreover, the hydroxyapatite-treated group revealed wide histological alterations and significant elevation in the number of proliferating cell nuclear antigen-positive cells, which has been observed in the mucosal layer of the small intestine, and these alterations are an indication of small intestine injury, while the appearance of chitosan and curcumin nanoparticles in the combination group showed improvement in all the above parameters with inhibition of toxic-oxidant parameters and activation of antioxidant parameters.
Collapse
Affiliation(s)
- Israa F Mosa
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Haitham H Abd
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| | - Abdelsalam Abuzreda
- Department of Health, Safety and Environment (HSE), Arabian Gulf Oil Company (AGOCO), Benghazi, Libya
| | - Nadhom Assaf
- Department of Biological Science and Animal Physiology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amenh B Yousif
- Department of Family and Community Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| |
Collapse
|
33
|
Huang H, Pham Q, Davis CD, Yu L, Wang TT. Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model. Food Sci Nutr 2020; 8:4066-4077. [PMID: 32884688 PMCID: PMC7455949 DOI: 10.1002/fsn3.1672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Dietary microRNAs (miRNAs) are thought to regulate a wide range of biological processes, including the gut microbiota. However, it is difficult to separate specific effect(s) of miRNA from that of the food matrix. This study aims to elucidate the specific effect(s) of dietary corn miRNAs, ingested as a whole food, on the gut microbiota. We developed an autoclave procedure to remove 98% of miRNA from corn. A mouse feeding study was conducted comparing autoclaved corn to nonautoclaved corn and purified corn miRNA. Compared to nonspecific nucleotides and corn devoid of miRNAs, feeding purified corn miRNAs or corn to C57BL/6 mice via gavage or diet supplementation for two weeks lead to a decrease in total bacteria in the cecum. The effect appeared to be due to changes in Firmicutes. Additionally, corn matrix minus miRNA and processing also affected gut bacteria. In silico analysis identified corn miRNAs that aligned to Firmicutes genome sequences lending further support to the interaction between corn miRNAs and this bacterium. These data support interactions between plant food miRNA, as well as matrix, and the gut microbiota exist but complex. However, it provides additional support for mechanism by which bioactive dietary components interact with the gut microbiota.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
- Office of Dietary SupplementsNIHBethesdaMarylandUSA
| | - Quynhchi Pham
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
| | | | - Liangli Yu
- Department of Nutrition and Food ScienceUniversity of MarylandCollege ParkMarylandUSA
| | - Thomas T.Y. Wang
- Diet, Genomics and Immunology LaboratoryBeltsville Human Nutrition Research CenterUSDA‐ARSBeltsvilleMarylandUSA
| |
Collapse
|
34
|
Badi SA, Motahhary A, Bahramali G, Masoumi M, Khalili SFS, Ebrahimzadeh N, Nouri P, Rahimi A, Masotti A, Moshiri A, Siadat SD. The regulation of Niemann-Pick C1-Like 1 (NPC1L1) gene expression in opposite direction by Bacteroides spp. and related outer membrane vesicles in Caco-2 cell line. J Diabetes Metab Disord 2020; 19:415-422. [PMID: 32550192 DOI: 10.1007/s40200-020-00522-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Purpose The intestine has substantial role in cholesterol homeostasis due to the presence of various cholesterol transporters and gut microbiota. Bacteroides spp. are important members of gut microbiota that employ outer membrane vesicles (OMVs) to interact with host. In this regard, we evaluated the effect of Bacteroides fragilis, Bacteroides thetaiotaomicron and related OMVs on the gene expression of important cholesterol transporters, Niemann-Pick C1-Like 1 (NPC1L1), ATP-binding cassette (ABCA1), and liver X receptors (LXRs) in Caco-2 cells. Methods OMVs were isolated from overnight brain heart infusion (BHI) broth of bacterial standard strains using deoxycholate and assessed by Scanning electron microscopy (SEM). The relative change in genes expression was assessed by Quantitative reverse transcription PCR (RT-qPCR) based on SYBR Green and 2-∆∆ct method in Caco-2 cells that were treated with bacteria and OMVs. Data were statistically analyzed with GraphPad Prism software. Finally, pathway enrichment based on the studied genes was performed using Cytoscape plugin ClueGO. Results B. fragilis (P value = 0.002) and B. thetaiotaomicron (P value = 0.001) significantly reduced NPC1L1 gene expression in Caco-2 cells. Interestingly, NPC1L1 transcripts were significantly increased by both OMVs(P value = 0.04) (P value = 0.01). Also, LXRβ was significantly down regulated by B. thetaiotaomicron (P value = 0.02). ClueGO analysis on the studied genes demonstrated several functional groups which involve in lipid and cholesterol metabolism. Conclusion The opposite effect of B. fragilis, B. thetaiotaomicron and related OMVs on the NPC1L1 gene expression was observed in Caco-2 cells. Interestingly, these effects partially were in line with the alternation of LXRs expression. However, based on pathway enrichment analysis, further molecular investigations are required to elaborate in details the specific association between Bacteroides spp. and OMVs with regulation of cholesterol signaling pathways including cholesterol transport, lipid storage, lipid homeostasis and cholesterol homeostasis.
Collapse
Affiliation(s)
- Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Atiyyeh Motahhary
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nayereh Ebrahimzadeh
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Pegah Nouri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ayoub Rahimi
- Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Arfa Moshiri
- Cancer Department, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Mycobacteriology and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran.,Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Kapourchali FR, Cresci GAM. Early-Life Gut Microbiome-The Importance of Maternal and Infant Factors in Its Establishment. Nutr Clin Pract 2020; 35:386-405. [PMID: 32329544 DOI: 10.1002/ncp.10490] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 12/17/2022] Open
Abstract
The early-life microbiome is gaining appreciation as a major influencer in human development and long-term health. Multiple factors are known to influence the initial colonization, development, and function of the neonatal gut microbiome. In addition, alterations in early-life gut microbial composition is associated with several chronic health conditions such as obesity, asthma, and allergies. In this review, we focus on both maternal and infant factors known to influence early-life gut colonization. Also reviewed is the important role of infant feeding, including evidence-based strategies for maternal and infant supplementation with the goal to protect and/or restore the infant gut microbiome.
Collapse
Affiliation(s)
| | - Gail A M Cresci
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Pediatric Gastroenterology, Cleveland Clinic, Cleveland, Ohio, USA.,Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Evaluation of the antitumor immune responses of probiotic Bifidobacterium bifidum in human papillomavirus-induced tumor model. Microb Pathog 2020; 145:104207. [PMID: 32325236 DOI: 10.1016/j.micpath.2020.104207] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/17/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023]
Abstract
As of present, a number of studies have shown anti-cancer effects of different strains of probiotics, but the precise host immunological mechanisms of these antitumor effects remain unclear. Thus, the aim of current study was to investigate the preventive-therapeutic effects of oral versus intravenous administration of probiotic Bifidobacterium bifidum on immune response and tumor growth of C57BL/6 mice bearing transplanted TC-1 cell of human papillomavirus (HPV)-related tumor, expressing HPV-16 E6/E7 oncogenes. Our major findings are that the intravenous or oral administration of Bifidobacterium bifidum effectively induces antitumor immune responses and inhibits tumor growth in mice. Compared to oral route only, intravenous administration of probiotic Bifidobacterium bifidum into tumor-bearing mice leads to the activation of tumor-specific IL-12 and IFN-γ, lymphocyte proliferation, CD8+ cytolytic responses that control and eradicate tumor growth. These observations meant intravenous administration of probiotics is an effective anticancer approach through modulation of the immune system. The potential of probiotic Bifidobacterium bifidum as an immunomodulator in the treatment of cervical cancer could be further explored.
Collapse
|
37
|
Ambrosini YM, Shin W, Min S, Kim HJ. Microphysiological Engineering of Immune Responses in Intestinal Inflammation. Immune Netw 2020; 20:e13. [PMID: 32395365 PMCID: PMC7192834 DOI: 10.4110/in.2020.20.e13] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial barrier in the gastrointestinal (GI) tract is a protective interface that endures constant exposure to the external environment while maintaining its close contact with the local immune system. Growing evidence has suggested that the intercellular crosstalk in the GI tract contributes to maintaining the homeostasis in coordination with the intestinal microbiome as well as the tissue-specific local immune elements. Thus, it is critical to map the complex crosstalks in the intestinal epithelial-microbiome-immune (EMI) axis to identify a pathological trigger in the development of intestinal inflammation, including inflammatory bowel disease. However, deciphering a specific contributor to the onset of pathophysiological cascades has been considerably hindered by the challenges in current in vivo and in vitro models. Here, we introduce various microphysiological engineering models of human immune responses in the EMI axis under the healthy conditions and gut inflammation. As a prospective model, we highlight how the human “gut inflammation-on-a-chip” can reconstitute the pathophysiological immune responses and contribute to understanding the independent role of inflammatory factors in the EMI axis on the initiation of immune responses under barrier dysfunction. We envision that the microengineered immune models can be useful to build a customizable patient's chip for the advance in precision medicine.
Collapse
Affiliation(s)
- Yoko M Ambrosini
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.,Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011 USA
| | - Woojung Shin
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Soyoun Min
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyun Jung Kim
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
38
|
Herman DR, Rhoades N, Mercado J, Argueta P, Lopez U, Flores GE. Dietary Habits of 2- to 9-Year-Old American Children Are Associated with Gut Microbiome Composition. J Acad Nutr Diet 2020; 120:517-534. [PMID: 31668602 PMCID: PMC7089824 DOI: 10.1016/j.jand.2019.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The human gut microbiome is recognized as an important determinant of human health, yet little is known about how dietary habits are related to the microbiome in post-weaned, pre-pubescent children. OBJECTIVE The goal of this work was to link quantitative dietary intake with microbiome features in a diverse population of children consuming a predominantly Western diet. DESIGN This was a cross-sectional study. PARTICIPANTS/SETTINGS English- or Spanish-speaking families with healthy children between the ages of 2 and 9 years were recruited from a community-based, early childhood learning center in suburban Los Angeles, California between June and September 2014. MAIN OUTCOME MEASURES Children included in the analyses (n=75) contributed three fecal samples and three quantitative 24-hour dietary recalls using the multiple-pass method with an average of 5.7 days between samples. Microbial communities of each fecal sample were characterized using Illumina sequencing of the 16S ribosomal RNA gene. Dietary recalls were analyzed using the Automated Self-Administered 24-Hour Recall Dietary Assessment Tool. STATISTICAL ANALYSIS PERFORMED Associations between dietary factors and microbiome features were assessed using the Kruskal-Wallis test, Spearman rank correlations, or permutational multivariate analysis of variance. For demographic and health-related variables, χ2 analyses were used to test for differences between age groups for categorical variables. RESULTS Our results show that age is correlated with three metrics of microbiome diversity (P<0.05) and is associated with both community structure (P=0.0488) and membership (P=0.0002). Several dietary food groups and nutrients were likewise associated with microbiome features. For example, consumption of non-whole-grain foods was associated with community structure (P=0.0089) and membership (P=0.0057), but not diversity (P>0.05). Likewise, the relative abundance of several bacterial taxa were linked to consumption of particular food groups and/or nutrients, as illustrated by the positive associations between total fruit (Pfalsediscovery rate<0.05) and fiber (Pfalsediscovery rate<0.05) consumption with the relative abundance of the Lachnospira genera. CONCLUSIONS This hypothesis-generating study demonstrates that the composition of the child gut microbiome remains dynamic beyond the age of 3 years and responds to dietary differences across individuals. In particular, non-whole-grain foods fortified with vitamins and minerals appear to be associated with the composition of the microbiome. Future interventional or model organism-based studies will be needed to test these associations between diet and microbiome composition.
Collapse
|
39
|
Krishnamoorthy S, Coetzee V, Kruger J, Potgieter H, Buys EM. Dysbiosis Signatures of Fecal Microbiota in South African Infants with Respiratory, Gastrointestinal, and Other Diseases. J Pediatr 2020; 218:106-113.e3. [PMID: 31952848 DOI: 10.1016/j.jpeds.2019.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the association between the fecal microbiota diversity of the infants with different disease conditions, and vitamin A supplementation, antibiotic, and deworming therapies. STUDY DESIGN In this case-control study, the bacterial community variations and the potential pathogens were identified through 16S ribosomal RNA gene-based amplicon sequencing and quantitative insights into microbial ecology pipeline in fecal samples. The participants were South African infants (mean age, 16 ± 8 months; 17 male and 17 female) hospitalized and diagnosed with gastrointestinal, respiratory, and other diseases. RESULTS The top phyla of the infants with respiratory disease were Proteobacteria, followed by Firmicutes, which were equally abundant in gastrointestinal disease. A significant difference in Shannon (alpha) diversity index (95% CI, 2.6-4.4; P = .008), among the microbiota of the fecal samples categorized by disease conditions, was observed. In beta diversity analysis of fecal microbiota, remarkable variations were found within the groups of deworming therapy (95% CI, 0.40-0.90; P = .033), disease conditions (95% CI, 0.44-0.86; P < .012) through unweighted and antibiotic therapy (95% CI, 0.20-0.75; P = .007), vitamin A intake (95% CI, 0.10-0.80; P < .033) and disease conditions (95% CI, 0.10-0.79; P = .006) through weighted UniFrac distances. The candidate pathogen associated with the disease groups were identified through analysis of the composition of microbiomes analysis. CONCLUSIONS This study provides preliminary evidence for the fecal microbiome-derived dysbiosis signature and pathobiome concept that may be observed in young children during illness.
Collapse
Affiliation(s)
| | - Vinet Coetzee
- Department of Genetics and Institute for Food, Nutrition, and Well-being, University of Pretoria, Hatfield, South Africa
| | - Johanita Kruger
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Hanneke Potgieter
- Department of Consumer and Food Sciences and Institute for Food, Nutrition, and Well-being, University of Pretoria, Hatfield, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
40
|
A Multi-Omics Perspective of Quantitative Trait Loci in Precision Medicine. Trends Genet 2020; 36:318-336. [PMID: 32294413 DOI: 10.1016/j.tig.2020.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Quantitative trait loci (QTL) analysis is an important approach to investigate the effects of genetic variants identified through an increasing number of large-scale, multidimensional 'omics data sets. In this 'big data' era, the research community has identified a significant number of molecular QTLs (molQTLs) and increased our understanding of their effects. Herein, we review multiple categories of molQTLs, including those associated with transcriptome, post-transcriptional regulation, epigenetics, proteomics, metabolomics, and the microbiome. We summarize approaches to identify molQTLs and to infer their causal effects. We further discuss the integrative analysis of molQTLs through a multi-omics perspective. Our review highlights future opportunities to better understand the functional significance of genetic variants and to utilize the discovery of molQTLs in precision medicine.
Collapse
|
41
|
Liu P, Deng X, Peng Y, Zhou F, Zuo Z. Effect of Neotype Rectal Mild Hypothermia Therapy on Intestinal Bacterial Translocation in Rats with Hypoxic-Ischemic Brain Damage. Med Sci Monit 2020; 26:e919680. [PMID: 32017761 PMCID: PMC7020737 DOI: 10.12659/msm.919680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Previous studies have shown that a neotype rectal cooling device can induce mild hypothermia (MH) in Sprague-Dawley rats with ischemic-hypoxic brain damage (HIBD) and inhibit cell apoptosis in the hippocampal CAl region, and does not cause damage to rectal tissues. The present study aimed to investigate the effect of rectal MH on bacterial translocation (BT) in Sprague-Dawley rats with HIBD. MATERIAL AND METHODS A total of 60 Sprague-Dawley rats were randomly divided into 4 groups: a control group (group C), a normothermia group (group NT), a cooling blanket group (group CB), and a rectal cooling group (group RC). Rats in group CB and group RC received MH using a cooling blanket and rectal cooling device after HIBD model establishment. Then, we measured diamine oxidase (DAO) and D-lactate level separately in groups NT, CB, and RC. Finally, the spleen, liver, and mesenteric lymph nodes were collected for bacterial culture, and rectal tissues were collected for H&E staining. RESULTS The therapeutic outcome was better in Sprague-Dawley rats receiving rectal MH without rectal injury compared to rats in group CB. Escherichia coli (E. coli) was found in MLNs in group RC. E. coli, Proteus vulgaris, Stenotrophomonas maltophilia, and Acinetobacter lwoffii were detected in the rats of groups CB and NT. At 12 h following rectal MH, DAO and D-lactate levels were lower than in group NT. CONCLUSIONS The neotype rectal MH cooling method could be a potential strategy to induce rapid, controllable hypothermia, thus reducing the possibility of inflammatory cell infiltration and BT incidence.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pediatric Intensive Care Unit (PICU), Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Xing Deng
- Department of Pediatric Intensive Care Unit (PICU), Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Ying Peng
- Department of Endoscopy Center, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Fang Zhou
- Department of Pediatric Intensive Care Unit (PICU), Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Zelan Zuo
- Department of Pediatric Intensive Care Unit (PICU), Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| |
Collapse
|
42
|
Tabatabaeizadeh SA, Fazeli M, Meshkat Z, Khodashenas E, Esmaeili H, Mazloum S, Ferns GA, Abdizadeh MF, Ghayour-Mobarhan M. The effects of high doses of vitamin D on the composition of the gut microbiome of adolescent girls. Clin Nutr ESPEN 2020; 35:103-108. [PMID: 31987101 DOI: 10.1016/j.clnesp.2019.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Animal studies suggest that vitamin D can change the gut microbiome. The primary aim of this study was to evaluate the effect of a high dose supplementation of vitamin D on the composition of the gut microbiome. METHODS After DNA extraction, TaqMan assays were used for the quantitation of selected microbiome in the feces of 50 adolescent girls before and after vitamin D supplementation. RESULTS The expression fold changes for Enterococcus, Bifidobacterium, Lactobacillus, Bacteroidetes and Firmicutes were; 1.05, 1.20, 0.76, 0.28 and 1.50 respectively. Bacteroidetes and Lactobacillus fell by 72% (P < 0.0001) and 24% (P = 0.006) respectively, whilst Firmicutes and Bifidobacterium were increased by 1.5 (P < 0.0001), 1.2 (P < 0.0001) fold after supplementation. CONCLUSION Our results suggested that a high dose supplementation of vitamin D alter the human gut microbiome composition. Future studies are required for a better understanding of the mechanisms by which vitamin D affects the gut microbiome.
Collapse
Affiliation(s)
- Seyed-Amir Tabatabaeizadeh
- Nutrition and Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mostafa Fazeli
- Genetic and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ezzat Khodashenas
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaeili
- Departments of Biostatistics and Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedreza Mazloum
- Evidence Based Care Research Center, Faculty Member of Nursing and Midwifery School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Mojtaba Fattahi Abdizadeh
- Department of Microbiology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
43
|
Feng P, Xiao X, Zhou T, Li X. Effects of the Bio-accumulative Environmental Pollutants on the Gut Microbiota. GUT REMEDIATION OF ENVIRONMENTAL POLLUTANTS 2020:109-143. [DOI: 10.1007/978-981-15-4759-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
44
|
Toghi M, Bitarafan S, Kasmaei HD, Ghafouri-Fard S. Bifidobacteria: A probable missing puzzle piece in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2019; 36:101378. [PMID: 31487552 DOI: 10.1016/j.msard.2019.101378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/29/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder in which the immunopathogenesis is not fully understood. In the recent years, the role of gut microbiome in the pathogenesis of this disorder has been highlighted. Bifidobacteria as a component of gut microbiome might also be involved in MS pathogenesis. Being emerged in early days after birth, bifidobacteria have a prominent role in immune system maturation and function. Some factors like mode of delivery, breast feeding, mother's blood group and her secretory state and also environmental factors could influence its level in the early infancy, which may remain throughout lifetime. In this review, we discussed possible immunopathogenic link between the bifidobacteria and MS.
Collapse
Affiliation(s)
- Mehdi Toghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Bitarafan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Delavar Kasmaei
- Department of Neurology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Milanović V, Osimani A, Cardinali F, Litta-Mulondo A, Vignaroli C, Citterio B, Mangiaterra G, Aquilanti L, Garofalo C, Biavasco F, Cocolin L, Ferrocino I, Di Cagno R, Turroni S, Lazzi C, Pellegrini N, Clementi F. Erythromycin-resistant lactic acid bacteria in the healthy gut of vegans, ovo-lacto vegetarians and omnivores. PLoS One 2019; 14:e0220549. [PMID: 31374082 PMCID: PMC6677300 DOI: 10.1371/journal.pone.0220549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 01/01/2023] Open
Abstract
Diet can affect the diversity and composition of gut microbiota. Usage of antibiotics in food production and in human or veterinary medicine has resulted in the emergence of commensal antibiotic resistant bacteria in the human gut. The incidence of erythromycin-resistant lactic acid bacteria (LAB) in the feces of healthy vegans, ovo-lacto vegetarians and omnivores was analyzed. Overall, 155 LAB were isolated and characterized for their phenotypic and genotypic resistance to erythromycin. The isolates belonged to 11 different species within the Enterococcus and Streptococcus genera. Enterococcus faecium was the dominant species in isolates from all the dietary categories. Only 97 out of 155 isolates were resistant to erythromycin after Minimum Inhibitory Concentration (MIC) determination; among them, 19 isolates (7 from vegans, 4 from ovo-lacto vegetarians and 8 from omnivores) carried the erm(B) gene. The copresence of erm(B) and erm(A) genes was only observed in Enterococcus avium from omnivores. Moreover, the transferability of erythromycin resistance genes using multidrug-resistant (MDR) cultures selected from the three groups was assessed, and four out of six isolates were able to transfer the erm(B) gene. Overall, isolates obtained from the omnivore samples showed resistance to a greater number of antibiotics and carried more tested antibiotic resistance genes compared to the isolates from ovo-lacto vegetarians and vegans. In conclusion, our results show that diet does not significantly affect the occurrence of erythromycin-resistant bacteria and that commensal strains may act as a reservoir of antibiotic resistance (AR) genes and as a source of antibiotic resistance spreading.
Collapse
Affiliation(s)
- Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Alice Litta-Mulondo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Carla Vignaroli
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, Biotechnology Section, University of Urbino ‘Carlo Bo’, Urbino, Italy
| | - Gianmarco Mangiaterra
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
- * E-mail:
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Biavasco
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science (DISAFA), University of Turin, Grugliasco, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Camilla Lazzi
- Department of Food Science, University of Parma, Parma, Italy
| | | | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
46
|
Fröhlich E, Wahl R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol Metab 2019; 30:479-490. [PMID: 31257166 DOI: 10.1016/j.tem.2019.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
The microbiota has been identified as an important factor in health and in a variety of diseases. An altered microbiota composition increases the prevalence of Hashimoto's thyroiditis (HT) and Graves' disease (GD). Microbes influence thyroid hormone levels by regulating iodine uptake, degradation, and enterohepatic cycling. In addition, there is a pronounced influence of minerals on interactions between host and microbiota, particularly selenium, iron, and zinc. In manifest thyroid disorders, the microbiota may affect L-thyroxine uptake and influence the action of propylthiouracil (PTU). Although it is relatively well documented that thyroid disorders are linked to the composition of the microbiota, the role of specific genera and the potential use of therapies targeting the microbiota are less clear.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany; Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Richard Wahl
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
47
|
Einarsson GG, Zhao J, LiPuma JJ, Downey DG, Tunney MM, Elborn JS. Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Res 2019; 5:00128-2017. [PMID: 31304176 PMCID: PMC6612604 DOI: 10.1183/23120541.00128-2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/29/2019] [Indexed: 01/15/2023] Open
Abstract
Ecological relationships between bacteria are important when considering variation in bacterial communities in humans, with such variation playing an important role in both health and disease. Using high-throughput sequence data of the 16S rRNA marker-gene, we analysed the prevalence of taxa in the airways of a number of health- and disease-associated cohorts and determined the main drivers of community variance and bacterial co-occurrence. A number of facultative and obligately anaerobic bacterial taxa are commonly associated with the upper airways, forming the main “core” microbiota, e.g. Streptococcus spp., Veillonella spp., Prevotella spp., Granulicatella spp. and Fusobacterium spp. Opportunistic pathogenic bacteria associated with chronic airways disease, such as Pseudomonas spp. (Pseudomonas aeruginosa), Burkholderia spp. (Burkholderia cepacia complex) and Haemophilus spp. (Haemophilus influenzae) demonstrated poor correlation with other members of their respective communities (ρ<0.5; p>0.005), indicating probable independent acquisition and colonisation. Furthermore, our findings suggest that intra-genus variation between health and disease may affect community assemblies. Improved understanding of how bacteria assemble in time and space during health and disease will enable the future development of tailored treatment according to the patient's own signature microbiota, potentially providing benefit to patients suffering from airway diseases characterised by chronic infection. Within the airways, “core” community structures are formed between microbial taxa in both health and disease, with a number of common opportunistic pathogens not being members of such core communitieshttp://bit.ly/2Kau3ni
Collapse
Affiliation(s)
- Gisli G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These authors contributed equally
| | - Jiangchao Zhao
- Dept of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.,Dept of Animal Science, University of Arkansas, Fayetteville, AR, USA
| | - John J LiPuma
- Dept of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.,Dept of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Damian G Downey
- Halo Research Group, Queen's University Belfast, Belfast, UK.,Northern Ireland Regional Adult Cystic Fibrosis Centre, Belfast City Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Michael M Tunney
- Halo Research Group, Queen's University Belfast, Belfast, UK.,School of Pharmacy, Queen's University Belfast, Belfast, UK.,These authors contributed equally
| | - J Stuart Elborn
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,These authors contributed equally
| |
Collapse
|
48
|
Wang Q, Fu W, Guo Y, Tang Y, Du H, Wang M, Liu Z, Li Q, An L, Tian J, Li M, Wu Z. Drinking Warm Water Improves Growth Performance and Optimizes the Gut Microbiota in Early Postweaning Rabbits during Winter. Animals (Basel) 2019; 9:E346. [PMID: 31212853 PMCID: PMC6616395 DOI: 10.3390/ani9060346] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that cold exposure changes the composition of the gut microbiota and reduces intestinal immunity in early postweaning livestock. However, little is known about the effects of drinking warm water (WW) on gut microbiota during winter. In this study, we investigated the effects of drinking WW in winter on the growth performance and gut microbiota structure of rabbits raised in poorly insulated housing from the early postweaning period (day 46) to the subadult period (day 82). The average daily gain and feed conversion ratio in rabbits drinking WW were significantly improved compared to those of the rabbits drinking cold water (CW) during 47-58 days. In addition, rabbits drinking WW had a significantly decreased the risk of diarrhea during 71-82 days. 16S rRNA sequence analysis revealed that the alpha diversity of the cecal microbiota was not significantly different between the WW and CW groups, but significantly increased with age. The relative abundance of cecal microorganisms, such as Coprococcus spp. was considerably increased at day 70 in the group drinking WW. Correlation analysis indicated that Coprococcus spp. was negatively associated with pro-inflammatory factors. In conclusion, our results suggest that drinking WW has a positive effect on growth performance and gut microbiota in rabbits during the early postweaning stage in winter.
Collapse
Affiliation(s)
- Qiangjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Wei Fu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yao Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yuhan Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- ZhaoTong Technology Promotion Workstation of Animal Husbandry and Veterinary Medicine, ZhaoTong 657000, China.
| | - Haoxuan Du
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Meizhi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Zhongying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lei An
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Mingyong Li
- National Rabbit Industry Technology System Qingdao Comprehensive Experimental Station, Qingdao 266431, China.
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
49
|
Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, Psaroulaki A, Tsatsakis A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol Lett 2019; 312:72-97. [PMID: 31034867 DOI: 10.1016/j.toxlet.2019.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Human populations are chronically exposed to mixtures of toxic chemicals. Predicting the health effects of these mixtures require a large amount of information on the mode of action of their components. Xenobiotic metabolism by bacteria inhabiting the gastrointestinal tract has a major influence on human health. Our review aims to explore the literature for studies looking to characterize the different modes of action and outcomes of major chemical pollutants, and some components of cosmetics and food additives, on gut microbial communities in order to facilitate an estimation of their potential mixture effects. We identified good evidence that exposure to heavy metals, pesticides, nanoparticles, polycyclic aromatic hydrocarbons, dioxins, furans, polychlorinated biphenyls, and non-caloric artificial sweeteners affect the gut microbiome and which is associated with the development of metabolic, malignant, inflammatory, or immune diseases. Answering the question 'Who is there?' is not sufficient to define the mode of action of a toxicant in predictive modeling of mixture effects. Therefore, we recommend that new studies focus to simulate real-life exposure to diverse chemicals (toxicants, cosmetic/food additives), including as mixtures, and which combine metagenomics, metatranscriptomics and metabolomic analytical methods achieving in that way a comprehensive evaluation of effects on human health.
Collapse
Affiliation(s)
- John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Constantine I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Boris N Izotov
- Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
50
|
Yadak R, Breur M, Bugiani M. Gastrointestinal Dysmotility in MNGIE: from thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J Rare Dis 2019; 14:33. [PMID: 30736844 PMCID: PMC6368792 DOI: 10.1186/s13023-019-1016-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background MNGIE is a rare and fatal disease in which absence of the enzyme thymidine phosphorylase induces systemic accumulation of thymidine and deoxyuridine and secondary mitochondrial DNA alterations. Gastrointestinal (GI) symptoms are frequently reported in MNGIE patients, however, they are not resolved with the current treatment interventions. Recently, our understanding of the GI pathology has increased, which rationalizes the pursuit of more targeted therapeutic strategies. In particular, interstitial cells of Cajal (ICC) play key roles in GI physiology and are involved in the pathogenesis of the GI dysmotility. However, understanding of the triggers of ICC deficits in MNGIE is lacking. Herein, we review the current knowledge about the pathology of GI dysmotility in MNGIE, discuss potential mechanisms in relation to ICC loss/dysfunction, remark on the limited contribution of the current treatments, and propose intervention strategies to overcome ICC deficits. Finally, we address the advances and new research avenues offered by organoids and tissue engineering technologies, and propose schemes to implement to further our understanding of the GI pathology and utility in regenerative and personalized medicine in MNGIE. Conclusion Interstitial cells of Cajal play key roles in the physiology of the gastrointestinal motility. Evaluation of their status in the GI dysmotility related to MNGIE would be valuable for diagnosis of MNGIE. Understanding the underlying pathological and molecular mechanisms affecting ICC is an asset for the development of targeted prevention and treatment strategies for the GI dysmotility related to MNGIE.
Collapse
Affiliation(s)
- Rana Yadak
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Marjolein Breur
- Department of Child Neurology, VU University Medical center, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|