1
|
Liebing E, Krug SM, Neurath MF, Siegmund B, Becker C. Wall of Resilience: How the Intestinal Epithelium Prevents Inflammatory Onslaught in the Gut. Cell Mol Gastroenterol Hepatol 2024; 19:101423. [PMID: 39461590 PMCID: PMC11720114 DOI: 10.1016/j.jcmgh.2024.101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
The intestinal epithelium forms the boundary between the intestinal immune system in the lamina propria and the outside world, the intestinal lumen, which contains a diverse array of microbial and environmental antigens. Composed of specialized cells, this epithelial monolayer has an exceptional turnover rate. Differentiated epithelial cells are released into the intestinal lumen within a few days, at the villus tip, a process that requires strict regulation. Dysfunction of the epithelial barrier increases the intestinal permeability and paves the way for luminal antigens to pass into the intestinal serosa. Stem cells at the bottom of Lieberkühn crypts provide a constant supply of mature epithelial cells. Differentiated intestinal epithelial cells exhibit a diverse array of mechanisms that enable communication with surrounding cells, fortification against microorganisms, and orchestration of nutrient absorption and hormonal balance. Furthermore, tight junctions regulate paracellular permeability properties, and their disruption can lead to an impairment of the intestinal barrier, allowing inflammation to develop or further progress. Intestinal epithelial cells provide a communication platform through which they maintain homeostasis with a spectrum of entities including immune cells, neuronal cells, and connective tissue cells. This homeostasis can be disrupted in disease, such as inflammatory bowel disease. Patients suffering from inflammatory bowel disease show an impaired gut barrier, dysregulated cellular communication, and aberrant proliferation and demise of cells. This review summarizes the individual cellular and molecular mechanisms pivotal for upholding the integrity of the intestinal epithelial barrier and shows how these can be disrupted in diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Eva Liebing
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Susanne M Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie, Erlangen, Germany.
| |
Collapse
|
2
|
Cornelius V, Droessler L, Amasheh S. Quercetin Improves Barrier Properties in Porcine Small Intestine but Not in Peyer's Patches. Int J Mol Sci 2024; 25:1530. [PMID: 38338808 PMCID: PMC10855467 DOI: 10.3390/ijms25031530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Peyer's patches (PPs) are part of the gut-associated lymphatic tissue (GALT) and represent the first line of the intestinal immunological defense. They consist of follicles with lymphocytes and an overlying subepithelial dome with dendritic cells and macrophages, and they are covered by the follicle-associated epithelium (FAE). A sealed paracellular pathway in the FAE is crucial for the controlled uptake of luminal antigens. Quercetin is the most abundant plant flavonoid and has a barrier-strengthening effect on tight junctions (TJs), a protein complex that regulates the paracellular pathway. In this study, we aimed to analyze the effect of quercetin on porcine PPs and the surrounding villus epithelium (VE). We incubated both tissue types for 4 h in Ussing chambers, recorded the transepithelial electrical resistance (TEER), and measured the unidirectional tracer flux of [3H]-mannitol. Subsequently, we analyzed the expression, protein amount, and localization of three TJ proteins, claudin 1, claudin 2, and claudin 4. In the PPs, we could not detect an effect of quercetin after 4 h, neither on TEER nor on the [3H]-mannitol flux. In the VE, quercetin led to a higher TEER value, while the [3H]-mannitol flux was unchanged. The pore-forming claudin 2 was decreased while the barrier-forming claudin 4 was increased and the expression was upregulated. Claudin 1 was unchanged and all claudins could be located in the paracellular membrane by immunofluorescence microscopy. Our study shows the barrier-strengthening effect of quercetin in porcine VE by claudin 4 upregulation and a claudin 2 decrease. Moreover, it underlines the different barrier properties of PPs compared to the VE.
Collapse
Affiliation(s)
| | | | - Salah Amasheh
- Institute of Veterinary Physiology, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
3
|
Ohara TE, Colonna M, Stappenbeck TS. Adaptive differentiation promotes intestinal villus recovery. Dev Cell 2022; 57:166-179.e6. [PMID: 35016013 PMCID: PMC9092613 DOI: 10.1016/j.devcel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 12/10/2021] [Indexed: 01/26/2023]
Abstract
Loss of differentiated cells to tissue damage is a hallmark of many diseases. In slow-turnover tissues, long-lived differentiated cells can re-enter the cell cycle or transdifferentiate to another cell type to promote repair. Here, we show that in a high-turnover tissue, severe damage to the differentiated compartment induces progenitors to transiently acquire a unique transcriptional and morphological postmitotic state. We highlight this in an acute villus injury model in the mouse intestine, where we identified a population of progenitor-derived cells that covered injured villi. These atrophy-induced villus epithelial cells (aVECs) were enriched for fetal markers but were differentiated and lineage committed. We further established a role for aVECs in maintaining barrier integrity through the activation of yes-associated protein (YAP). Notably, loss of YAP activity led to impaired villus regeneration. Thus, we define a key repair mechanism involving the activation of a fetal-like program during injury-induced differentiation, a process we term "adaptive differentiation."
Collapse
Affiliation(s)
- Takahiro E Ohara
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
4
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
5
|
Souod N, Rismani E, Bahrami F, Pakzad SR, Ajdary S. Computational evaluation of a fusion protein consisted of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis to target Claudin-4 using C-terminal fragment of Clostridium perfringens enterotoxin. J Biomol Struct Dyn 2020; 39:5910-5919. [PMID: 32691700 DOI: 10.1080/07391102.2020.1794966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pertussis, caused by Bordetella pertussis is still one of the controversial diseases worldwide due to its high prevalence in both the developed and the developing countries, especially among young children. As currently approved vaccines are not protective enough and provide Th2-type immune responses, there is an urgent need to develop new vaccines. In the current study, we applied the C-terminal fragment of Clostridium perferingens enterotoxin (C-CPE) as a delivery system and F1S1 fragment (Filamentous hemagglutinin (F1) and subunit 1 of pertussis toxin (S1) of B. pertussis to design a novel chimeric protein in silico, to target Claudin-4 receptors in mice lung cells. To achieve this goal, the primary, secondary and tertiary structures of the fusion protein were evaluated and the interaction of this protein with Claudin-4 receptors was studied. Molecular dynamic (MD) simulation analysis was performed to investigate the physical movement of atoms in a fixed period. According to the results; the full-length fusion protein has consisted of 807 amino acid residues which could be classified as a stable protein. There was a convenient consistency between the 3D predicted structure and the secondary structure prediction. An acceptable percentage of the residues were also detected in the most favored and allowed regions for the model. Based on HADDOCK results, there were no considerable differences between the interactions and MD simulation analysis, indicating that the predicted structures were stable during the simulation. Altogether, the data reported in this study represents the first step toward developing a nasal vaccine candidate against B. pertussis infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Negar Souod
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Department of Molecular medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Reza Pakzad
- Vaccine Potency and Standardization Section, Food and Drug Control Laboratory (FDCL), Ministry of Health and Medical Education, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
In-silico design and production of a novel antigenic chimeric Shigella IpaB fused to C-terminal of Clostridium perfringens enterotoxin. Mol Biol Rep 2019; 46:6105-6115. [PMID: 31473892 DOI: 10.1007/s11033-019-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
The emergence of antibiotic-resistant phenotypes in Shigella serotypes and the high mortality rate, approximately one million dead annually, in affected patients announce a global demand for an effective serotype-independent vaccine against Shigella. This study aims to design, express, and purify a novel chimeric protein, as a serotype-independent vaccine candidate against Shigella containing full-length Shigella invasion plasmid antigen B (IpaB) and a C-terminal fragment (residues 194-319) of Clostridium perfringens enterotoxin (C-CPE) as a mucosal adjuvant. Several online databases and bioinformatics software were utilized to design the chimeric protein and the relative recombinant gene. The recombinant gene encoding IpaB-CPE194-319 was synthesized, cloned into pACYCDuet-1 expression vector, and transferred to E. coli Bl21 (DE3) cells. IpaB-CPE194-319 was then expressed in auto-induction medium, purified and characterized using MALDI-TOF-TOF mass spectrometry. Followed by subcutaneous injection of the purified IpaB-CPE194-319 to BALB/c mice, antigenicity of this chimeric protein was determined through performing dot-blot immunoassay on nitrocellulose membrane using mice sera. The outcomes of this study show the successful design, efficient expression, and purification of IpaB-CPE194-319 divalent chimeric protein under mentioned conditions. The obtained results also demonstrate the intrinsic antigenic property of IpaB-CPE194-319.
Collapse
|
7
|
Lan H, Hosomi K, Kunisawa J. Clostridium perfringens enterotoxin-based protein engineering for the vaccine design and delivery system. Vaccine 2019; 37:6232-6239. [PMID: 31466706 DOI: 10.1016/j.vaccine.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens is a major cause of food poisoning worldwide, with its enterotoxin (CPE) being the major virulence factor. The C-terminus of CPE (C-CPE) is non-toxic and is the part of the toxin that binds to epithelial cells via the claudins in tight junctions; however, C-CPE has low antigenicity. To address this issue, we have used protein engineering technology to augment the antigenicity of C-CPE and have developed a C-CPE-based vaccine against C. perfringens-mediated food poisoning. Moreover, C-CPE has properties that make it potentially useful for the development of vaccines against other bacterial toxins that cause food poisoning. For example, we hypothesized that the ability of C-CPE to bind to claudins could be harnessed to deliver vaccine antigens directly to mucosa-associated lymphoid tissues, and we successfully developed a nasally administered C-CPE-based vaccine delivery system that promotes antigen-specific mucosal and systemic immune responses. In addition, our group has revealed the roles that the nasal mucus plays in lowering the efficacy of C-CPE-based nasal vaccines. Here, we review recent advances in the development of C-CPE-based vaccines against the major bacterial toxins that cause food poisoning and discuss our C-CPE-based nasal vaccine delivery system.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Kobe University Graduate School of Medicine, Hyogo, Japan; Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Potential for Tight Junction Protein-Directed Drug Development Using Claudin Binders and Angubindin-1. Int J Mol Sci 2019; 20:ijms20164016. [PMID: 31426497 PMCID: PMC6719960 DOI: 10.3390/ijms20164016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
The tight junction (TJ) is an intercellular sealing component found in epithelial and endothelial tissues that regulates the passage of solutes across the paracellular space. Research examining the biology of TJs has revealed that they are complex biochemical structures constructed from a range of proteins including claudins, occludin, tricellulin, angulins and junctional adhesion molecules. The transient disruption of the barrier function of TJs to open the paracellular space is one means of enhancing mucosal and transdermal drug absorption and to deliver drugs across the blood–brain barrier. However, the disruption of TJs can also open the paracellular space to harmful xenobiotics and pathogens. To address this issue, the strategies targeting TJ proteins have been developed to loosen TJs in a size- or tissue-dependent manner rather than to disrupt them. As several TJ proteins are overexpressed in malignant tumors and in the inflamed intestinal tract, and are present in cells and epithelia conjoined with the mucosa-associated lymphoid immune tissue, these TJ-protein-targeted strategies may also provide platforms for the development of novel therapies and vaccines. Here, this paper reviews two TJ-protein-targeted technologies, claudin binders and an angulin binder, and their applications in drug development.
Collapse
|
9
|
Caprate Modulates Intestinal Barrier Function in Porcine Peyer's Patch Follicle-Associated Epithelium. Int J Mol Sci 2019; 20:ijms20061418. [PMID: 30897851 PMCID: PMC6471651 DOI: 10.3390/ijms20061418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Many food components influence intestinal epithelial barrier properties and might therefore also affect susceptibility to the development of food allergies. Such allergies are triggered by increased antibody production initiated in Peyer’s patches (PP). Usually, the presentation of antigens in the lumen of the gut to the immune cells of the PP is strongly regulated by the follicle-associated epithelium (FAE) that covers the PP. As the food component caprate has been shown to impede barrier properties in villous epithelium, we hypothesized that caprate also affects the barrier function of the PP FAE, thereby possibly contributing a risk factor for the development of food allergies. Methods: In this study, we have focused on the effects of caprate on the barrier function of PP, employing in vitro and ex vivo experimental setups to investigate functional and molecular barrier properties. Incubation with caprate induced an increase of transepithelial resistance, and a marked increase of permeability for the paracellular marker fluorescein in porcine PP to 180% of control values. These effects are in accordance with changes in the expression levels of the barrier-forming tight junction proteins tricellulin and claudin-5. Conclusions: This barrier-affecting mechanism could be involved in the initial steps of a food allergy, since it might trigger unregulated contact of the gut lumen with antigens.
Collapse
|
10
|
Suzuki H, Hosomi K, Nasu A, Kondoh M, Kunisawa J. Development of Adjuvant-Free Bivalent Food Poisoning Vaccine by Augmenting the Antigenicity of Clostridium perfringens Enterotoxin. Front Immunol 2018; 9:2320. [PMID: 30356722 PMCID: PMC6189403 DOI: 10.3389/fimmu.2018.02320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is a common cause of food poisoning and hyperkalemia-associated death. Previously, we reported that fusion of pneumococcal surface protein A (PspA) to C-terminal fragment of CPE (C-CPE) efficiently bound mucosal epithelium so that PspA-specific immune responses could be provoked. In this study, we found that fusion of C-CPE with PspA augmented the antigenicity of C-CPE itself. These findings allowed us to hypothesize that fusion of C-CPE and another food poisoning vaccine act as a bivalent food poisoning vaccine. Therefore, we constructed an adjuvant-free bivalent vaccine against CPE and cholera toxin (CT), which is a major food poisoning in developing country, by genetically fusing CT B subunit to C-CPE. Because of the low antigenicity of C-CPE, immunization of mice with C-CPE alone did not induce C-CPE-specific immune responses. However, immunization with our vaccine induced both C-CPE- and CT-specific neutralizing antibody. The underlying mechanism of the augmented antigenicity of C-CPE included the activation of T cells by CTB. Moreover, neutralizing antibodies lasted for at least 48 weeks and the quality of the antibody was dependent on the binding activity of CTB–C-CPE to its receptors. These findings suggest that our fusion protein is a potential platform for the development of an adjuvant-free bivalent vaccine against CPE and CT.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ayaka Nasu
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan.,Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.,Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Bagherpour G, Ghasemi H, Zand B, Zarei N, Roohvand F, Ardakani EM, Azizi M, Khalaj V. Oral Administration of Recombinant Saccharomyces boulardii Expressing Ovalbumin-CPE Fusion Protein Induces Antibody Response in Mice. Front Microbiol 2018; 9:723. [PMID: 29706942 PMCID: PMC5908956 DOI: 10.3389/fmicb.2018.00723] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022] Open
Abstract
Saccharomyces boulardii, a subspecies of Saccharomyces cerevisiae, is a well-known eukaryotic probiotic with many benefits for human health. In the present study, a recombinant strain of S. boulardii was prepared to use as a potential oral vaccine delivery vehicle. In this sense, a ura3 auxotroph strain of S. boulardii CNCM I-745 (known as S. cerevisiae HANSEN CBS 5926, Yomogi®) was generated using CRISPR/Cas9 methodology. Then a gene construct encoding a highly immunogenic protein, ovalbumin (OVA), was prepared and transformed into the ura3- S. boulardii. To facilitate the transport of the recombinant immunogen across the intestinal barrier, a claudin-targeting sequence from Clostridium perfringens enterotoxin (CPE) was added to the C-terminus of the expression cassette. The recombinant S. boulardii strain expressing the OVA-CPE fusion protein was then administered orally to a group of mice, and serum IgG and fecal IgA levels were evaluated by ELISA. Our results demonstrated that anti-OVA IgG in serum significantly increased in test group (P < 0.001) compared to control groups (receiving wild type S. boulardii or PBS), and the fecal IgA titer was significantly higher in test group (P < 0.05) than control groups. In parallel, a recombinant S. boulardii strain expressing the similar construct lacking C-terminal CPE was also administered orally. The result showed an increased level of serum IgG in group receiving yeasts expressing the CPE negative construct compared to control groups; however, the fecal IgA levels did not increase significantly. In conclusion, our findings indicated that the yeast S. boulardii, as a delivery vehicle with possible immunomodulatory effects, and c-CPE, as a targeting tag, synergistically assist to stimulate systemic and local immunity. This proposed recombinant S. boulardii system might be useful in the expression of other antigenic peptides, making it as a promising tool for oral delivery of vaccines or therapeutic proteins.
Collapse
Affiliation(s)
- Ghasem Bagherpour
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Hosnie Ghasemi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Bahare Zand
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Najmeh Zarei
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Esmat M Ardakani
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Abstract
Intestinal barrier dysfunction is thought to contribute to the development of multiple organ dysfunction syndrome in sepsis. Although there are similarities in clinical course following sepsis, there are significant differences in the host response depending on the initiating organism and time course of the disease, and pathways of gut injury vary widely in different preclinical models of sepsis. The purpose of this study was to determine whether the timecourse and mechanisms of intestinal barrier dysfunction are similar in disparate mouse models of sepsis with similar mortalities. FVB/N mice were randomized to receive cecal ligation and puncture (CLP) or sham laparotomy, and permeability was measured to fluoresceinisothiocyanate conjugated-dextran (FD-4) six to 48 h later. Intestinal permeability was elevated following CLP at all timepoints measured, peaking at 6 to 12 h. Tight junction proteins claudin 1, 2, 3, 4, 5, 7, 8, 13, and 15, Junctional Adhesion Molecule-A (JAM-A), occludin, and ZO-1 were than assayed by Western blot, real-time polymerase chain reaction, and immunohistochemistry 12 h after CLP to determine potential mechanisms underlying increases in intestinal permeability. Claudin 2 and JAM-A were increased by sepsis, whereas claudin-5 and occludin were decreased by sepsis. All other tight junction proteins were unchanged. A further timecourse experiment demonstrated that alterations in claudin-2 and occludin were detectable as early as 1 h after the onset of sepsis. Similar experiments were then performed in a different group of mice subjected to Pseudomonas aeruginosa pneumonia. Mice with pneumonia had an increase in intestinal permeability similar in timecourse and magnitude to that seen in CLP. Similar changes in tight junction proteins were seen in both models of sepsis although mice subjected to pneumonia also had a marked decrease in ZO-1 not seen in CLP. These results indicate that two disparate, clinically relevant models of sepsis induce a significant increase in intestinal permeability mediated through a common pathway involving alterations in claudin 2, claudin 5, JAM-A, and occludin although model-specific differences in ZO-1 were also identified.
Collapse
|
13
|
Arabshahi S, Nayeri Fasaei B, Derakhshandeh A, Novinrooz A. In silico design of a novel chimeric shigella IpaB fused to C terminal of clostridium perfringens enterotoxin as a vaccine candidate. Bioengineered 2017; 9:170-177. [PMID: 29091543 PMCID: PMC5972921 DOI: 10.1080/21655979.2017.1373535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study aimed to design a novel chimeric protein in silico to serve as a serotype-independent vaccine candidate against Shigella. The chimera contains amino acid residues 240–460 of Shigella invasion plasmid antigen B (IpaB) and the C-terminus of Clostridium perfringens enterotoxin (C-CPE). Amino acid sequences of 537 peptide linkers were obtained from two protein linker databases. 3D structures of IpaB-CPE290–319, IpaB-CPE184–319, IpaB-CPE194–319 and 537 newly designed IpaB-linker-CPE290–319 constructs with varying linker regions were predicted. These predicted 3D structures were merged with the 3D structures of native IpaB240–460, CPE194–319, CPE184–319 and CPE290–319 to select the structure most similar to native IpaB and C-CPE. Several in silico tools were used to determine the suitability of the selected IpaB-C-CPE structure as a vaccine candidate. None of the 537 linkers was capable of preserving the native structure of CPE290–319 within the IpaB-linker-CPE290–319 structure. In silico analysis determined that the IpaB-CPE194–319 3D structure was the most similar to the 3D structure of the respective native CPE domain and that it was a stable chimeric protein exposing multiple B-cell epitopes. IpaB-CPE194–319 was designed for its capability to bind to human intestinal epithelial and M cells and to accumulate on these cells. The predicted B-cell epitopes are likely to be capable of inducing a mucosal antibody response in the human intestine against Shigella IpaB. This study also showed that the higher binding affinities of CPE184–319 and CPE194–319 to claudin molecules than those of CPE290–319 is the result of preserving the 3D structures of CPE184–319 and CPE194–319 when they are linked to the C-termini of other proteins.
Collapse
Affiliation(s)
- Sina Arabshahi
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Bahar Nayeri Fasaei
- b Department of Microbiology and Immunology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - Abdollah Derakhshandeh
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Aytak Novinrooz
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|
14
|
Watari A, Kodaka M, Matsuhisa K, Sakamoto Y, Hisaie K, Kawashita N, Takagi T, Yamagishi Y, Suzuki H, Tsujino H, Yagi K, Kondoh M. Identification of claudin-4 binder that attenuates tight junction barrier function by TR-FRET-based screening assay. Sci Rep 2017; 7:14514. [PMID: 29109448 PMCID: PMC5674027 DOI: 10.1038/s41598-017-15108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Claudins are key functional and structural components of tight junctions (TJs) in epithelial cell sheets. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds to claudin-4 and reversibly modulates intestinal TJ seals, thereby enhancing paracellular transport of solutes. However, the use of C-CPE as an absorption enhancer is limited by the molecule’s immunogenicity and manufacturing cost. Here, we developed a high-throughput screening system based on the Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) method to identify claudin-4 binders in a library collection of 32,560 compounds. Thiostrepton, identified from the screen, decreased transepithelial electrical resistance and increased flux of 4-kDa fluorescein isothiocyanate–labelled dextran (FD-4) in Caco-2 cell monolayers, a model of intestinal epithelium. Thiostrepton changed the expression, but not the localisation, of TJ components. Treatment of rat jejunum with thiostrepton increased the absorption of FD-4 without tissue toxicity, indicating that thiostrepton is a novel claudin-4 binder that enhances intestinal permeability. The screening system may therefore be a useful tool for identifying claudin-4 binders to enhance drug absorption in mucosa.
Collapse
Affiliation(s)
- Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Miki Kodaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Sakamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kota Hisaie
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihito Kawashita
- Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashiosaka City, Osaka, 577-8502, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Yamagishi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Hagen SJ. Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers 2017; 5:e1327839. [PMID: 28548895 PMCID: PMC5501131 DOI: 10.1080/21688370.2017.1327839] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Tight junctions form a barrier to the diffusion of apical and basolateral membrane proteins thus regulating membrane polarity. They also regulate the paracellular movement of ions and water across epithelial and endothelial cells so that functionally they constitute an important permselective barrier. Permselectivity at tight junctions is regulated by claudins, which confer anion or cation permeability, and tightness or leakiness, by forming several highly regulated pores within the apical tight junction complex. One interesting feature of claudins is that they are, more often than not, localized to the basolateral membrane, in intracellular cytoplasmic vesicles, or in the nucleus rather than to the apical tight junction complex. These intracellular pools of claudin molecules likely serve important functions in the epithelium. This review will address the widespread prevalence of claudins that are not associated with the apical tight junction complex and discuss the important and emerging non-traditional functions of these molecules in health and disease.
Collapse
Affiliation(s)
- Susan J. Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Markov AG, Aschenbach JR, Amasheh S. The epithelial barrier and beyond: Claudins as amplifiers of physiological organ functions. IUBMB Life 2017; 69:290-296. [PMID: 28371008 DOI: 10.1002/iub.1622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Epithelial cell layers are interconnected by a meshwork of tight junction (TJ) protein strands, which are localized within apicolateral membranes. The proteins that form TJs are regarded to provide a static barrier, determining epithelial properties. However, recent findings in the field of barriology suggest that TJs contribute to more physiological aspects than indicated by the sum of the qualities of the single TJ proteins. Generally, TJs exhibit four major functions: (i) a "gate function," defining transepithelial permeability (i.e., barrier) properties, (ii) a "fence function" determining epithelial cell polarity, (iii) a "signaling function," affecting regulatory pathways, and (iv) a "stabilizing function," maintaining the integrity of the epithelium. This review presents a critical view on how the efficacy of physiological processes in epithelia and thus organ function might be improved by changes in the expression of claudins, the latter representing the largest and most variable family of TJ proteins. Major focus is set on (i) the coordinated regulation of transport and barrier in the intestine, (ii) the role of TJs in defining the route for antigen uptake and presentation in intestinal Peyer's patches, and (iii) the TJ function in mammary glands in response to milk accumulation, which represent impressive examples to highlight the amplification of epithelial functions by TJ proteins. © 2017 IUBMB Life, 69(5):290-296, 2017.
Collapse
Affiliation(s)
- Alexander G Markov
- Department of General Physiology, St. Petersburg State University, Russia
| | - Jörg R Aschenbach
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Veterinary Physiology, Berlin, Germany
| | - Salah Amasheh
- Department of Veterinary Medicine, Freie Universität Berlin, Institute of Veterinary Physiology, Berlin, Germany
| |
Collapse
|
17
|
Hashimoto Y, Yagi K, Kondoh M. Current progress in a second-generation claudin binder, anti-claudin antibody, for clinical applications. Drug Discov Today 2016; 21:1711-1718. [DOI: 10.1016/j.drudis.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 05/29/2016] [Accepted: 07/05/2016] [Indexed: 12/22/2022]
|
18
|
Go M, Kojima T, Takano KI, Murata M, Ichimiya S, Tsubota H, Himi T, Sawada N. Expression and Function of Tight Junctions in the Crypt Epithelium of Human Palatine Tonsils. J Histochem Cytochem 2016; 52:1627-38. [PMID: 15557217 DOI: 10.1369/jhc.4a6339.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human palatine tonsils have surface and crypt stratified epithelium and may be initiated via the epithelium to mount immune responses to various presenting antigens. Here we investigated the expression and function of tight junctions in the epithelium of human palatine tonsils from patients with tonsillar hypertrophy or recurrent tonsillitis. Occludin, ZO-1, JAM-1, and claudin-1, −3, −4, −7, −8, and −14 mRNAs were detected in tonsillar hypertrophy. Occludin and claudin-14 were expressed in the uppermost layer of the tonsil surface epithelium, whereas ZO-1, JAM-1, and claudin-1, −4, and −7 were found throughout the epithelium. In the crypt epithelium, claudin-4 was preferentially expressed in the upper layers. In freeze-fracture replicas, short fragments of continuous tight junction strands were observed but never formed networks. In the crypt epithelium of recurrent tonsillitis, the tracer was leaked from the surface regions where occludin and claudin-4 disappeared. Occludin, ZO-1, JAM-1, and claudin-1, −3, −4, and −14, but not claudin-7, mRNAs were decreased in recurrent tonsillitis compared with those of tonsillar hypertrophy. These studies suggest unique expression of tight junctions in human palatine tonsillar epithelium, and the crypt epithelium may possess an epithelial barrier different from that of the surface epithelium.
Collapse
Affiliation(s)
- Mitsuru Go
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240:504-526. [PMID: 27292178 DOI: 10.1016/j.jconrel.2016.06.016] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023]
Abstract
The oral route is a preferred method of drug administration, though achieving effective drug delivery and minimizing off-target side effects is often challenging. Formulation into nanoparticles can improve drug stability in the harsh gastrointestinal (GI) tract environment, providing opportunities for targeting specific sites in the GI tract, increasing drug solubility and bioavailability, and providing sustained release in the GI tract. However, the unique and diverse physiology throughout the GI tract, including wide variation in pH, mucus that varies in thickness and structure, numerous cell types, and various physiological functions are both a barrier to effective delivery and an opportunity for nanoparticle design. Here, nanoparticle design aspects to improve delivery to particular sites in the GI tract are discussed. We then review new methods for evaluating oral nanoparticle formulations, including a short commentary on data interpretation and translation. Finally, the state-of-the-art in preclinical targeted nanoparticle design is reviewed.
Collapse
Affiliation(s)
- Abhijit A Date
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Departments of Biomedical Engineering, Environmental and Health Sciences, Oncology, Neurosurgery, Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N. Broadway, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Markov AG, Falchuk EL, Kruglova NM, Radloff J, Amasheh S. Claudin expression in follicle-associated epithelium of rat Peyer's patches defines a major restriction of the paracellular pathway. Acta Physiol (Oxf) 2016; 216:112-9. [PMID: 26228735 DOI: 10.1111/apha.12559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022]
Abstract
AIM Members of the tight junction protein family of claudins have been demonstrated to specifically determine paracellular permeability of the intestinal epithelium. In small intestinal mucosa, which is generally considered to be a leaky epithelium, Peyer's patches are a primary part of the immune system. The aim of this study was to analyse the tight junctional barrier of follicle-associated epithelium covering Peyer's patches (lymphoid follicles). METHODS Employing small intestinal tissue specimens of male Wistar rats, electrophysiological analyses including the Ussing chamber technique, marker flux measurements and one-path impedance spectroscopy were performed. Morphometry of HE-stained tissue sections was taken into account. Claudin expression and localization was analysed by immunoblotting and confocal laser scanning immunofluorescence microscopy. RESULTS Almost twofold higher parameters of epithelial and transepithelial tissue resistance and a markedly lower permeability for the paracellular permeability markers 4 and 20 kDa FITC-dextran were detected in follicle-associated epithelium compared to neighbouring villous epithelium. Analysis of claudin expression and localization revealed a stronger expression of major sealing proteins in follicle-associated epithelium, including claudin-1, claudin-4, claudin-5 and claudin-8. Therefore, the specific expression and localization of claudins is in accordance with barrier properties of follicle-associated epithelium vs. neighbouring villous epithelium. CONCLUSION We demonstrate that follicle-associated epithelium is specialized to ensure maximum restriction of the epithelial paracellular pathway in Peyer's patches by selective sealing of tight junctions. This results in an exclusive transcellular pathway of epithelial cells as the limiting and mandatory route for a controlled presentation of antigens to the underlying lymphocytes under physiological conditions.
Collapse
Affiliation(s)
- A. G. Markov
- Institute of General Physiology; Biological Faculty; St. Petersburg State University; St. Petersburg Russia
| | - E. L. Falchuk
- Institute of General Physiology; Biological Faculty; St. Petersburg State University; St. Petersburg Russia
| | - N. M. Kruglova
- Institute of General Physiology; Biological Faculty; St. Petersburg State University; St. Petersburg Russia
| | - J. Radloff
- Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
| | - S. Amasheh
- Institute of Veterinary Physiology; Freie Universität Berlin; Berlin Germany
- Institute of Clinical Physiology; Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
21
|
Capaldo CT, Nusrat A. Claudin switching: Physiological plasticity of the Tight Junction. Semin Cell Dev Biol 2015; 42:22-9. [PMID: 25957515 DOI: 10.1016/j.semcdb.2015.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 01/22/2023]
Abstract
Tight Junctions (TJs) are multi-molecular complexes in epithelial tissues that regulate paracellular permeability. Within the TJ complex, claudins proteins span the paracellular space to form a seal between adjacent cells. This seal allows regulated passage of ions, fluids, and solutes, contingent upon the complement of claudins expressed. With as many as 27 claudins in the human genome, the TJ seal is complex indeed. This review focuses on changes in claudin expression within the epithelial cells of the gastrointestinal tract, where claudin differentiation results in several physiologically distinct TJs within the lifetime of the cell. We also review mechanistic studies revealing that TJs are highly dynamic, with the potential to undergo molecular remodeling while structurally intact. Therefore, physiologic Tight Junction plasticity involves both the adaptability of claudin expression and gene specific retention in the TJ; a process we term claudin switching.
Collapse
Affiliation(s)
- Christopher T Capaldo
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
22
|
Claudin-4 undergoes age-dependent change in cellular localization on pig jejunal villous epithelial cells, independent of bacterial colonization. Mediators Inflamm 2015; 2015:263629. [PMID: 25948883 PMCID: PMC4407623 DOI: 10.1155/2015/263629] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022] Open
Abstract
Newborn piglets are immunologically naïve and must receive passive immunity via colostrum within 24 hours to survive. Mechanisms by which the newborn piglet gut facilitates uptake of colostral cells, antibodies, and proteins may include FcRn and pIgR receptor-mediated endocytosis and paracellular transport between tight junctions (TJs). In the present study, FcRn gene (FCGRT) was minimally expressed in 6-week-old gut and newborn jejunum but it was expressed at significantly higher levels in the ileum of newborn piglets. pIgR was highly expressed in the jejunum and ileum of 6-week-old animals but only minimally in neonatal gut. Immunohistochemical analysis showed that Claudin-5 localized to blood vessel endothelial cells. Claudin-4 was strongly localized to the apical aspect of jejunal epithelial cells for the first 2 days of life after which it was redistributed to the lateral surface between adjacent enterocytes. Claudin-4 was localized to ileal lateral surfaces within 24 hours after birth indicating regional and temporal differences. Tissue from gnotobiotic piglets showed that commensal microbiota did not influence Claudin-4 surface localization on jejunal or ileal enterocytes. Regulation of TJs by Claudin-4 surface localization requires further investigation. Understanding the factors that regulate gut barrier maturation may yield protective strategies against infectious diseases.
Collapse
|
23
|
Shim S, Lee JG, Bae CH, Lee SB, Jang WS, Lee SJ, Lee SS, Park S. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure. Biochem Biophys Res Commun 2015; 456:351-4. [DOI: 10.1016/j.bbrc.2014.11.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 01/23/2023]
|
24
|
Suzuki H, Kondoh M, Yagi K, Kiyono H, Kunisawa J. [The development of mucosal vaccine using bacterial function for targeting mucosal tissues]. YAKUGAKU ZASSHI 2014; 134:629-34. [PMID: 24790045 DOI: 10.1248/yakushi.14-00006-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most pathogens invade body through the mucosal epithelium, which is a primary target to prevent the infectious diseases. Mucosal vaccine has been considered to be an effective strategy to establish immunosurveillance against pathogens by the induction of antigen-specific immune responses at both mucosal and systemic immune compartments. The development of antigen delivery system and mucosal adjuvants are required for the sufficient induction of protective immunity in the development of mucosal vaccine. In this review, we shed light on the recent advances in the development of antigen delivery system using microbial functions for mucosal vaccines.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Vaccine Materials, National Institute of Biomedical Innovation
| | | | | | | | | |
Collapse
|
25
|
Ye T, Yue Y, Fan X, Dong C, Xu W, Xiong S. M cell-targeting strategy facilitates mucosal immune response and enhances protection against CVB3-induced viral myocarditis elicited by chitosan-DNA vaccine. Vaccine 2014; 32:4457-4465. [PMID: 24958702 DOI: 10.1016/j.vaccine.2014.06.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/21/2014] [Accepted: 06/11/2014] [Indexed: 11/20/2022]
Abstract
Efficient delivery of antigen to mucosal associated lymphoid tissue is a first and critical step for successful induction of mucosal immunity by vaccines. Considering its potential transcytotic capability, M cell has become a more and more attractive target for mucosal vaccines. In this research, we designed an M cell-targeting strategy by which mucosal delivery system chitosan (CS) was endowed with M cell-targeting ability via conjugating with a CPE30 peptide, C terminal 30 amino acids of clostridium perfringens enterotoxin (CPE), and then evaluated its immune-enhancing ability in the context of coxsackievirus B3 (CVB3)-specific mucosal vaccine consisting of CS and a plasmid encoding CVB3 predominant antigen VP1. It had shown that similar to CS-pVP1, M cell-targeting CPE30-CS-pVP1 vaccine appeared a uniform spherical shape with about 300 nm diameter and +22 mV zeta potential, and could efficiently protect DNA from DNase I digestion. Mice were orally immunized with 4 doses of CPE30-CS-pVP1 containing 50 μg pVP1 at 2-week intervals and challenged with CVB3 4 weeks after the last immunization. Compared with CS-pVP1 vaccine, CPE30-CS-pVP1 vaccine had no obvious impact on CVB3-specific serum IgG level and splenic T cell immune responses, but significantly increased specific fecal SIgA level and augmented mucosal T cell immune responses. Consequently, much milder myocarditis and lower viral load were witnessed in CPE30-CS-pVP1 immunized group. The enhanced immunogenicity and immunoprotection were associated with the M cell-targeting ability of CPE30-CS-pVP1 which improved its mucosal uptake and transcytosis. Our findings indicated that CPE30-CS-pVP1 may represent a novel prophylactic vaccine against CVB3-induced myocarditis, and this M cell-targeting strategy indeed could be applied as a promising and universal platform for mucosal vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Chitosan/administration & dosage
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/prevention & control
- Disease Models, Animal
- Enterovirus B, Human/immunology
- Immunity, Mucosal
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Male
- Mice, Inbred BALB C
- Myocarditis/pathology
- Myocarditis/prevention & control
- T-Lymphocytes/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ting Ye
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yan Yue
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Xiangmei Fan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Chunsheng Dong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China
| | - Sidong Xiong
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou 215123, Jiangsu, PR China.
| |
Collapse
|
26
|
Shimizu Y, Nagase S, Yagi K, Kondoh M. [The new era of epithelium-targeted drug development]. YAKUGAKU ZASSHI 2014; 134:641-5. [PMID: 24790047 DOI: 10.1248/yakushi.14-00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelium plays pivotal roles in biological barrier separating the inside of body and the outside environment. Ninety percent of malignant tumors are derived from epithelium. Most pathological microorganisms invade into the body from mucosal epithelium. Thus, epithelium is potential targets for drug development. Claudins (CLs), a family of tetra-transmembrane protein consisting of over 20 members, are structural and functional components of tight junction-seals in epithelium. Modulation of CL-seals enhanced mucosal absorption of drugs. CLs are often over-expressed in malignant tumors. CL-4 expression is increased in the epithelial cells covering the mucosal immune tissues. Very recently, CLs are also expected to be targets for traumatic brain injury and regenerative therapy. In this review, we overview the past, the present and the future of CLs-targeted drug development.
Collapse
Affiliation(s)
- Yoshimi Shimizu
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | | | | |
Collapse
|
27
|
Nagatake T, Fujita H, Minato N, Hamazaki Y. Enteroendocrine cells are specifically marked by cell surface expression of claudin-4 in mouse small intestine. PLoS One 2014; 9:e90638. [PMID: 24603700 PMCID: PMC3948345 DOI: 10.1371/journal.pone.0090638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/05/2014] [Indexed: 01/24/2023] Open
Abstract
Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4), and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga) and other enteroendocrine cell–related genes (Ffar1, Ffar4, Gpr119), and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1). A Cld4+UEA-1− cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip), thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg), pancreatic polypeptide–like peptide with N-terminal tyrosine amide (Pyy), cholecystokinin (Cck), secretin (Sct), and tryptophan hydroxylase 1 (Tph1). In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Harumi Fujita
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
28
|
Akbari P, Braber S, Gremmels H, Koelink PJ, Verheijden KAT, Garssen J, Fink-Gremmels J. Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J 2014; 28:2414-29. [PMID: 24568843 DOI: 10.1096/fj.13-238717] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Disintegration of the colonic epithelial barrier is considered a key event in the initiation and progression of inflammatory bowel and celiac disease. As the primary etiology of these diseases remains unknown, we hypothesized that the trichothecene deoxynivalenol (DON), a fungal metabolite found in grain-based human diets, might be one of the triggers resulting in an impairment of the intestinal tight junction network preceding an inflammatory response. Using horizontal impedance measurements, we demonstrate that DON disintegrates a human Caco-2 cell monolayer within <1 h after exposure to concentrations as low as 1.39 μM. This initial trigger is followed by a decrease in transepithelial resistance and an increased permeability of marker molecules, such as lucifer yellow and FITC-labeled dextran. In parallel, the increase in paracellular transport of FITC-dextran is demonstrated in vivo in B6C3F1 mice, challenged orally with DON. In vitro claudin protein levels are decreased and correlated with a displacement within the cells in vitro and in vivo, accompanied by a compensatory up-regulation of mRNA levels of claudins and their binding partner ZO-1. In treated mice, alterations in villus architecture in the entire intestinal tract resemble the disintegration of the epithelial barrier, a characteristic of chronic inflammatory bowel disease.
Collapse
Affiliation(s)
- Peyman Akbari
- Division of Veterinary Pharmacy, Pharmacology, and Toxicology, and Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Saskia Braber
- Division of Veterinary Pharmacy, Pharmacology, and Toxicology, and
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | - Pim J Koelink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Kim A T Verheijden
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| | | |
Collapse
|
29
|
Abiko Y, Kojima T, Murata M, Tsujiwaki M, Takeuchi M, Sawada N, Mori M. Changes of Tight Junction Protein Claudins in Small Intestine and Kidney Tissues of Mice Fed a DDC Diet. J Toxicol Pathol 2013; 26:433-8. [PMID: 24526818 PMCID: PMC3921928 DOI: 10.1293/tox.2013-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/03/2013] [Indexed: 11/25/2022] Open
Abstract
DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine)-fed mice are widely used as a model for cholestatic liver disease. We examined the expression of tight junction protein claudin subspecies by immunofluorescent histochemistry in small intestine and kidney tissues of mice fed a DDC diet for 12 weeks. In the small intestine, decreases in claudin-3, claudin-7 and claudin-15 were observed in villous epithelial cells corresponding to the severity of histological changes while leaving the abundance of these claudin subspecies unchanged in crypt cells. Nevertheless, the proliferative activity of intestinal crypt cells measured by immunohistochemistry for Ki-67 decreased in the mice fed the DDC diet compared with that of control mice. These results suggest the possibility that DDC feeding affects the barrier function of villous epithelial cells and thus inhibits the proliferative activity of crypt epithelial cells. On the other hand, in the kidney, remarkable changes were found in the subcellular localization of claudin subspecies in a segment-specific manner, although histological changes of renal epithelial cells were quite minimal. These results indicate that immunohistochemistry for claudin subspecies can serve as a useful tool for detecting minute functional alterations of intestinal and renal epithelial cells.
Collapse
Affiliation(s)
- Yukie Abiko
- Sapporo General Pathology Laboratory Co., Ltd., 3-17, S12 W18, Sapporo 064-0912, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S1 W17, Sapporo 060-8556, Japan
| | - Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Sapporo 060-8556, Japan
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Sapporo 060-8556, Japan
| | - Masaya Takeuchi
- Sapporo General Pathology Laboratory Co., Ltd., 3-17, S12 W18, Sapporo 064-0912, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, S1 W17, Sapporo 060-8556, Japan
| | - Michio Mori
- Sapporo General Pathology Laboratory Co., Ltd., 3-17, S12 W18, Sapporo 064-0912, Japan
| |
Collapse
|
30
|
Söderman J, Norén E, Christiansson M, Bragde H, Thiébaut R, Hugot JP, Tysk C, O’Morain CA, Gassull M, Finkel Y, Colombel JF, Lémann M, Almer S. Analysis of single nucleotide polymorphisms in the region of CLDN2-MORC4 in relation to inflammatory bowel disease. World J Gastroenterol 2013; 19:4935-4943. [PMID: 23946598 PMCID: PMC3740423 DOI: 10.3748/wjg.v19.i30.4935] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/24/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate a possible genetic influence of claudin (CLDN)1, CLDN2 and CLDN4 in the etiology of inflammatory bowel disease. METHODS Allelic association between genetic regions of CLDN1, CLDN2 or CLDN4 and patients with inflammatory bowel disease, Crohn's disease (CD) or ulcerative colitis were investigated using both a case-control study approach (one case randomly selected from each of 191 Swedish inflammatory bowel disease families and 333 controls) and a family-based study (463 non-Swedish European inflammatory bowel disease -families). A nonsynonymous coding single nucleotide polymorphism in MORC4, located on the same linkage block as CLDN2, was investigated for association, as were two novel CLDN2 single nucleotide polymorphism markers, identified by resequencing. RESULTS A single nucleotide polymorphism marker (rs12014762) located in the genetic region of CLDN2 was significantly associated to CD (case-control allelic OR = 1.98, 95%CI: 1.17-3.35, P = 0.007). MORC4 was present on the same linkage block as this CD marker. Using the case-control approach, a significant association (case control allelic OR = 1.61, 95%CI: 1.08-2.41, P = 0.018) was found between CD and a nonsynonymous coding single nucleotide polymorphism (rs6622126) in MORC4. The association between the CLDN2 marker and CD was not replicated in the family-based study. Ulcerative colitis was not associated to any of the single nucleotide polymorphism markers. CONCLUSION These findings suggest that a variant of the CLDN2-MORC4 region predisposes to CD in a Swedish population.
Collapse
|
31
|
Lu Z, Ding L, Lu Q, Chen YH. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013; 1:e24978. [PMID: 24478939 PMCID: PMC3879173 DOI: 10.4161/tisb.24978] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Intestines are organs that not only digest food and absorb nutrients, but also provide a defense barrier against pathogens and noxious agents ingested. Tight junctions (TJs) are the most apical component of the junctional complex, providing one form of cell-cell adhesion in enterocytes and playing a critical role in regulating paracellular barrier permeability. Alteration of TJs leads to a number of pathophysiological diseases causing malabsorption of nutrition and intestinal structure disruption, which may even contribute to systemic organ failure. Claudins are the major structural and functional components of TJs with at least 24 members in mammals. Claudins have distinct charge-selectivity, either by tightening the paracellular pathway or functioning as paracellular channels, regulating ions and small molecules passing through the paracellular pathway. In this review, we have discussed the functions of claudin family members, their distribution and localization in the intestinal tract of mammals, their alterations in intestine-related diseases and chemicals/agents that regulate the expression and localization of claudins as well as the intestinal permeability, which provide a therapeutic view for treating intestinal diseases.
Collapse
Affiliation(s)
- Zhe Lu
- Department of Basic Medicine; Hangzhou Normal University, Hangzhou, PR China ; Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Lei Ding
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA ; Department of Oncology; Beijing Shijitan Hospital; Capital Medical University; Beijing, PR China
| | - Qun Lu
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology; Brody School of Medicine; East Carolina University; Greenville, NC USA
| |
Collapse
|
32
|
Suzuki H, Kondoh M, Takahashi A, Yagi K. Proof of concept for claudin-targeted drug development. Ann N Y Acad Sci 2012; 1258:65-70. [PMID: 22731717 DOI: 10.1111/j.1749-6632.2012.06503.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Claudins (CLs) are a family of tetra-integral membrane proteins that are a key structural and functional component of tight junctions. CLs are overexpressed in some malignant tumors. Claudin-4 is highly expressed in the epithelial cells covering mucosal immune tissues. CLs may therefore be a potential target for improving drug absorption, treating cancer, and developing mucosal vaccine. Research using Clostridium perfringens enterotoxin has resulted in proofs of concept for CL-targeted drug development. A platform for the creation of CL binders, such as immunization of CL and preparation of CL proteins, is now beginning to be established.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
33
|
Keita ÅV, Söderholm JD. Barrier dysfunction and bacterial uptake in the follicle-associated epithelium of ileal Crohn's disease. Ann N Y Acad Sci 2012; 1258:125-34. [DOI: 10.1111/j.1749-6632.2012.06502.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Iwaya H, Maeta K, Hara H, Ishizuka S. Mucosal permeability is an intrinsic factor in susceptibility to dextran sulfate sodium-induced colitis in rats. Exp Biol Med (Maywood) 2012; 237:451-60. [PMID: 22522346 DOI: 10.1258/ebm.2011.011269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated differences in the pathogenesis of dextran sulfate sodium (DSS)-induced colitis between two inbred rat strains, Wistar King A Hokkaido (WKAH) and Dark Agouti (DA) rats, to determine the intrinsic factors responsible for the development of colitis. DSS exposure exacerbated the clinical symptoms such as body weight loss, stool consistency and rectal bleeding in DA rats rather than that in WKAH rats. Additionally, the average survival was shorter in DA rats than in WKAH rats. The expression levels of tumor necrosis factor-α, interleukin (IL)-12 p35 and IL-23 p19 increased prominently in the DA rats that were administered DSS, accompanied by severe infiltration of leukocytes into the colon. We also found that colonic permeability was greater in the DA rats than in the WKAH rats. In Ussing chambers, exposure of the isolated colon tissue to DSS enhanced the colonic permeability of both strains. Immunoblot analysis revealed that the expression levels of tight junction (TJ) proteins were modulated during DSS administration. Higher expression levels of claudin-4 and junctional adhesion molecule-A proteins were observed in DA rats than in WKAH rats, even in intact conditions. These results indicated that the expression pattern of TJ proteins determines the colonic permeability of the rats. In conclusion, the intrinsic colonic permeability is one of critical factors responsible for the susceptibility of rats to colitis.
Collapse
Affiliation(s)
- Hitoshi Iwaya
- Division of Applied Bioscience, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | |
Collapse
|
35
|
Takahashi A, Saito Y, Kondoh M, Matsushita K, Krug SM, Suzuki H, Tsujino H, Li X, Aoyama H, Matsuhisa K, Uno T, Fromm M, Hamakubo T, Yagi K. Creation and biochemical analysis of a broad-specific claudin binder. Biomaterials 2012; 33:3464-74. [DOI: 10.1016/j.biomaterials.2012.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
36
|
Suzuki H, Kondoh M, Kakutani H, Yamane S, Uchida H, Hamakubo T, Yagi K. The application of an alanine-substituted mutant of the C-terminal fragment of Clostridium perfringens enterotoxin as a mucosal vaccine in mice. Biomaterials 2011; 33:317-24. [PMID: 21983135 DOI: 10.1016/j.biomaterials.2011.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/21/2011] [Indexed: 01/22/2023]
Abstract
Efficient delivery of antigen to mucosal immune tissues is an essential part of mucosal vaccination. Claudin-4 is expressed on the epithelial cells that cover the mucosal immune tissues. We previously found that claudin-4-targeting is a promising strategy for mucosal vaccination by using a claudin-4 binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE). Substitution of Asn and Ser at positions 309 and 313, respectively, with alanine increased the affinity of C-CPE for claudin-4. However, application of the C-CPE mutant as a mucosal vaccine has never been tried. Here, we investigated whether the C-CPE mutant could serve as a mucosal vaccine. We used ovalbumin (OVA) as a model antigen and fused the C-CPE mutant to it. The resultant fusion protein was bound to claudin-4. When mice were immunized with the C-CPE mutant-fused OVA, OVA-specific serum IgG and nasal IgA increased relative to levels in mice immunized with a C-CPE-fused antigen. Immunization with the C-CPE mutant-fused OVA activated Th1- and Th2-type responses and led to increased anti-tumor activity against OVA-expressing thymoma cells relative to that of mice immunized with the C-CPE-fused antigen. These findings suggest that the alanine-substituted C-CPE mutant shows promise as a claudin-targeted mucosal vaccine.
Collapse
Affiliation(s)
- Hidehiko Suzuki
- Laboratory of Bio-Functional Molecular Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Distinct behavior of claudin-3 and -4 around lactation period in mammary alveolus in mice. Histochem Cell Biol 2011; 136:587-94. [DOI: 10.1007/s00418-011-0863-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 01/12/2023]
|
38
|
Turksen K, Troy TC. Junctions gone bad: Claudins and loss of the barrier in cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:73-9. [DOI: 10.1016/j.bbcan.2011.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 12/13/2022]
|
39
|
Assimakopoulos SF, Tsamandas AC, Louvros E, Vagianos CE, Nikolopoulou VN, Thomopoulos KC, Charonis A, Scopa CD. Intestinal epithelial cell proliferation, apoptosis and expression of tight junction proteins in patients with obstructive jaundice. Eur J Clin Invest 2011; 41:117-125. [PMID: 20840373 DOI: 10.1111/j.1365-2362.2010.02379.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal hyperpermeability has been repeatedly confirmed in patients with obstructive jaundice and is considered a pivotal factor in the development of septic and renal complications in these patients. However, little is known on the mechanism(s) leading to this phenomenon. This study was undertaken to investigate the cellular and subcellular intestinal alterations in patients with obstructive jaundice. DESIGN Sixteen patients with obstructive jaundice of malignant (n = 8, group A) or benign (n = 8, group B) aetiology, without concomitant cholangitis, and eight healthy controls (group C) were subjected to duodenal biopsy distal to the ampulla of Vater. Specimens were examined histologically and the apoptotic activity in the cryptal epithelium was recorded. Epithelial proliferation was evaluated by immunohistochemical expression of Ki67 antigen. The expression of the tight junction (TJ) proteins occludin, claudin-1, claudin-4 and claudin-7 in the intestinal epithelium was also evaluated by immunohistochemistry. RESULTS Patients with malignant or benign obstructive jaundice presented significantly decreased intestinal epithelial cell proliferation rates compared with controls (P < 0·05), whereas no differences were detected in apoptotic activity. In a semiquantitative analysis of TJ protein expression, occludin, claudin-1 and -7 were significantly decreased (P < 0·001), whereas claudin-4 was significantly increased (P < 0·01) in jaundiced patients and their distribution was altered. No differences were detected between patients with malignant or benign obstructive jaundice for all intestinal barrier parameters studied. CONCLUSION Decreased enterocyte proliferation and altered TJ protein expression might represent important mechanisms for intestinal barrier dysfunction and hyperpermeability in patients with extrahepatic cholestasis. The potential pharmacological modulation of these factors may lead to better control of intestinal permeability in the jaundiced patient with improved clinical outcome.
Collapse
|
40
|
Jung C, Hugot JP, Barreau F. Peyer's Patches: The Immune Sensors of the Intestine. Int J Inflam 2010; 2010:823710. [PMID: 21188221 PMCID: PMC3004000 DOI: 10.4061/2010/823710] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/11/2010] [Indexed: 12/13/2022] Open
Abstract
The gut-associated lymphoid tissue (GALT) consists of isolated or aggregated lymphoid follicles forming Peyer's patches (PPs). By their ability to transport luminal antigens and bacteria, PPs can be considered as the immune sensors of the intestine. PPs functions like induction of immune tolerance or defense against pathogens result from the complex interplay between immune cells located in the lymphoid follicles and the follicle-associated epithelium. This crosstalk seems to be regulated by pathogen recognition receptors, especially Nod2. Although TLR exerts a limited role in PP homeotasis, Nod2 regulates the number, size, and T-cell composition of PPs, in response to the gut flora. In turn, CD4+ T-cells present in the PP are able to modulate the paracellular and transcellular permeabilities. Two human disorders, Crohn's disease and graft-versus-host disease are thought to be driven by an abnormal response toward the commensal flora. They have been associated with NOD2 mutations and PP dysfunction.
Collapse
Affiliation(s)
- Camille Jung
- UMR843 INSERM, Université Sorbonne Paris Cité-Diderot, Hôpital Robert Debré, 75019 Paris, France
| | | | | |
Collapse
|
41
|
Abstract
Mucosa-associated lymphoid tissue (MALT) plays pivotal roles in mucosal immune responses. Efficient delivery of antigens to MALT is a critical issue for the development of mucosal vaccines. Although claudin-4 is preferentially expressed in MALT in the gut, a claudin-4-targeting approach for mucosal vaccination has never been developed. In the present study, we found that claudin-4 is expressed in nasal MALT, and we prepared a fusion protein of ovalbumin (OVA) as a model antigen with a claudin-4-binder, the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) (OVA-C-CPE). Nasal immunization with OVA-C-CPE, but not a mixture of OVA and C-CPE, induced the production of OVA-specific serum IgG and nasal, vaginal and fecal IgA. Deletion of the claudin-4-binding region in OVA-C-CPE attenuated the induction of the immune responses. OVA-C-CPE immunization activated both Th1 and Th2 responses, and nasal immunization with OVA-C-CPE showed anti-tumor activity in mice inoculated with OVA-expressing thymoma cells. These results indicate that the claudin-4-targeting may be a potent strategy for nasal vaccination.
Collapse
|
42
|
Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. J Membr Biol 2010; 236:181-9. [PMID: 20697888 PMCID: PMC2927686 DOI: 10.1007/s00232-010-9289-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 07/19/2010] [Indexed: 12/14/2022]
Abstract
We have previously shown that protein kinase C (PKC) activation has distinct effects on the structure and barrier properties of cultured epithelial cells (HT29 and MDCK I). Since the claudin family of tight junction (TJ)-associated proteins is considered to be crucial for the function of mature TJ, we assessed their expression patterns and cellular destination, detergent solubility and phosphorylation upon PKC stimulation for 2 or 18 h with phorbol myristate acetate (PMA). In HT29 cells, claudins 1, 3, 4 and 5 and possibly claudin 2 were redistributed to apical cell–cell contacts after PKC activation and the amounts of claudins 1, 3 and 5, but not of claudin 2, were increased in cell lysates. By contrast, in MDCK I cells, PMA treatment resulted in redistribution of claudins 1, 3, 4 and 5 from the TJ and in reorganization of the proteins into more insoluble complexes. Claudins 1 and 4 were phosphorylated in both MDCK I and HT29 cells, but PKC-induced changes in claudin phosphorylation state were detected only in MDCK I cells. A major difference between HT29 and MDCK I cells, which have low and high basal transepithelial electrical resistance, respectively, was the absence of claudin 2 in the latter. Our findings show that PKC activation targets in characteristic ways the expression patterns, destination, detergent solubility and phosphorylation state of claudins in epithelial cells with different capacities to form an epithelial barrier.
Collapse
|
43
|
Wang N, Yu H, Ma J, Wu W, Zhao D, Shi X, Tian H, Jiang H. Evidence for tight junction protein disruption in intestinal mucosa of malignant obstructive jaundice patients. Scand J Gastroenterol 2010; 45:191-9. [PMID: 20095884 DOI: 10.3109/00365520903406701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain obscure. Integrated tight junctions (TJs) are essential for normal gut barrier function. TJ proteins, such as zonula occludens (ZO)-1, claudins and occludin, are indispensable to maintain the function of TJs. This study was undertaken to investigate whether TJ protein disruption occurs in the intestinal mucosa of malignant obstructive jaundice (MOJ) patients. MATERIAL AND METHODS Three groups were involved: Group A, MOJ patients whose bilirubin level was >or= 43 microM; Group B, MOJ patients without jaundice; and Group C, patients who underwent gastroscopy with negative findings (controls). Biopsy was done in all participants at the second part of the duodenum, distal to the ampulla of Vater. The morphological and ultrastructural changes of intestinal mucosa were observed. The distributions and expressions of the TJ proteins occludin, ZO-1, claudin-1 and claudin-4 in intestinal mucosa were evaluated by immunohistochemistry and Western blotting. RESULTS Histological examination showed a mild infiltration of the lamina propria by chronic inflammatory cells in Group A compared with Groups B and C. Duodenal architecture showed that the microvillus of Group A patients was loose, the structures of junctional complexes were disrupted and the gaps between cell junctions were wider. As shown by immunohistochemical staining and Western blotting, greatly reduced expressions of occludin, ZO-1 and claudin-1 protein were detected in Group A, whereas claudin-4 expression was significantly increased. CONCLUSIONS TJs in MOJ patients with jaundice were disrupted in the intestinal epithelium, which may have resulted from the alterations in TJ-related protein expression. TJ interruption may be a key factor contributing to intestinal mucosal barrier injury and increased intestinal permeability.
Collapse
Affiliation(s)
- Na Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The colonic epithelial lining undergoes constant replacement, driven by epithelial stem cells in crypts of Lieberkühn. Stem cells lost because of damage or disease can be replaced by adjacent crypts that undergo fission. The close proximity of an extraordinary number of luminal microbes creates a challenge for this repair process; infection must be prevented while immune system activation and epithelial stem cell genetic damage must be minimized. To understand the factors that modulate crypt/stem cell replacement in the mouse colon, we developed an in vivo acute injury system analogous to punch biopsy of the skin. In contrast to epidermal stem cells, colonic epithelial progenitors did not migrate over the wound bed. Instead, their proliferative expansion was confined to crypts adjacent to wound beds and was delayed to the latter phase of healing. This increased epithelial proliferation was coincident with the infiltration of Trem2 expressing macrophages and increased expression of IL-4 and IL-13 in the wound bed. Interestingly, Trem2(-/-) mice displayed slow and incomplete wound healing of colonic mucosal injuries. We found the latter phase of healing in Trem2(-/-) mice showed a diminished burst of epithelial proliferation, increased expression of IFN-gamma and TNF-alpha, diminished expression of IL-4 and IL-13, and increased markers of classical macrophage activation. Ablation of these cytokines in injured WT and Trem2(-/-) mice demonstrated that their expression ultimately determined the rate and nature of wound healing. These studies show that Trem2 signaling is an important pathway to promote healing of wounds in the colon where stem cell replacement is necessary.
Collapse
|
45
|
Assimakopoulos SF, Scopa CD, Vagianos CE. Pathophysiology of increased intestinal permeability in obstructive jaundice. World J Gastroenterol 2008. [PMID: 18161914 DOI: 10.3748/wjg.13.6458] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients' outcome.
Collapse
Affiliation(s)
- Stelios F Assimakopoulos
- Department of Internal Medicine, School of Medicine, University of Patras, Vironos 18, Patras 26224, Greece.
| | | | | |
Collapse
|
46
|
Assimakopoulos SF, Scopa CD, Vagianos CE. Pathophysiology of increased intestinal permeability in obstructive jaundice. World J Gastroenterol 2007; 13:6458-64. [PMID: 18161914 PMCID: PMC4611283 DOI: 10.3748/wjg.v13.i48.6458] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite advances in preoperative evaluation and postoperative care, intervention, especially surgery, for relief of obstructive jaundice still carries high morbidity and mortality rates, mainly due to sepsis and renal dysfunction. The key event in the pathophysiology of obstructive jaundice-associated complications is endotoxemia of gut origin because of intestinal barrier failure. This breakage of the gut barrier in obstructive jaundice is multi-factorial, involving disruption of the immunologic, biological and mechanical barrier. Experimental and clinical studies have shown that obstructive jaundice results in increased intestinal permeability. The mechanisms implicated in this phenomenon remain unresolved, but growing research interest during the last decade has shed light in our knowledge in the field. This review summarizes the current concepts in the pathophysiology of obstructive jaundice-induced gut barrier dysfunction, analyzing pivotal factors, such as altered intestinal tight junctions expression, oxidative stress and imbalance of enterocyte proliferation and apoptosis. Clinicians handling patients with obstructive jaundice should not neglect protecting the intestinal barrier function before, during and after intervention for the relief of this condition, which may improve their patients’ outcome.
Collapse
|
47
|
Comparative characterization of mouse rectum CMT93-I and -II cells by expression of claudin isoforms and tight junction morphology and function. Histochem Cell Biol 2007; 129:223-32. [PMID: 18034259 DOI: 10.1007/s00418-007-0360-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2007] [Indexed: 01/28/2023]
Abstract
Recent studies suggest that the morphological and physiological properties of tight junctions (TJs) are determined by the combination and mixing ratios of claudin isoforms. In this study, we tried to characterize mouse cell lines by expression of claudin isoforms to use for studying epithelial TJs by overexpression or suppression of claudin(s) in the cells and found that claudin-2 was expressed in a few mouse rectum carcinoma cells, CMT93 cells. We have isolated CMT93-I and -II cells from CMT93 cells by immunohistochemical screening for the presence or absence of claudin-2 expression. Immunofluorescence and RT-PCR analyses showed that expression of claudin-4, -6, -7 and -12 was detected in both cell lines, but claudin-2 was only expressed in CMT93-II cells. There were no differences in paracellular permeability between CMT93-I and -II cells examined by 4 kDa FITC-dextran and fluorescein sodium, or in the number of TJ strands examined by freeze-fracture electron microscopy. However, the transepithelial electrical resistance (TER) of CMT93-I cells was approximately 6.5 times higher than that of CMT93-II cells, suggesting that expression of claudin-2 may be related to decreased TER. Comparative examinations of CMT93-I and -II cells provide a clue how the combination and mixing ratios of claudin isoforms regulate the paracellular permeability.
Collapse
|
48
|
Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:588-600. [PMID: 17916321 DOI: 10.1016/j.bbamem.2007.08.017] [Citation(s) in RCA: 336] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/09/2007] [Accepted: 08/16/2007] [Indexed: 12/13/2022]
Abstract
Tight junctions contribute to the paracellular barrier, the fence dividing plasma membranes, and signal transduction, acting as a multifunctional complex in vertebrate epithelial and endothelial cells. The identification and characterization of the transmembrane proteins of tight junctions, claudins, junctional adhesion molecules (JAMs), occludin and tricellulin, have led to insights into the molecular nature of tight junctions. We provide an overview of recent progress in studies on these proteins and highlight their roles and regulation, as well as their functional significance in human diseases.
Collapse
Affiliation(s)
- Hideki Chiba
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | | | | | | | |
Collapse
|
49
|
Kunisawa J, Takahashi I, Kiyono H. Intraepithelial lymphocytes: their shared and divergent immunological behaviors in the small and large intestine. Immunol Rev 2007; 215:136-53. [PMID: 17291285 DOI: 10.1111/j.1600-065x.2006.00475.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the front line of the body's immunological defense system, the gastrointestinal tract faces a large number of food-derived antigens, allergens, and nutrients, as well as commensal and pathogenic microorganisms. To maintain intestinal homeostasis, the gut immune system regulates two opposite immunological reactions: immune activation and quiescence. With their versatile immunological features, intraepithelial lymphocytes (IELs) play an important role in this regulation. IELs are mainly composed of T cells, but these T cells are immunologically distinct from peripheral T cells. Not only do IELs differ immunologically from peripheral T cells but they are also comprised of heterogeneous populations showing different phenotypes and immunological functions, as well as trafficking and developmental pathways. Though IELs in the small and large intestine share common features, they have also developed differences as they adjust to the two different environments. This review seeks to shed light on the immunological diversity of small and large intestinal IELs.
Collapse
Affiliation(s)
- Jun Kunisawa
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
50
|
Gullberg E, Söderholm JD. Peyer's Patches and M Cells as Potential Sites of the Inflammatory Onset in Crohn's Disease. Ann N Y Acad Sci 2006; 1072:218-32. [PMID: 17057202 DOI: 10.1196/annals.1326.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Clinical observations suggest that the sites of initial inflammation in ileal Crohn's disease (CD) are the lymphoid follicles, where the aphtoid lesions originate from small erosions of the follicle-associated epithelium (FAE). Lymphoid follicles and Peyer's patches (PPs) consist of a number of B-cell follicles with intervening T cell areas. The T cell follicular area is also populated by dendritic cells (DCs) and macrophages. A single layer of epithelial cells covering each follicle forms a dome between the surrounding villi. This FAE differs from normal villus epithelium in several ways that make the epithelial cells of the FAE more exposed to the luminal contents, more accessible to antigens, and in closer contact with the immune system. The most prominent feature is the presence of specialized M cells, which are optimized for antigen adherence and transport. M cells play an important role in the surveillance of the intestinal lumen, but also provide a route of entry for various pathogens. In this article we review the current knowledge on the epithelial phenotype of the human FAE, and changes of the FAE and M cells in intestinal inflammation, leading to a hypothesis of the role of the FAE and M cells in the pathogenesis of CD.
Collapse
Affiliation(s)
- Elisabet Gullberg
- Colorectal Surgery Unit, Department of Surgery, University Hospital, SE-581 85 Linköping, Sweden
| | | |
Collapse
|