1
|
Liu H, Gao P, Jia B, Lu N, Zhu B, Zhang F. IBD-Associated Atg16L1T300A Polymorphism Regulates Commensal Microbiota of the Intestine. Front Immunol 2022; 12:772189. [PMID: 35154071 PMCID: PMC8829142 DOI: 10.3389/fimmu.2021.772189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The development of inflammatory bowel disease (IBD) is driven by the interaction among host genetics, microbiota, and the immune system of the entire digestive tract. Atg16L1T300A polymorphism is a genetic factor that confers increased risk for the pathogenesis of Crohn's disease. However, the exact contributions of Atg16L1T300A to intestinal mucosal homeostasis are not well understood. Here we show that Atg16L1T300A polymorphism impacts commensal bacterial flora in the intestine under a steady state. Analysis of intestinal bacteria from Atg16L1T300A/T300A mice showed that they harbored an altered microbiota in both the terminal ileum and colon compared to cohoused WT mice. Interestingly, Atg16L1T300A/T300A mice harbored a significant increase in the abundance of Tyzzerella, Mucispirillum, Ruminococcaceae, and Cyanobacteria which were known associated with IBD. Moreover, Akkermansia, a bacterium that is mucin-associated, was reduced greatly in Atg16L1T300A/T300A mice. Further analysis indicated that goblet cells of Atg16L1T300A/T300A mice had diminished mucin secretion that resulted from defective autophagy. Finally, Atg16L1T300A/T300A mice developed more severe inflammation in the DSS colitis model than in WT mice. These results indicate that the altered microbiota in Atg16L1T300A/T300A mice might be an important factor that contributed to the risk of Atg16L1T300A carriers to Crohn's disease and supports a multi-hit disease model involving specific gene-microbe interactions.
Collapse
Affiliation(s)
- Hongtao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoqian Jia
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Na Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,Department of Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive Escherichia coli molecular markers is so challenging? World J Biol Chem 2020; 11:1-13. [PMID: 32405343 PMCID: PMC7205867 DOI: 10.4331/wjbc.v11.i1.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains have been extensively related to Crohn’s disease (CD) etiopathogenesis. Higher AIEC prevalence in CD patients versus controls has been reported, and its mechanisms of pathogenicity have been linked to CD physiopathology. In CD, the therapeutic armamentarium remains limited and non-curative; hence, the necessity to better understand AIEC as a putative instigator or propagator of the disease is certain. Nonetheless, AIEC identification is currently challenging because it relies on phenotypic assays based on infected cell cultures which are highly time-consuming, laborious and non-standardizable. To address this issue, AIEC molecular mechanisms and virulence genes have been studied; however, a specific and widely distributed genetic AIEC marker is still missing. The finding of molecular tools to easily identify AIEC could be useful in the identification of AIEC carriers who could profit from personalized treatment. Also, it would significantly promote AIEC epidemiological studies. Here, we reviewed the existing data regarding AIEC genetics and presented those molecular markers that could assist with AIEC identification. Finally, we highlighted the problems behind the discovery of exclusive AIEC biomarkers and proposed strategies to facilitate the search of AIEC signature sequences.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| | - Margarita Martinez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| |
Collapse
|
3
|
Teimoori-Toolabi L, Samadpoor S, Mehrtash A, Ghadir M, Vahedi H. Among autophagy genes, ATG16L1 but not IRGM is associated with Crohn's disease in Iranians. Gene 2018; 675:176-184. [PMID: 29960072 DOI: 10.1016/j.gene.2018.06.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The prevalence of inflammatory bowel diseases is uprising in countries like Iran. Genetic predisposing elements play prominent role in the pathogenesis of Crohn's disease. In this study we studied the role of autophagy genes like IRGM (Immunity related GTPase M) and ATG16L1 (Autophagy related 16 like 1) in the pathogenesis of Crohn's Disease in Iranian patients. METHODS One hundred thirty-eight patients and 99 normal controls were recruited in this study. Polymorphisms in -1644 and -308 upstream of IRGM gene were studied by PCR-sequencing and 20 kb CNVdel/insertion was studied by specific PCR. Rs10065171, rs4958847 in IRGM gene and rs2241880 in ATG16L1 were studied by Taqman genotyping assays. RESULTS None of the so-called predisposing alleles of IRGM gene predispose Iranians to Crohn's disease while the prevalence of some of them like CNV deletion was higher in normal controls. Surprisingly all the so-called predisposing alleles in IRGM were linked to each other (especially rs4958847 with rs10065172 and polymorphisms in -308 region with rs4958847). Patients harboring A allele in rs4958847 site showed higher ratio of fibrostenotic type of disease while in patients with C/T genotype in rs4958847, colonic involvement was seen more frequently. G allele in ATG16L1 was associated with Crohn's disease though it was not associated with any phenotypic manifestation. CONCLUSION In our study the association of ATG16L1 to Crohn's disease in Iranian patients was confirmed while it was shown that the studied polymorphisms in IRGM was not associated with Crohn's disease. Therefore in order to have a better picture about the genetics of Crohn's disease in Iranian patients, it is recommended to study other clinically effective polymorphisms in IRGM and ATG16L1 in addition to other genes which are responsible for the process of autophagy.
Collapse
Affiliation(s)
- Ladan Teimoori-Toolabi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Sanaz Samadpoor
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdis Ghadir
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Homayoon Vahedi
- Digestive Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Khan S, Imran A, Malik A, Chaudhary AA, Rub A, Jan AT, Syed JB, Rolfo C. Bacterial imbalance and gut pathologies: Association and contribution of E. coli in inflammatory bowel disease. Crit Rev Clin Lab Sci 2018; 56:1-17. [DOI: 10.1080/10408363.2018.1517144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, India
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Pharmacology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdur Rub
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jakeera Begum Syed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- College of Medicine and Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
5
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:1720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
6
|
Huang FC. Vitamin D differentially regulates Salmonella-induced intestine epithelial autophagy and interleukin-1β expression. World J Gastroenterol 2016; 22:10353-10363. [PMID: 28058015 PMCID: PMC5175247 DOI: 10.3748/wjg.v22.i47.10353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of active vitamin D3 on autophagy and interleukin (IL)-1β expression in Salmonella-infected intestinal epithelial cells (IECs). METHODS Caco-2 cells, NOD2 siRNA-, Atg16L1 siRNA- or vitamin D receptor (VDR) siRNA-transfected Caco-2 cells were pretreated with 1,25-dihydroxyvitamin D3 (1,25D3), and then infected by wild-type S. typhimurium strain SL1344. The conversion of LC3-I to LC3-II was detected by Western blot analysis and LC3+ autophagosome was analyzed by immunofluorescence. Caco-2 cells or VDR siRNA-transfected cells were pretreated with 1,25D3, and then infected by SL1344. Membrane protein and total RNA were analyzed by Western blot and RT-PCR for VDR and Atg16L1 protein and mRNA expression, respectively. Atg16L1 siRNA-transfected Caco-2 cells were pretreated by 1,25D3 and then infected with SL1344. Total RNA was analyzed by RT-PCR for IL-1β mRNA expression. RESULTS The active form of vitamin D, 1,25D3, showed enhanced VDR-mediated Atg16L1 mRNA expression, membranous Atg16L1 protein expression leading to enhanced autophagic LC3II protein expression and LC3 punctae in Salmonella-infected Caco-2 cells which was counteracted by Atg16L1 and VDR siRNA, but Atg16L1 mediated suppression of IL-1β expression. Thus, active vitamin D may enhance autophagy but suppress inflammatory IL-1β expression in Salmonella-infected IECs. CONCLUSION Active vitamin D might enhance autophagic clearance of Salmonella infection, while modulation of inflammatory responses prevents the host from detrimental effects of overwhelming inflammation.
Collapse
|
7
|
Huang FC. De Novo sphingolipid synthesis is essential for Salmonella-induced autophagy and human beta-defensin 2 expression in intestinal epithelial cells. Gut Pathog 2016; 8:5. [PMID: 26893616 PMCID: PMC4758167 DOI: 10.1186/s13099-016-0088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Sphingolipids are important for innate immune response to eliminate infected pathogens and involved in autophagy. On the other hand, nucleotide-binding oligomerization domain-containing protein 2 (NOD2) served as an intracellular pattern recognition receptor to enhance host defense by inducing autophagy and the production of antimicrobial peptides, such as human beta-defensin-2 (hBD-2). However, the role of sphingolipids in Salmonella-induced autophagy and hBD-2 response in intestinal epithelial cells has not been previously elucidated. METHODS Salmonella typhimurium wild-type strain SL1344 was used to infect SW480, an intestinal epithelial cell. hBD-2 and interleukin-8 (IL-8) mRNA expressions were assessed in SW480 cells using RT-PCR, and intracellular signaling pathways and autophagy protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. RESULTS We demonstrated that inhibition of de novo sphingolipid synthesis repressed the membrane recruitment of NOD2 and autophagy-related protein 16-like 1 (Atg16L1), suppressed Salmonella-induced autophagic protein LC3-II expression, and reduced NOD2-mediated hBD-2 response in Salmonella-infected SW480 cells. Contrasting to the utilization of membrane cholesterol on maintenance of Salmonella-containing vacuoles and anti-inflammation by Salmonella, sphingolipids act on epithelial defense against the invasive pathogen. CONCLUSIONS Our results offer mechanistic insights on the role of de novo sphingolipid synthesis in the innate immunity of intestinal epithelial cells to Salmonella infection. The pharmaceuticals enhancing or diet enriched with sphingolipids may induce the dual anti-bacterial mechanisms. The role of de novo sphingolipid synthesis on inflammatory bowel disease is deserved to be further investigated.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-pei Road, Niao-sung District, Kaohsiung, Taiwan
| |
Collapse
|
8
|
The IbeA invasin of adherent-invasive Escherichia coli mediates interaction with intestinal epithelia and macrophages. Infect Immun 2015; 83:1904-18. [PMID: 25712929 DOI: 10.1128/iai.03003-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/15/2015] [Indexed: 12/22/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) pathogroup isolates are a group of isolates from the intestinal mucosa of Crohn's disease patients that can invade intestinal epithelial cells (IECs) or macrophages and survive and/or replicate within. We have identified the ibeA gene in the genome of AIEC strain NRG857c and report the contribution of IbeA to the interaction of AIEC with IECs and macrophages and colonization of the mouse intestine. An ibeA deletion mutant strain (NRG857cΔibeA) was constructed, and the in vitro effect on AIEC adhesion and invasion of nonpolarized and polarized Caco-2 cells, the adhesion and transcytosis of M-like cells, the intracellular survival in THP-1 macrophages, and the contribution to intestinal colonization of the CD-1 murine model of infection were evaluated. A significant reduction in invasion was observed with the ibeA mutant in Caco-2 and M-like cells, whereas adhesion was not affected. Complementation of the mutant reestablished Caco-2 invasive phenotype to wild-type levels. Reduction in invasion did not significantly affect transcytosis through M-like cells at early time points. The absence of ibeA significantly affected AIEC intramacrophage survival up to 24 h postinfection. No significant changes associated with IbeA were found in AIEC colonization across the murine gastrointestinal tract, but a slight reduction of gamma interferon was observed in the ceca of mice infected with the ibeA mutant. In addition, a decrease in the pathology scores was observed in the ilea and ceca of mice infected with the ibeA mutant. Our data support the function of IbeA in the AIEC invasion process, macrophage survival, and inflammatory response in the murine intestine.
Collapse
|
9
|
Histiocytic typhlocolitis in two colony Beagle dogs. ACTA ACUST UNITED AC 2015; 67:219-21. [DOI: 10.1016/j.etp.2014.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
|
10
|
Huang FC. Differential regulation of interleukin-8 and human beta-defensin 2 in Pseudomonas aeruginosa-infected intestinal epithelial cells. BMC Microbiol 2014; 14:275. [PMID: 25433669 PMCID: PMC4261737 DOI: 10.1186/s12866-014-0275-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The human opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa) carries the highest case fatality rate of all gram-negative infections. Unfortunately, antimicrobial therapy has not been demonstrated to improve clinical outcome and the emergence of multidrug resistant P. aeruginosa has become a major concern in the hospital setting. Fever and diarrhea are the two most common initial symptoms in P. aeruginosa sepsis in previously healthy infants and children. This implies that intestinal epithelial cells in first contact with the pathogen may play an important role in innate immunity to P. aeruginosa infection. Human beta-defensins-2 (hBD-2) and interleukin-8 (IL-8) are crucial for host defense at mucosa but IL-8 may give rise to characteristic pathology of colitis. RESULTS Pseudomonas aeruginosa strain PAO1 was used to infect SW480, an intestinal epithelial cell. IL-8 and hBD-2 mRNA expression and protein secretion were then assessed in SW480 cells using RT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Intracellular signaling pathways and nucleotide-binding oligomerization domain (NOD) 1 protein expression were analyzed by Western blot in SW480 cells in the presence or absence of inhibitors or transfected with siRNA. We demonstrate that prolonged infection by P. aeruginosa results in suppression of IL-8 but enhancement of hBD-2, either protein secretion and mRNA expression, in SW480 cells. Inhibitors of ERK suppressed but inhibitor of PI3K enhanced P. aeruginosa-induced IL-8 mRNA expression in SW480 cells while both signaling had no effect on P. aeruginosa-induced hBD-2 expression in SW480 cells. On the other hand, NOD 1 was illustrated to get involved in P. aeruginosa-induced hBD-2 mRNA expression and protein production in SW480 cells. CONCLUSIONS The P. aeruginosa-induced antimicrobial peptide in IECs continuously protect the host against prolonged infection, while modulation of proinflammatory responses prevents the host from the detrimental effects of overwhelming inflammation. Thus, P. aeruginosa-induced innate immunity in IECs represents a host protective mechanism, which may provide new insight into the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 123, Ta-pei Road, Niao-sung District, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Huang FC. The critical role of membrane cholesterol in salmonella-induced autophagy in intestinal epithelial cells. Int J Mol Sci 2014; 15:12558-12572. [PMID: 25029544 PMCID: PMC4139860 DOI: 10.3390/ijms150712558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 12/17/2022] Open
Abstract
It was previously observed that plasma membrane cholesterol plays a critical role in the Salmonella-induced phosphatidylinositol 3-kinase-dependent (PI3K)-dependent anti-inflammatory response in intestinal epithelial cells (IECs). The PI3K/Akt pathway is associated with autophagy which has emerged as a critical mechanism of host defense against several intracellular bacterial pathogens. Plasma membrane contributes directly to the formation of early Atg16L1-positive autophagosome precursors. Therefore, this study aimed to investigate the role of plasma membrane cholesterol on the Salmonella-induced autophagy in IECs. By using methyl-beta-cyclodextrin (MBCD), it was demonstrated that disruption of membrane cholesterol by MBCD enhanced NOD2 and Atg16L1 proteins expression in membrane, and autophagic LC3II proteins expression and LC3 punctae in Salmonella-infected Caco-2 cells, which was counteracted by Atg16L1 siRNA. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) siRNA enhanced the Salmonella-induced activation of Akt in Caco-2 cells. However, inhibitors of Akt or extracellular signal-regulated kinases (ERK) had no significant effect on Salmonella-induced autophagy Beclin 1 or LC3 proteins expression. In conclusion, our study suggests that cholesterol accumulation in the plasma membrane at the entry site of Salmonella results in the formation of Salmonella-containing vacuole (SCV) and decreased autophagy. Our results offer mechanistic insights on the critical role of membrane cholesterol in the pathogenesis of Salmonella infection in intestinal epithelial cells and the therapeutic potential of its antagonists.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
12
|
Wang C, Yuan X, Ma E, Mendonsa GR, Plantinga TS, Kiemeney LA, Vermeulen SH, Mysorekar IU. NOD2 is dispensable for ATG16L1 deficiency-mediated resistance to urinary tract infection. Autophagy 2013; 10:331-8. [PMID: 24384785 DOI: 10.4161/auto.27196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
NOD2 (nucleotide-binding oligomerization domain containing 2) functions as a pathogen sensor and is involved in development of Crohn disease, a form of inflammatory bowel disease. NOD2 functions in concert with the autophagy protein ATG16L1, which is also implicated in Crohn disease. Recently, we identified a novel protective role of ATG16L1 deficiency in uropathogenic Escherichia coli-induced urinary tract infections (UTIs), which are common infectious diseases in humans. Given the known roles of NOD2 in recruiting ATG16L1 to the bacterial entry site, autophagy induction, and Crohn disease, we hypothesized that NOD2 may also play an important role in UTI pathogenesis. Instead, we found evidence that NOD2 is dispensable in the pathogenesis of UTIs in mice and humans. First, loss of Nod2 did not affect the clearance of bacteriuria and the recruitment of innate immune cells to the bladder. Second, we showed that, although nod2(-/-) mice display increased kidney abscesses in the upper urinary tract, there were no increased bacterial loads or persistence in this niche. Third, although a previous study indicates that loss of Nod2 reverses the protection from intestinal infection afforded by loss of ATG16L1 in mice, we found NOD2 deficiency did not reverse the ATG16L1-deficiency-induced protection from UTI. Finally, a population-based study of a cohort of 1819 patients did not reveal any association of NOD2 polymorphisms with UTI incidence. Together, our data indicated that NOD2 is dispensable for UTI pathogenesis in both mice and humans and does not contribute to ATG16L1-deficiency-induced resistance to UTI in mice.
Collapse
Affiliation(s)
- Caihong Wang
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Xuejun Yuan
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Emily Ma
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Graziella R Mendonsa
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA
| | - Theo S Plantinga
- Department of Medicine; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Lambertus A Kiemeney
- Department for Health Evidence/Department of Urology; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Sita H Vermeulen
- Department for Health Evidence/Department of Human Genetics; Radboud University Nijmegen Medical Centre; Nijmegen, Netherlands
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology; Washington University School of Medicine; St Louis, MO USA; Department of Pathology and Immunology; Washington University School of Medicine; St Louis, MO USA
| |
Collapse
|
13
|
Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 2012; 9:20. [PMID: 22697169 PMCID: PMC3441384 DOI: 10.1186/1743-8977-9-20] [Citation(s) in RCA: 562] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/14/2012] [Indexed: 12/16/2022] Open
Abstract
The study of the potential risks associated with the manufacture, use, and disposal of nanoscale materials, and their mechanisms of toxicity, is important for the continued advancement of nanotechnology. Currently, the most widely accepted paradigms of nanomaterial toxicity are oxidative stress and inflammation, but the underlying mechanisms are poorly defined. This review will highlight the significance of autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Most endocytic routes of nanomaterial cell uptake converge upon the lysosome, making the lysosomal compartment the most common intracellular site of nanoparticle sequestration and degradation. In addition to the endo-lysosomal pathway, recent evidence suggests that some nanomaterials can also induce autophagy. Among the many physiological functions, the lysosome, by way of the autophagy (macroautophagy) pathway, degrades intracellular pathogens, and damaged organelles and proteins. Thus, autophagy induction by nanoparticles may be an attempt to degrade what is perceived by the cell as foreign or aberrant. While the autophagy and endo-lysosomal pathways have the potential to influence the disposition of nanomaterials, there is also a growing body of literature suggesting that biopersistent nanomaterials can, in turn, negatively impact these pathways. Indeed, there is ample evidence that biopersistent nanomaterials can cause autophagy and lysosomal dysfunctions resulting in toxicological consequences.
Collapse
Affiliation(s)
- Stephan T Stern
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc, NCI-Frederick, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
14
|
Abstract
Inflammatory bowel diseases (IBDs) are chronic disabling diseases with significant morbidity. A deregulated immune response towards the intestinal microbiota is thought to play an important role in the pathogenesis of IBD, and thus biological therapies targeting key molecules such as cytokines have been designed. Several anti-TNF-α agents are currently being used to treat Crohn's disease and ulcerative colitis. Although these molecules dramatically improved the treatment of patients, side effects and the development of antidrug antibodies limits their application. There is thus an urgent need for alternative approaches to decrease inflammation and limit immunogenicity. Small neutralizing molecules, active immunization, gene silencing, selective transcription inhibitors and delivery of agents through the oral route are some of the currently developed strategies to meet these needs. In parallel, neutralizing antibodies targeting other pathways of the immune system have been developed and tested. Antibodies targeting IL-12/IL-23 pathways, and proinflammatory cytokines such as IFN-γ, IL-17A, IL-2 and IL-6 often showed an initial promising result, but for none of these agents efficacy has unequivocally been established. Administration of the regulatory cytokines IL-10 and IL-11 also failed to induce reproducible clinical effects. This article focuses on the anti-TNF therapies and the current challenges with monoclonal antibody therapies, discusses the innovative strategies targeting cytokine pathways to decrease inflammation in the bowel, and summarizes the recently developed agents neutralizing proinflammatory cytokines.
Collapse
Affiliation(s)
- Clémentine Perrier
- Division of Gastroenterology, University Hospital, Catholic University Leuven, Leuven, Belgium
| | | |
Collapse
|
15
|
Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells. PLoS One 2012; 7:e31231. [PMID: 22363587 PMCID: PMC3281932 DOI: 10.1371/journal.pone.0031231] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/04/2012] [Indexed: 01/07/2023] Open
Abstract
Introduction Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα), both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB), which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells. Methods We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine. Results TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability. Conclusions Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells susceptible to mitochondrial damage and cytotoxicity. Repletion of PHB may represent a therapeutic approach to combat oxidant and cytokine-induced mitochondrial damage in diseases such as inflammatory bowel disease.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review summarizes the recent developments in support of the immunodeficiency model of Crohn's disease. RECENT FINDINGS The demonstration of impaired acute inflammation in Crohn's disease provides a novel mechanism for its pathogenesis, with diminished macrophage cytokine production and neutrophil recruitment leading to reduced bacterial clearance. The innate immune response may be further overwhelmed by other factors. The mucosal barrier in Crohn's patients is disrupted, with abnormal ultrastructure as well as antibacterial defensin deficiency. Specific bacterial agents may contribute and one promising candidate, adherent-invasive Escherichia coli, has recently been described. An interaction between Nod2 and the autophagy system has been elucidated, with direct consequences for bacterial clearance, and the most recent genome-wide association study meta-analysis has extended the number of Crohn's disease susceptibility loci to 71. The spectrum of congenital immunodeficiency disorders recognized to develop Crohn's-like inflammatory bowel disease is also expanding. Conversely, no specific immunodeficiency has so far been observed in ulcerative colitis, in which the defect appears to be failure of inflammation termination and resolution. SUMMARY Recent advances continue to highlight defects in innate immunity in Crohn's patients. Similar abnormalities may extend to other granulomatous disorders, but not diseases such as ulcerative colitis.
Collapse
|