1
|
Hicks R, Gozal D, Ahmed S, Khalyfa A. Interplay between gut microbiota and exosome dynamics in sleep apnea. Sleep Med 2025; 131:106493. [PMID: 40203611 DOI: 10.1016/j.sleep.2025.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/19/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025]
Abstract
Sleep-disordered breathing (SDB) is characterized by recurrent reductions or interruptions in airflow during sleep, termed hypopneas and apneas, respectively. SDB impairs sleep quality and is linked to substantive health issues including cardiovascular and metabolic disorders, as well as cognitive decline. Recent evidence suggests a link between gut microbiota (GM) composition and sleep apnea. Indeed, GM, a community of microorganisms residing in the gut, has emerged as a potential player in various diseases, and several studies have identified associations between sleep apnea and GM diversity along with shifts in bacterial populations. Additionally, the concept of "leaky gut," a compromised intestinal barrier with potentially increased inflammation, has emerged as another key player in the potential bidirectional relationship between GM and sleep apnea. One of the potential effectors could be extracellular vesicles (EVs) underlying gut-brain communication pathways that are relevant to sleep regulation and function. Thus, therapeutic implications afforded by targeting the GM or exosomes for sleep apnea management have surfaced as promising areas of research. This review explores current understanding of the relationship between GM, exosomes and sleep apnea, highlighting key research dynamics and potential mechanisms. A comprehensive review of the literature was conducted, focusing on studies investigating GM composition, intestinal barrier function and gut-brain communication in relation to sleep apnea.
Collapse
Affiliation(s)
- Rebecca Hicks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - David Gozal
- Department of Pediatrics and Office of the Dean, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Sarfraz Ahmed
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Abdelnaby Khalyfa
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
2
|
Tahmasebi A, Beheshti R, Mahmoudi M, Jalilzadeh M, Salehi-Pourmehr H. Alterations in gut microbial community structure in obstructive sleep apnea /hypopnea syndrome (OSAHS): A systematic review and meta-analysis. Respir Med 2025; 241:108077. [PMID: 40158663 DOI: 10.1016/j.rmed.2025.108077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES This systematic review investigates gut bacterial diversity and composition in patients with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) and examines how these changes may contribute to cardiovascular complications. METHODS A comprehensive search was conducted in PubMed, Web of Science, and Scopus up to March 2025. After removing duplicates, titles and abstracts were screened by two reviewers, and full texts were assessed for inclusion. Data extraction on study characteristics and outcomes was performed. Methodological quality was evaluated using the Joanna Briggs Institute checklist. α-diversity was assessed using richness and diversity indices, while β-diversity examined community structure differences. Meta-analysis was conducted using standardized mean differences (SMD) and confidence intervals (CIs), and heterogeneity was assessed with the Cochrane I2 test. RESULTS The review included 18 studies (16 adults, 2 pediatrics) examining the gut microbiome in OSAHS. Meta-analysis revealed significant reductions in α-diversity indices (Shannon, Chao1, observed species, ACE) in OSAHS patients, while Simpson's index showed no difference. β-diversity analyses showed distinct gut microbiome differences in OSA. Key differential bacteria included Bacteroides, Proteobacteria, Faecalibacterium, Ruminococcaceae, Megamonas, Oscillibacter, Dialister, Roseburia, and Lachnospira. Study quality was medium to high. CONCLUSION OSAHS is associated with significant gut microbiome alterations, including a reduction in beneficial bacteria and an increase in LPS-producing bacteria, leading to intestinal barrier dysfunction. These changes may contribute to systemic inflammation and elevate the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Ali Tahmasebi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasa Beheshti
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadsina Mahmoudi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahan Jalilzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A Joanna Briggs Institute Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Fernandes M, Palmieri O, Castellana S, Spanetta M, Latiano T, Lupo C, De Masi C, Cardile C, Calvello C, Izzi F, Placidi F, Mazza T, Mercuri NB, Latiano A, Liguori C. Gut microbiome composition changes in obstructive sleep apnoea syndrome also in relation to excessive daytime sleepiness. Brain Res Bull 2025; 222:111251. [PMID: 39938754 DOI: 10.1016/j.brainresbull.2025.111251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION Obstructive sleep apnoea syndrome (OSAS) is considered a risk factor for several comorbidities. Alteration in gut microbiome was documented in OSAS animal models and in paediatric patients. This study analysed gut microbiome composition in adult patients with OSAS compared to healthy controls. Further, the effect of excessive daytime sleepiness (EDS) on gut microbiome was evaluated. METHODS Adult patients with OSAS underwent polysomnographic recording and completed the Epworth Sleepiness Scale (ESS) to assess EDS. Faecal samples were collected and compared between patients and healthy controls. Composition, community diversity, differences in taxa abundance profiles and sample dysbiosis were evaluated through 16S metagenomics and multiple bioinformatics algorithms. OSAS patients were distributed in two groups according to EDS (ESS score≥10) to assess differences in clinical, polysomnographic and faecal data. RESULTS Twenty-three OSAS patients were compared to 44 healthy controls. Patients presented significant differences of gut microbiome biodiversity, specifically in qualitative alpha diversity metrics (Faith's PD Kruskal-Wallis test, p-value=0.003; Number_of_Observed_Features, p-value =0.001). OSAS patients tend to cluster together, at least for Jaccard and Unweighted UniFrac distance-based PERMANOVA tests (q-values=0.02 and =0.003, respectively). Several taxa were detected as different in abundance between OSAS patients and healthy controls, although, globally, OSAS patients cannot be considered as "dysbiotic". Differences in bacteria composition were evident between OSAS patients with and those without EDS. CONCLUSIONS OSAS is associated with gut microbiome alteration in adult patients. EDS in OSAS seems to characterize a different gut microbiome composition, although it can be only hypothesized a gut-mediated effect on EDS in OSAS.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Orazio Palmieri
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Stefano Castellana
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Latiano
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Clementina Lupo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia De Masi
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Christian Cardile
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmen Calvello
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Izzi
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Anna Latiano
- Division of Gastroenterology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
4
|
Kohn S, Diament A, Godneva A, Dhir R, Weinberger A, Reisner Y, Rossman H, Segal E. Phenome-wide associations of sleep characteristics in the Human Phenotype Project. Nat Med 2025; 31:1026-1037. [PMID: 39870817 DOI: 10.1038/s41591-024-03481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Sleep tests commonly diagnose sleep disorders, but the diverse sleep-related biomarkers recorded by such tests can also provide broader health insights. In this study, we leveraged the uniquely comprehensive data from the Human Phenotype Project cohort, which includes 448 sleep characteristics collected from 16,812 nights of home sleep apnea test monitoring in 6,366 adults (3,043 male and 3,323 female participants), to study associations between sleep traits and body characteristics across 16 body systems. In this analysis, which identified thousands of significant associations, visceral adipose tissue (VAT) was the body characteristic that was most strongly correlated with the peripheral apnea-hypopnea index, as adjusted by sex, age and body mass index (BMI). Moreover, using sleep characteristics, we could predict over 15% of body characteristics, spanning 15 of the 16 body systems, in a held-out set of individuals. Notably, sleep characteristics contributed more to the prediction of certain insulin resistance, blood lipids (such as triglycerides) and cardiovascular measurements than to the characteristics of other body systems. This contribution was independent of VAT, as sleep characteristics outperformed age, BMI and VAT as predictors for these measurements in both male and female participants. Gut microbiome-related pathways and diet (especially for female participants) were notably predictive of clinical obstructive sleep apnea symptoms, particularly sleepiness, surpassing the prediction power of age, BMI and VAT on these symptoms. Together, lifestyle factors contributed to the prediction of over 50% of the sleep characteristics. This work lays the groundwork for exploring the associations of sleep traits with body characteristics and developing predictive models based on sleep monitoring.
Collapse
Affiliation(s)
- Sarah Kohn
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Raja Dhir
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Pheno.AI, Ltd., Tel Aviv, Israel
| | - Yotam Reisner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Pheno.AI, Ltd., Tel Aviv, Israel
| | | | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Pheno.AI, Ltd., Tel Aviv, Israel.
- Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Huang CG, Lin WN, Hsin LJ, Huang YS, Chuang LP, Fang TJ, Li HY, Kuo TBJ, Yang CCH, Lee CC, Lee LA. Alterations in Gut Microbiota Composition Are Associated with Changes in Emotional Distress in Children with Obstructive Sleep Apnea. Microorganisms 2024; 12:2626. [PMID: 39770828 PMCID: PMC11677172 DOI: 10.3390/microorganisms12122626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Emerging evidence underscores the pivotal role of the gut microbiota in regulating emotional and behavioral responses via the microbiota-gut-brain axis. This study explores associations between pediatric obstructive sleep apnea (OSA), emotional distress (ED), and gut microbiome alterations before and after OSA treatment. Sixty-six children diagnosed with OSA via polysomnography participated, undergoing adenotonsillectomy alongside routine educational sessions. ED was assessed using the OSA-18 questionnaire, categorizing participants into high ED (scores ≥ 11, 52%) and low ED (scores < 11, 48%) groups. Gut microbiome analysis revealed significant diversity differences, with high ED linked to a reduced Shannon index (p = 0.03) and increased beta diversity (p = 0.01). Three months post-treatment, significant improvements were observed in OSA symptoms, ED scores, and gut microbiome alpha diversity metrics among 55 participants (all p < 0.04). Moreover, changes in the relative abundances of Veillonella, Bifidobacterium, Flavonifractor, and Agathobacter, as well as ultra-low frequency power and low frequency power of sleep heart rate variability, were independently associated with ED score alterations. These findings underscore the gut microbiome's critical role in the emotional and behavioral symptoms associated with pediatric OSA, suggesting that microbiome-targeted interventions could complement traditional treatments for ED reduction and emphasizing the need for further research.
Collapse
Affiliation(s)
- Chung-Guei Huang
- Department of Laboratory Medicine, Linkou Main Branch, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Research Center for Emerging Viral Infections, Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Ni Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (W.-N.L.); (L.-J.H.); (T.-J.F.); (H.-Y.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
| | - Li-Jen Hsin
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (W.-N.L.); (L.-J.H.); (T.-J.F.); (H.-Y.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
| | - Yu-Shu Huang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
- Department of Child Pschiatry, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan
| | - Li-Pang Chuang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
- Department of Pulmonary and Critical Care Medicine, Linkou Main Branch, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Tuan-Jen Fang
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (W.-N.L.); (L.-J.H.); (T.-J.F.); (H.-Y.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
| | - Hsueh-Yu Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (W.-N.L.); (L.-J.H.); (T.-J.F.); (H.-Y.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
| | - Terry B. J. Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.B.J.K.); (C.C.H.Y.)
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Mind and Brain Medicine, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou 542019, Taiwan
| | - Cheryl C. H. Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.B.J.K.); (C.C.H.Y.)
- Sleep Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chin-Chia Lee
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
| | - Li-Ang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Main Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 33305, Taiwan; (W.-N.L.); (L.-J.H.); (T.-J.F.); (H.-Y.L.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (Y.-S.H.); (L.-P.C.); (C.-C.L.)
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (T.B.J.K.); (C.C.H.Y.)
- School of Medicine, College of Life Science and Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
6
|
Lv Y, Xian Y, Lei X, Xie S, Zhang B. The role of the microbiota-gut-brain axis and artificial intelligence in cognitive health of pediatric obstructive sleep apnea: A narrative review. Medicine (Baltimore) 2024; 103:e40900. [PMID: 39686454 PMCID: PMC11651515 DOI: 10.1097/md.0000000000040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Pediatric obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder associated with significant neurocognitive and behavioral impairments. Recent studies have highlighted the role of gut microbiota and the microbiota-gut-brain axis (MGBA) in influencing cognitive health in children with OSA. This narrative review aims to summarize current knowledge on the relationship between gut microbiota, MGBA, and cognitive function in pediatric OSA. It also explores the potential of artificial intelligence and machine learning in advancing this field and identifying novel therapeutic strategies. Pediatric OSA is associated with gut dysbiosis, reduced microbial diversity, and metabolic disruptions. MGBA mechanisms, such as endocrine, immune, and neural pathways, link gut microbiota to cognitive outcomes. Artificial intelligence and machine learning methodologies offer promising tools to uncover microbial markers and mechanisms associated with cognitive deficits in OSA. Future research should focus on validating these findings through clinical trials and developing personalized therapeutic approaches targeting the gut microbiota.
Collapse
Affiliation(s)
- Yunjiao Lv
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Yongtao Xian
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Xinye Lei
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Siqi Xie
- Department of First Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Biyun Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Min HJ, Choi BY, Sul WJ, Cho HJ. Microbiome and Mycobiome Analyses of Continuous Positive Airway Pressure Devices. Clin Exp Otorhinolaryngol 2024; 17:292-301. [PMID: 39134466 PMCID: PMC11626094 DOI: 10.21053/ceo.2024.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVES Microorganisms are likely present in continuous positive airway pressure (CPAP) devices in daily use. Given the potential risk of infection among CPAP users, we aimed to compare the microbiomes of CPAP devices with those of nasal mucosa samples obtained from patients using these devices. METHODS We conducted a prospective cohort study at multiple tertiary medical institutions. Samples were collected from the tubes and filters of CPAP devices and the nasal mucosa of device users. Microbiomes and mycobiomes were analyzed using 16S ribosomal RNA and internal transcribed spacer region sequencing. The results were compared according to sampling site and usage duration for each patient. RESULTS Overall, 27 paired samples of human nasal mucosa and CPAP components were analyzed. Bacteria were detected in 7 of the 27 tubes (25.9%) and in 22 of the 27 filters (81.5%). Fungi were found in 2 tubes (7.4%) and 16 filters (59.3%). The most prevalent bacterial phyla across all samples were Actinobacteria and Firmicutes. Fungi were not detected in any nasal mucosa samples. However, fungi were identified in the CPAP filters and tubes, with the Basidiomycota and Ascomycota phyla predominating. No significant associations were identified according to sampling site or duration of CPAP use. CONCLUSION Some bacteria or fungi are detectable in CPAP samples, even after a short period of CPAP usage. However, the association between respiratory infections and these microbiomes or mycobiomes was not investigated. Further research is required to clarify the risk posed by CPAP devices as a microbial contamination source.
Collapse
Affiliation(s)
- Hyun Jin Min
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Korea
| | - Bo-Yun Choi
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Feuth T. Interactions between sleep, inflammation, immunity and infections: A narrative review. Immun Inflamm Dis 2024; 12:e70046. [PMID: 39417642 PMCID: PMC11483929 DOI: 10.1002/iid3.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Over the past decades, it has become increasingly evident that sleep disturbance contributes to inflammation-mediated disease, including depression, mainly through activation of the innate immune system and to an increased risk of infections. METHODS A comprehensive literature search was performed in PubMed to identify relevant research findings in the field of immunity, inflammation and infections, with a focus on translational research findings from the past 5 years. RESULTS Physiological sleep is characterized by a dynamic interplay between the immune system and sleep architecture, marked by increased innate immunity and T helper 1 (Th1) -mediated inflammation in the early phase, transitioning to a T helper 2 (Th2) response dominating in late sleep. Chronic sleep disturbances are associated with enhanced inflammation and an elevated risk of infections, while other inflammatory diseases may also be affected. Conversely, inflammation in response to infection can also disrupt sleep patterns and architecture. This narrative review summarizes current data on the complex relationships between sleep, immunity, inflammation and infections, while highlighting translational aspects. The bidirectional nature of these interactions are addressed within specific conditions such as sleep apnea, HIV, and other infections. Furthermore, technical developments with the potential to accelerate our understanding of these interactions are identified, including advances in wearable devices, artificial intelligence, and omics technology. By integrating these tools, novel biomarkers and therapeutic targets for sleep-related immune dysregulation may be identified. CONCLUSION The review underscores the importance of understanding and addressing immune imbalance related to sleep disturbances to improve disease outcomes.
Collapse
Affiliation(s)
- Thijs Feuth
- Department of pulmonary diseases and AllergologyTurku University HospitalTurkuFinland
- Pulmonary Diseases and Allergology, Faculty of MedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
9
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
10
|
Javaheri S, Javaheri S, Gozal D, Campos-Rodriguez F, Martinez-Garcia MA, Mokhlesi B, Mehra R, McNicholas WT, Somers VK, Zee PC, Cistulli P, Malhotra A. Treatment of OSA and its Impact on Cardiovascular Disease, Part 2: JACC State-of-the-Art Review. J Am Coll Cardiol 2024; 84:1224-1240. [PMID: 39293885 PMCID: PMC11668537 DOI: 10.1016/j.jacc.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/20/2024]
Abstract
Many studies have shown an association of obstructive sleep apnea (OSA) with incident cardiovascular diseases, particularly when comorbid with insomnia, excessive sleepiness, obesity hypoventilation syndrome, and chronic obstructive pulmonary disease. Randomized controlled trials (RCTs) have demonstrated that treatment of OSA with positive airway pressure devices (CPAP) improves systemic hypertension, particularly in those with resistant hypertension who are adherent to CPAP. However, large RCTs have not shown long-term benefits of CPAP on hard cardiovascular outcomes, but post hoc analyses of these RCTs have demonstrated improved hard outcomes in those who use CPAP adequately. In theory, low CPAP adherence and patient selection may have contributed to neutral results in intention-to-treat analyses. Only by further research into clinical, translational, and basic underlying mechanisms is major progress likely to continue. This review highlights the various treatment approaches for sleep disorders, particularly OSA comorbid with various other disorders, the potential reasons for null results of RCTs treating OSA with CPAP, and suggested approaches for future trials.
Collapse
Affiliation(s)
| | - Sogol Javaheri
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - David Gozal
- University of Chicago, Chicago, Illinois, USA
| | | | - Miguel Angel Martinez-Garcia
- Gregorio Marañón Health Research Institute (IISGM), CIBERONC, Department of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Reena Mehra
- Cleveland Clinic, Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | - Phyllis C Zee
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter Cistulli
- Charles Perkins Centre, University of Sydney/Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Atul Malhotra
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Liu L, He G, Yu R, Lin B, Lin L, Wei R, Zhu Z, Xu Y. Causal relationships between gut microbiome and obstructive sleep apnea: a bi-directional Mendelian randomization. Front Microbiol 2024; 15:1410624. [PMID: 39309525 PMCID: PMC11414551 DOI: 10.3389/fmicb.2024.1410624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background Previous studies have identified a clinical association between gut microbiota and Obstructive sleep apnea (OSA), but the potential causal relationship between the two has not been determined. Therefore, we aim to utilize Mendelian randomization (MR) to investigate the potential causal effects of gut microbiota on OSA and the impact of OSA on altering the composition of gut microbiota. Methods Bi-directional MR and replicated validation were utilized. Summary-level genetic data of gut microbiota were derived from the MiBioGen consortium and the Dutch Microbiome Project (DMP). Summary statistics of OSA were drawn from FinnGen Consortium and Million Veteran Program (MVP). Inverse-variance-weighted (IVW), weighted median, MR-Egger, Simple Mode, and Weighted Mode methods were used to evaluate the potential causal link between gut microbiota and OSA. Results We identified potential causal associations between 23 gut microbiota and OSA. Among them, genus Eubacterium xylanophilum group (OR = 0.86; p = 0.00013), Bifidobacterium longum (OR = 0.90; p = 0.0090), Parabacteroides merdae (OR = 0.85; p = 0.00016) retained a strong negative association with OSA after the Bonferroni correction. Reverse MR analyses indicated that OSA was associated with 20 gut microbiota, among them, a strong inverse association between OSA and genus Anaerostipes (beta = -0.35; p = 0.00032) was identified after Bonferroni correction. Conclusion Our study implicates the potential bi-directional causal effects of the gut microbiota on OSA, potentially providing new insights into the prevention and treatment of OSA through specific gut microbiota.
Collapse
Affiliation(s)
- Liangfeng Liu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Guanwen He
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rong Yu
- Department of Pediatrics, Jiaocheng District Maternal and Child Health Hospital, Ningde, Fujian, China
| | - Bingbang Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Liangqing Lin
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Rifu Wei
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Zhongshou Zhu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
| | - Yangbin Xu
- Department of Otolaryngology, Head and Neck Surgery, Ningde Municipal Hospital of Ningde Normal University, Ningde, Fujian, China
- Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
da Silva LMAV, Assunção WG, Bento VAA, Sachi VP, Colombo FE, Ique MMA, Faria BMA, Bertoz APDM. Assessment of the gut microbiota of children with obstructive sleep apnea syndrome: A systematic review. Sleep Med 2024; 120:56-64. [PMID: 38878352 DOI: 10.1016/j.sleep.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 07/02/2024]
Abstract
Sleep-disordered breathing promotes not only unfavorable craniofacial changes in untreated pediatric patients but also neurocognitive, metabolic, cardiovascular, and even long-term social alterations. This systematic review evaluated whether children diagnosed with obstructive sleep apnea syndrome (OSAS) have different intestinal microbiota constitutions from healthy children and was based on the PRISMA guidelines (PROSPERO: CRD42022360074). A total of 1562 clinical studies published between 2019 and 2023 were selected from the PubMed/MEDLINE, Embase, Web of Science, Scopus, and Cochrane Library databases, of which five were included in the qualitative analysis, three being randomized and two prospective. The methodological quality was assessed (RoB 2.0 and ROBINS-I) and all studies showed a negative effect of intervention. Sleep deprivation and intermittent hypoxia in children with OSAS seem to trigger a cascade of inflammatory pathways that exacerbate the tissue response to the release of reactive oxygen species and the generation of oxidative stress, leading to a reduction in oxygen supply to the intestinal mucosa and the integral destruction of the intestinal barrier. More evidence-based investigations are needed to optimize the identification of possible alterations in the gut microbiota of pediatric patients, given that its composition may be influenced by the patient's sleep quality and, consequently, by OSAS, showing quantitative and qualitative alterations compared to that found in healthy individuals.
Collapse
Affiliation(s)
| | - Wirley Gonçalves Assunção
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Victor Augusto Alves Bento
- Department of Dental Materials and Prosthodontics, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Victor Perinazzo Sachi
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Fabio Eduardo Colombo
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Manuel Martin Adriazola Ique
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - Bianca Martinatti Andrade Faria
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| | - André Pinheiro de Magalhães Bertoz
- Department of Preventive and Restorative Dentistry, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
13
|
Zhou P, Li L, Lin Z, Ming X, Feng Y, Hu Y, Chen X. Exploring the Shared Genetic Architecture Between Obstructive Sleep Apnea and Body Mass Index. Nat Sci Sleep 2024; 16:711-723. [PMID: 38863482 PMCID: PMC11166156 DOI: 10.2147/nss.s459136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/25/2024] [Indexed: 06/13/2024] Open
Abstract
Purpose The reciprocal comorbidity of obstructive sleep apnea (OSA) and body mass index (BMI) has been observed, yet the shared genetic architecture between them remains unclear. This study aimed to explore the genetic overlaps between them. Methods Summary statistics were acquired from the genome-wide association studies (GWASs) on OSA (Ncase = 41,704; Ncontrol = 335,573) and BMI (Noverall = 461,460). A comprehensive genome-wide cross-trait analysis was performed to quantify global and local genetic correlation, infer the bidirectional causal relationships, detect independent pleiotropic loci, and investigate potential comorbid genes. Results A positive significant global genetic correlation between OSA and BMI was observed (r g = 0.52, P = 2.85e-122), which was supported by three local signal. The Mendelian randomization analysis confirmed bidirectional causal associations. In the meta-analysis of cross-traits GWAS, a total of 151 single-nucleotide polymorphisms were found to be pleiotropic between OSA and BMI. Additionally, we discovered that the genetic association between OSA and BMI is concentrated in 12 brain regions. Finally, a total 134 expression-tissue pairs were observed to have a significant impact on both OSA and BMI within the specified brain regions. Conclusion Our comprehensive genome-wide cross-trait analysis indicates a shared genetic architecture between OSA and BMI, offering new perspectives on the possible mechanisms involved.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ling Li
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zehua Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiaoping Ming
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yiwei Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yifan Hu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xiong Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
14
|
Dong M, Liang X, Zhu T, Xu T, Xie L, Feng Y. Reoxygenation Mitigates Intermittent Hypoxia-Induced Systemic Inflammation and Gut Microbiota Dysbiosis in High-Fat Diet-Induced Obese Rats. Nat Sci Sleep 2024; 16:517-530. [PMID: 38812701 PMCID: PMC11135559 DOI: 10.2147/nss.s454297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background Obstructive sleep apnea (OSA) is a prevalent sleep breathing disorder characterized by intermittent hypoxia (IH), with continuous positive airway pressure (CPAP) as its standard treatment. However, the effects of intermittent hypoxia/reoxygenation (IH/R) on weight regulation in obesity and its underlying mechanism remain unclear. Gut microbiota has gained attention for its strong association with various diseases. This study aims to explore the combined influence of IH and obesity on gut microbiota and to investigate the impact of reoxygenation on IH-induced alterations. Methods Diet-induced obese (DIO) rats were created by 8-week high-fat diet (HFD) feeding and randomly assigned into three groups (n=15 per group): normoxia (NM), IH (6% O2, 30 cycles/h, 8 h/day, 4 weeks), or hypoxia/reoxygenation (HR, 2-week IH followed by 2-week reoxygenation) management. After modeling and exposure, body weight and biochemical indicators were measured, and fecal samples were collected for 16S rRNA sequencing. Results DIO rats in the IH group showed increased weight gain (p=0.0016) and elevated systemic inflammation, including IL-6 (p=0.0070) and leptin (p=0.0004). Moreover, IH rats exhibited greater microbial diversity (p<0.0167), and significant alterations in the microbial structure (p=0.014), notably the order Clostridiales, accompanied by an upregulation of bile acid metabolism predicted pathway (p=0.0043). Reoxygenation not only improved IH-exacerbated obesity, systemic inflammation, leptin resistance, and sympathetic activation, but also showed the potential to restore IH-induced microbial alterations. Elevated leptin levels were associated with Ruminococcaceae (p=0.0008) and Clostridiales (p=0.0019), while body weight was linked to Blautia producta (p=0.0377). Additionally, the abundance of Lactobacillus was negatively correlated with leptin levels (p=0.0006) and weight (p=0.0339). Conclusion IH leads to gut dysbiosis and metabolic disorders, while reoxygenation therapy demonstrates a potentially protective effect by restoring gut homeostasis and mitigating inflammation. It highlights the potential benefits of CPAP in reducing metabolic risk among obese patients with OSA.
Collapse
Affiliation(s)
- Menglu Dong
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xili Liang
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Tian Zhu
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ting Xu
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People’s Republic of China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuan Feng
- Sleep Medicine Center, Department of Psychiatric, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Institute of Brain Disease, Nanfang Hospital of Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Science, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Holzhausen EA, Peppard PE, Sethi AK, Safdar N, Malecki KC, Schultz AA, Deblois CL, Hagen EW. Associations of gut microbiome richness and diversity with objective and subjective sleep measures in a population sample. Sleep 2024; 47:zsad300. [PMID: 37988614 PMCID: PMC10926107 DOI: 10.1093/sleep/zsad300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
STUDY OBJECTIVES Alterations in gut microbiota composition have been associated with several conditions, and there is emerging evidence that sleep quantity and quality are associated with the composition of the gut microbiome. Therefore, this study aimed to assess the associations between several measures of sleep and the gut microbiome in a large, population-based sample. METHODS Data were collected from participants in the Survey of the Health of Wisconsin from 2016 to 2017 (N = 720). Alpha diversity was estimated using Chao1 richness, Shannon's diversity, and Inverse Simpson's diversity. Beta diversity was estimated using Bray-Curtis dissimilarity. Models for each of the alpha-diversity outcomes were calculated using linear mixed effects models. Permutational multivariate analysis of variance tests were performed to test whether gut microbiome composition differed by sleep measures. Negative binomial models were used to assess whether sleep measures were associated with individual taxa relative abundance. RESULTS Participants were a mean (SD) age of 55 (16) years and 58% were female. The sample was 83% non-Hispanic white, 10.6% non-Hispanic black, and 3.5% Hispanic. Greater actigraphy-measured night-to-night sleep duration variability, wake-after-sleep onset, lower sleep efficiency, and worse self-reported sleep quality were associated with lower microbiome richness and diversity. Sleep variables were associated with beta-diversity, including actigraphy-measured night-to-night sleep duration variability, sleep latency and efficiency, and self-reported sleep quality, sleep apnea, and napping. Relative abundance of several taxa was associated with night-to-night sleep duration variability, average sleep latency and sleep efficiency, and sleep quality. CONCLUSIONS This study suggests that sleep may be associated with the composition of the gut microbiome. These results contribute to the body of evidence that modifiable health habits can influence the human gut microbiome.
Collapse
Affiliation(s)
| | - Paul E Peppard
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Ajay K Sethi
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | - Nasia Safdar
- Department of Medicine and the William S. Middleton Memorial Veterans Hospital, University of Wisconsin, Madison, WI, USA
| | - Kristen C Malecki
- Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Amy A Schultz
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| | | | - Erika W Hagen
- Department of Population Health Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
16
|
Melaku YA, Zhao L, Adams R, Eckert DJ. Plant-based and vegetarian diets are associated with reduced obstructive sleep apnoea risk. ERJ Open Res 2024; 10:00739-2023. [PMID: 38444660 PMCID: PMC10910314 DOI: 10.1183/23120541.00739-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Obstructive sleep apnoea (OSA) and obesity commonly coexist. Weight loss and exercise are recommended management options for OSA. However, most of the current evidence on diet and OSA is focused on calorie restriction rather than diet quality. The aim of the present study was to determine the association of plant-based dietary indices (PDI) with OSA risk. Methods Cross-sectional data from 14 210 participants of the National Health and Nutrition Examination Survey who provided dietary information using the 24-hour recall method were used. PDI - including healthy (hPDI), unhealthy (uPDI) and pro-vegetarian diet index (PVDI) - were determined. OSA risk was determined using the STOP-BANG questionnaire. Logistic regression was used to determine the relationship between dietary indices and OSA risk. Results Higher adherence to PDI (odds ratio (OR)Q5 versus Q1=0.81; 95% confidence interval (CI): 0.66-1.00), hPDI (OR=0.83; 95% CI: 0.69-1.01) and PVDI (OR=0.84; 95% CI: 0.68-1.05) was inversely associated with OSA risk, whereas higher consumption of an unhealthy plant-based diet (OR=1.22; 95% CI: 1.00-1.49) was positively associated with OSA. Sex differences in estimates were observed for PDI in males (OR=0.71; 95% CI: 0.56-0.90) versus females (OR=0.93; 95% CI: 0.68-1.28), hPDI in males (OR=0.90; 95% CI: 0.68-1.18) versus females (OR=0.77; 95% CI: 0.54-1.09) and uPDI in males (OR=1.13; 95% CI: 0.89-1.44) versus females (OR=1.42; 95% CI: 1.03-1.97) but not for PVDI. Conclusions Higher adherence to a healthy plant-based diet is associated with reduced OSA risk, while an unhealthy plant-based diet has a positive association. The magnitude of these associations differs by sex. Further longitudinal studies are warranted.
Collapse
Affiliation(s)
- Yohannes Adama Melaku
- FHMRI Sleep Health (Adelaide Institute for Sleep Health), College of Medicine and Public Health, Flinders University, Adelaide, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Lijun Zhao
- Adelaide Medical School, Faculty of Health and Medical Science, The University of Adelaide, Adelaide, Australia
| | - Robert Adams
- FHMRI Sleep Health (Adelaide Institute for Sleep Health), College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Danny J. Eckert
- FHMRI Sleep Health (Adelaide Institute for Sleep Health), College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
17
|
Park J, Lee KE, Choi DH, Kim YK, Lee WH, Kim MS, Sung HWJ, Chang JW, Park YS. The association of tonsillar microbiota with biochemical indices based on obesity and tonsillar hypertrophy in children. Sci Rep 2023; 13:22716. [PMID: 38123635 PMCID: PMC10733282 DOI: 10.1038/s41598-023-49871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
The correlation between tonsil microbiome and tonsillar hypertrophy has not been well established. Given that oral dysbiosis is related to several metabolic diseases and that tonsillar hypertrophy leads to disordered breathing during sleep and obesity in children, it is necessary to investigate the relationship between the oral microbiome and tonsillar hypertrophy. After 16S rRNA amplicon sequencing of tonsillectomy samples, we evaluated the correlation between the tonsil microbiome and biochemical blood indices in pediatric patients who underwent tonsillectomy. Groups are classified into two categories: based on BMI, and grades 2, 3, and 4 based on tonsil size. Children with obesity and tonsillar hypertrophy have similar microbiome compositions and induce comparable changes in microbiome abundance and composition, confirming the association from a metagenomic perspective. In addition, obesity and tonsillar hypertrophy demonstrated a strong correlation with the Proteobacteria to Firmicutes (P/F) ratio, and among various biochemical indicators, alanine aminotransferase (ALT) levels increase with obesity and tonsillar hypertrophy, indicating a possible association of tonsil microbiome and liver metabolism. These novel findings demonstrate the significance of the tonsil microbiome and suggest the need for tonsil regulation, particularly during childhood.
Collapse
Affiliation(s)
- Jiwon Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Won Hee Lee
- Institute of MD Healthcare Inc., Seoul, 03923, Republic of Korea
| | - Min Su Kim
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Han Wool John Sung
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
18
|
Liu W, Jiang H, Liu X, Zheng Y, Liu Y, Pan F, Yu F, Li Z, Gu M, Du Q, Li X, Zhang H, Han D. Altered intestinal microbiota enhances adenoid hypertrophy by disrupting the immune balance. Front Immunol 2023; 14:1277351. [PMID: 38090578 PMCID: PMC10715246 DOI: 10.3389/fimmu.2023.1277351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Adenoid hypertrophy (AH) is a common upper respiratory disorder in children. Disturbances of gut microbiota have been implicated in AH. However, the interplay of alteration of gut microbiome and enlarged adenoids remains elusive. Methods 119 AH children and 100 healthy controls were recruited, and microbiome profiling of fecal samples in participants was performed using 16S rRNA gene sequencing. Fecal microbiome transplantation (FMT) was conducted to verify the effects of gut microbiota on immune response in mice. Results In AH individuals, only a slight decrease of diversity in bacterial community was found, while significant changes of microbial composition were observed between these two groups. Compared with HCs, decreased abundances of Akkermansia, Oscillospiraceae and Eubacterium coprostanoligenes genera and increased abundances of Bacteroides, Faecalibacterium, Ruminococcus gnavus genera were revealed in AH patients. The abundance of Bacteroides remained stable with age in AH children. Notably, a microbial marker panel of 8 OTUs were identified, which discriminated AH from HC individuals with an area under the curve (AUC) of 0.9851 in the discovery set, and verified in the geographically different validation set, achieving an AUC of 0.9782. Furthermore, transfer of mice with fecal microbiota from AH patients dramatically reduced the proportion of Treg subsets within peripheral blood and nasal-associated lymphoid tissue (NALT) and promoted the expansion of Th2 cells in NALT. Conclusion These findings highlight the effect of the altered gut microbiota in the AH pathogenesis.
Collapse
Affiliation(s)
- Wenxin Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huier Jiang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai, China
| | - Yue Zheng
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Liu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Pan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Yu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Li
- Department of Pathology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Du
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medical School, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Yan W, Jiang M, Hu W, Zhan X, Liu Y, Zhou J, Ji J, Wang S, Tai J. Causality Investigation between Gut Microbiota, Derived Metabolites, and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study. Nutrients 2023; 15:4544. [PMID: 37960197 PMCID: PMC10648878 DOI: 10.3390/nu15214544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development.
Collapse
Affiliation(s)
- Weiheng Yan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing 100091, China;
| | - Wen Hu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Xiaojun Zhan
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Yifan Liu
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| | - Jiayi Zhou
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100020, China; (W.Y.); (J.Z.)
| | - Jie Ji
- Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Children’s Hospital Capital Institute of Pediatrics, Beijing 100020, China; (W.H.); (X.Z.); (Y.L.)
| |
Collapse
|
20
|
Mutti C, Malagutti G, Maraglino V, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Rosenzweig I, Parrino L. Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 2023; 15:4488. [PMID: 37892563 PMCID: PMC10610508 DOI: 10.3390/nu15204488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The intricate connection between eating behaviors and sleep habits is often overlooked in clinical practice, despite their profound interdependence. Sleep plays a key role in modulating psychological, hormonal and metabolic balance and exerting an influence on food choices. Conversely, various eating disorders may affect sleep continuity, sometimes promoting the development of sleep pathologies. Neurologists, nutritionists and psychiatrists tend to focus on these issues separately, resulting in a failure to recognize the full extent of the clinical conditions. This detrimental separation can lead to underestimation, misdiagnosis and inappropriate therapeutic interventions. In this review, we aim to provide a comprehensive understanding of the tangled relationship between sleep, sleep pathologies and eating disorders, by incorporating the perspective of sleep experts, psychologists and psychiatrists. Our goal is to identify a practical crossroad integrating the expertise of all the involved specialists.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Giulia Malagutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Valentina Maraglino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Francesco Misirocchi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Alessandro Zilioli
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Francesco Rausa
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Silvia Pizzarotti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
| | - Marco Spallazzi
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| | - Ivana Rosenzweig
- Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London WC2R 2LS, UK
| | - Liborio Parrino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125 Parma, Italy
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy (A.Z.)
| |
Collapse
|
21
|
Godur DA, Denton AJ, Eshraghi N, Mittal J, Cooper J, Moosa M, Mittal R. Modulation of Gut Microbiome as a Therapeutic Modality for Auditory Disorders. Audiol Res 2023; 13:741-752. [PMID: 37887847 PMCID: PMC10603848 DOI: 10.3390/audiolres13050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome has been shown to play a pivotal role in health and disease. Recently, there has been increased interest within the auditory community to explore the role of the gut microbiome in the auditory system and its implications for hearing disorders such as sensorineural hearing loss (SNHL), otitis media, and tinnitus. Studies have suggested that modulating the gut microbiome using probiotics as well as with diets high in monounsaturated and omega-3 fatty acids is associated with a reduction in inflammation prevalence in auditory disorders. This review aims to evaluate the current literature on modulation of the gut microbiome and its effects on otological conditions. The probiotic conversion of nondigestible carbohydrates into short-chain fatty acids has been shown to provide benefits for improving hearing by maintaining an adequate vascular supply. For acute and secretory otitis media, studies have shown that a combination therapy of probiotics with a decreased dose of antibiotics yields better clinical outcomes than aggressive antibiotic treatment alone. Gut microbiome modulation also alters neurotransmitter levels and reduces neuroinflammation, which may provide benefits for tinnitus by preventing increased neuronal activity. Further studies are warranted to evaluate the efficacy of probiotics, natural health products, and micronutrients on auditory disorders, paving the way to develop novel interventions.
Collapse
Affiliation(s)
- Dimitri A. Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Alexa J. Denton
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nicolas Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Jaimee Cooper
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Moeed Moosa
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (D.A.G.); (A.J.D.); (N.E.); (J.M.); (J.C.); (M.M.)
| |
Collapse
|
22
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
23
|
Giampá SQC, Lorenzi-Filho G, Drager LF. Obstructive sleep apnea and metabolic syndrome. Obesity (Silver Spring) 2023; 31:900-911. [PMID: 36863747 DOI: 10.1002/oby.23679] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 03/04/2023]
Abstract
Metabolic syndrome (MS) is a heterogeneous condition associated with increased cardiovascular risk. There is growing evidence from experimental, translational, and clinical investigations that has suggested that obstructive sleep apnea (OSA) is associated with prevalent and incident components of MS and MS itself. The biological plausibility is supportive, primarily related to one of the main features of OSA, namely intermittent hypoxia: increased sympathetic activation with hemodynamic repercussions, increased hepatic glucose output, insulin resistance through adipose tissue inflammation, pancreatic β-cell dysfunction, hyperlipidemia through the worsening of fasting lipid profiles, and the reduced clearance of triglyceride-rich lipoproteins. Although there are multiple related pathways, the clinical evidence relies mainly on cross-sectional data preventing any causality assumptions. The overlapping presence of visceral obesity or other confounders such as medications challenges the ability to understand the independent contribution of OSA on MS. In this review, we revisit the evidence on how OSA/intermittent hypoxia could mediate adverse effects of MS parameters independent of adiposity. Particular attention is devoted to discussing recent evidence from interventional studies. This review describes the research gaps, the challenges in the field, perspectives, and the need for additional high-quality data from interventional studies addressing the impact of not only established but promising therapies for OSA/obesity.
Collapse
Affiliation(s)
- Sara Q C Giampá
- Graduate Program in Cardiology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Geraldo Lorenzi-Filho
- Laboratório do Sono, Divisão de Pneumologia, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luciano F Drager
- Unidade de Hipertensão, Instituto do Coração (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Unidade de Hipertensão, Disciplina de Nefrologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Sánchez-de-la-Torre M, Cubillos C, Veatch OJ, Garcia-Rio F, Gozal D, Martinez-Garcia MA. Potential Pathophysiological Pathways in the Complex Relationships between OSA and Cancer. Cancers (Basel) 2023; 15:1061. [PMID: 36831404 PMCID: PMC9953831 DOI: 10.3390/cancers15041061] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Several epidemiological and clinical studies have suggested a relationship between obstructive sleep apnea (OSA) and a higher incidence or severity of cancer. This relationship appears to be dependent on a myriad of factors. These include non-modifiable factors, such as age and gender; and modifiable or preventable factors, such as specific comorbidities (especially obesity), the use of particular treatments, and, above all, the histological type or location of the cancer. Heterogeneity in the relationship between OSA and cancer is also related to the influences of intermittent hypoxemia (a hallmark feature of OSA), among others, on metabolism and the microenvironment of different types of tumoral cells. The hypoxia inducible transcription factor (HIF-1α), a molecule activated and expressed in situations of hypoxemia, seems to be key to enabling a variety of pathophysiological mechanisms that are becoming increasingly better recognized. These mechanisms appear to be operationally involved via alterations in different cellular functions (mainly involving the immune system) and molecular functions, and by inducing modifications in the microbiome. This, in turn, may individually or collectively increase the risk of cancer, which is then, further modulated by the genetic susceptibility of the individual. Here, we provide an updated and brief review of the different pathophysiological pathways that have been identified and could explain the relationship between OSA and cancer. We also identify future challenges that need to be overcome in this intriguing field of research.
Collapse
Affiliation(s)
- Manuel Sánchez-de-la-Torre
- Group of Precision Medicine in Chronic Diseases, Respiratory Department, University Hospital Arnau de Vilanova and Santa María, Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, IRBLleida, University of Lleida, 25003 Lleida, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carolina Cubillos
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - Olivia J. Veatch
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Francisco Garcia-Rio
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Group of Respiratory Diseases, Respiratory Department, Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Miguel Angel Martinez-Garcia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Respiratory Department, University and Polytechnic La Fe Hospital, 46026 Valencia, Spain
- Pneumology Department, University and Polytechnic La Fe Hospital, 46012 Valencia, Spain
| |
Collapse
|
25
|
Huang X, Chen X, Gong X, Xu Y, Xu Z, Gao X. Characteristics of salivary microbiota in children with obstructive sleep apnea: A prospective study with polysomnography. Front Cell Infect Microbiol 2022; 12:945284. [PMID: 36105146 PMCID: PMC9465092 DOI: 10.3389/fcimb.2022.945284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThe present study aimed to investigate the characteristics of salivary microbiota of children with obstructive sleep apnea (OSA) and to assess longitudinal alterations in salivary microbiota before and after adenotonsillectomy.MethodsA set of cross-sectional samples consisted of 36 OSA children (17 boys and 19 girls, 7.47 ± 2.24 years old) and 22 controls (9 boys and 13 girls, 7.55 ± 2.48 years old) were included in the study, among which eight OSA children (five boys and three girls, 8.8 ± 2.0 years old) who underwent treatment of adenotonsillectomy were followed up after 1 year. Saliva samples were collected, and microbial profiles were analyzed by bioinformatics analysis based on 16S rRNA sequencing.ResultsIn cross-sectional samples, the OSA group had higher α-diversity as estimated by Chao1, Shannon, Simpson, Pielou_e, and observed species as compared with the control group (p < 0.05). β-Diversity based on the Bray–Curtis dissimilarities (p = 0.004) and Jaccard distances (p = 0.001) revealed a significant separation between the OSA group and control group. Nested cross-validated random forest classifier identified the 10 most important genera (Lactobacillus, Escherichia, Bifidobacterium, Capnocytophaga, Bacteroidetes_[G-7], Parvimonas, Bacteroides, Klebsiella, Lautropia, and Prevotella) that could differentiate OSA children from controls with an area under the curve (AUC) of 0.94. Linear discriminant analysis effect size (LEfSe) analysis revealed a significantly higher abundance of genera such as Prevotella (p = 0.027), Actinomyces (p = 0.015), Bifidobacterium (p < 0.001), Escherichia (p < 0.001), and Lactobacillus (p < 0.001) in the OSA group, among which Prevotella was further corroborated in longitudinal samples. Prevotella sp_HMT_396 was found to be significantly enriched in the OSA group (p = 0.02) with significantly higher levels as OSA severity increased (p = 0.014), and it had a lower abundance in the post-treatment group (p = 0.003) with a decline in each OSA child 1 year after adenotonsillectomy.ConclusionsA significantly higher microbial diversity and a significant difference in microbial composition and abundance were identified in salivary microbiota of OSA children compared with controls. Meanwhile, some characteristic genera (Prevotella, Actinomyces, Lactobacillus, Escherichia, and Bifidobacterium) were found in OSA children, among which the relationship between Prevotella spp. and OSA is worth further studies.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xu Gong
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhifei Xu
- Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Xuemei Gao,
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Xuemei Gao,
| |
Collapse
|
26
|
Jiang Z, Zhuo LB, He Y, Fu Y, Shen L, Xu F, Gou W, Miao Z, Shuai M, Liang Y, Xiao C, Liang X, Tian Y, Wang J, Tang J, Deng K, Zhou H, Chen YM, Zheng JS. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022; 13:3002. [PMID: 35637254 PMCID: PMC9151781 DOI: 10.1038/s41467-022-30712-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health. Chronic insomnia is associated with cardiometabolic diseases. Here, in two clinical cohorts (n = 7,931), authors show that gut microbiota-bile acid axis may be an intervention target to attenuate the impact of chronic insomnia on cardiometabolic health.
Collapse
|
27
|
Adolf LA, Heilbronner S. Nutritional Interactions between Bacterial Species Colonising the Human Nasal Cavity: Current Knowledge and Future Prospects. Metabolites 2022; 12:489. [PMID: 35736422 PMCID: PMC9229137 DOI: 10.3390/metabo12060489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
The human nasal microbiome can be a reservoir for several pathogens, including Staphylococcus aureus. However, certain harmless nasal commensals can interfere with pathogen colonisation, an ability that could be exploited to prevent infection. Although attractive as a prophylactic strategy, manipulation of nasal microbiomes to prevent pathogen colonisation requires a better understanding of the molecular mechanisms of interaction that occur between nasal commensals as well as between commensals and pathogens. Our knowledge concerning the mechanisms of pathogen exclusion and how stable community structures are established is patchy and incomplete. Nutrients are scarce in nasal cavities, which makes competitive or mutualistic traits in nutrient acquisition very likely. In this review, we focus on nutritional interactions that have been shown to or might occur between nasal microbiome members. We summarise concepts of nutrient release from complex host molecules and host cells as well as of intracommunity exchange of energy-rich fermentation products and siderophores. Finally, we discuss the potential of genome-based metabolic models to predict complex nutritional interactions between members of the nasal microbiome.
Collapse
Affiliation(s)
- Lea A. Adolf
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
| | - Simon Heilbronner
- Interfaculty Institute for Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, 72076 Tübingen, Germany;
- German Centre for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Abstract
Background: Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disease. Alterations in the gut microbiome have been implicated in the development of cardiovascular disease and may potentially link OSA to its cardiovascular consequences. However, only one study to date has investigated gut microbiomes in adult patients with OSA. Methods: 19 patients with OSA and 20 non-OSA controls participated in the study. Following a diagnostic sleep study, blood was collected for metabolic profiling, and the subjects provided a stool sample for microbiome analysis. The gut microbiome was investigated using the 16S ribosomal RNA method. Results: Patients with OSA had a higher relative abundance of the Proteobacteria phylum (p = 0.03), Gammaproteobacteria class (p = 0.01), Lactobacillae family (p = 0.02), Lactobacillus (p = 0.03), and Roseburia genus (p = 0.03), and a lower abundance of the Actinobacteria phylum (p = 0.03). The abundance of Proteobacteria, Gammaproteobacteria, Lactobacillae, and Lactobacillus were related to disease severity and dyslipidaemia (all p < 0.05), whilst the abundance of Proteobacteria and Gammaproteobacteria was also related to hypertension and cardiovascular disease (all p < 0.05). However, following adjustment for relevant confounders only the association between OSA and Actinobacteria remained significant (p = 0.04). Conclusions: Obstructive sleep apnoea is associated with only subtle changes in gut microbiome. Further studies should investigate gut dysbiosis in OSA.
Collapse
|
29
|
Gawlik-Kotelnicka O, Margulska A, Gabryelska A, Sochal M, Białasiewicz P, Strzelecki D. “Leaky Gut” as a Keystone of the Connection between Depression and Obstructive Sleep Apnea Syndrome? A Rationale and Study Design. Metabolites 2022; 12:metabo12020152. [PMID: 35208226 PMCID: PMC8878827 DOI: 10.3390/metabo12020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea (OSA) and depression are highly comorbid. Immune alterations, oxidative stress or microbiota dysfunction have been proposed as some mechanisms underlying this association. The aim of the proposed study is to assess the severity and profile of OSA and depressive symptoms in the context of serum microbiota metabolites, biomarkers of intestinal permeability, inflammation and oxidative stress in adult patients diagnosed with OSA syndrome. The study population consists of 200 subjects. An apnoea-hypopnoea index ≥ 5/hour is used for the diagnosis. Depressive symptoms are assessed with Beck Depression Inventory. Measured serum markers are: tumour necrosis factor–alpha and interleukin-6 for inflammation, total antioxidant capacity and malondialdehyde concentration for oxidative stress, zonulin, calprotectin, lipopolisaccharide-binding protein and intestinal fatty acids-binding protein for intestinal permeability. All of the above will be measured by enzyme-linked immunosorbent assay (ELISA). Associations between clinical symptoms profile and severity and the above markers levels will be tested. It would be valuable to seek for overlap indicators of depression and OSA to create this endophenotype possible biomarkers and form new prophylactic or therapeutic methods. The results may be useful to establish a subpopulation of patients sensitive to microbiota therapeutic interventions (probiotics, prebiotics, and microbiota transplantation).
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland;
- Correspondence: ; Tel.: +48-603819776
| | | | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 90-419 Lodz, Poland; (A.G.); (M.S.); (P.B.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
30
|
The interplay between Sleep and Gut Microbiota. Brain Res Bull 2022; 180:131-146. [DOI: 10.1016/j.brainresbull.2021.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
|
31
|
Chen X, Chen Y, Feng M, Huang X, Li C, Han F, Zhang Q, Gao X. Altered Salivary Microbiota in Patients with Obstructive Sleep Apnea Comorbid Hypertension. Nat Sci Sleep 2022; 14:593-607. [PMID: 35422668 PMCID: PMC9005082 DOI: 10.2147/nss.s347630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Microorganisms contribute to the pathogenesis of obstructive sleep apnea (OSA)-associated hypertension (HTN), while more studies focus on intestinal microbiome. However, the relationship between oral microbiota and OSA-associated HTN has yet to be elucidated. This study aimed to identify differences in salivary microbiota between patients with OSA comorbid HTN compared with OSA patients, and furthermore evaluate the relationship between oral microbiome changes and increased blood pressure in patients with OSA. PATIENTS AND METHODS This study collected salivary samples from 103 participants, including 27 healthy controls, 27 patients with OSA, 23 patients with HTN, and 26 patients with OSA comorbid HTN, to explore alterations of the oral microbiome using 16S rRNA gene V3-V4 high-throughput sequencing. And ultra-high-performance liquid chromatography was used for metabolomic analysis. RESULTS Alpha- and beta-diversity analyses revealed a substantial difference in community structure and diversity in patients with OSA comorbid HTN compared with patients with OSA or HTN. The relative abundance of the genus Actinomyces was significantly decreased in patients with HTN compared with healthy controls, and those with OSA concomitant HTN compared with the patients in OSA, but was not significantly different between patients with OSA and healthy controls. Linear discriminant analysis effect size and variance analysis also indicated that the genera Haemophilus, Neisseria, and Lautropia were enriched in HTN. In addition, Oribacterium was an unique taxa in the OSA comorbid HTN group compared with the control group. Metabolomic analysis of saliva identified compounds associated with cardiovascular disease in patients with OSA comorbid HTN.2-hydroxyadenine, was significantly increased in the group of patients with OSA compared with controls, and L-carnitine was significantly decreased in patients with OSA comorbid HTN compared with OSA patients. CONCLUSION This study highlighted noninvasive biomarkers for patients with OSA comorbid HTN. As the first study to find alterations of the salivary microbiome in patients with OSA comorbid HTN, it may provide a theoretical foundation for clinical diagnosis and treatment of this condition.
Collapse
Affiliation(s)
- Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Mengqi Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China
| | - Changtao Li
- Department of Orthodontics, Beijing Haidian Hospital, Haidian Section of Peking University Third Hospital, Beijing, 100080, People's Republic of China
| | - Fang Han
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, People's Republic of China.,National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, 100081, People's Republic of China
| |
Collapse
|
32
|
Juszczak HM, Rosenfeld RM. Lifestyle Medicine and Otolaryngology: Embracing the Future. OTO Open 2021; 5:2473974X211059091. [PMID: 34805721 PMCID: PMC8600557 DOI: 10.1177/2473974x211059091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Lifestyle medicine is a relatively new specialty that focuses on behavior change to prevent, treat, and reverse chronic disease and promote wellness. It is relevant to any medical or surgical field that deals with noninfectious chronic disease and to any individual or community pursuing health and wellness. Lifestyle medicine offers evidence-based interventions and tools to foster wellness and resiliency in ourselves and our patients. This commentary gives a brief background of lifestyle medicine and how embracing the discipline could benefit the American Academy of Otolaryngology-Head and Neck Surgery and the field of otolaryngology overall. Specifically, we describe opportunities to improve patient health, promote personal wellness, combat burnout, and foster unity among otolaryngology subspeciality societies.
Collapse
Affiliation(s)
- Hailey M. Juszczak
- Department of Otolaryngology–Head and Neck
Surgery, State University of New York Downstate Health Sciences University, Brooklyn, New
York, USA
| | - Richard M. Rosenfeld
- Department of Otolaryngology–Head and Neck
Surgery, State University of New York Downstate Health Sciences University, Brooklyn, New
York, USA
| |
Collapse
|