1
|
Yoshinaga K, Hirano T, Umemoto S, Kadowaki Y, Matsunaga T, Suzuki M. Effect of Anti-Programmed Cell Death-1 Antibody on Middle Ear Mucosal Immune Response to Intranasal Administration of Haemophilus influenzae Outer Membrane Protein. Vaccines (Basel) 2025; 13:313. [PMID: 40266194 PMCID: PMC11946078 DOI: 10.3390/vaccines13030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025] Open
Abstract
Background/Objectives: Acute otitis media is a common pediatric infection caused primarily by nontypeable Haemophilus influenzae. With rising antibiotic resistance, vaccines are essential for combating this public health issue. Although the PD-1/PD-L1 pathway has been extensively studied for its role in tumor immunity, its impact on mucosal immunity, particularly in vaccine responses, is unclear. Methods: BALB/c mice were intranasally immunized with nontypeable H. influenzae outer membrane protein and treated with anti-PD-L1 antibodies. Immune responses were evaluated in middle ear mucosa (MEM), the cervical lymph node, and the spleen using an enzyme-linked immunosorbent assay, an enzyme-linked immunospot assay, and flow cytometry. The effects on CD4+ T cells, T follicular helper (Tfh) cells, and B-cell differentiation were analyzed. Results: Anti-PD-L1 antibody treatment increased CD3+CD4+CD185+ (CXCR5+) Tfh cells in MEM, which play a crucial role in supporting B-cell activation and antibody production. This correlated with a significant increase in IgA- and IgG-producing cells in MEM, which enhanced local bacterial clearance. Although B-cell activation and differentiation into plasmablasts were observed in MEM, no significant changes were noted in the cervical lymph node and spleen, suggesting a localized enhancement of mucosal immunity. Conclusions: Anti-PD-L1 antibodies promoted Tfh cell expansion and B-cell differentiation in MEM, leading to enhanced antibody production and improved bacterial clearance. These findings suggest that PD-L1 blockade can potentiate mucosal vaccine-induced immunity by strengthening local humoral responses. This supports its potential application in developing intranasal vaccines for acute otitis media.
Collapse
Affiliation(s)
| | - Takashi Hirano
- Department of Otorhinolaryngology& Head and Neck Surgery, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (K.Y.)
| | | | | | | | | |
Collapse
|
2
|
Kani ER, Karaviti E, Karaviti D, Gerontiti E, Paschou IA, Saltiki K, Stefanaki K, Psaltopoulou T, Paschou SA. Pathophysiology, diagnosis, and management of immune checkpoint inhibitor-induced diabetes mellitus. Endocrine 2025; 87:875-890. [PMID: 39316333 DOI: 10.1007/s12020-024-04050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
Immune Checkpoint Inhibitors (ICIs) have revolutionized cancer treatment, offering hope for patients with various malignancies. However, along with their remarkable anticancer effects, ICIs can also trigger immune-related adverse events (irAEs). One such noteworthy complication is the development of Diabetes Mellitus (DM), which particularly resembles Type 1 Diabetes Mellitus (T1DM). The aim of this review is to provide insights into the epidemiology, pathophysiology, diagnostic issues, and treatment considerations of ICI-induced DM (ICI-DM), emphasizing the importance of early recognition and management to mitigate adverse outcomes. Although still rare, the incidence has increased with the widespread use of ICIs, especially PD-1/PD-L1 blockers (from 0.2% to 1.9%). Factors affecting the development of ICI-DM, such as specific ICIs, patient demographics, and genetic predispositions, are discussed. The complex interplay between immune dysregulation and pancreatic β-cell destruction contributes to diagnostic challenges, with presentations varying from asymptomatic hyperglycemia to diabetic ketoacidosis (DKA). Management strategies prioritize meticulous glycemic and electrolyte regulation along with tailored intravenous insulin therapy in cases of DKA. DM remission is rare, therefore treatment with both long-acting insulin at bedtime and short-acting insulin before meals is needed in longterm. Total daily insulin requirements can be estimated at 0.3-0.4 units/kg/day for most patients as a starting dose.
Collapse
Affiliation(s)
- Eleni-Rafaela Kani
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftheria Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitra Karaviti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Gerontiti
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna A Paschou
- First Department of Dermatology and Venereology, Andreas Syggros Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Saltiki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Stefanaki
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Psaltopoulou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula A Paschou
- Endocrine Unit and Diabetes Center, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Gutzeit C, Grasset EK, Matthews DB, Maglione PJ, Britton GJ, Miller H, Magri G, Tomalin L, Stapylton M, Canales-Herrerias P, Sominskaia M, Guzman M, Pybus M, Tejedor Vaquero S, Radigan L, Tachó-Piñot R, Martín Nalda A, García Prat M, Martinez Gallo M, Dieli-Crimi R, Clemente JC, Mehandru S, Suarez-Farinas M, Faith JJ, Cunningham-Rundles C, Cerutti A. Gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses. SCIENCE ADVANCES 2025; 11:eado9455. [PMID: 39937896 PMCID: PMC11817949 DOI: 10.1126/sciadv.ado9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
The gut microbiota enhances systemic immunoglobulin G (IgG) responses to vaccines, but it is unknown whether this effect involves IgA, which coats intestinal microbes. That IgA may amplify postimmune IgG production is suggested by the impaired IgG response to pneumococcal vaccines in some IgA-deficient patients. Here, we found that antipneumococcal but not total IgG production was impaired in mice with IgA deficiency. The positive effect of gut IgA on antipneumococcal IgG responses started very early in life and could implicate gut bacteria, as these responses were attenuated in germ-free mice recolonized with gut microbes from IgA-deficient donors. IgA could exert this effect by constraining the systemic translocation of gut antigens, which was associated with chronic immune activation, including T cell overexpression of programmed cell death protein 1 (PD-1). This inhibitory receptor may attenuate antipneumococcal IgG production by causing B cell hyporesponsiveness, which improved upon anti-PD-1 treatment. Thus, gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilie K. Grasset
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dean B. Matthews
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Paul J. Maglione
- Pulmonary Center and Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn Institute for Data Science and Genome Technology, School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Miller
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lewis Tomalin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Stapylton
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pablo Canales-Herrerias
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musia Sominskaia
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mauricio Guzman
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), 02041 Barcelona, Spain
| | - Sonia Tejedor Vaquero
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lin Radigan
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roser Tachó-Piñot
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Andrea Martín Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Marina García Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Monica Martinez Gallo
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - Romina Dieli-Crimi
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - José C. Clemente
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saurabh Mehandru
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Gastroenterology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Cerutti
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| |
Collapse
|
4
|
Xu S, Sonkawade SD, Karthikeyan B, Karambizi VG, Kulkarni PS, Nepali S, Pokharel S, Sharma UC. Troponin i-induced cardiac inflammation and dysfunction in mice: a comparative study with the AT-3 tumor-bearing model. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:16. [PMID: 39940032 DOI: 10.1186/s40959-025-00315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Myocarditis is a potentially fatal condition, with a mortality rate of up to 50% in severe cases. Studies, including those by Nobel Laureate Honjo, have implicated autoantibodies against cardiac troponin I (cTnI) in driving cardiac inflammation in mice. Research has also identified autoantibodies under baseline conditions in some cancer models. However, data on the effects of recombinant cTnI on autoantibody production, myocardial inflammation, and contractile function remain limited. This study investigated cTnI-associated myocardial inflammation and autoantibody formation in both tumor-free and tumor-bearing mouse models. METHODS Female BALB/c mice were immunized with recombinant cTnI combined with adjuvants and compared to adjuvant-only controls. Cardiac function was assessed using gated cardiac MRI, including myocardial velocities, acceleration, deceleration, and standard volumetric parameters including ejection fraction (EF). Anti-cTnI autoantibodies were quantified using a custom-designed ELISA, while myocardial inflammation was assessed by analyzing T-cell subsets (CD4 + and CD8 +) in myocardial tissue samples. Baseline autoantibody reactivity was evaluated in tumor-bearing mice and tumor-free controls for comparison. RESULTS The left ventricular ejection fraction trended lower in the cTnI + adjuvant group (57.80 ± 1.7%) compared to controls (61.67 ± 4.1%), but the difference was not statistically significant (p = 0.073). Myocardial velocity, reflecting contraction speed, was significantly reduced in cTnI-treated mice (control:-1.2 ± 0.8 cm/s; cTnI:-1.05 ± 0.07 cm/s; p = 0.015). Anti-cTnI autoantibody levels increased significantly in cTnI-treated mice at 8 weeks (control:0.1 ± 0.02; cTnI:0.77 ± 0.28; p = 0.007). Additionally, the density of CD8 + T-cells in myocardial tissue was significantly higher in the cTnI group (control:2.2 ± 1.2 cells/mm2; cTnI:4.4 ± 2 cells/mm2; p = 0.013), indicating an enhanced cytotoxic T-cell response. The CD4/CD8 ratio was significantly lower in cTnI-treated mice (control: 8.2 ± 6.8; cTnI:3.1 ± 0.9; p = 0.029), further suggesting a shift toward a cytotoxic immune profile. Baseline autoantibody reactivity in tumor-bearing mice was not significantly different from controls (tumor-bearing: absorbance 0.049 ± 0.029; control: absorbance 0.068 ± 0.05 at 450 nm), indicating no inherent autoimmune reactivity in the tumor-bearing model. CONCLUSIONS Recombinant cTnI induces myocardial contractile dysfunction and promotes a cytotoxic immune response, supporting its role as an autoantigen in myocarditis. Advanced cardiac MRI revealed subtle functional impairments that EF alone could not detect. These findings highlight the potential for therapies targeting cTnI-induced autoimmunity, particularly in patients with ICI-associated myocarditis.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Swati D Sonkawade
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Badri Karthikeyan
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Victoire-Grace Karambizi
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Prachi S Kulkarni
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA
| | - Sarmila Nepali
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Saraswati Pokharel
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 875 Ellicott St, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Dara L, De Martin E. Immune-Mediated Liver Injury From Checkpoint Inhibitor: An Evolving Frontier With Emerging Challenges. Liver Int 2025; 45:e16198. [PMID: 39868913 PMCID: PMC11771569 DOI: 10.1111/liv.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 01/28/2025]
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have transformed the treatment of cancer, though they come with the risk of immune-related adverse (irAEs) events such as hepatotoxicity or Immune-mediated Liver Injury from Checkpoint Inhibitors (ILICI). ILICI is a serious irAE that, when severe, requires cessation of ICI and initiation of immunosuppression. Cytotoxic T Lymphocytes (CTLs) play a central role in ILICI; however, they are just part of the picture as immunotherapy broadly impacts all aspects of the immune microenvironment and can directly and indirectly activate innate and adaptive immune cells. Clinically, as our understanding of this entity grows, we encounter new challenges. The presentation of ILICI is heterogeneous with respect to latency, pattern of injury (hepatitis vs. cholangitis) and severity. This review focuses on our knowledge regarding risk factors, presentation and treatment of ILICI including ILICI refractory to steroids. An emerging topic, the possibility of rechallenge while accepting some risk, in patients who experience ILICI but require immunotherapy, is also discussed. This review provides an update on the current knowns and unknowns in ILICI and highlights several knowledge gaps where studies are needed.
Collapse
Affiliation(s)
- Lily Dara
- Research Center for Liver DiseaseKeck School of Medicine of the University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eleonora De Martin
- APHP, Hôpital Paul‐BrousseCentre Hépato‐Biliaire, Inserm, Unité 1193, Université Paris‐Saclay, FHU HepatinovVillejuifFrance
| |
Collapse
|
6
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Ogishi M, Kitaoka K, Good-Jacobson KL, Rinchai D, Zhang B, Wang J, Gies V, Rao G, Nguyen T, Avery DT, Khan T, Smithmyer ME, Mackie J, Yang R, Arias AA, Asano T, Ponsin K, Chaldebas M, Zhang P, Peel JN, Bohlen J, Lévy R, Pelham SJ, Lei WT, Han JE, Fagniez I, Chrabieh M, Laine C, Langlais D, Gruber C, Al Ali F, Rahman M, Aytekin C, Benson B, Dufort MJ, Domingo-Vila C, Moriya K, Shlomchik M, Uzel G, Gray PE, Suan D, Preece K, Chua I, Okada S, Chikuma S, Kiyonari H, Tree TI, Bogunovic D, Gros P, Marr N, Speake C, Oram RA, Béziat V, Bustamante J, Abel L, Boisson B, Korganow AS, Ma CS, Johnson MB, Chamoto K, Boisson-Dupuis S, Honjo T, Casanova JL, Tangye SG. Impaired development of memory B cells and antibody responses in humans and mice deficient in PD-1 signaling. Immunity 2024; 57:2790-2807.e15. [PMID: 39603236 PMCID: PMC11634639 DOI: 10.1016/j.immuni.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 08/02/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
T follicular helper (Tfh) cells abundantly express the immunoreceptor programmed cell death protein 1 (PD-1), and the impact of PD-1 deficiency on antibody (Ab)-mediated immunity in mice is associated with compromised Tfh cell functions. Here, we revisited the role of the PD-1-PD-L1 axis on Ab-mediated immunity. Individuals with inherited PD-1 or PD-L1 deficiency had fewer memory B cells and impaired Ab responses, similar to Pdcd1-/- and Cd274-/-Pdcd1lg2-/- mice. PD-1, PD-L1, or both could be detected on the surface of human naive B cells following in vitro activation. PD-1- or PD-L1-deficient B cells had reduced expression of the transcriptional regulator c-Myc and c-Myc-target genes in vivo, and PD-1 deficiency or neutralization of PD-1 or PD-L1 impeded c-Myc expression and Ab production in human B cells isolated in vitro. Furthermore, B cell-specific deletion of Pdcd1 prevented the physiological accumulation of memory B cells in mice. Thus, PD-1 shapes optimal B cell memory and Ab-mediated immunity through B cell-intrinsic and B cell-extrinsic mechanisms, suggesting that B cell dysregulation contributes to infectious and autoimmune complications following anti-PD-1-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; The David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA.
| | - Koji Kitaoka
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Baihao Zhang
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan; Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Jun Wang
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Vincent Gies
- Department of Clinical Immunology and Internal Medicine, Strasbourg University Hospital, INSERM UMR-S1109, 67000 Strasbourg, France
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Danielle T Avery
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Taushif Khan
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Megan E Smithmyer
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia; School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Takaki Asano
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Khoren Ponsin
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Matthieu Chaldebas
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Iris Fagniez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Candice Laine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - David Langlais
- McGill University Genome Center, Montreal, QC, Canada; McGill Research Centre on Complex Traits, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Al Ali
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Mahbuba Rahman
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Caner Aytekin
- Department of Pediatric Immunology, Dr. Sami Ulus Maternity and Children's Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Basilin Benson
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Clara Domingo-Vila
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings' College London, London WC2R 2LS, UK
| | - Kunihiko Moriya
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai 980-0872, Japan
| | - Mark Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul E Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia
| | - Daniel Suan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia; Westmead Clinical School, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kahn Preece
- John Hunter Children's Hospital, Newcastle, NSW 2305, Australia
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch 8140, New Zealand
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima 734-0037, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Timothy I Tree
- Department of Immunobiology, School of Immunobiology & Microbial Sciences, Kings' College London, London WC2R 2LS, UK
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philippe Gros
- McGill Research Centre on Complex Traits, Dahdaleh Institute of Genomic Medicine, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Nico Marr
- Department of Human Immunology, Research Branch, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Cate Speake
- Center for Interventional Immunology, Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA; Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Richard A Oram
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2ED, UK
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, Strasbourg University Hospital, INSERM UMR-S1109, 67000 Strasbourg, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia
| | - Matthew B Johnson
- Clinical and Biomedical Science, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2ED, UK
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan; Department of Immuno-Oncology PDT, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8303, Japan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia; Clinical Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW 2010, Australia.
| |
Collapse
|
8
|
Kur IM, Weigert A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflugers Arch 2024; 476:1789-1802. [PMID: 38573347 PMCID: PMC11582130 DOI: 10.1007/s00424-024-02948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/05/2024]
Abstract
Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.
Collapse
Affiliation(s)
- Ivan-Maximiliano Kur
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596, Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.
- Cardiopulmonary Institute (CPI), 60590, Frankfurt, Germany.
| |
Collapse
|
9
|
Park J, Kim J. CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1589. [PMID: 39770431 PMCID: PMC11676443 DOI: 10.3390/ph17121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related death in men. Although current therapies can effectively manage the primary tumor, most patients with late-stage disease manifest with metastasis in different organs. From surgery to treatment intensification (TI), several combinations of therapies are administered to improve the prognosis of patients with metastatic PCa. Due to the high frequency of the mutation during the metastatic phase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genetic engineering tool can accelerate the effects of TI by enhancing targeted gene therapy or immunotherapy. This review describes the genetic background of metastatic PCa and how CRISPR/Cas9 technology can contribute to the field of PCa treatment development. It also discusses the current limitations of conventional PCa therapy and the potential of CRISPR-based PCa therapy.
Collapse
Affiliation(s)
- Jieun Park
- Department of Neurology, College of Medicine, Dongguk University, Ilsan, Goyang 10326, Republic of Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
Kalinoski H, Daoud A, Rusinkevich V, Jurčová I, Talor MV, Welsh RA, Hughes D, Zemanová K, Stříž I, Hooper JE, Kautzner J, Peichl P, Melenovský V, Won T, Čiháková D. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci U S A 2024; 121:e2323052121. [PMID: 39378095 PMCID: PMC11494310 DOI: 10.1073/pnas.2323052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Collapse
Affiliation(s)
- Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Vitali Rusinkevich
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Ivana Jurčová
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Robin A. Welsh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - David Hughes
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21205
| | - Kateřina Zemanová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Jody E. Hooper
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
11
|
Cánovas-Cervera I, Nacher-Sendra E, Suay G, Lahoz A, García-Giménez JL, Mena-Mollá S. Role of miRNAs as epigenetic regulators of immune checkpoints in lung cancer immunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:109-139. [PMID: 39864893 DOI: 10.1016/bs.ircmb.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The advent of immunotherapy in cancer has provided new avenues in the treatment of many malignancies at various stages. Specifically, immune checkpoint inhibitors (ICIs) have transformed the field of lung cancer treatment. However, since some tumors can evade the immune system, not all patients respond properly. Recent research has provided evidence showing how microRNAs (miRNAs) are involved in regulating many immune checkpoints. MiRNAs have demonstrated their ability to modulate immune evasion of tumor cells. Currently, reliable markers are being sought to predict the efficacy of immunotherapy in these types of cancers. Therefore, the association of serum miRNAs and the response of ICIs in lung cancer is under study. Many miRNA molecules and their corresponding target genes have been identified in the regulation of chemoresistance. Therefore, elucidating how these miRNAs control the function of immune checkpoints, as well as the effectiveness of therapies based on ICIs set the basis for the development of new biomarkers to predict treatment response to ICIs. This chapter delves into the molecular role of miRNAs interacting with ICs, such as PD-1 and PD-L1, and the clinical utility of miRNAs, such as miR-16, miR-146a, and miR-335, in predicting treatment response to ICI-based therapy in lung cancer. The aim is to provide a deep insight of the current landscape, serving as a cornerstone for further research.
Collapse
Affiliation(s)
- Irene Cánovas-Cervera
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Guillermo Suay
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Agustin Lahoz
- Biomarkers and Precision Medicine Unit, Health Research Institute-Hospital La Fe, Valencia, Spain; Analytical Unit, Health Research Institute-Hospital La Fe, Valencia, Spain
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain; Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
| | - Salvador Mena-Mollá
- INCLIVA Health Research Institute, INCLIVA, Valencia, Spain; Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
12
|
Porte S, Audemard-Verger A, Wu C, Durand A, Level T, Giraud L, Lombès A, Germain M, Pierre R, Saintpierre B, Lambert M, Auffray C, Peyssonnaux C, Goldwasser F, Vaulont S, Alves-Guerra MC, Dentin R, Lucas B, Martin B. Iron Boosts Antitumor Type 1 T-cell Responses and Anti-PD1 Immunotherapy. Cancer Immunol Res 2024; 12:1252-1267. [PMID: 38912762 DOI: 10.1158/2326-6066.cir-23-0739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/02/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Cancers only develop if they escape immunosurveillance, and the success of cancer immunotherapies relies in most cases on their ability to restore effector T-cell functions, particularly IFNγ production. Revolutionizing the treatment of many cancers, immunotherapies targeting immune checkpoints such as PD1 can increase survival and cure patients. Unfortunately, although immunotherapy has greatly improved the prognosis of patients, not all respond to anti-PD1 immunotherapy, making it crucial to identify alternative treatments that could be combined with current immunotherapies to improve their effectiveness. Here, we show that iron supplementation significantly boosts T-cell responses in vivo and in vitro. The boost was associated with a metabolic reprogramming of T cells in favor of lipid oxidation. We also found that the "adjuvant" effect of iron led to a marked slowdown of tumor cell growth after tumor cell line transplantation in mice. Specifically, our results suggest that iron supplementation promotes antitumor responses by increasing IFNγ production by T cells. In addition, iron supplementation improved the efficacy of anti-PD1 cancer immunotherapy in mice. Finally, our study suggests that, in patients with cancer, the quality and efficacy of the antitumor response following anti-PD1 immunotherapy may be modulated by plasma ferritin levels. In summary, our results suggest the benefits of iron supplementation on the reactivation of antitumor responses and support the relevance of a fruitful association between immunotherapy and iron supplementation.
Collapse
Affiliation(s)
- Sarah Porte
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | | | - Christian Wu
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Léa Giraud
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Rémi Pierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Benjamin Saintpierre
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Mireille Lambert
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Carole Peyssonnaux
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - François Goldwasser
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, Université Paris Cité, APHP.Centre, Paris, France
| | - Sophie Vaulont
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Marie-Clotilde Alves-Guerra
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Renaud Dentin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| |
Collapse
|
13
|
O'Hare M, Guidon AC. Peripheral nervous system immune-related adverse events due to checkpoint inhibition. Nat Rev Neurol 2024; 20:509-525. [PMID: 39122934 DOI: 10.1038/s41582-024-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy and are increasingly used to treat a wide range of oncological conditions, with dramatic benefits for many patients. Unfortunately, the resulting increase in T cell effector function often results in immune-related adverse events (irAEs), which can involve any organ system, including the central nervous system (CNS) and peripheral nervous system (PNS). Neurological irAEs involve the PNS in two-thirds of affected patients. Muscle involvement (immune-related myopathy) is the most common PNS irAE and can be associated with neuromuscular junction involvement. Immune-related peripheral neuropathy most commonly takes the form of polyradiculoneuropathy or cranial neuropathies. Immune-related myopathy (with or without neuromuscular junction involvement) often occurs along with immune-related myocarditis, and this overlap syndrome is associated with substantially increased mortality. This Review focuses on PNS adverse events associated with immune checkpoint inhibition. Underlying pathophysiological mechanisms are discussed, including antigen homology between self and tumour, epitope spreading and activation of pre-existing autoreactive T cells. An overview of current approaches to clinical management is provided, including cytokine-directed therapies that aim to decouple anticancer immunity from autoimmunity and emerging treatments for patients with severe (life-threatening) presentations.
Collapse
Affiliation(s)
- Meabh O'Hare
- Brigham and Women's Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA.
| | - Amanda C Guidon
- Massachusetts General Hospital, Division of Neuromuscular Medicine, Department of Neurology, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
15
|
Chen F, Sheng J, Li X, Gao Z, Zhao S, Hu L, Chen M, Fei J, Song Z. Unveiling the promise of PD1/PD-L1: A new dawn in immunotherapy for cholangiocarcinoma. Biomed Pharmacother 2024; 175:116659. [PMID: 38692063 DOI: 10.1016/j.biopha.2024.116659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Cholangiocarcinoma (CCA), a rare yet notably aggressive cancer, has experienced a surge in incidence in recent years. Presently, surgical resection remains the most effective curative strategy for CCA. Nevertheless, a majority of patients with CCA are ineligible for surgical removal at the time of diagnosis. For advanced stages of CCA, the combination of gemcitabine and cisplatin is established as the standard chemotherapy regimen. Despite this, treatment efficacy is often hindered by the development of resistance. In recent times, immune checkpoint inhibitors, particularly those that block programmed death 1 and its ligand (PD1/PD-L1), have emerged as promising strategies against a variety of cancers and are being increasingly integrated into the therapeutic landscape of CCA. A growing body of research supports that the use of PD1/PD-L1 monoclonal antibodies in conjunction with chemotherapy may significantly improve patient outcomes. This article seeks to meticulously review the latest studies on PD1/PD-L1 involvement in CCA, delving into their expression profiles, prognostic significance, contribution to oncogenic processes, and their potential clinical utility.
Collapse
Affiliation(s)
- Fei Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jian Sheng
- Department of Research and Teaching, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaoping Li
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhaofeng Gao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Siqi Zhao
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Lingyu Hu
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Minjie Chen
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Jianguo Fei
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| | - Zhengwei Song
- Department of Surgery, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
| |
Collapse
|
16
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
17
|
Sharma S, Singh N, Turk AA, Wan I, Guttikonda A, Dong JL, Zhang X, Opyrchal M. Molecular insights into clinical trials for immune checkpoint inhibitors in colorectal cancer: Unravelling challenges and future directions. World J Gastroenterol 2024; 30:1815-1835. [PMID: 38659481 PMCID: PMC11036501 DOI: 10.3748/wjg.v30.i13.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/13/2024] [Indexed: 04/03/2024] Open
Abstract
Colorectal cancer (CRC) is a complex disease with diverse etiologies and clinical outcomes. Despite considerable progress in development of CRC therapeutics, challenges remain regarding the diagnosis and management of advanced stage metastatic CRC (mCRC). In particular, the five-year survival rate is very low since mCRC is currently rarely curable. Over the past decade, cancer treatment has significantly improved with the introduction of cancer immunotherapies, specifically immune checkpoint inhibitors. Therapies aimed at blocking immune checkpoints such as PD-1, PD-L1, and CTLA-4 target inhibitory pathways of the immune system, and thereby enhance anti-tumor immunity. These therapies thus have shown promising results in many clinical trials alone or in combination. The efficacy and safety of immunotherapy, either alone or in combination with CRC, have been investigated in several clinical trials. Clinical trials, including KEYNOTE-164 and CheckMate 142, have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab, respectively, for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC. Unfortunately, these drugs benefit only a small percentage of patients, with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients. To this end, primary and secondary resistance to immunotherapy remains a significant issue, and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response. This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC. The underlying rationale, challenges faced, and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
Collapse
Affiliation(s)
- Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Anita Ahmed Turk
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Isabella Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Akshay Guttikonda
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Julia Lily Dong
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Mateusz Opyrchal
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
18
|
Burke KP, Chaudhri A, Freeman GJ, Sharpe AH. The B7:CD28 family and friends: Unraveling coinhibitory interactions. Immunity 2024; 57:223-244. [PMID: 38354702 PMCID: PMC10889489 DOI: 10.1016/j.immuni.2024.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
Immune responses must be tightly regulated to ensure both optimal protective immunity and tolerance. Costimulatory pathways within the B7:CD28 family provide essential signals for optimal T cell activation and clonal expansion. They provide crucial inhibitory signals that maintain immune homeostasis, control resolution of inflammation, regulate host defense, and promote tolerance to prevent autoimmunity. Tumors and chronic pathogens can exploit these pathways to evade eradication by the immune system. Advances in understanding B7:CD28 pathways have ushered in a new era of immunotherapy with effective drugs to treat cancer, autoimmune diseases, infectious diseases, and transplant rejection. Here, we discuss current understanding of the mechanisms underlying the coinhibitory functions of CTLA-4, PD-1, PD-L1:B7-1 and PD-L2:RGMb interactions and less studied B7 family members, including HHLA2, VISTA, BTNL2, and BTN3A1, as well as their overlapping and unique roles in regulating immune responses, and the therapeutic potential of these insights.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zhang H, Houadj L, Wu KY, Tran SD. Diagnosing and Managing Uveitis Associated with Immune Checkpoint Inhibitors: A Review. Diagnostics (Basel) 2024; 14:336. [PMID: 38337852 PMCID: PMC10855398 DOI: 10.3390/diagnostics14030336] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This review aims to provide an understanding of the diagnostic and therapeutic challenges of uveitis associated with immune checkpoint inhibitors (ICI). In the wake of these molecules being increasingly employed as a treatment against different cancers, cases of uveitis post-ICI therapy have also been increasingly reported in the literature, warranting an extensive exploration of the clinical presentations, risk factors, and pathophysiological mechanisms of ICI-induced uveitis. This review further provides an understanding of the association between ICIs and uveitis, and assesses the efficacy of current diagnostic tools, underscoring the need for advanced techniques to enable early detection and accurate assessment. Further, it investigates the therapeutic strategies for ICI-related uveitis, weighing the benefits and limitations of existing treatment regimens, and discussing current challenges and emerging therapies in the context of their potential efficacy and side effects. Through an overview of the short-term and long-term outcomes, this article suggests recommendations and emphasizes the importance of multidisciplinary collaboration between ophthalmologists and oncologists. Finally, the review highlights promising avenues for future research and development in the field, potentially informing transformative approaches in the ocular assessment of patients under immunotherapy and the management of uveitis following ICI therapy.
Collapse
Affiliation(s)
- Huixin Zhang
- Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada;
| | - Lysa Houadj
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada;
| | - Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
20
|
Soussan S, Pupier G, Cremer I, Joubert PE, Sautès-Fridman C, Fridman W, Sibéril S. Unraveling the complex interplay between anti-tumor immune response and autoimmunity mediated by B cells and autoantibodies in the era of anti-checkpoint monoclonal antibody therapies. Front Immunol 2024; 15:1343020. [PMID: 38318190 PMCID: PMC10838986 DOI: 10.3389/fimmu.2024.1343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
The intricate relationship between anti-tumor immunity and autoimmunity is a complex yet crucial aspect of cancer biology. Tumor microenvironment often exhibits autoimmune features, a phenomenon that involves natural autoimmunity and the induction of humoral responses against self-antigens during tumorigenesis. This induction is facilitated by the orchestration of anti-tumor immunity, particularly within organized structures like tertiary lymphoid structures (TLS). Paradoxically, a significant number of cancer patients do not manifest autoimmune features during the course of their illness, with rare instances of paraneoplastic syndromes. This discrepancy can be attributed to various immune-mediated locks, including regulatory or suppressive immune cells, anergic autoreactive lymphocytes, or induction of effector cells exhaustion due to chronic stimulation. Overcoming these locks holds the risk to induce autoimmune mechanisms during cancer progression, a phenomenon notably observed with anti-immune checkpoint therapies, in contrast to more conventional treatments like chemotherapy or radiotherapy. Therefore, the challenge arises in managing immune-related adverse events (irAEs) induced by immune checkpoint inhibitors treatment, as decoupling them from the anti-tumor activity poses a significant clinical dilemma. This review summarizes recent advances in understanding the link between B-cell driven anti-tumor responses and autoimmune reactions in cancer patients, and discusses the clinical implications of this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sophie Sibéril
- Centre de recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
21
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
22
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
23
|
Le CT, Vick LV, Collins C, Dunai C, Sheng MK, Khuat LT, Barao I, Judge SJ, Aguilar EG, Curti B, Dave M, Longo DL, Blazar BR, Canter RJ, Monjazeb AM, Murphy WJ. Regulation of human and mouse bystander T cell activation responses by PD-1. JCI Insight 2023; 8:e173287. [PMID: 37737264 PMCID: PMC10561715 DOI: 10.1172/jci.insight.173287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Bystander activation of memory T cells occurs via cytokine signaling alone in the absence of T cell receptor (TCR) signaling and provides a means of amplifying T cell effector responses in an antigen-nonspecific manner. While the role of Programmed Cell Death Protein 1 (PD-1) on antigen-specific T cell responses is extensively characterized, its role in bystander T cell responses is less clear. We examined the role of the PD-1 pathway during human and mouse non-antigen-specific memory T cell bystander activation and observed that PD-1+ T cells demonstrated less activation and proliferation than activated PD-1- populations in vitro. Higher activation and proliferative responses were also observed in the PD-1- memory population in both mice and patients with cancer receiving high-dose IL-2, mirroring the in vitro phenotypes. This inhibitory effect of PD-1 could be reversed by PD-1 blockade in vivo or observed using memory T cells from PD-1-/- mice. Interestingly, increased activation through abrogation of PD-1 signaling in bystander-activated T cells also resulted in increased apoptosis due to activation-induced cell death (AICD) and eventual T cell loss in vivo. These results demonstrate that the PD-1/PD-Ligand 1 (PD-L1) pathway inhibited bystander-activated memory T cell responses but also protected cells from AICD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lam T. Khuat
- Department of Dermatology, School of Medicine, and
| | - Isabel Barao
- Department of Dermatology, School of Medicine, and
| | - Sean J. Judge
- Department of Surgery, University of California, Davis, Sacramento, California, USA
| | - Ethan G. Aguilar
- Masonic Cancer Center, and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brendan Curti
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, Portland, Oregon, USA
| | - Maneesh Dave
- Department of Internal Medicine, Division of Gastroenterology, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - Dan L. Longo
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R. Blazar
- Masonic Cancer Center, and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert J. Canter
- Department of Surgery, University of California, Davis, Sacramento, California, USA
| | | | - William J. Murphy
- Department of Dermatology, School of Medicine, and
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
24
|
Dhodapkar KM, Duffy A, Dhodapkar MV. Role of B cells in immune-related adverse events following checkpoint blockade. Immunol Rev 2023; 318:89-95. [PMID: 37421187 PMCID: PMC10530150 DOI: 10.1111/imr.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Blockade of immune checkpoints has transformed the therapy of several cancers. However, immune-related adverse events (irAEs) have emerged as a major challenge limiting the clinical application of this approach. B cells are recognized as major players in the pathogenesis of human autoimmunity and have been successfully targeted to treat these disorders. While T cells have been extensively studied as therapeutic targets of immune checkpoint blockade (ICB), these checkpoints also impact B cell tolerance. Blockade of immune checkpoints in the clinic is associated with distinct changes in the B cell compartment that correlate with the development of irAEs. In this review, we focus on the possible role of humoral immunity, specifically human B cell subsets and autoantibodies in the pathogenesis of ICB-induced irAEs. There remains an unmet need to better understand the T:B cell cross talk underlying the activation of pathogenic B cells and the development of ICB-induced irAEs. Such studies may identify new targets or approaches to prevent or treat irAEs and improve the application of ICB therapy in cancer.
Collapse
Affiliation(s)
- Kavita M. Dhodapkar
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Alyssa Duffy
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatric Hematology/Oncology, Emory University, Atlanta, GA
| | - Madhav V. Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA
- Department of Hematology/Medical Oncology, Emory University, Atlanta, GA
| |
Collapse
|
25
|
Verhoef JI, Klont E, van Overveld FJ, Rijkers GT. The long and winding road of faecal microbiota transplants to targeted intervention for improvement of immune checkpoint inhibition therapy. Expert Rev Anticancer Ther 2023; 23:1179-1191. [PMID: 37746903 DOI: 10.1080/14737140.2023.2262765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) therapy has revolutionized the treatment of cancer. Inhibitory molecules, either on the tumor or on cells of the immune system, are blocked, allowing the immune system of the patient to attack and eradicate the tumor. Not all patients respond to ICI therapy, and response or non-response has been associated with composition of gut microbiota. AREA COVERED Fecal microbiota transplantation (FMT) is used as adjunctive therapy in order to improve the outcome of ICI. ClinicalTrials.gov, and other databases were searched (October 2022) for studies dealing with gut microbiota modification and the outcome of ICI. EXPERT OPINION There is ample evidence for the beneficial effect of FMT on the outcome of ICI therapy for cancer, especially melanoma. Progress is being made in the unraveling of the mechanisms by which microbiota and their metabolites (butyrate and the tryptophan metabolite indole-3-aldehyde) interact with the mucosal immune system of the host. A better understanding of the mechanisms involved will allow the identification of key bacterial species which mediate the effect of FMT. Promising species are Faecalibacterium prausnitzii, Eubacterium rectale, Bifidobacterium adolescentis, B. bifidum, and B. longum, because they are important direct and indirect butyrate producers.
Collapse
Affiliation(s)
- Jasmijn I Verhoef
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| | - Ediz Klont
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| | | | - Ger T Rijkers
- Dept. of Science, University College Roosevelt, Middelburg, The Netherlands
| |
Collapse
|
26
|
Ibis B, Aliazis K, Cao C, Yenyuwadee S, Boussiotis VA. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front Immunol 2023; 14:1197364. [PMID: 37342323 PMCID: PMC10277501 DOI: 10.3389/fimmu.2023.1197364] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
During the past decade, there has been a revolution in cancer therapeutics by the emergence of antibody-based immunotherapies that modulate immune responses against tumors. These therapies have offered treatment options to patients who are no longer responding to classic anti-cancer therapies. By blocking inhibitory signals mediated by surface receptors that are naturally upregulated during activation of antigen-presenting cells (APC) and T cells, predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking agents have revolutionized cancer treatment. However, breaking these inhibitory signals cannot be selectively targeted to the tumor microenvironment (TME). Since the physiologic role of these inhibitory receptors, known as immune checkpoints (IC) is to maintain peripheral tolerance by preventing the activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple types of immune-related adverse effects (irAEs). These irAEs, together with the natural properties of ICs as gatekeepers of self-tolerance, have precluded the use of ICI in patients with pre-existing autoimmune diseases (ADs). However, currently accumulating data indicates that ICI might be safely administered to such patients. In this review, we discuss mechanisms of well established and newly recognized irAEs and evolving knowledge from the application of ICI therapies in patients with cancer and pre-existing ADs.
Collapse
Affiliation(s)
- Betul Ibis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Konstantinos Aliazis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carol Cao
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard College, Cambridge, MA, United States
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Piersiala K, Hjalmarsson E, da Silva PFN, Lagebro V, Kolev A, Starkhammar M, Elliot A, Marklund L, Munck-Wikland E, Margolin G, Georén SK, Cardell LO. Regulatory B cells producing IL-10 are increased in human tumor draining lymph nodes. Int J Cancer 2023. [PMID: 37144812 DOI: 10.1002/ijc.34555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The contribution of different immune cell subsets, especially T cells, in anti-tumor immune response is well established. In contrast to T cells, the anti-tumor contribution of B cells has been scarcely investigated. B-cells are often overlooked, even though they are important players in a fully integrated immune response and constitute a substantial fraction of tumor draining lymph nodes (TDLNs) known also as Sentinel Nodes. In this project, samples including TDLNs, non-TDLNs (nTDLNs) and metastatic lymph nodes from 21 patients with oral squamous cell carcinoma were analyzed by flow cytometry. TDLNs were characterized by a significantly higher proportion of B cells compared with nTDLNs (P = .0127). TDLNs-associated B cells contained high percentages of naïve B cells, in contrary to nTDLNs which contained significantly higher percentages of memory B cells. Patients having metastases in TDLNs showed a significantly higher presence of immunosuppressive B regulatory cells compared with metastasis-free patients (P = .0008). Elevated levels of regulatory B cells in TDLNs were associated with the advancement of the disease. B cells in TDLNs were characterized by significantly higher expression of an immunosuppressive cytokine-IL-10 compared with nTDLNs (P = .0077). Our data indicate that B cells in human TDLNs differ from B cells in nTDLNs and exhibit more naïve and immunosuppressive phenotypes. We identified a high accumulation of regulatory B cells within TDLNs which may be a potential obstacle in achieving response to novel cancer immunotherapies (ICIs) in head and neck cancer.
Collapse
Affiliation(s)
- Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Hjalmarsson
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Aeneas Kolev
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Starkhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Elliot
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Marklund
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Eva Munck-Wikland
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gregori Margolin
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Shinohara T, Yamamoto T, Morimoto H, Shiromoto Y, Kanatsu-Shinohara M. Allogeneic offspring produced by induction of PD-L1 in spermatogonial stem cells via self-renewal stimulation. Stem Cell Reports 2023; 18:985-998. [PMID: 36963391 PMCID: PMC10147552 DOI: 10.1016/j.stemcr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
The testis is an immune-privileged organ. It is considered that the testis somatic microenvironment is responsible for immune suppression. However, immunological properties of spermatogonial stem cells (SSCs) have remained unknown. Here, we report the birth of allogeneic offspring by enhanced expression of immunosuppressive PD-L1 in SSCs. In vitro supplementation of GDNF and FGF2 increased expression of PD-L1 in SSCs. Cultured SSCs maintained allogeneic spermatogenesis that persisted for >1 year. However, depletion or gene editing of Pd-l1 family genes in SSCs prevented allogeneic spermatogenesis, which suggested that germ cells are responsible for suppression of the allogeneic response. PD-L1 was induced by activation of the MAPK14-BCL6B pathway, which drives self-renewal by reactive oxygen species (ROS) generation. By contrast, reduced ROS or Mapk14 deficiency downregulated PD-L1. Allogeneic offspring were born after SSC transplantation into congenitally infertile and chemically castrated mice. Thus, SSCs have unique immunological properties, which make allogeneic recipients into "surrogate fathers."
Collapse
Affiliation(s)
- Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | - Takuya Yamamoto
- AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan; Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan; Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto 606-8507, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Shiromoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| |
Collapse
|
29
|
HIRAYAMA AIRI, ISHIGAKI HIROTAKA, TAKAHASHI KATSUNORI, MIURA YUSUKE, KIKUCHI HARUHISA, KUBOHARA YUZURU. Dictyostelium Differentiation-inducing Factor Derivatives Reduce the Glycosylation of PD-L1 in MDA-MB-231 Human Breast Cancer Cells. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:105-115. [PMID: 38854456 PMCID: PMC11153063 DOI: 10.14789/jmj.jmj22-0039-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 06/11/2024]
Abstract
Objectives Triple-negative breast cancer (TNBC) is a metastatic and intractable cancer with limited treatment options. Refractory cancer cells often express the immune checkpoint molecules programmed death-ligand 1 (PD-L1) and PD-L2, which inhibit the anticancer effects of T cells. Differentiation-inducing factors, originally found in Dictyostelium discoideum, and their derivatives possess strong antiproliferative activity, at least in part by reducing cyclin D1 expression in various cancer cells, but their effects on PD-L1/PD-L2 have not been examined. In this study, we investigate the effects of six DIF compounds (DIFs) on the expression of PD-L1/PD-L2 and cyclin D1/D3 in MDA-MB-231 cells, a model TNBC cell line. Methods MDA-MB-231 cells were incubated for 5 or 15 h with or without DIFs, and the mRNA expression of cyclin D1, PD-L1, and PD-L2 were assessed by quantitative polymerase chain reaction (qPCR). Whereas, MDA-MD-231 cells were incubated for 12 or 24 h with or without DIFs, and the protein expression of cyclins D1 and D3, PD-L1, and PD-L2 were assessed by Western blotting. Results As expected, some DIFs strongly reduced cyclin D1/D3 protein expression in MDA-MB-231 cells. Contrary to our expectation, DIFs had little effect on PD-L1 mRNA expression or increased it transiently. However, some DIFs partially reduced glycosylated PD-L1 and increased non-glycosylated PD-L1 in MDA-MB-231 cells. The level of PD-L2 was very low in these cells. Conclusions Since PD-L1 glycosylation plays an important role in preventing T cells from attacking cancer cells, such DIFs may promote T cell attack on cancer cells in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - YUZURU KUBOHARA
- Corresponding author: Yuzuru Kubohara, Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba 270-1695, Japan, TEL: +81-476-98-1001 FAX: +81-476-98-1011 E-mail:
| |
Collapse
|
30
|
Retnakumar SV, Chauvin C, Bayry J. The implication of anti-PD-1 therapy in cancer patients for the vaccination against viral and other infectious diseases. Pharmacol Ther 2023; 245:108399. [PMID: 37001736 DOI: 10.1016/j.pharmthera.2023.108399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The phenomenon of 'T cell exhaustion', a state of T cell dysfunction observed during chronic infections and cancers, has been a major obstacle in mounting appropriate immune responses against infectious agents or tumor antigens. The exhausted T cells are characterized by poor effector functions mainly due to the overexpression of inhibitory receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin-domain containing 3 (TIM3), lymphocyte activation gene 3 (LAG3), and T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), commonly referred to as immune checkpoint (ICP) molecules. ICP blockade, especially of PD-1 that can potentially reverse T cell exhaustion and thereby re-stimulate the impaired immune system, is widely used in clinics as a promising therapeutic strategy for various cancers and is more recently being investigated in infectious diseases as well. In fact, cancer patients represent a population of immunocompromised individuals who are more susceptible to infections and associated complications, and thus the need for protective vaccinations against these diseases is of prime importance in this category. When it comes to vaccinating anti-PD-1-treated cancer patients against infectious diseases including COVID-19 and influenza, a special focus should be brought on the revived immune cells, which could be dynamically affected by the antigenic stimulation. However, since cancer patients are not generally included in clinical trials for designing vaccines against infectious diseases, the possible interaction between vaccine immune responses and ICP therapy is largely unexplored. Mechanistically, the reversal of T cell exhaustion by ICP in an otherwise immunocompromised population could be beneficial for the vaccine's efficacy, helping the immune system to mount a robust immune response. Nevertheless, patients with cancer undergoing anti-PD-1 blockade are known to experience immune-related adverse effects (irAEs). The risk of increasing the irAEs due to the overstimulation of the immune system during vaccination is a major concern. Therefore, while routine vaccination is indispensable for the protection of cancer patients, the impact of PD-1 blockade on vaccine responses against infectious agents requires careful consideration to avoid undesirable adverse effects that could impair the efficacy of anti-cancer treatment.
Collapse
|
31
|
François A, Descarpentrie J, Badiola I, Siegfried G, Evrard S, Pernot S, Khatib AM. Reprogramming immune cells activity by furin-like enzymes as emerging strategy for enhanced immunotherapy in cancer. Br J Cancer 2023; 128:1189-1195. [PMID: 36522477 PMCID: PMC10050397 DOI: 10.1038/s41416-022-02073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy is becoming an advanced clinical management for various cancers. Rebuilding of aberrant immune surveillance on cancers has achieved notable progress in the past years by either in vivo or ex vivo engineering of efficient immune cells. Immune cells can be programmed with several strategies that improves their therapeutic influence and specificity. It has become noticeable that effective immunotherapy must consider the complete complexity of the immune cell function. However, today, almost all immune cells can be transiently or stably reprogrammed against various cancer cells. As a consequence, investigations have interrogated strategies to improve the efficacy of cancer immunotherapies by enhancing T-cell infiltration into tumour tissues. Here, we review the emerging role of furin-like enzymes work related to T-cell reprogramming, their tumour infiltration and cytotoxic function.
Collapse
Affiliation(s)
- Alexia François
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Jean Descarpentrie
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Géraldine Siegfried
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
| | - Serge Evrard
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Simon Pernot
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France
- Institut Bergonié, 33000, Bordeaux, France
| | - Abdel-Majid Khatib
- RyTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, PESSAC, France.
- Institut Bergonié, 33000, Bordeaux, France.
| |
Collapse
|
32
|
Taylor J, Gandhi A, Gray E, Zaenker P. Checkpoint inhibitor immune-related adverse events: A focused review on autoantibodies and B cells as biomarkers, advancements and future possibilities. Front Immunol 2023; 13:991433. [PMID: 36713389 PMCID: PMC9874109 DOI: 10.3389/fimmu.2022.991433] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) has evolved rapidly with unprecedented treatment benefits being obtained for cancer patients, including improved patient survival. However, over half of the patients experience immune related adverse events (irAEs) or toxicities, which can be fatal, affect the quality of life of patients and potentially cause treatment interruption or cessation. Complications from these toxicities can also cause long term irreversible organ damage and other chronic health conditions. Toxicities can occur in various organ systems, with common observations in the skin, rheumatologic, gastrointestinal, hepatic, endocrine system and the lungs. These are not only challenging to manage but also difficult to detect during the early stages of treatment. Currently, no biomarker exists to predict which patients are likely to develop toxicities from ICI therapy and efforts to identify robust biomarkers are ongoing. B cells and antibodies against autologous antigens (autoantibodies) have shown promise and are emerging as markers to predict the development of irAEs in cancer patients. In this review, we discuss the interplay between ICIs and toxicities in cancer patients, insights into the underlying mechanisms of irAEs, and the involvement of the humoral immune response, particularly by B cells and autoantibodies in irAE development. We also provide an appraisal of the progress, key empirical results and advances in B cell and autoantibody research as biomarkers for predicting irAEs. We conclude the review by outlining the challenges and steps required for their potential clinical application in the future.
Collapse
Affiliation(s)
- John Taylor
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia,*Correspondence: John Taylor,
| | - Aesha Gandhi
- Sir Charles Gairdner Hospital, Department of Medical Oncology, Nedlands, WA, Australia
| | - Elin Gray
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Pauline Zaenker
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
33
|
Awadasseid A, Zhou Y, Zhang K, Tian K, Wu Y, Zhang W. Current studies and future promises of PD-1 signal inhibitors in cervical cancer therapy. Biomed Pharmacother 2023; 157:114057. [PMID: 36463828 DOI: 10.1016/j.biopha.2022.114057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
PD-1 (Programmed cell death-1) is a receptor that inhibits the activation of T cells and is an important target for cancer immunotherapy. PD-1 expression stays high on antigen-specific T cells that have been stimulated for a long time, making them less responsive to stimuli. Consequently, there has been a recent surge in the number of researchers focusing on how the PD-1 axis delivers inhibitory signals to uncover new therapeutic targets. As an inhibitory signaling mechanism, the PD-1 axis controls immunological responses. Blocking the PD-1 axis has been shown to have long-lasting effects on various cancers, demonstrating the crucial role of PD-1 in blocking anti-tumor immunity. Despite this role, most patients do not respond to PD-1 monotherapy, and some have experienced adverse events. Many challenges remain regarding the PD-1 signaling axis to be addressed. In this review, we outline the most recent research and prospects of PD-1 signal inhibitors to enhance cervical cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Moganshan Institute ZJUT, Deqing 313202, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China; Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yongnan Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Koutian Zhang
- Zhejiang Jianing Pharmaceutical Technology Co., Ltd, Hangzhou 310051, China
| | - Kaiming Tian
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
34
|
Hackel A, Vollmer S, Bruderek K, Lang S, Brandau S. Immunological priming of mesenchymal stromal/stem cells and their extracellular vesicles augments their therapeutic benefits in experimental graft-versus-host disease via engagement of PD-1 ligands. Front Immunol 2023; 14:1078551. [PMID: 36875112 PMCID: PMC9978482 DOI: 10.3389/fimmu.2023.1078551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) exert profound anti-inflammatory and regenerative effects in inflammation and tissue damage, which makes them an attractive tool for cellular therapies. In this study we have assessed the inducible immunoregulatory properties of MSCs and their EVs upon stimulation with different combinations of cytokines. First, we found that MSCs primed with IFN-γ, TNF-α and IL-1β, upregulate the expression of PD-1 ligands, as crucial mediators of their immunomodulatory activity. Further, primed MSCs and MSC-EVs, compared to unstimulated MSCs and MSC-EVs, had increased immunosuppressive effects on activated T cells and mediated an enhanced induction of regulatory T cells, in a PD-1 dependent manner. Importantly, EVs derived from primed MSCs reduced the clinical score and prolonged the survival of mice in a model of graft-versus-host disease. These effects could be reversed in vitro and in vivo by adding neutralizing antibodies directed against PD-L1 and PD-L2 to both, MSCs and their EVs. In conclusion, our data reveal a priming strategy that potentiates the immunoregulatory function of MSCs and their EVs. This concept also provides new opportunities to improve the clinical applicability and efficiency of cellular or EV-based therapeutic MSC products.
Collapse
Affiliation(s)
- Alexander Hackel
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Vollmer
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Michielon E, de Gruijl TD, Gibbs S. From simplicity to complexity in current melanoma models. Exp Dermatol 2022; 31:1818-1836. [PMID: 36103206 PMCID: PMC10092692 DOI: 10.1111/exd.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 12/14/2022]
Abstract
Despite the recent impressive clinical success of immunotherapy against melanoma, development of primary and adaptive resistance against immune checkpoint inhibitors remains a major issue in a large number of treated patients. This highlights the need for melanoma models that replicate the tumor's intricate dynamics in the tumor microenvironment (TME) and associated immune suppression to study possible resistance mechanisms in order to improve current and test novel therapeutics. While two-dimensional melanoma cell cultures have been widely used to perform functional genomics screens in a high-throughput fashion, they are not suitable to answer more complex scientific questions. Melanoma models have also been established in a variety of experimental (humanized) animals. However, due to differences in physiology, such models do not fully represent human melanoma development. Therefore, fully human three-dimensional in vitro models mimicking melanoma cell interactions with the TME are being developed to address this need for more physiologically relevant models. Such models include melanoma organoids, spheroids, and reconstructed human melanoma-in-skin cultures. Still, while major advances have been made to complement and replace animals, these in vitro systems have yet to fully recapitulate human tumor complexity. Lastly, technical advancements have been made in the organ-on-chip field to replicate functions and microstructures of in vivo human tissues and organs. This review summarizes advancements made in understanding and treating melanoma and specifically aims to discuss the progress made towards developing melanoma models, their applications, limitations, and the advances still needed to further facilitate the development of therapeutics.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.,Department of Medical Oncology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands.,Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Chloroquine treatment influences immunological memory through the PD-1/PD-L1 pathway during the initiation of Plasmodium chabaudi infection. Int Immunopharmacol 2022; 113:109403. [DOI: 10.1016/j.intimp.2022.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
37
|
Becker-Gotot J, Meissner M, Kotov V, Jurado-Mestre B, Maione A, Pannek A, Albert T, Flores C, Schildberg FA, Gleeson PA, Reipert BM, Oldenburg J, Kurts C. Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs. J Clin Invest 2022; 132:e159925. [PMID: 36107620 PMCID: PMC9663153 DOI: 10.1172/jci159925] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2023] Open
Abstract
A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.
Collapse
Affiliation(s)
- Janine Becker-Gotot
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Mirjam Meissner
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Vadim Kotov
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Blanca Jurado-Mestre
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Andrea Maione
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Pannek
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Thilo Albert
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Chrystel Flores
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Johannes Oldenburg
- Institute for Experimental Hematology and Transfusion Medicine (IHT), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology (IMMEI), Rheinische Friedrich-Wilhelms-Universität, Venusberg Campus 1, Bonn, Germany
| |
Collapse
|
38
|
Laba S, Mallett G, Amarnath S. The depths of PD-1 function within the tumor microenvironment beyond CD8 + T cells. Semin Cancer Biol 2022; 86:1045-1055. [PMID: 34048897 DOI: 10.1016/j.semcancer.2021.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Programmed cell death-1 (PD-1; CD279) is a cell surface receptor that is expressed in both innate and adaptive immune cells. The role of PD-1 in adaptive immune cells, specifically in CD8+ T cells, has been thoroughly investigated but its significance in other immune cells is yet to be well established. This review will address the role of PD-1 based therapies in enhancing non-CD8+ T cell immune responses within cancer. Specifically, the expression and function of PD-1 in non-CD8+ immune cell compartments such as CD4+ T helper cell subsets, myeloid cells and innate lymphoid cells (ILCs) will be discussed. By understanding the immune cell specific function of PD-1 within tissue resident innate and adaptive immune cells, it will be possible to stratify patients for PD-1 based therapies for both immunogeneic and non-immunogeneic neoplastic disorders. With this knowledge from fundamental and translational studies, PD-1 based therapies can be utilized to enhance T cell independent immune responses in cancers.
Collapse
Affiliation(s)
- Stephanie Laba
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, United Kingdom.
| |
Collapse
|
39
|
Coit DG, Ariyan CE. Fifty years of progress in surgical oncology: Melanoma. J Surg Oncol 2022; 126:888-895. [PMID: 36087090 PMCID: PMC9473298 DOI: 10.1002/jso.27081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/07/2022]
Abstract
This paper outlines the scientific and clinical advances in the treatment of melanoma over the past 50 years. Among the highlights of progress, the dominant themes include evidence-based reduction in the extent and morbidity of surgical procedures in patients with local or regional melanoma without compromising end results, and the introduction of effective systemic therapy, specifically targeted therapy matched to patients based on specific tumor mutations, and immune checkpoint blockade. Management of advanced disease has also changed dramatically, due to improved understanding of the genomic variability of the disease as well as continuing improvements in imaging.
Collapse
Affiliation(s)
- Daniel G Coit
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Charlotte E Ariyan
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
40
|
PD-1 expression on mouse intratumoral NK cells and its effects on NK cell phenotype. iScience 2022; 25:105137. [PMID: 36185379 PMCID: PMC9523278 DOI: 10.1016/j.isci.2022.105137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/20/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023] Open
Abstract
Although PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells and a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Tumor-infiltrating NK cells that express PD-1 were highly associated with the expression of CXCR6. Furthermore, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wild-type mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells. These data demonstrate that there may be a role for the PD-1/PD-L1 axis in tumor-infiltrating NK cells in vivo.
NK cells from PD-1 deficient mice have a more mature phenotype Elimination of MHC-I-deficient cells is impaired in PD-1−/− mice PD-1 expression on NK cells is associated with surface expression of CXCR6 PD-1/PD-L1 interactions on NK cells may occur in cis
Collapse
|
41
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
42
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
43
|
Tashireva LA, Popova NO, Kalinchuk AY, Goldberg VE, Kovalenko EI, Artamonova EV, Manikhas AG, Ponomarenko DM, Levchenko NV, Rossokha EI, Krasilnikova SY, Zafirova MA, Choynzonov EL, Perelmuter VM. B Lymphocytes Are a Predictive Marker of Eribulin Response and Overall Survival in Locally Advanced or Metastatic Breast Cancer: A Multicenter, Two-Cohort, Non-Randomized, Open-Label, Retrospective Study. Front Oncol 2022; 12:909505. [PMID: 35814376 PMCID: PMC9260581 DOI: 10.3389/fonc.2022.909505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Triple-negative breast cancer has no specific treatment and unfavorable prognosis. Eribulin is one of the drugs widely used in this cohort of patients. In addition to its antimitotic effect, eribulin has an immunomodulant effect on the tumor microenvironment. In this study, we discover immunological markers, such as tumor-infiltrating lymphocytes, CD8+, CD4+, FoxP3+, CD20+ lymphocytes, and their PD1 positivity or negativity, with the ability to predict benefits from eribulin within locally advanced or metastatic triple-negative breast cancer. The primary objective was to explore the association of composition of immune cells in the microenvironment with response to eribulin. The key secondary objective was overall survival. Seven-color multiplex immunofluorescence was used to phenotype lymphocytes in the primary tumor. It has been shown that the PD1-negative-to-PD1-positive B cells ratio in primary tumors more than 3 is an independent predictor of the short-term effectiveness of eribulin [OR (95%CI) 14.09 (1.29-153.35), p=0.0029] and worse overall survival [HR (95%CI) 11.25 (1.37-70.25), p=0.0009] in patients with locally advanced or metastatic triple-negative breast cancer.
Collapse
Affiliation(s)
- Liubov A. Tashireva
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- *Correspondence: Liubov A. Tashireva,
| | - Nataliya O. Popova
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Anna Yu. Kalinchuk
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Viktor E. Goldberg
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena I. Kovalenko
- Federal State Budgetary Institution National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Elena V. Artamonova
- Federal State Budgetary Institution National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Aleksey G. Manikhas
- Saint-Petersburg State Budgetary Healthcare Institution “City Clinical Oncology Center” (1st Oncology (Surgery) Department, Saint-Petersburg, Russia
| | - Dmitriy M. Ponomarenko
- Chemotherapy Department, Irkutsk Regional Cancer Center, Irkutsk, Russia
- Department of Oncology, Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, Russia
| | - Nataliya V. Levchenko
- Chemotherapy Department, State Budgetary Healthcare Institution “St. Petersburg Clinical Scientific and Practical Center of Specialized Types of Medical Care (Oncological)”, St. Petersburg, Russia
| | - Elena I. Rossokha
- Chemotherapy Department, Regional State Budgetary Healthcare Institution “Altai Regional Oncology Center”, Barnaul, Russia
| | | | - Marina A. Zafirova
- Federal State Budget Educational Institution of Higher Education, Ural State Medical University of the Ministry of Health of the Russian Federation, Ekaterinburg, Russia
| | - Evgeniy L. Choynzonov
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Vladimir M. Perelmuter
- Research Institute of Oncology, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
44
|
Rouhani SJ, Yu J, Olson D, Zha Y, Pezeshk A, Cabanov A, Pyzer AR, Trujillo J, Derman BA, O'Donnell P, Jakubowiak A, Kindler HL, Bestvina C, Gajewski TF. Antibody and T cell responses to COVID-19 vaccination in patients receiving anticancer therapies. J Immunother Cancer 2022; 10:jitc-2022-004766. [PMID: 35732350 PMCID: PMC9226983 DOI: 10.1136/jitc-2022-004766] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with cancer were excluded from phase 3 COVID-19 vaccine trials, and the immunogenicity and side effect profiles of these vaccines in this population is not well understood. Patients with cancer can be immunocompromised from chemotherapy, corticosteroids, or the cancer itself, which may affect cellular and/or humoral responses to vaccination. PD-1 is expressed on T effector cells, T follicular helper cells and B cells, leading us to hypothesize that anti-PD-1 immunotherapies may augment antibody or T cell generation after vaccination. METHODS Antibodies to the SARS-CoV-2 receptor binding domain (RBD) and spike protein were assessed in patients with cancer (n=118) and healthy donors (HD, n=22) after 1, 2 or 3 mRNA vaccine doses. CD4+ and CD8+ T cell reactivity to wild-type (WT) or B.1.617.2 (delta) spike peptides was measured by intracellular cytokine staining. RESULTS Oncology patients without prior COVID-19 infections receiving immunotherapy (n=36), chemotherapy (n=15), chemoimmunotherapy (n=6), endocrine or targeted therapies (n=6) and those not on active treatment (n=26) had similar RBD and Spike IgG antibody titers to HDs after two vaccinations. Contrary to our hypothesis, PD-1 blockade did not augment antibody titers or T cell responses. Patients receiving B-cell directed therapies (n=14) including anti-CD20 antibodies and multiple myeloma therapies had decreased antibody titers, and 9/14 of these patients were seronegative for RBD antibodies. No differences were observed in WT spike-reactive CD4+ and CD8+ T cell generation between treatment groups. 11/13 evaluable patients seronegative for RBD had a detectable WT spike-reactive CD4+ T cell response. T cells cross-reactive against the B.1.617.2 variant spike peptides were detected in 31/59 participants. Two patients with prior immune checkpoint inhibitor-related adrenal insufficiency had symptomatic hypoadrenalism after vaccination. CONCLUSIONS COVID-19 vaccinations are safe and immunogenic in patients with solid tumors, who developed similar antibody and T cell responses compared with HDs. Patients on B-cell directed therapies may fail to generate RBD antibodies after vaccination and should be considered for prophylactic antibody treatments. Many seronegative patients do develop a T cell response, which may have an anti-viral effect. Patients with pre-existing adrenal insufficiency may need to take stress dose steroids during vaccination to avoid adrenal crisis.
Collapse
Affiliation(s)
| | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Daniel Olson
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yuanyuan Zha
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Apameh Pezeshk
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Alexandra Cabanov
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Athalia R Pyzer
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jonathan Trujillo
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Benjamin A Derman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Peter O'Donnell
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Hedy L Kindler
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Thomas F Gajewski
- Department of Medicine, University of Chicago, Chicago, Illinois, USA .,Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Long Y, Yu X, Chen R, Tong Y, Gong L. Noncanonical PD-1/PD-L1 Axis in Relation to the Efficacy of Anti-PD Therapy. Front Immunol 2022; 13:910704. [PMID: 35663968 PMCID: PMC9157498 DOI: 10.3389/fimmu.2022.910704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and other T-cells, affecting their survival, differentiation and immunophenotyping, leading to tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation, cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be novel anti-PD mechanisms or causes of treatment resistance. This review highlights the nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs in precision treatment and combination for anti-PD therapies.
Collapse
Affiliation(s)
- Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
46
|
Naruse C, Sugihara K, Miyazaki T, Pan X, Sugiyama F, Asano M. A degron system targeting endogenous PD-1 inhibits the growth of tumor cells in mice. NAR Cancer 2022; 4:zcac019. [PMID: 35734392 PMCID: PMC9204894 DOI: 10.1093/narcan/zcac019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022] Open
Abstract
Recently, targeted protein degradation systems have been developed using the ubiquitin-proteasome system. Here, we established Programmed cell death-1 (PD-1) knockdown mice as a model system for subjecting endogenous mouse proteins to the small molecule-assisted shutoff (SMASh) degron system. SMASh degron-tagged PD-1-mCherry in Jurkat cells and CD3+ splenocytes were degraded by the NS3/4A protease inhibitors, asunaprevir (ASV) or grazoprevir (GRV). Growth of MC-38 colon adenocarcinoma cells injected in Pdcd1-mCherry-SMASh homozygous knock-in (KI) mice was repressed by ASV or GRV. Moreover, growth of MC-38 cells was suppressed in wild-type mice transplanted with KI bone marrow cells after GRV treatment. This is the first study to use a degron tag targeting an endogenous mouse protein in vivo. Our experimental system using the SMASh degron may be employed for treating diseases and characterizing the cellular functions of essential proteins.
Collapse
Affiliation(s)
- Chie Naruse
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazushi Sugihara
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tatsuhiko Miyazaki
- Department of Pathology, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1104, Japan
| | - Xuchi Pan
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
47
|
Li H, Sahu KK, Maughan BL. Mechanism and Management of Checkpoint Inhibitor-Related Toxicities in Genitourinary Cancers. Cancers (Basel) 2022; 14:2460. [PMID: 35626064 PMCID: PMC9139183 DOI: 10.3390/cancers14102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICIs) is rapidly increasing as more combinations and clinical indications are approved in the field of genitourinary malignancies. Most immunotherapeutic agents being approved are for the treatment of renal cell carcinoma and bladder cancer, which mainly involve PD-1/PD-L1 and CTLA-4 pathways. There is an ongoing need for recognizing and treating immunotherapy-related autoimmune adverse effects (irAEs). This review aims to critically appraise the recent literature on the mechanism, common patterns, and treatment recommendations of irAEs in genitourinary malignancies. We review the epidemiology of these adverse effects as well as general treatment strategies. The underlying mechanisms will also be discussed. Diagnostic considerations including differential diagnosis are also included in this review.
Collapse
Affiliation(s)
| | | | - Benjamin L. Maughan
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84108, USA; (H.L.); (K.K.S.)
| |
Collapse
|
48
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
49
|
Zhou J, Blevins LK, Crawford RB, Kaminski NE. Role of Programmed Cell Death Protein-1 and Lymphocyte Specific Protein Tyrosine Kinase in the Aryl Hydrocarbon Receptor- Mediated Impairment of the IgM Response in Human CD5 + Innate-Like B Cells. Front Immunol 2022; 13:884203. [PMID: 35558082 PMCID: PMC9088000 DOI: 10.3389/fimmu.2022.884203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Innate-like B cells (ILBs) are a heterogeneous population B cells which participate in innate and adaptive immune responses. This diverse subset of B cells is characterized by the expression of CD5 and has been shown to secrete high levels of immunoglobulin M (IgM) in the absence of infection or vaccination. Further, CD5+ ILBs have been shown to express high basal levels of lymphocyte specific protein tyrosine kinase (LCK) and programmed cell death protein-1 (PD-1), which are particularly sensitive to stimulation by interferon gamma (IFNγ). Previous studies have demonstrated that activation of the aryl hydrocarbon receptor (AHR), a cytosolic ligand-activated transcription factor, results in suppressed IgM responses and is dependent on LCK. A recent study showed that CD5+ ILBs are particularly sensitive to AHR activation as evidenced by a significant suppression of the IgM response compared to CD5- B cells, which were refractory. Therefore, the objective of this study was to further investigate the role of LCK and PD-1 signaling in AHR-mediated suppression of CD5+ ILBs. In addition, studies were conducted to establish whether IFNγ alters the levels of LCK and PD-1 in CD5+ ILBs. We found that AHR activation led to a significant upregulation of total LCK and PD-1 proteins in CD5+ ILBs, which correlated with suppression of IgM. Interestingly, treatment with recombinant IFNγ reduced LCK protein levels and reversed AHR-mediated IgM suppression in CD5+ ILBs in a similar manner as LCK inhibitors. Collectively, these results support a critical role for LCK and PD-1 in AHR-mediated suppression of the IgM response in human CD5+ ILBs.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lance K. Blevins
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Robert B. Crawford
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Norbert E. Kaminski
- Institute of Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
- Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
50
|
Ramer R, Wendt F, Wittig F, Schäfer M, Boeckmann L, Emmert S, Hinz B. Impact of Cannabinoid Compounds on Skin Cancer. Cancers (Basel) 2022; 14:cancers14071769. [PMID: 35406541 PMCID: PMC8997154 DOI: 10.3390/cancers14071769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022] Open
Abstract
Drugs targeting the endocannabinoid system are of interest as potential systemic chemotherapeutic treatments and for palliative care in cancer. In this context, cannabinoid compounds have been successfully tested as a systemic therapeutic option in preclinical models over the past decades. Recent findings have suggested an essential function of the endocannabinoid system in the homeostasis of various skin functions and indicated that cannabinoids could also be considered for the treatment and prophylaxis of tumour diseases of the skin. Cannabinoids have been shown to exert their anticarcinogenic effects at different levels of skin cancer progression, such as inhibition of tumour growth, proliferation, invasion and angiogenesis, as well as inducing apoptosis and autophagy. This review provides an insight into the current literature on cannabinoid compounds as potential pharmaceuticals for the treatment of melanoma and squamous cell carcinoma.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Franziska Wendt
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, Rostock University Medical Centre, 18057 Rostock, Germany; (M.S.); (L.B.); (S.E.)
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, 18057 Rostock, Germany; (R.R.); (F.W.); (F.W.)
- Correspondence: ; Tel.: +49-381-494-5770
| |
Collapse
|