2
|
Garraud O, Tariket S, Sut C, Haddad A, Aloui C, Chakroun T, Laradi S, Cognasse F. Transfusion as an Inflammation Hit: Knowns and Unknowns. Front Immunol 2016; 7:534. [PMID: 27965664 PMCID: PMC5126107 DOI: 10.3389/fimmu.2016.00534] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/11/2016] [Indexed: 01/15/2023] Open
Abstract
Transfusion of blood cell components is frequent in the therapeutic arsenal; it is globally safe or even very safe. At present, residual clinical manifestations are principally inflammatory in nature. If some rare clinical hazards manifest as acute inflammation symptoms of various origin, most of them linked with conflicting and undesirable biological material accompanying the therapeutic component (infectious pathogen, pathogenic antibody, unwanted antigen, or allergen), the general feature is subtler and less visible, and essentially consists of alloimmunization or febrile non-hemolytic transfusion reaction. The present essay aims to present updates in hematology and immunology that help understand how, when, and why subclinical inflammation underlies alloimmunization and circumstances characteristic of red blood cells and – even more frequently – platelets that contribute inflammatory mediators. Modern transfusion medicine makes sustained efforts to limit such inflammatory hazards; efforts can be successful only if one has a clear view of each element’s role.
Collapse
Affiliation(s)
- Olivier Garraud
- Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; Institut National de la Transfusion Sanguine, Paris, France
| | - S Tariket
- Faculty of Medicine of Saint-Etienne, University of Lyon , Saint-Etienne , France
| | - C Sut
- Faculty of Medicine of Saint-Etienne, University of Lyon , Saint-Etienne , France
| | - A Haddad
- Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; Hôpital du Sacré-Coeur, Beirut, Lebanon
| | - C Aloui
- Faculty of Medicine of Saint-Etienne, University of Lyon , Saint-Etienne , France
| | - T Chakroun
- Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; Centre de Transfusion Sanguine, Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - S Laradi
- Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; Etablissement Français du Sang Rhône-Alpes-Auvergne, Saint-Etienne, France
| | - F Cognasse
- Faculty of Medicine of Saint-Etienne, University of Lyon, Saint-Etienne, France; Etablissement Français du Sang Rhône-Alpes-Auvergne, Saint-Etienne, France
| |
Collapse
|
3
|
Tong M, Li X, Wegener Parfrey L, Roth B, Ippoliti A, Wei B, Borneman J, McGovern DPB, Frank DN, Li E, Horvath S, Knight R, Braun J. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 2013; 8:e80702. [PMID: 24260458 PMCID: PMC3834335 DOI: 10.1371/journal.pone.0080702] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/07/2013] [Indexed: 02/08/2023] Open
Abstract
Abnormalities of the intestinal microbiota are implicated in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC), two spectra of inflammatory bowel disease (IBD). However, the high complexity and low inter-individual overlap of intestinal microbial composition are formidable barriers to identifying microbial taxa representing this dysbiosis. These difficulties might be overcome by an ecologic analytic strategy to identify modules of interacting bacteria (rather than individual bacteria) as quantitative reproducible features of microbial composition in normal and IBD mucosa. We sequenced 16S ribosomal RNA genes from 179 endoscopic lavage samples from different intestinal regions in 64 subjects (32 controls, 16 CD and 16 UC patients in clinical remission). CD and UC patients showed a reduction in phylogenetic diversity and shifts in microbial composition, comparable to previous studies using conventional mucosal biopsies. Analysis of weighted co-occurrence network revealed 5 microbial modules. These modules were unprecedented, as they were detectable in all individuals, and their composition and abundance was recapitulated in an independent, biopsy-based mucosal dataset 2 modules were associated with healthy, CD, or UC disease states. Imputed metagenome analysis indicated that these modules displayed distinct metabolic functionality, specifically the enrichment of oxidative response and glycan metabolism pathways relevant to host-pathogen interaction in the disease-associated modules. The highly preserved microbial modules accurately classified IBD status of individual patients during disease quiescence, suggesting that microbial dysbiosis in IBD may be an underlying disorder independent of disease activity. Microbial modules thus provide an integrative view of microbial ecology relevant to IBD.
Collapse
Affiliation(s)
- Maomeng Tong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Xiaoxiao Li
- Cedars-Sinai F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, United States of America
| | - Laura Wegener Parfrey
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, United States of America
| | - Bennett Roth
- Department of Medicine, Division of Digestive Disease, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrew Ippoliti
- Cedars-Sinai F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, United States of America
| | - Bo Wei
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Dermot P. B. McGovern
- Cedars-Sinai F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, California, United States of America
| | - Daniel N. Frank
- Division of Infectious Diseases, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- Union Council, Denver Microbiome Research Consortium (MiRC), University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Steve Horvath
- Department of Human Genetics and Biostatistics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rob Knight
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America;
| | - Jonathan Braun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Ferrand J, Ferrero RL. Recognition of Extracellular Bacteria by NLRs and Its Role in the Development of Adaptive Immunity. Front Immunol 2013; 4:344. [PMID: 24155747 PMCID: PMC3801148 DOI: 10.3389/fimmu.2013.00344] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 01/21/2023] Open
Abstract
Innate immune recognition of bacteria is the first requirement for mounting an effective immune response able to control infection. Over the previous decade, the general paradigm was that extracellular bacteria were only sensed by cell surface-expressed Toll-like receptors (TLRs), whereas cytoplasmic sensors, including members of the Nod-like receptor (NLR) family, were specific to pathogens capable of breaching the host cell membrane. It has become apparent, however, that intracellular innate immune molecules, such as the NLRs, play key roles in the sensing of not only intracellular, but also extracellular bacterial pathogens or their components. In this review, we will discuss the various mechanisms used by bacteria to activate NLR signaling in host cells. These mechanisms include bacterial secretion systems, pore-forming toxins, and outer membrane vesicles. We will then focus on the influence of NLR activation on the development of adaptive immune responses in different cell types.
Collapse
Affiliation(s)
- Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University , Clayton, VIC , Australia
| | | |
Collapse
|
5
|
Sung MK, Park MY. Nutritional modulators of ulcerative colitis: Clinical efficacies and mechanistic view. World J Gastroenterol 2013; 19:994-1004. [PMID: 23467687 PMCID: PMC3582011 DOI: 10.3748/wjg.v19.i7.994] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/17/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammation-associated disease of the colon and rectum. The onset and progress of the disease are directly influenced by the nature of the intestinal microflora, the intestinal barrier function, and the immunological responses of the host. The epithelial invasion of pathogenic bacteria due to excess contact and/or barrier dysfunction is related to inflammation mediated by intestinal immune responses. Although the etiology of UC is not clearly understood, recent studies have shown a rising incidence of UC worldwide, and this phenomenon is more prominent in Asian countries and in Asian immigrants in Western countries. The increased prevalence of UC also contributes to an increased risk of developing colorectal cancer. Environmental factors, including changes in dietary habits, have been suggested as major risk factors of UC. A systematic review showed a negative association between UC risk and vegetable intake, whereas total fat, omega-6 fatty acids and meat intake were positively associated with an increased risk of UC. Individual dietary factors and energy balance have been suggested as having important roles in inducing changes in the microbial population and intestinal barrier integrity and in regulating inflammatory immune responses, directly or indirectly. Excess energy intake is now known to increase pathogenic microbial populations. Likewise, the application of appropriate probiotics may reverse the pathogenic progression of the disease. In the meantime, dietary anti-inflammatory compounds, including omega-3 fatty acids and other phytochemicals, may directly suppress inflammatory responses in the course of UC development. In this review, the increased prevalence of UC and its management are interpreted from the standpoint of nutritional modulation to regulate the intestinal microflora population, intestinal epithelium permeability, and inflammatory responses.
Collapse
|
6
|
Collins J, van Pijkeren JP, Svensson L, Claesson MJ, Sturme M, Li Y, Cooney JC, van Sinderen D, Walker AW, Parkhill J, Shannon O, O'Toole PW. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol Microbiol 2012; 85:862-77. [PMID: 22724453 DOI: 10.1111/j.1365-2958.2012.08148.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The marketplace for probiotic foods is burgeoning, measured in billions of euro per annum. It is imperative, however, that all bacterial strains are fully assessed for human safety. The ability to bind fibrinogen is considered a potential pathogenicity trait that can lead to platelet aggregation, serious medical complications, and in some instances, death. Here we examined strains from species frequently used as probiotics for their ability to bind human fibrinogen. Only one strain (CCUG 47825), a Lactobacillus salivarius isolate from a case of septicaemia, was found to strongly adhere to fibrinogen. Furthermore, this strain was found to aggregate human platelets at a level comparable to the human pathogen Staphylococcus aureus. By sequencing the genome of CCUG 47825, we were able to identify candidate genes responsible for fibrinogen binding. Complementing the genetic analysis with traditional molecular microbiological techniques enabled the identification of the novel fibrinogen receptor, CCUG_2371. Although only strain CCUG 47825 bound fibrinogen under laboratory conditions, homologues of the novel fibrinogen binding gene CCUG_2371 are widespread among L. salivarius strains, maintaining their potential to bind fibrinogen if expressed. We highlight the fact that without a full genetic analysis of strains for human consumption, potential pathogenicity traits may go undetected.
Collapse
Affiliation(s)
- James Collins
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Infante Pina D, Redecillas Ferreiro S, Torrent Vernetta A, Segarra Cantón O, Maldonado Smith M, Gartner Tizziano L, Hidalgo Albert E. Optimización de la función intestinal en pacientes con fibrosis quística mediante la administración de probióticos. An Pediatr (Barc) 2008; 69:501-5. [DOI: 10.1016/s1695-4033(08)75231-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|