1
|
Yan LS, Kang JY, Gu CY, Qiu XY, Li JJ, Cheng BCY, Wang YW, Luo G, Zhang Y. Schisandra chinensis lignans ameliorate hepatic inflammation and steatosis in methionine choline-deficient diet-fed mice by modulating the gut-liver axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119801. [PMID: 40222688 DOI: 10.1016/j.jep.2025.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis is used as a traditional Chinese medicine to treat a variety of diseases. Schisandra chinensis lignans (SCL) are one of the most active components extracted from Schisandrae chinensis fructus, exhibit a broad array of pharmacological properties, especially anti-inflammatory and hepatic lipid-lowering effects, suggesting SCL may have potential anti-nonalcoholic steatohepatitis (NASH) ability. However, the therapeutic efficacy of SCL against NASH and the underlying mechanism of this action remains unclear. AIM OF THE STUDY In the current study, we aimed to investigate the anti-NASH action of SCL and explore the underlying mechanism in vitro and in vivo. We also assess the involvement of the gut-liver axis in the anti-NASH effects of SCL. METHODS Palmitic acid (PA)-treated HepG2 cells, mouse primary hepatocytes (MPHs) and methionine-choline deficient (MCD) diet-fed mice were selected as NASH models. ORO staining and qRT-PCR were performed to assess hepatic steatosis and inflammatory responses, respectively. Masson's trichrome staining was used to detect the liver fibrosis. Protein expression was detected by Western blotting or immunohistochemistry. The changes of gut microbiota were analyzed using 16S rDNA sequencing in mice. The levels of metabolites in liver and feces were measured by metabolomics. RESULTS The results showed that SCL treatment alleviated steatosis and inflammation in palmitic acid (PA)-treated HepG2 cells and mouse primary hepatocytes (MPHs). SCL treatment suppressed the phosphorylation of key components involved in NF-κB signaling and enhanced the expression of fatty acid oxidation (FAO)-related enzymes (e.g. CPT1, HMGCS2, and ACOX1) in PA-treated HepG2 cells. SCL could ameliorate hepatic steatosis and inflammation in NASH mice. SCL also ameliorated intestinal barrier injury and restructured the gut microbiota in NASH mice. SCL also modulated hepatic and colonic bile acid metabolism via FXR signaling. CONCLUSION These findings indicate that SCL treatment ameliorates hepatic inflammation and steatosis in NASH mice, potentially though to the suppression of NF-κB signaling and the promotion of fatty acid β-oxidation. Moreover, SCL could restore gut microbiota-mediated bile acid homeostasis via activation of FXR/FGF15 signaling. Our study presents a pharmacological rationale for using SCL in the management of NASH.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chun-Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jia-Jia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
2
|
Schauermann M, Wang R, Pons-Kuehnemann J, Hartmann MF, Remer T, Hua Y, Bereket A, Wasniewska M, Shmoish M, Hochberg Z, Gawlik A, Wudy SA. Targeted quantitative analysis of urinary bile acids by liquid chromatography-tandem mass spectrometry: Method development and application to healthy and obese children. J Steroid Biochem Mol Biol 2025; 249:106712. [PMID: 39988143 DOI: 10.1016/j.jsbmb.2025.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Bile acids (BA) are C24 steroids synthesized from cholesterol in liver. Hardly any data exist on BA in the most accessible human biofluid urine. As bile acids bear great potential as future biomarkers in diagnosis and monitoring of metabolic diseases, we aimed at developing and implementing a new method for the quantification of urinary bile acids using targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). A second goal consisted in creating first reference values of urinary bile acids during childhood and to investigate their excretion patterns in obese children and adolescents. Our method required 2 mL of urine and sample preparation consisting of protein precipitation and solid phase extraction. Stable isotopes of BA were included as internal standards (IS). Our method is capable of simultaneously determining 18 BA: the primary BA cholic acid (CA) and chenodeoxycholic acid (CDCA), and the secondary BA deoxycholic acid (DCA) and lithocholic acid (LCA) as well as glycine and taurine conjugates of these four BA. Furthermore, ursodeoxycholic acid (UDCA) and five BA in their sulfated forms (LCA-S, GLCA-S, TLCA-S, GCDCA-S, GDCA-S) were analyzed. After successful validation (intra-day precision 1.02 % - 11.07 %; inter-day precision 0.42-11.47 %.; intra-day accuracy 85.75 % - 108.90 %; inter-day accuracy 86.76 % - 110.99 %; no significant matrix effect; recovery 90.49 % - 113.99 %)., the method was applied to samples of 80 healthy children as well as 237 obese children of various age groups. Sulfated BA showed the highest concentrations, with GCDCA-S (nmol/L, medians, controls vs. obese 588.4 vs. 360.2) being the most abundant among all BA, followed by GLCA-S (353.9 vs. 344.8) and GDCA-S (319,3 vs. 323.9). CA (135.1 vs. 174.6) and GCA (100.2 vs. 92.4) were the two dominant non-sulfated BA. In conclusion, we developed a LC-MS/MS method for the simultaneous determination of 18 urinary bile acids in children and adolescents. We created reference values and investigated obese children. Sulfated bile acids dominated in both study groups. Lower bile acid sulfation and amidation in obese children point to limitations in their hepatic metabolic capacity.
Collapse
Affiliation(s)
- M Schauermann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - R Wang
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - J Pons-Kuehnemann
- Institute of Medical Informatics, Department of Medical Statistics, Justus Liebig University, Giessen, Germany
| | - M F Hartmann
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - T Remer
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - Y Hua
- DONALD Study Center, Department of Nutritional Epidemiology, Institute of Nutrition and Food Science, University of Bonn, Dortmund, Germany
| | - A Bereket
- Department of Pediatric Endocrinology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - M Wasniewska
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Italy
| | - M Shmoish
- Bioinformatics Knowledge Unit, Lorry I. Lokey Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Z Hochberg
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - A Gawlik
- Department of Pediatrics and Pediatric Endocrinology, School of Medicine in Katowice, Medical University of Silesia, Upper Silesia Children's Care Health Center, Katowice, Poland
| | - S A Wudy
- Steroid Research and Mass Spectrometry Unit, Division of Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
3
|
Cadena Sandoval M, Haeusler RA. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 2025; 21:203-213. [PMID: 39757322 PMCID: PMC12053743 DOI: 10.1038/s41574-024-01067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/07/2025]
Abstract
Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.
Collapse
Affiliation(s)
- Marti Cadena Sandoval
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Medicine, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA.
- Columbia Digestive and Liver Disease Research Center, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Reshetnyak VI, Maev IV. Bile acid therapy for primary biliary cholangitis: Pathogenetic validation. World J Exp Med 2025; 15:101771. [PMID: 40115760 PMCID: PMC11718588 DOI: 10.5493/wjem.v15.i1.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/26/2024] Open
Abstract
Knowledge of the etiological and pathogenetic mechanisms of the development of any disease is essential for its treatment. Because the cause of primary biliary cholangitis (PBC), a chronic, slowly progressive cholestatic liver disease, is still unknown, treatment remains symptomatic. Knowledge of the physicochemical properties of various bile acids and the adaptive responses of cholangiocytes and hepatocytes to them has provided an important basis for the development of relatively effective drugs based on hydrophilic bile acids that can potentially slow the progression of the disease. Advances in the use of hydrophilic bile acids for the treatment of PBC are also associated with the discovery of pathogenetic mechanisms of the development of cholangiocyte damage and the appearance of the first signs of this disease. For 35 years, ursodeoxycholic acid (UDCA) has been the unique drug of choice for the treatment of patients with PBC. In recent years, the list of hydrophilic bile acids used to treat cholestatic liver diseases, including PBC, has expanded. In addition to UDCA, the use of obeticholic acid, tauroursodeoxycholic acid and norursodeoxycholic acid as drugs is discussed. The pathogenetic rationale for treatment of PBC with various bile acid drugs is discussed in this review. Emphasis is made on the mechanisms explaining the beneficial therapeutic effects and potential of each of the bile acid as a drug, based on the understanding of the pathogenesis of the initial stages of PBC.
Collapse
Affiliation(s)
- Vasiliy I Reshetnyak
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| | - Igor V Maev
- Department of Propaedeutics of Internal Diseases and Gastroenterology, Russian University of Medicine, Moscow 127473, Russia
| |
Collapse
|
5
|
Chen S, Zheng Y, Cai J, Wu Y, Chen X. Gallstones after bariatric surgery: mechanisms and prophylaxis. Front Surg 2025; 12:1506780. [PMID: 40182307 PMCID: PMC11966458 DOI: 10.3389/fsurg.2025.1506780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Gallstones represent a common yet often underappreciated complication following bariatric surgery, with reported incidence rates ranging widely from 10.4% to 52.8% within the first postoperative year. Multiple factors contribute to gallstone formation in this setting, including intraoperative injury to the hepatic branch of the vagus nerve, alterations in bile composition, reduced food intake, shifts in gastrointestinal hormone levels, and dysbiosis of the gut microbiota. Notably, the risk of cholelithiasis varies by surgical procedure, with sleeve gastrectomy (SG) generally associated with a lower incidence compared to Roux-en-Y gastric bypass (RYGB). Prophylactic cholecystectomy during bariatric surgery may benefit patients with preexisting gallstones, whereas preserving the hepatic branch of the vagus is an important technical consideration, particularly in RYGB, to mitigate postoperative gallstone risk. Pharmacological interventions, such as ursodeoxycholic acid (UDCA), have demonstrated efficacy in preventing gallstones and reducing subsequent cholecystectomy rates. However, consensus is lacking on the optimal dosing, duration, and administration frequency of UDCA across different bariatric procedures. Additionally, dietary measures, such as moderate fat intake or fish oil supplementation, have shown promise in alleviating lithogenic processes. Emerging evidence supports the use of probiotics as a safe and patient-friendly adjunct or alternative to UDCA, given their ability to improve gut dysbiosis and reduce gallstone formation. Further high-quality studies are needed to define standardized prophylactic strategies that balance efficacy with patient adherence, offering personalized gallstone prevention protocols in the era of widespread bariatric surgery.
Collapse
Affiliation(s)
- Shenhao Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- The First Clinical Medical College, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yamin Zheng
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Cai
- Department of Health Management, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuzhao Wu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- The First Clinical Medical College, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- The First Clinical Medical College, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
You P, Ding M, Li X, Shao Y, Jiang T, Jia Y, Wang Y, Zhang X. Determining Urinary Bile Acid Profiles to Predict Maternal and Neonatal Outcomes in Patients with Intrahepatic Cholestasis of Pregnancy. Diagnostics (Basel) 2025; 15:657. [PMID: 40150000 PMCID: PMC11941055 DOI: 10.3390/diagnostics15060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is associated with an elevated risk of adverse perinatal outcomes, including perinatal morbidity and mortality. The objectives of this study were to evaluate the bile acid (BA) metabolism profiles in the urine of patients with ICP and to investigate the association between specific BAs and maternal and neonatal outcomes in patients with ICP. Methods: A total of 127 Chinese women with ICP and 55 healthy pregnant women were enrolled in our retrospective study. Spot urine samples and clinical data were collected from pregnant women from January 2019 to December 2022 at the First Affiliated Hospital of Chongqing Medical University, Chongqing. Based on total bile acid (TBA) levels, the ICP group was subdivided into mild (10-40 μmol/L) and severe (≥40 μmol/L) ICP groups. Patients in the ICP group were further divided into two categories according to neonatal outcomes: an ICP with adverse pregnancy outcomes group and an ICP with non-adverse pregnancy outcomes group. Metabolites from maternal urine were collected and analyzed using ultra-high-performance liquid chromatography-triple quadrupole time-of-flight mass spectroscopy (UPLC-triple TOF-MS). Results: Significant differences were observed between the mild and severe ICP groups in the onset time of symptoms, gestational weeks at time of ICP diagnosis, the duration of using ursodeoxycholic acid (UDCA) drugs during pregnancy, gestational age at delivery, premature delivery, and cesarean delivery. The expression levels of the composition of different urinary bile acids including THCA, TCA, T-ω-MCA, TCA-3-S, TCDCA-3-S, TDCA-3-S, GCDCA-3-S, DCA-3-G and GDCA-3-G were remarkably higher in the ICP with adverse pregnancy outcomes group than those in the ICP with non-adverse pregnancy outcomes group and the control group. The single-parameter model used to predict adverse pregnancy outcomes in ICP had similar areas under the curve (AUCs) of the receiver operating characteristic (ROC), ranging from 0.755 to 0.869. However, an AUC of 0.886 and 95% CI were obtained by the index of combined urinary bile acids in multiple prediction models (95% CI 0.790 to 0.983, p < 0.05). TCA-3-S in the urinary bile acids had a strong positive correlation with the aspartate aminotransferase (AST) level (r = 0.617, p < 0.05). Furthermore, TCDCA-3-S and GCDCA-3-S in the urinary bile acids had a strong positive correlation with the alanine aminotransferase (ALT) level (r = 0.607, p < 0.05; r = 0.611, p < 0.05) and AST level (r = 0.629, p < 0.05; r = 0.619, p < 0.05). Conclusions: Maternal urinary bile acid profiles were prominent for the prognosis of maternal and neonatal outcomes of ICP. Elevated levels of TCA-3-S, TCDCA-3-S, and GCDCA-3-S in urine might be important predictors for indicating adverse pregnancy outcomes in ICP.
Collapse
Affiliation(s)
- Ping You
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Min Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Xue Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China;
| | - Tingting Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yuanyuan Jia
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Yuxuan Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| | - Xiaoqing Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education of China), School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China; (P.Y.); (M.D.); (X.L.); (T.J.); (Y.J.); (Y.W.)
| |
Collapse
|
7
|
Liao L, Liu Z, Liu L, Huang C, Li Y, Mao C, Xu R, Liu H, Liu C, Peng Y, Lei T, Liang H, Yu S, Qian J, Wu X, Wang B, Lin Y, Zhou J, Li Q, Li C, Wang K. Targeting the ceramidase ACER3 attenuates cholestasis in mice by mitigating bile acid overload via unsaturated ceramide-mediated LXRβ signaling transduction. Nat Commun 2025; 16:2112. [PMID: 40025008 PMCID: PMC11873283 DOI: 10.1038/s41467-025-57330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
Bile acid overload critically drives the pathogenesis of cholestatic liver injury (CLI). While ceramide metabolism has garnered increasing interest in liver research, the role of ceramides in CLI remains unclear. This study investigates the function of alkaline ceramidase 3 (ACER3)-catalyzed hydrolysis of unsaturated ceramides in CLI. Using clinical specimens, this work finds that ACER3 expression is upregulated in the cholestatic liver and positively correlated with the severity of CLI in patients. Acer3 ablation increases ceramide(d18:1/18:1) and attenuates bile duct ligation-induced CLI in female mice with reduced hepatic necrosis, inflammation, and fibrosis. However, it does not significantly impact CLI in male mice. Moreover, ceramide(d18:1/18:1) treatment attenuates CLI in wild-type female mice. Similarly, ACER3 knockdown and ceramide(d18:1/18:1) treatment prevent lithocholic-acid-induced cell death in human-liver-derived HepG2 cells. Mechanistically, ceramide(d18:1/18:1) binds the ligand binding domain of the liver X receptor β, acting as an agonist to activate its transcriptional functions. This activation upregulates sulfotransferase 2A1-catalyzed bile acid sulfation, normalizes bile acid metabolism, and restores lipogenesis, thereby reducing bile acid overload in hepatocytes to attenuate CLI. Our findings uncover the role of ceramide(d18:1/18:1)-liver X receptor β signaling in mitigating bile acid overload in the cholestatic liver, offering mechanistic insights and suggesting therapeutic potential for targeting ACER3 and ceramide(d18:1/18:1) for CLI.
Collapse
Affiliation(s)
- Leyi Liao
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziying Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Liu
- Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Can Huang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cungui Mao
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Ruijuan Xu
- Department of Medicine and Cancer Center, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Haiqing Liu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Cuiting Liu
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Yonghong Peng
- Central Laboratory, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hanbiao Liang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Qian
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianqiu Wu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixiong Lin
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Zhou
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qingping Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Chuanjiang Li
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Kai Wang
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
De Vos K, Mols R, Chatterjee S, Huang MC, Augustijns P, Wolters JC, Annaert P. In Vitro-In Silico Models to Elucidate Mechanisms of Bile Acid Disposition and Cellular Aerobics in Human Hepatocytes. AAPS J 2025; 27:51. [PMID: 40016501 DOI: 10.1208/s12248-024-01010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025] Open
Abstract
Understanding the kinetics of hepatic processes, such as bile acid (BA) handling and cellular aerobic metabolism, is crucial for advancing our knowledge of liver toxicity, particularly drug-induced cholestasis (DiCho). This article aimed to construct interpretable models with parameter estimations serving as reference values when investigating these cell metrics. Longitudinal datasets on BA disposition and oxygen consumption rates were collected using sandwich-cultured human hepatocytes. Chenodeoxycholic acid (CDCA), lithocholic acid (LCA), as well as their amidated and sulfate-conjugated metabolites were quantified with liquid chromatography-mass spectrometry. The bile salt export pump (BSEP) abundance was monitored with targeted proteomics and modelled for activity assessment. Oxygen consumption was measured using Seahorse XFp analyser. Ordinary differential equation-based models were solved in R. The basolateral uptake and efflux clearance of glycine-conjugated CDCA (GCDCA) were estimated at 1.22 µL/min/106 cells (RSE 14%) and 0.11 µL/min/106 cells (RSE 10%), respectively. The GCDCA clearance from canaliculi back to the medium was 2.22 nL/min/106 cells (RSE 17%), and the dissociation constant between (G)CDCA and FXR for regulating BSEP abundance was 25.73 nM (RSE 11%). Sulfation clearance for LCA was 0.19 µL/min/106 cells (RSE 11%). Model performance was further demonstrated by a maximum two-fold deviation of the 95% confidence boundaries from parameter estimates. These in vitro-in silico models provide a quantitative framework for exploring xenobiotic impacts on BA disposition, BSEP activity, and cellular aerobic metabolism in hepatocytes. Model simulations were consistent with reported in vivo data in progressive familial intrahepatic cholestasis type II patients.
Collapse
Affiliation(s)
- Kristof De Vos
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Raf Mols
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Sagnik Chatterjee
- DMPK Department, AstraZeneca, Västra Götaland County, Gothenburg, Sweden
| | - Miao-Chan Huang
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Herestraat 49, KU Leuven, 3000, Leuven, Belgium.
- BioNotus GCV, 2845, Niel, Belgium.
| |
Collapse
|
9
|
Ashiqueali SA, Hayslip N, Chaudhari DS, Schneider A, Zhu X, Rubis B, Seavey CE, Alam MT, Hussein R, Noureddine SA, Golusinska-Kardach E, Pazdrowski P, Yadav H, Masternak MM. Fecal microbiota transplant from long-living Ames dwarf mice alters the microbial composition and biomarkers of liver health in normal mice. GeroScience 2025:10.1007/s11357-025-01539-3. [PMID: 39904968 DOI: 10.1007/s11357-025-01539-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Aging is associated with intestinal dysbiosis, a condition characterized by diminished microbial biodiversity and inflammation. This leads to increased vulnerability to extraintestinal manifestations such as autoimmune, metabolic, and neurodegenerative conditions thereby accelerating mortality. As such, modulation of the gut microbiome is a promising way to extend healthspan. In this study, we explore the effects of fecal microbiota transplant (FMT) from long-living Ames dwarf donors to their normal littermates, and vice versa, on the recipient gut microbiota and liver transcriptome. Importantly, our previous studies highlight differences between the microbiome of Ames dwarf mice relative to their normal siblings, potentially contributing to their extended lifespan and remarkable healthspan. Our findings demonstrate that FMT from Ames dwarf mice to normal mice significantly alters the recipient's gut microbiota, potentially reprogramming bacterial functions related to healthy aging, and changes the liver transcriptome, indicating improved metabolic health. Particularly, the microbiome of Ames dwarf mice, characterized by a higher abundance of beneficial bacterial families such as Peptococcaceae, Oscillospiraceae, and Lachnospiraceae, appears to play a crucial role in modulating these effects. Alongside, our mRNA sequencing and RT-PCR validation reveals that FMT may contribute to the significant downregulation of p21, Elovl3, and Insig2, genes involved with cellular senescence and liver metabolic pathways. Our data suggest a regulatory axis exists between the gut and liver, highlighting the potential of microbiome-targeted therapies in promoting healthy aging. Future research should focus on functional validation of altered microbial communities and explore the underlying biomolecular pathways that confer geroprotection.
Collapse
Affiliation(s)
- Sarah A Ashiqueali
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Natalie Hayslip
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- University of South Florida (USF) Morsani College of Medicine, Tampa, FL, USA
| | - Diptaraj S Chaudhari
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xiang Zhu
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznań University of Medical Sciences, Poznań, Poland
| | - Corey E Seavey
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Md Tanjim Alam
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ridwan Hussein
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Sarah A Noureddine
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Ewelina Golusinska-Kardach
- Department of Dental Surgery, Periodontology and Oral Mucosa Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Pawel Pazdrowski
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA
- Poznan University of Medical Sciences, Student Scientific Association, Poznan, Poland
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
10
|
Cook MA, Phelps SM, Tutol JN, Adams DA, Dodani SC. Illuminating anions in biology with genetically encoded fluorescent biosensors. Curr Opin Chem Biol 2025; 84:102548. [PMID: 39657518 PMCID: PMC11788029 DOI: 10.1016/j.cbpa.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Anions are critical to all life forms. Anions can be absorbed as nutrients or biosynthesized. Anions shape a spectrum of fundamental biological processes at the organismal, cellular, and subcellular scales. Genetically encoded fluorescent biosensors can capture anions in action across time and space dimensions with microscopy. The firsts of such technologies were reported more than 20 years for monoatomic chloride and polyatomic cAMP anions. However, the recent boom of anion biosensors illuminates the unknowns and opportunities that remain for toolmakers and end users to meet across the aisle to spur innovations in biosensor designs and applications for discovery anion biology. In this review, we will canvas progress made over the last three years for biologically relevant anions that are classified as halides, oxyanions, carboxylates, and nucleotides.
Collapse
Affiliation(s)
- Mariah A Cook
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby M Phelps
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jasmine N Tutol
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Derik A Adams
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Sheel C Dodani
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
11
|
Tiley JB, Beaudoin JJ, Derebail VK, Murphy WA, Park CC, Veeder JA, Tran L, Beers JL, Jia W, Stewart PW, Brouwer KL. Altered bile acid and coproporphyrin-I disposition in patients with autosomal dominant polycystic kidney disease. Br J Clin Pharmacol 2025; 91:353-364. [PMID: 39317666 PMCID: PMC12001807 DOI: 10.1111/bcp.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/22/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
AIMS Serum, liver and urinary bile acids are increased, and hepatic transport protein levels are decreased in a non-clinical model of polycystic kidney disease. Similar changes in patients with autosomal dominant polycystic kidney disease (ADPKD) may predispose them to drug-induced liver injury (DILI) and hepatic drug-drug interactions (DDIs). Systemic coproporphyrin-I (CP-I), an endogenous biomarker for hepatic OATP1B function and MRP2 substrate, is used to evaluate OATP1B-mediated DDI risk in humans. In this clinical observational cohort-comparison study, bile acid profiles and CP-I concentrations in healthy volunteers and patients with ADPKD were compared. METHODS Serum and urine samples from healthy volunteers (n = 16) and patients with ADPKD (n = 8) were collected. Serum bile acids, and serum and urine CP-I concentrations, were quantified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). RESULTS Patients with ADPKD exhibited increased serum concentrations of total (1.3-fold) and taurine-conjugated (2.8-fold) bile acids compared to healthy volunteers. Specifically, serum concentrations of six bile acids known to be more hydrophobic/hepatotoxic (glycochenodeoxycholate, taurochenodeoxycholate, taurodeoxycholate, lithocholate, glycolithocholate and taurolithocholate) were increased (1.5-, 2.9-, 2.8-, 1.6-, 1.7- and 2.7-fold, respectively) in patients with ADPKD. Furthermore, serum CP-I concentrations were elevated and the renal clearance of CP-I was reduced in patients with ADPKD compared to healthy volunteers. CONCLUSIONS Increased exposure to bile acids may increase susceptibility to DILI in some patients with ADPKD. Furthermore, the observed increase in serum CP-I concentrations could be attributed, in part, to impaired OATP1B function in patients with ADPKD, which could increase the risk of DDIs involving OATP1B substrates compared to healthy volunteers.
Collapse
Affiliation(s)
- Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - James J. Beaudoin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vimal K. Derebail
- UNC Kidney Center, Division of Nephrology and Hypertension, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christine C. Park
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin A. Veeder
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lana Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica L. Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Paul W. Stewart
- Department of Biostatistics, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Singh P, Swanson KS, Saunders-Blades J, Oba PM, Squires EJ, Shoveller AK. Whole pulse ingredient inclusion in macronutrient-balanced diets increased fecal concentrations of propionic acid but not total bile acids in healthy adult large-breed dogs after 20 weeks. J Anim Sci 2025; 103:skaf075. [PMID: 40065638 PMCID: PMC12019969 DOI: 10.1093/jas/skaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/07/2025] [Indexed: 04/25/2025] Open
Abstract
This study investigated the effects of up to 45% inclusion of whole pulse ingredients in grain-free (GF) diets on the excretion of bile acids (BAs) and other fecal metabolites in healthy large-breed dogs. Twenty-eight adult Siberian Huskies were fed 1 of 4 experimental diets formulated to meet the same macronutrient profiles for 20 wk: 1) grain-inclusive diet with 45% corn (Ctl), 2) GF diet with 15% pulses (Pulse15), 3) GF diet with 30% pulses (Pulse30), 4) GF diet with 45% pulses (Pulse45). All diets included chicken meal and pea starch. Fecal samples were collected on weeks 2 and 19. Bile acids were analyzed using ultra-performance liquid chromatography-MRM/MS technology, while fecal metabolites were analyzed using Agilent HP1000 high-performance liquid chromatography. Bile acids and fecal metabolite data were analyzed using the PROC GLIMMIX procedure in SAS studios (SAS version 9.4, SAS Inst., Inc., Cary, NC). All means were separated using the Tukey-Kramer adjustment (significant when P < 0.05). After 20 wk of feeding, concentrations of lithocholic acid were greater in Pulse15 and Pulse30 than Ctl (P = 0.001), but all were similar to Pulse45. Concentrations of deoxycholic (P = 0.054), lithocholic (P = 0.001), total secondary (P = 0.022), and total BA (P = 0.045) tended to be linearly associated with dietary pulse inclusion. Dogs consuming Pulse30 had greater fecal propionic acid concentrations than Ctl (P = 0.017), but both were similar to Pulse15 and Pulse45. Total branched-chain fatty acids (P = 0.001) and iso-butyric acid (P < 0.0001) were greater in Ctl than in all pulse groups. Inversely, arabinose concentrations were greater in all pulse groups compared to Ctl (P = 0.001). In summary, diets with up to 45% inclusion of whole pulse ingredients do not increase total BA excretion but may contribute to greater short-chain fatty acids production.
Collapse
Affiliation(s)
- Pawanpreet Singh
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61820USA
| | | | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61820USA
| | - E James Squires
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, CanadaN1G 2W1
| |
Collapse
|
13
|
Yang J, Bowman AP, Buck WR, Kohnken R, Good CJ, Wagner DS. Mass Spectrometry Imaging Distinguishes Biliary Toxicants on the Basis of Cellular Distribution. Toxicol Pathol 2025; 53:55-64. [PMID: 39665321 DOI: 10.1177/01926233241303890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Mass spectrometry imaging (MSI) was used to investigate and provide insights into observed biliary pathology found in dogs and rats after administration of two different compounds. Both compounds were associated with peribiliary inflammatory infiltrates and proliferation of the bile duct epithelium. However, MSI revealed very different spatial distribution profiles for the two compounds: Compound A showed significant accumulation within the bile duct epithelium with a much higher concentration than in the parenchymal hepatocytes, while Compound T exhibited only a slight increase in the bile duct epithelium compared to parenchymal hepatocytes. These findings implicate cholangiocyte uptake and accumulation as a key step in the mechanism of biliary toxicity. In both cases, compounds are shown at the site of toxicity in support of a direct mechanism of toxicity on the biliary epithelium. MSI is a powerful tool for localizing small molecules within tissue sections and improvements in sensitivity have enabled localization down to the cellular level in some cases. MSI was also able to identify biomarker candidates of toxicity by differential analysis of ion profiles comparing treated and control cholangiocytes from tissue sections.
Collapse
|
14
|
Romo EZ, Hong BV, Agus JK, Jin Y, Kang JW, Zivkovic AM. A low-dose prebiotic fiber supplement reduces lipopolysaccharide-binding protein concentrations in a subgroup of young, healthy adults consuming low-fiber diets. Nutr Res 2025; 133:138-147. [PMID: 39733508 PMCID: PMC12045461 DOI: 10.1016/j.nutres.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 11/30/2024] [Indexed: 12/31/2024]
Abstract
Although the beneficial effects of fiber supplementation on overall health and the gut microbiome are well-known, it is not clear whether fiber supplementation can also alter the concentrations of lipopolysaccharide-binding protein (LBP), a marker of intestinal permeability. A secondary analysis of a previously conducted study was performed. In the randomized-order, placebo-controlled, double-blinded, cross-over study 20 healthy, young participants consuming a low-fiber diet at baseline were administered a daily dose of 12 g of prebiotic fiber compared with a placebo over a period of 4 weeks with a 4-week washout between arms. In this secondary analysis, we hypothesized that the fiber supplement would reduce LBP concentration. We further hypothesized that lecithin cholesterol acyltransferase activity, a measure of high-density lipoprotein functional capacity, would be altered. Fiber supplementation did not significantly alter LBP concentration or lecithin cholesterol acyltransferase activity in the overall cohort. However, in a subgroup of individuals with elevated baseline LBP concentrations, fiber supplementation significantly reduced LBP from 9.27 ± 3.52 to 7.02 ± 2.32 µg/mL (P = .003). Exploratory analyses found positive correlations between microbial genes involved in lipopolysaccharide synthesis and conversely negative correlations with genes involved in antibiotic synthesis and LBP. Positive correlations between LBP and multiple sulfated molecules including sulfated bile acids and perfluorooctanesulfonate, and ibuprofen metabolites were also found. These findings highlight multiple environmental and lifestyle factors such as exposure to industrial chemicals and medication intake, in addition to diet, which may influence the association between the gut microbiome and gut barrier function.
Collapse
Affiliation(s)
- Eduardo Z Romo
- Department of Nutrition, University of California, Davis, CA, USA
| | - Brian V Hong
- Department of Nutrition, University of California, Davis, CA, USA
| | - Joanne K Agus
- Department of Nutrition, University of California, Davis, CA, USA
| | - Yanshan Jin
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jea Woo Kang
- Department of Nutrition, University of California, Davis, CA, USA
| | | |
Collapse
|
15
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
16
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
17
|
Duffel MW. Cytosolic sulfotransferases in endocrine disruption. Essays Biochem 2024; 68:541-553. [PMID: 38699885 PMCID: PMC11531609 DOI: 10.1042/ebc20230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
The mammalian cytosolic sulfotransferases (SULTs) catalyze the sulfation of endocrine hormones as well as a broad array of drugs, environmental chemicals, and other xenobiotics. Many endocrine-disrupting chemicals (EDCs) interact with these SULTs as substrates and inhibitors, and thereby alter sulfation reactions responsible for metabolism and regulation of endocrine hormones such as estrogens and thyroid hormones. EDCs or their metabolites may also regulate expression of SULTs through direct interaction with nuclear receptors and other transcription factors. Moreover, some sulfate esters derived from EDCs (EDC-sulfates) may serve as ligands for endocrine hormone receptors. While the sulfation of an EDC can lead to its excretion in the urine or bile, it may also result in retention of the EDC-sulfate through its reversible binding to serum proteins and thereby enable transport to other tissues for intracellular hydrolysis and subsequent endocrine disruption. This mini-review outlines the potential roles of SULTs and sulfation in the effects of EDCs and our evolving understanding of these processes.
Collapse
Affiliation(s)
- Michael W Duffel
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, IA 52242, U.S.A
| |
Collapse
|
18
|
An P, Fan Y, Wang Q, Huang N, Chen H, Sun J, Du Z, Zhang C, Li J. Cholic acid activation of GPBAR1 does not induce or exacerbate acute pancreatitis but promotes exocrine pancreatic secretion. Biochem Biophys Res Commun 2024; 735:150825. [PMID: 39426134 DOI: 10.1016/j.bbrc.2024.150825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Obstruction of bile ducts due to gallstones can lead to biliary acute pancreatitis (BAP). According to Perides et al., G protein-coupled bile acid receptor-1 (GPBAR1) mediates BAP. However, Zi's findings suggest that GPR39, rather than GPBAR1, mediates TLCAS-induced increases in cytosolic calcium and acinar cell necrosis, casting doubt on the role of GPBAR1 in BAP. Numerous G protein-coupled receptors on pancreatic acinar cells utilize Ca2+ and cyclic adenosine monophosphate (cAMP) as second messengers to manage pancreatic exocrine secretion, with significant cross-talk between these signals. The primary bile acid cholic acid (CA) and its conjugated forms are predominant in the human gallbladder. This study aimed to clarify the role and physiological significance of GPBAR1 by investigating the physiological and pathological effects of CA activation on GPBAR1 in pancreatic acinar cells. Isolated rat pancreatic acinar cells were treated with CA and CCK in vitro to observe the effect of CA-induced cAMP signaling on CCK-induced physiological and pathological calcium signaling. In vivo evaluations involved reverse biliopancreatic duct injections of 5 % sodium taurocholate (STC) or 5 % CA in rats. CA induced intracellular cAMP signaling in a concentration-dependent manner without increasing the intracellular Ca2+ concentration. CA did not independently cause calcium overload or enzyme activation, nor did it exacerbate calcium overload or enzyme activation from high-dose CCK. Reverse biliopancreatic duct injections of 5 % CA did not cause acute pancreatitis in the rats. Transcriptomic analysis revealed that 50 μM CA induced changes in gene expression related to protein synthesis in the endoplasmic reticulum and ribosomes. Furthermore, 50 μM CA accelerated the calcium waves and increased the enzyme secretion induced by CCK. GPBAR1 was found on the basolateral membrane in rat pancreatic tissue rather than near the apical region of acinar cells. GPBAR1 activation is not crucial for BAP activity but may play a role in bile acid regulation of pancreatic exocrine secretion, suggesting that GPBAR1 is a potential therapeutic target for pancreatic exocrine insufficiency.
Collapse
Affiliation(s)
- Peng An
- Department of Integrated Chinese Traditional and Western Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Yudan Fan
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Qian Wang
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Haiyan Chen
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Ziwei Du
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
19
|
Liu P, Jin M, Hu P, Sun W, Tang Y, Wu J, Zhang D, Yang L, He H, Xu X. Gut microbiota and bile acids: Metabolic interactions and impacts on diabetic kidney disease. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100315. [PMID: 39726973 PMCID: PMC11670419 DOI: 10.1016/j.crmicr.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
The intestinal microbiota comprises approximately 1013-1014 species of bacteria and plays a crucial role in host metabolism by facilitating various chemical reactions. Secondary bile acids (BAs) are key metabolites produced by gut microbiota.Initially synthesized by the liver, BA undergoes structural modifications through the activity of various intestinal microbiota enzymes, including eukaryotic, bacterial, and archaeal enzymes. These modified BA then activate specific receptors that regulate multiple metabolic pathways in the host, such as lipid and glucose metabolism, energy balance, inflammatory response, and cell proliferation and death. Recent attention has been given to intestinal flora disorders in diabetic kidney disease (DKD), where activation of BA receptors has shown promise in alleviating diabetic kidney damage by modulating renal lipid metabolism and mitochondrial production. Imbalances in the intestinal flora can influence the progression of DKD through the regulation of bile acid and its receptor pathways. This review aims to propose a mechanism involving the gut-BA-diabetes and nephropathy axes with the goal of optimizing new strategies for treating DKD.
Collapse
Affiliation(s)
| | | | - Ping Hu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Weiqian Sun
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuyan Tang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Jiajun Wu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dongliang Zhang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Licai Yang
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Haidong He
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Xudong Xu
- Division of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Zhang Q, Lu L, Wang J, Lu M, Liu D, Zhou C, Liu Z. Metabolomic profiling reveals the step-wise alteration of bile acid metabolism in patients with diabetic kidney disease. Nutr Diabetes 2024; 14:85. [PMID: 39384774 PMCID: PMC11464666 DOI: 10.1038/s41387-024-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the major complication of diabetes concomitant with gut dysbiosis and glycometabolic disorder, which are strongly associated with bile acid (BA) metabolism. Yet studies investigating the BA metabolism involving in DKD pathogenesis are limited. This study aimed to explore the metabolomic profiling of BAs in DKD and analyze its association with DKD progression. METHODS An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established to quantify BAs in the plasma, fecal and urine samples of patients with DKD or T2DM and healthy individuals (n = 30 for each group). The key BAs associated with DKD were identified by orthogonal partial least-squares discriminant analysis (OPLS-DA) and receiver-operating characteristic (ROC) curve. Polynomial regression and Pearson's correlation analyses were performed to assess the correlation between the key BAs and the clinical indicators reflecting DKD progression. RESULTS Metabolomic profiling of 50 kinds of BAs presented the markedly step-wise alterations of BAs in plasma and feces as well as the little in urine of patients with DKD. Eight kinds of BAs in the plasma, eight kinds in the feces and three kinds in the urine were abnormally expressed, accompanying with the increased conjugated/unconjugated ratios of cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and hyocholic acid in the plasma, and of cholic acid, chenodeoxycholic acid and lithocholic acid in the feces. Moreover, the increased plasma level of glycochenodeoxycholic acid, and the increased fecal levels of glycolithocholic acid, 7-ketodeoxycholic acid and chenodeoxycholic acid-3-β-D-glucuronide are strongly correlated with the clinical indicators reflecting DKD progression, including eGFR, 24 h urinary protein and 24 h urinary microalbumin. CONCLUSIONS Our study for the first time disclosed the specific alterations of BA metabolism reflecting the step-wise progression of DKD, providing the basis for early identification and therapeutical strategies for DKD.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Liqian Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Jiao Wang
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Manman Lu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China
| | - Chunyu Zhou
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, China.
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
21
|
Zhang K, Zhang T, Guo M, Cuoji A, Xu Y, Zhao Y, Yang Y, Brugger D, Wang X, Suo L, Wu Y, Chen Y. Early-life milk replacer feeding mediates lipid metabolism disorders induced by colonic microbiota and bile acid profiles to reduce body weight in goat model. J Anim Sci Biotechnol 2024; 15:118. [PMID: 39227902 PMCID: PMC11373095 DOI: 10.1186/s40104-024-01072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/30/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Dysregulation of lipid metabolism and its consequences on growth performance in young ruminants have attracted attention, especially in the context of alternative feeding strategies. This study aims to elucidate the effects of milk replacer (MR) feeding on growth, lipid metabolism, colonic epithelial gene expression, colonic microbiota composition and systemic metabolism in goat kids compared to breast milk (BM) feeding, addressing a critical knowledge gap in early life nutrition. METHODS Ten female goat kids were divided into 2 groups: those fed breast milk (BM group) and those fed a milk replacer (MR group). Over a period of 28 d, body weight was monitored and blood and tissue samples were collected for biochemical, transcriptomic and metabolomic analyses. Profiling of the colonial microbiota was performed using 16S rRNA gene sequencing. Intestinal microbiota transplantation (IMT) experiments in gnotobiotic mice were performed to validate causality. RESULTS MR-fed pups exhibited reduced daily body-weight gain due to impaired lipid metabolism as evidenced by lower serum and liver total cholesterol (TC) and non-esterified fatty acid (NEFA) concentrations. Transcriptomic analysis of the colonic epithelium revealed upregulated genes involved in negative regulation of lipid metabolism, concomitant with microbiota shifts characterized by a decrease in Firmicutes and an increase in Actinobacteria. Specifically, genera such as Bifidobacterium and Prevotella were enriched in the MR group, while Clostridium and Faecalibacterium were depleted. Metabolomics analyses confirmed alterations in bile acid and fatty acid metabolic pathways. IMT experiments in mice recapitulated the metabolic phenotype observed in MR-fed goats, confirming the role of the microbiota in modulating host lipid metabolism. CONCLUSIONS Milk replacer feeding in goat kids disrupts lipid metabolism and gut microbiota dynamics, resulting in reduced growth rates and metabolic alterations. These findings highlight the importance of early nutritional intervention on metabolic programming and suggest that modulation of the gut microbiota may be a target for improving growth and metabolic health in ruminants. This study contributes to the understanding of nutritional management strategies in livestock and their impact on animal health and productivity.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ting Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mengmeng Guo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling , Shaanxi, 712100, China
| | - Awang Cuoji
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yitong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China.
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China.
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
22
|
Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, Tian W, Wang S, Liu X, Yuan X, Wang Y, Li L, Feng B, Li Z, Guo X, Qiu J, Zhang C, Hou J, Sun Y, Yang X, Zuo X, Heikenwalder M, Li Y, Yuan D, Li S. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metab 2024; 36:2086-2103.e9. [PMID: 38971153 DOI: 10.1016/j.cmet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuesong Liu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yiyuan Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, Medical faculty, University Tübingen, Ottfried-Müller Strasse 37, Tübingen, Germany.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China; Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
23
|
Palmiotti A, Berk KA, Koehorst M, Hovingh MV, Pranger AT, van Faassen M, de Boer JF, van der Valk ES, van Rossum EFC, Mulder MT, Kuipers F. Reversal of insulin resistance in people with obesity by lifestyle-induced weight loss does not impact the proportion of circulating 12α-hydroxylated bile acids. Diabetes Obes Metab 2024; 26:4019-4029. [PMID: 38957937 DOI: 10.1111/dom.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 07/04/2024]
Abstract
AIM Bile acids (BAs) are implicated in the pathogenesis of several metabolic syndrome-related diseases, including insulin resistance (IR) and type 2 diabetes (T2D). It has been reported that IR and T2D are associated with an increased ratio of 12α/non-12α-hydroxylated BAs in the circulating BA pool. It is, however, unknown whether the improvement of insulin sensitivity inversely affects BA composition in humans. Therefore, we assessed whether lifestyle-induced weight loss induces changes in BA metabolism in people with obesity, with or without T2D, and if these changes are associated with metabolic parameters. MATERIALS AND METHODS Individual BAs and C4 were quantified by ultra-high-performance liquid chromatography-tandem mass spectrometry in plasma samples collected from two cohorts of people with obesity (OB) and with T2D and obesity (T2D), before and after a lifestyle intervention. RESULTS Lifestyle-induced weight loss improved glycaemic control in both cohorts, with plasma BA concentrations not affected by the lifestyle interventions. The ratio of 12α/non-12α-hydroxylated BAs remained unchanged in OB (p = .178) and even slightly increased upon intervention in T2D (p = .0147). Plasma C4 levels were unaffected in OB participants (p = .20) but significantly reduced in T2D after intervention (p = .0003). There were no significant correlations between the ratio of 12α/non-12α-hydroxylated BAs and glucose, insulin, or homeostatic model assessment-IR, nor in plasma triglycerides, low-density lipoprotein cholesterol, lipoprotein (a) in the T2D cohort. CONCLUSIONS Lifestyle-induced weight loss did improve glycaemic control but did not affect BA concentrations. Improvements in insulin sensitivity were not associated with changes in BA parameters in people with obesity, with or without T2D.
Collapse
Affiliation(s)
- Anna Palmiotti
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kirsten A Berk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martijn Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Milaine V Hovingh
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alle T Pranger
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Obesity Centre CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Internal Medicine, Obesity Centre CGG, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department for the Biology of Ageing, European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Umemura M, Honda A, Yamashita M, Chida T, Noritake H, Yamamoto K, Honda T, Ichimura-Shimizu M, Tsuneyama K, Miyazaki T, Kurono N, Leung PSC, Gershwin ME, Suda T, Kawata K. High-fat diet modulates bile acid composition and gut microbiota, affecting severe cholangitis and cirrhotic change in murine primary biliary cholangitis. J Autoimmun 2024; 148:103287. [PMID: 39033687 DOI: 10.1016/j.jaut.2024.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Increasing evidence suggests that, in addition to a loss of tolerance, bile acid (BA) modulates the natural history of primary biliary cholangitis (PBC). We focused on the impacts of dietary changes on the immunopathology of PBC, along with alterations in BA composition and gut microbiota. In this study, we have taken advantage of our unique PBC model, a Cyp2c70/Cyp2a12 double knockout (DKO), which includes a human-like BA composition, and develops progressive cholangitis following immunization with the PDC-E2 mimic, 2-octynoic acid (2OA). We compared the effects of a ten-week high-fat diet (HFD) (60 % kcal from fat) and a normal diet (ND) on 2OA-treated DKO mice. Importantly, we report that 2OA-treated DKO mice fed HFD had significantly exacerbated cholangitis, leading to cirrhosis, with increased hepatic expression of Th1 cytokines/chemokines and hepatic fibrotic markers. Serum lithocholic acid (LCA) levels and the ratio of chenodeoxycholic acid (CDCA)-derived BAs to cholic acid-derived BAs were significantly increased by HFD. This was also associated with downregulated expression of key regulators of BA synthesis, including Cyp8b1, Cyp3a11, and Sult2a1. In addition, there were increases in the relative abundances of Acetatifactor and Lactococcus and decreases in Desulfovibrio and Lachnospiraceae_NK4A136_group, which corresponded to the abundances of CDCA and LCA. In conclusion, HFD and HFD-induced alterations in the gut microbiota modulate BA composition and nuclear receptor activation, leading to cirrhotic change in this murine PBC model. These findings have significant implications for understanding the progression of human PBC.
Collapse
Affiliation(s)
- Masahiro Umemura
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Teruo Miyazaki
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
25
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
26
|
Gonzalez E, Lee MD, Tierney BT, Lipieta N, Flores P, Mishra M, Beckett L, Finkelstein A, Mo A, Walton P, Karouia F, Barker R, Jansen RJ, Green SJ, Weging S, Kelliher J, Singh NK, Bezdan D, Galazska J, Brereton NJB. Spaceflight alters host-gut microbiota interactions. NPJ Biofilms Microbiomes 2024; 10:71. [PMID: 39209868 PMCID: PMC11362537 DOI: 10.1038/s41522-024-00545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
The ISS rodent habitat has provided crucial insights into the impact of spaceflight on mammals, inducing symptoms characteristic of liver disease, insulin resistance, osteopenia, and myopathy. Although these physiological responses can involve the microbiome on Earth, host-microbiota interactions during spaceflight are still being elucidated. We explore murine gut microbiota and host gene expression in the colon and liver after 29 and 56 days of spaceflight using multiomics. Metagenomics revealed significant changes in 44 microbiome species, including relative reductions in bile acid and butyrate metabolising bacteria like Extibacter muris and Dysosmobacter welbionis. Functional prediction indicate over-representation of fatty acid and bile acid metabolism, extracellular matrix interactions, and antibiotic resistance genes. Host gene expression described corresponding changes to bile acid and energy metabolism, and immune suppression. These changes imply that interactions at the host-gut microbiome interface contribute to spaceflight pathology and that these interactions might critically influence human health and long-duration spaceflight feasibility.
Collapse
Affiliation(s)
- E Gonzalez
- Microbiome Unit, Canadian Centre for Computational Genomics, Department of Human Genetics, McGill University, Montréal, Canada
- Centre for Microbiome Research, McGill University, Montréal, Canada
| | - M D Lee
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - N Lipieta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - P Flores
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - M Mishra
- Grossman School of Medicine, New York University, New York, USA
| | - L Beckett
- University of Nottingham, Nottingham, NG7 2RD, UK
| | - A Finkelstein
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - A Mo
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - P Walton
- NASA GeneLab for High Schools (GL4HS) program, NASA Ames Research Centre, Moffett Field, CA, USA
| | - F Karouia
- Exobiology Branch, NASA Ames Research Centre, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Centre for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - R Barker
- Blue Marble Space Institute of Science, Seattle, WA, USA
- Yuri GmbH, Wiesentalstr. 40, 88074, Meckenbeuren, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - R J Jansen
- Department of Public Health, North Dakota State University, Fargo, ND, USA
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA
| | - S J Green
- Genomics and Microbiome Core Facility, Rush University Medical Centre, 1653 W. Congress Parkway, Chicago, IL, 60612, USA
| | - S Weging
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - J Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - N K Singh
- Department of Industrial Relations, Division of Occupational Safety and Health, Oakland, USA
| | - D Bezdan
- University of Wisconsin-Madison, Madison, WI, USA
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- NGS Competence Centre Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - J Galazska
- Space Biosciences Research Branch, NASA Ames Research Centre, Moffett Field, CA, USA
| | - N J B Brereton
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
27
|
Sudo K, Delmas-Eliason A, Soucy S, Barrack KE, Liu J, Balasubramanian A, Shu CJ, James MJ, Hegner CL, Dionne HD, Rodriguez-Palacios A, Krause HM, O'Toole GA, Karpen SJ, Dawson PA, Schultz D, Sundrud MS. Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101392. [PMID: 39179177 PMCID: PMC11490680 DOI: 10.1016/j.jcmgh.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUNDS & AIMS Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools. METHODS Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2. RESULTS Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to exvivo-cultured ileal explants. CONCLUSIONS This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
Collapse
Affiliation(s)
- Koichi Sudo
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Amber Delmas-Eliason
- Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida
| | - Shannon Soucy
- Department of Biomedical Data Science, Geisel School of Medicine, Hanover, New Hampshire
| | - Kaitlyn E Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akshaya Balasubramanian
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | | | | | - Courtney L Hegner
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida
| | - Henry D Dionne
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia; Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Mark S Sundrud
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire; Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire.
| |
Collapse
|
28
|
Komorniak N, Pawlus J, Gaweł K, Hawryłkowicz V, Stachowska E. Cholelithiasis, Gut Microbiota and Bile Acids after Bariatric Surgery-Can Cholelithiasis Be Prevented by Modulating the Microbiota? A Literature Review. Nutrients 2024; 16:2551. [PMID: 39125429 PMCID: PMC11314327 DOI: 10.3390/nu16152551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Cholelithiasis is one of the more common complications following bariatric surgery. This may be related to the rapid weight loss during this period, although the exact mechanism of gallstone formation after bariatric surgery has not been fully elucidated. METHODS The present literature review focuses on risk factors, prevention options and the impact of the gut microbiota on the development of gallbladder stones after bariatric surgery. RESULTS A potential risk factor for the development of cholelithiasis after bariatric surgery may be changes in the composition of the intestinal microbiota and bile acids. One of the bile acids-ursodeoxycholic acid-is considered to reduce the concentration of mucin proteins and thus contribute to reducing the formation of cholesterol crystals in patients with cholelithiasis. Additionally, it reduces the risk of both asymptomatic and symptomatic gallstones after bariatric surgery. Patients who developed gallstones after bariatric surgery had a higher abundance of Ruminococcus gnavus and those who did not develop cholelithiasis had a higher abundance of Lactobacillaceae and Enterobacteriaceae. CONCLUSION The exact mechanism of gallstone formation after bariatric surgery has not yet been clarified. Research suggests that the intestinal microbiota and bile acids may have an important role in this.
Collapse
Affiliation(s)
- Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Jan Pawlus
- Department of General Mini-Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Katarzyna Gaweł
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (V.H.); (E.S.)
| |
Collapse
|
29
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
30
|
Zhou R, Zhe L, Lai SS, Wen HM, Hu L, Zhang XL, Zhuo Y, Xu SY, Lin Y, Feng B, Che LQ, Wu D, Fang ZF. Dietary sodium sulphate supplementation during mid-to-late gestation improves placental angiogenesis, bile acid metabolism, and serum amino acid concentrations of sows. Animal 2024; 18:101237. [PMID: 39053158 DOI: 10.1016/j.animal.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Sulphate plays a vital role in the growth and development of the foetus. Sodium sulphate (Na2SO4) is utilised as a dietary protein nutrient factor and helps replenish sulphur elements in livestock and poultry. Therefore, this study aimed to investigate the effects of Na2SO4 supplementation in mid to late pregnancy on bile acid metabolism, amino acid metabolism, placental vascular development and antioxidant capacity of sows. At day 1 of gestation (G1), a total of twenty-six primiparous sows were carefully chosen and randomised into two groups: (1) control group, (2) Na2SO4 group (1.40 g/kg). Blood samples and placentas from sows were collected to measure biochemistry parameters, antioxidant indexes, placental vascular density, and indicators related to bile acid metabolism and amino acid concentrations, respectively. We found that dietary supplementation with Na2SO4 had a tendency for a reduction of incidence of stillborn at farrowing. Further observation showed that sows supplemented with Na2SO4 had decreased total bile acid level in cord blood, and increased placental gene expression of sulphotransferase and organic anion transport peptide. Na2SO4 supplementation increased catalase and total superoxide dismutase activity in cord blood, decreased placental malondialdehyde content, and enhanced placental protein expression of Sirtuin 1. Moreover, Na2SO4 consumption resulted in increased vascular density of placental stroma and elevated amino acid levels in sows and cord blood. Furthermore, maternal Na2SO4 consumption reduced serum urea concentrations of sows and umbilical cord blood at G114. In addition, dietary supplementation with Na2SO4 activated the protein expression of the placental mechanistic target of rapamycin complex 1. Collectively, these findings indicated that maternal supplementation with Na2SO4 during mid-to-late gestation elevated foetal survival via improving placental angiogenesis, bile acid metabolism and amino acid utilisation.
Collapse
Affiliation(s)
- R Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Zhe
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - S S Lai
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - H M Wen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Hu
- Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - X L Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
31
|
Leibovitzh H, Nayeri S, Borowski K, Hernandez-Rocha C, Lee SH, Turpin W, Stempak JM, Sandhu I, Milgrom R, Smith MI, Croitoru K, Hirschfield GM, Gulamhusein A, Silverberg MS. Inflammatory bowel disease associated with primary sclerosing cholangitis is associated with an altered gut microbiome and bile acid profile. J Crohns Colitis 2024; 18:jjae096. [PMID: 38980940 PMCID: PMC11637524 DOI: 10.1093/ecco-jcc/jjae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 07/11/2024]
Abstract
BACKGROUND Primary sclerosing cholangitis associated with inflammatory bowel disease (IBD-PSC) carries significant morbidity compared to IBD without PSC. Alterations in microbial composition and bile acid (BA) profiles have been shown to modulate chronic inflammation in IBD, but data in IBD-PSC is scarce. We aimed to assess the differences in gut microbiome composition as well as in the BA profile and BA-related microbial functions between IBD-PSC and IBD-only. METHODS 54 IBD-PSC and 62 IBD-only subjects were enrolled from 2012 to 2021. Baseline samples were collected for fecal DNA shotgun metagenomic sequencing, fecal and serum BA quantitation using mass spectrometry and fecal calprotectin. Liver fibrosis measured by transient elastography (TE) was assessed in the IBD-PSC group. Data was analyzed using general linear regression models and Spearman rank correlation tests. RESULTS Patients with IBD-PSC had reduced microbial gene richness (p=0.004) and significant compositional shifts (PERMANOVA: R2=0.01, p=0.03) compared to IBD-only. IBD-PSC was associated with altered microbial composition and function, including decreased abundance of Blautia obeum, increased abundance of Veillonella atypica, Veillonella dispar and Clostridium scindens (q<0.05 for all), and increased abundance of microbial genes involved in secondary BA metabolism. Decreased serum sulfated and increased serum conjugated secondary BA were associated with IBD-PSC and increased liver fibrosis. CONCLUSION We identified differences in microbial species, functional capacity and serum BA profiles in IBD-PSC compared with IBD-only. Our findings provide insight into the pathophysiology of IBD associated with PSC and suggest possible targets for modulating the risk and course of IBD in subjects with PSC.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Shadi Nayeri
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Krzysztof Borowski
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Cristian Hernandez-Rocha
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Sun-Ho Lee
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Williams Turpin
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Joanne M Stempak
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Iqbaljit Sandhu
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Raquel Milgrom
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Kenneth Croitoru
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Gideon M Hirschfield
- University of Toronto, Toronto Centre of Liver Disease – Division of Gastroenterology & Hepatology, Toronto, Canada
| | - Aliya Gulamhusein
- University of Toronto, Toronto Centre of Liver Disease – Division of Gastroenterology & Hepatology, Toronto, Canada
| | - Mark S Silverberg
- Temetry Faculty of Medicine, Department of Medicine, University of Toronto, Toronto, Canada
- Zane Cohen Centre for Digestive Diseases – Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| |
Collapse
|
32
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
33
|
Jadalannagari S, Ewart L. Beyond the hype and toward application: liver complex in vitro models in preclinical drug safety. Expert Opin Drug Metab Toxicol 2024; 20:607-619. [PMID: 38465923 DOI: 10.1080/17425255.2024.2328794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Drug induced Liver-Injury (DILI) is a leading cause of drug attrition and complex in vitro models (CIVMs), including three dimensional (3D) spheroids, 3D bio printed tissues and flow-based systems, could improve preclinical prediction. Although CIVMs have demonstrated good sensitivity and specificity in DILI detection their adoption remains limited. AREAS COVERED This article describes DILI, the challenges with its prediction and the current strategies and models that are being used. It reviews data from industry-FDA collaborations and strategic partnerships and finishes with an outlook of CIVMs in preclinical toxicity testing. Literature searches were performed using PubMed and Google Scholar while product information was collected from manufacturer websites. EXPERT OPINION Liver CIVMs are promising models for predicting DILI although, a decade after their introduction, routine use by the pharmaceutical industry is limited. To accelerate their adoption, several industry-regulator-developer partnerships or consortia have been established to guide the development and qualification. Beyond this, liver CIVMs should continue evolving to capture greater immunological mimicry while partnering with computational approaches to deliver systems that change the paradigm of predicting DILI.
Collapse
Affiliation(s)
| | - Lorna Ewart
- Department of Bioinnovations, Emulate Inc, Boston, MA, USA
| |
Collapse
|
34
|
Ito E, Yamasaki S. Regulation of MAIT cells through host-derived antigens. Front Immunol 2024; 15:1424987. [PMID: 38979423 PMCID: PMC11228242 DOI: 10.3389/fimmu.2024.1424987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
35
|
Tang X, Chen X, Ferrari M, Walvoort MTC, de Vos P. Gut Epithelial Barrier Function is Impacted by Hyperglycemia and Secondary Bile Acids in Vitro: Possible Rescuing Effects of Specific Pectins. Mol Nutr Food Res 2024; 68:e2300910. [PMID: 38794856 DOI: 10.1002/mnfr.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Gut epithelial barrier disruption is commonly observed in Western diseases like diabetes and inflammatory bowel disease (IBD). Enhanced epithelial permeability triggers inflammatory responses and gut microbiota dysbiosis. Reduced bacterial diversity in IBD affects gut microbiota metabolism, altering microbial products such as secondary bile acids (BAs), which potentially play a role in gut barrier regulation and immunity. Dietary fibers such as pectin may substitute effects of these BAs. The study examines transepithelial electrical resistance of gut epithelial T84 cells and the gene expression of tight junctions after exposure to (un)sulfated secondary BAs. This is compared to the impact of the dietary fiber pectin with different degrees of methylation (DM) and blockiness (DB), with disruption induced by calcium ionophore A23187 under both normal and hyperglycemic conditions. Unsulfated lithocholic acid (LCA) and deoxycholic acid (DCA) show a stronger rescuing effect, particularly evident under 20 mM glucose levels. DM19 with high DB (HB) and DM43HB pectin exhibit rescuing effects under both glucose conditions. Notably, DM19HB and DM43HB display higher rescue effects under 20 mM glucose compared to 5 mM glucose. The study demonstrates that specific pectins such as DM19HB and DM43HB may serve as alternatives for preventing barrier disruption in the case of disturbed DCA metabolism.
Collapse
Affiliation(s)
- Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Xiaochen Chen
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
36
|
Mireault M, Rose CF, Karvellas CJ, Sleno L. Perturbations in human bile acid profiles following drug-induced liver injury investigated using semitargeted high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9731. [PMID: 38469943 DOI: 10.1002/rcm.9731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
RATIONALE Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF) in North America. To investigate the effect of drug-induced liver injury (DILI) on circulating bile acid (BA) profiles, serum from ALF patients and healthy controls were analyzed using a semitargeted high-resolution mass spectrometry approach to measure BAs in their unconjugated and amidated forms and their glucuronide and sulfate conjugates. METHODS Human serum samples from 20 healthy volunteers and 34 ALF patients were combined with deuterated BAs and extracted, prior to liquid chromatography high-resolution tandem mass spectrometry analysis. A mix of 46 standards helped assign 26 BAs in human serum by accurate mass and retention time matching. Moreover, other isomers of unconjugated and amidated BAs, as well as glucuronide and sulfate conjugates, were assigned by accurate mass filtering. In vitro incubations of standard BAs provided increased information for certain peaks of interest. RESULTS A total of 275 BA metabolites, with confirmed or putative assignments, were measured in human serum samples. APAP overdose significantly influenced the levels of most BAs, promoting glycine conjugation, and, to a lesser extent, taurine conjugation. When patient outcome was considered, 11 BAs were altered significantly, including multiple sulfated species. Although many of the BAs measured did not have exact structures assigned, several putatively identified BAs of interest were further characterized using in vitro incubations. CONCLUSION An optimized chromatographic separation tailored to BAs of ranging polarities was combined with accurate mass measurements to investigate the effect that DILI has on their complex profiles and metabolism to a much wider extent than previously possible. The analysis of complex BA profiles enabled in-depth analysis of the BA metabolism perturbations in ALF, including certain metabolites related to patient outcomes.
Collapse
Affiliation(s)
- Myriam Mireault
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| | - Christopher F Rose
- Hepato-Neuro Lab, CRCHUM, Montréal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Constantine J Karvellas
- Department of Critical Care Medicine and Gastroenterology/Hepatology, University of Alberta, Edmonton, Alberta, Canada
| | - Lekha Sleno
- Department of Chemistry/CERMO-FC, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
37
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
38
|
Niu C, Xie X, Liu R, Liang X, Hu Y, Lai Y. CYP7A1 Gene Induction via SHP-Dependent or Independent Mechanisms can Increase the Risk of Drug-Induced Liver Injury Independently or in Synergy with BSEP Inhibition. Drug Metab Dispos 2024; 52:432-441. [PMID: 38485279 DOI: 10.1124/dmd.124.001675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024] Open
Abstract
Drug-induced liver injury (DILI) is a frequent cause of clinical trial failures during drug development. While inhibiting bile salt export pump (BSEP) is a well-documented DILI mechanism, interference with genes related to bile acid (BA) metabolism and transport can further complicate DILI development. Here, the effects of twenty-eight compounds on genes associated with BA metabolism and transport were evaluated, including those with discontinued development or use, boxed warnings, and clean labels for DILI. The study also included rifampicin and omeprazole, pregnane X receptor and aryl hydrocarbon receptor ligands, and four mitogen-activated protein kinase kinase (MEK1/2) inhibitors. BSEP inhibitors with more severe DILI, notably pazopanib and CP-724714, significantly upregulated the expression of 7 alpha-hydroxylase (CYP7A1), independent of small heterodimer partner (SHP) expression. CYP7A1 expression was marginally induced by omeprazole. In contrast, its expression was suppressed by mometasone (10-fold), vinblastine (18-fold), hexachlorophene (2-fold), bosentan (2.1-fold), and rifampin (2-fold). All four MEK1/2 inhibitors that show clinical DILI were not potent BSEP inhibitors but significantly induced CYP7A1 expression, accompanied by a significant SHP gene suppression. Sulfotransferase 2A1 and BSEP were marginally upregulated, but no other genes were altered by the drugs tested. Protein levels of CYP7A1 were increased with the treatment of CYP7A1 inducers and decreased with obeticholic acid, an farnesoid X receptor ligand. CYP7A1 inducers significantly increased bile acid (BA) production in hepatocytes, indicating the overall regulatory effects of BA metabolism. This study demonstrates that CYP7A1 induction via various mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition, and it should be evaluated early in drug discovery. SIGNIFICANCE STATEMENT: Kinase inhibitors, pazopanib and CP-724714, inhibit BSEP and induce CYP7A1 expression independent of small heterodimer partner (SHP) expression, leading to increased bile acid (BA) production and demonstrating clinically elevated drug-induced liver toxicity. MEK1/2 inhibitors that show BSEP-independent drug-induced liver injury (DILI) induced the CYP7A1 gene accompanied by SHP suppression. CYP7A1 induction via SHP-dependent or independent mechanisms can pose a risk for DILI, independently or in synergy with BSEP inhibition. Monitoring BA production in hepatocytes can reliably detect the total effects of BA-related gene regulation for de-risking.
Collapse
Affiliation(s)
- Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaodong Xie
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Renmeng Liu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yiding Hu
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, California
| |
Collapse
|
39
|
Dekker SEI, Bierau J, Giera M, Blomberg N, Drenth JPH, Mayboroda OA, de Fijter JW, Soonawala D. Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide. Eur J Clin Invest 2024; 54:e14147. [PMID: 38071418 DOI: 10.1111/eci.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.
Collapse
Affiliation(s)
- Shosha E I Dekker
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, the Netherlands
| |
Collapse
|
40
|
D'Agostino GD, Chaudhari SN, Devlin AS. Host-microbiome orchestration of the sulfated metabolome. Nat Chem Biol 2024; 20:410-421. [PMID: 38347214 PMCID: PMC11095384 DOI: 10.1038/s41589-023-01526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 04/01/2024]
Abstract
Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host-microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host-microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.
Collapse
Affiliation(s)
- Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Mohanty I, Mannochio-Russo H, Schweer JV, El Abiead Y, Bittremieux W, Xing S, Schmid R, Zuffa S, Vasquez F, Muti VB, Zemlin J, Tovar-Herrera OE, Moraïs S, Desai D, Amin S, Koo I, Turck CW, Mizrahi I, Kris-Etherton PM, Petersen KS, Fleming JA, Huan T, Patterson AD, Siegel D, Hagey LR, Wang M, Aron AT, Dorrestein PC. The underappreciated diversity of bile acid modifications. Cell 2024; 187:1801-1818.e20. [PMID: 38471500 DOI: 10.1016/j.cell.2024.02.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Joshua V Schweer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Wout Bittremieux
- Department of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium
| | - Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Robin Schmid
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Felipe Vasquez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Valentina B Muti
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, USA; Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Jasmine Zemlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar E Tovar-Herrera
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Sarah Moraïs
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Dhimant Desai
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, USA
| | - Imhoi Koo
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, Kraepelinstrasse 2-10, Munich 80804, Germany; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel; Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jennifer A Fleming
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Tao Huan
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver Campus, Vancouver, BC, Canada
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80210, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
42
|
Kurogi K, Suiko M, Sakakibara Y. Evolution and multiple functions of sulfonation and cytosolic sulfotransferases across species. Biosci Biotechnol Biochem 2024; 88:368-380. [PMID: 38271594 DOI: 10.1093/bbb/zbae008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Organisms have conversion systems for sulfate ion to take advantage of the chemical features. The use of biologically converted sulfonucleotides varies in an evolutionary manner, with the universal use being that of sulfonate donors. Sulfotransferases have the ability to transfer the sulfonate group of 3'-phosphoadenosine 5'-phosphosulfate to a variety of molecules. Cytosolic sulfotransferases (SULTs) play a role in the metabolism of low-molecular-weight compounds in response to the host organism's living environment. This review will address the diverse functions of the SULT in evolution, including recent findings. In addition to the diversity of vertebrate sulfotransferases, the molecular aspects and recent studies on bacterial and plant sulfotransferases are also addressed.
Collapse
Affiliation(s)
- Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
43
|
Talavera Andújar B, Mary A, Venegas C, Cheng T, Zaslavsky L, Bolton EE, Heneka MT, Schymanski EL. Can Small Molecules Provide Clues on Disease Progression in Cerebrospinal Fluid from Mild Cognitive Impairment and Alzheimer's Disease Patients? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4181-4192. [PMID: 38373301 PMCID: PMC10919072 DOI: 10.1021/acs.est.3c10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease, which is currently diagnosed via clinical symptoms and nonspecific biomarkers (such as Aβ1-42, t-Tau, and p-Tau) measured in cerebrospinal fluid (CSF), which alone do not provide sufficient insights into disease progression. In this pilot study, these biomarkers were complemented with small-molecule analysis using non-target high-resolution mass spectrometry coupled with liquid chromatography (LC) on the CSF of three groups: AD, mild cognitive impairment (MCI) due to AD, and a non-demented (ND) control group. An open-source cheminformatics pipeline based on MS-DIAL and patRoon was enhanced using CSF- and AD-specific suspect lists to assist in data interpretation. Chemical Similarity Enrichment Analysis revealed a significant increase of hydroxybutyrates in AD, including 3-hydroxybutanoic acid, which was found at higher levels in AD compared to MCI and ND. Furthermore, a highly sensitive target LC-MS method was used to quantify 35 bile acids (BAs) in the CSF, revealing several statistically significant differences including higher dehydrolithocholic acid levels and decreased conjugated BA levels in AD. This work provides several promising small-molecule hypotheses that could be used to help track the progression of AD in CSF samples.
Collapse
Affiliation(s)
- Begoña Talavera Andújar
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Arnaud Mary
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Carmen Venegas
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Tiejun Cheng
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Leonid Zaslavsky
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Evan E. Bolton
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Michael T. Heneka
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| |
Collapse
|
44
|
Xu P, Xi Y, Kim JW, Zhu J, Zhang M, Xu M, Ren S, Yang D, Ma X, Xie W. Sulfation of chondroitin and bile acids converges to antagonize Wnt/ β-catenin signaling and inhibit APC deficiency-induced gut tumorigenesis. Acta Pharm Sin B 2024; 14:1241-1256. [PMID: 38487006 PMCID: PMC10935170 DOI: 10.1016/j.apsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] Open
Abstract
Sulfation is a crucial and prevalent conjugation reaction involved in cellular processes and mammalian physiology. 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the primary enzyme to generate the universal sulfonate donor PAPS. The involvement of PAPSS2-mediated sulfation in adenomatous polyposis coli (APC) mutation-promoted colonic carcinogenesis has not been reported. Here, we showed that the expression of PAPSS2 was decreased in human colon tumors along with cancer stages, and the lower expression of PAPSS2 was correlated with poor prognosis in advanced colon cancer. Gut epithelial-specific heterozygous Apc deficient and Papss2-knockout (ApcΔgut-HetPapss2Δgut) mice were created, and the phenotypes were compared to the spontaneous intestinal tumorigenesis of ApcΔgut-Het mice. ApcΔgut-HetPapss2Δgut mice were more sensitive to gut tumorigenesis, which was mechanistically accounted for by the activation of Wnt/β-catenin signaling pathway due to the suppression of chondroitin sulfation and inhibition of the farnesoid X receptor (FXR)-transducin-like enhancer of split 3 (TLE3) gene regulatory axis. Chondroitin sulfate supplementation in ApcΔgut-HetPapss2Δgut mice alleviated intestinal tumorigenesis. In summary, we have uncovered the protective role of PAPSS2-mediated chondroitin sulfation and bile acids-FXR-TLE3 activation in the prevention of gut carcinogenesis via the antagonization of Wnt/β-catenin signaling. Chondroitin sulfate may be explored as a therapeutic agent for Papss2 deficiency-associated colonic carcinogenesis.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jong-Won Kim
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
45
|
Rowe JC, Winston JA. Collaborative Metabolism: Gut Microbes Play a Key Role in Canine and Feline Bile Acid Metabolism. Vet Sci 2024; 11:94. [PMID: 38393112 PMCID: PMC10892723 DOI: 10.3390/vetsci11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bile acids, produced by the liver and secreted into the gastrointestinal tract, are dynamic molecules capable of impacting the overall health of dogs and cats in many contexts. Importantly, the gut microbiota metabolizes host primary bile acids into chemically distinct secondary bile acids. This review explores the emergence of new literature connecting microbial-derived bile acid metabolism to canine and feline health and disease. Moreover, this review highlights multi-omic methodologies for translational research as an area for continued growth in veterinary medicine aimed at accelerating microbiome science and medicine as it pertains to bile acid metabolism in dogs and cats.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| |
Collapse
|
46
|
Zi Z, Rao Y. Discoveries of GPR39 as an evolutionarily conserved receptor for bile acids and of its involvement in biliary acute pancreatitis. SCIENCE ADVANCES 2024; 10:eadj0146. [PMID: 38306436 PMCID: PMC10836733 DOI: 10.1126/sciadv.adj0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal diseases. Bile acids (BAs) were proposed to be a cause of AP nearly 170 years ago, though the underlying mechanisms remain unclear. Here, we report that two G protein-coupled receptors, GPR39 and GHSR, mediated cellular responses to BAs. Our results revealed GPR39 as an evolutionarily conserved receptor for BAs, particularly 3-O-sulfated lithocholic acids. In cultured cell lines, GPR39 is sufficient for BA-induced Ca2+ elevation. In pancreatic acinar cells, GPR39 mediated BA-induced Ca2+ elevation and necrosis. Furthermore, AP induced by BAs was significantly reduced in GPR39 knockout mice. Our findings provide in vitro and in vivo evidence demonstrating that GPR39 is necessary and sufficient to mediate BA signaling, highlighting its involvement in biliary AP pathogenesis, and suggesting it as a promising therapeutic target for biliary AP.
Collapse
Affiliation(s)
- Zhentao Zi
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yi Rao
- Chinese Institutes for Medical Research, Beijing (CIMR, Beijing) and the State Key Laboratory of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, School of Pharmaceutical Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Changping Laboratory, Chinese Institute of Brain Research Beijing and Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
47
|
Tang M, Xiong L, Cai J, Fu J, Liu H, Ye Y, Yang L, Xing S, Yang X. Intrahepatic cholestasis of pregnancy: insights into pathogenesis and advances in omics studies. Hepatol Int 2024; 18:50-62. [PMID: 37957532 DOI: 10.1007/s12072-023-10604-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease. It is characterized by pruritus, abnormal liver function and elevated total bile acid (TBA) levels, increasing the risk of maternal and fetal adverse outcomes. Its etiology remains poorly elucidated. Over the years, various omics techniques, including metabolomics, microbiome, genomics, etc., have emerged with the advancement of bioinformatics, providing a new direction for exploring the pathogenesis, diagnosis and treatment of ICP. In this review, we first summarize the role of bile acids and related components in the pathogenesis of ICP and then further illustrate the results of omics studies.
Collapse
Affiliation(s)
- Mi Tang
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liling Xiong
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianghui Cai
- Department of Pharmacy, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinzhu Fu
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hong Liu
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Ying Ye
- Operating Theater, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Li Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - ShaSha Xing
- GCP Institution, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Xiao Yang
- Obstetrics Department, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
48
|
Ito E, Inuki S, Izumi Y, Takahashi M, Dambayashi Y, Ciacchi L, Awad W, Takeyama A, Shibata K, Mori S, Mak JYW, Fairlie DP, Bamba T, Ishikawa E, Nagae M, Rossjohn J, Yamasaki S. Sulfated bile acid is a host-derived ligand for MAIT cells. Sci Immunol 2024; 9:eade6924. [PMID: 38277465 PMCID: PMC11147531 DOI: 10.1126/sciimmunol.ade6924] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2024] [Indexed: 01/28/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuki Dambayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ami Takeyama
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kensuke Shibata
- Department of Microbiology and Immunology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi 755-8505, Japan
| | - Shotaro Mori
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
49
|
Ma Y, Cao Y, Song X, Min C, Man Z, Li Z. BART: A transferable liquid chromatography retention time library for bile acids. J Chromatogr A 2024; 1715:464602. [PMID: 38159405 DOI: 10.1016/j.chroma.2023.464602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Identification of unknown bile acids, especially the distinguishment between isomers, requires retention times of a large number of reference standards, which are often not commercially available. Meanwhile, published retention information cannot be directly transferred across labs due to the differences between liquid chromatography (LC) systems, such as different extra column volume and dwell volume. To improve this situation, a transferrable retention time library for bile acids named BART was developed. BART was composed of isocratic retention models of 272 bile acids and a software tool to predict their gradient retention times on various LC systems. The isocratic retention times of bile acids were acquired on a Waters BEH C18 column with mobile phases of acidic ammonium acetate buffer and acetonitrile, and fit to the quadratic solvent strength model (QSSM). Segmented linear gradient retention times were calculated with holdup time (t0), dwell time (tD) and actual gradient profile corrected using 21 bile acid calibration standards. In addition to the reference system where the isocratic retention times were acquired, this approach has been validated on four other LC-MS systems in four labs with two gradient methods. Average root mean square errors (RMSE) between predicted and experimental retention times were 0.052 and 0.054 min for the two gradients tested, which were 9-fold more accurate than referring to a static retention time library. The library is freely available at https://bafinder.github.io/.
Collapse
Affiliation(s)
- Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| | - Yang Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaocui Song
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chunyan Min
- Suzhou Institute for Drug Control, Suzhou 215104, China
| | - Zhuo Man
- SCIEX China, Beijing 100015, China
| | - Zhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
50
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiome carbon and sulfur metabolisms support Salmonella during pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575907. [PMID: 38293109 PMCID: PMC10827160 DOI: 10.1101/2024.01.16.575907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.
Collapse
|