1
|
Li X, Wang S, Nie X, Hu Y, Liu O, Wang Y, Lin B. PSAT1 regulated by STAT4 enhances the proliferation, invasion and migration of ovarian cancer cells via the PI3K/AKT pathway. Int J Mol Med 2025; 55:88. [PMID: 40211693 PMCID: PMC12005366 DOI: 10.3892/ijmm.2025.5529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/20/2024] [Indexed: 04/19/2025] Open
Abstract
Epithelial ovarian cancer, the most prevalent form of ovarian cancer, is a health concern worldwide. Phosphoserine aminotransferase 1 (PSAT1), as the rate‑limiting enzyme in serine synthesis, is key in the conversion of 3‑phosphoglycerate to serine. The present study explored the role of PSAT1 expression in epithelial ovarian tumors. Gene Expression Profiling Interactive Analysis was used for gene expression and survival analyses. The effects of PSAT1 overexpression and knockdown on invasion, migration, proliferation and cell cycle progression of ovarian cancer cell lines were investigated both in vitro and in vivo. Western blotting was conducted to assess alterations in PI3K/AKT signalling pathway proteins. Database and tissue sample data confirmed that PSAT1 was significantly upregulated in ovarian cancer. Preliminary functional investigations indicated that PSAT1 was involved in modulation of invasion and migration, demonstrating the capacity of PSAT1 to enhance expression of the PI3K/AKT signalling pathway. These findings suggested that PSAT1 served a critical role in the onset and progression of ovarian cancer, thereby offering a theoretical basis for early detection and therapeutic strategies.
Collapse
Affiliation(s)
- Xiao Li
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuang Wang
- Department of Obstetrics and Gynaecology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300277, P.R. China
| | - Xin Nie
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuexin Hu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ouxuan Liu
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuxuan Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bei Lin
- Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
2
|
Yu H, Li QS, Guo JN, Zhang Z, Lang XZ, Liu YN, Qin L, Su X, Zhang QW, Xue YD, Gong LL, Xu N, Li M, Zhao WS, Zhao XM, Zhang WY, Yao YJ, Chen XM, Zhang Z, Li W, Wang HX, Cai BZ, Li JM, Wang N. METTL14-mediated m 6A methylation of pri-miR-5099 to facilitate cardiomyocyte pyroptosis in myocardial infarction. Acta Pharmacol Sin 2025; 46:1639-1651. [PMID: 39939804 PMCID: PMC12099011 DOI: 10.1038/s41401-025-01485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 02/14/2025]
Abstract
N6-methyladenosine (m6A) modification is an important mechanism in microRNA processing and maturation. Previous studies show the involvement of pri-miRNA methylation in regulating the occurrence and development of tumor-related diseases. In this study, we investigated the role of its aberrant regulation in cardiac diseases. Myocardial infarction (MI) mouse were established by ligation of the left anterior descending branch of the coronary artery. We showed that the expression of methyltransferase 14 (METTL14) was significantly increased in myocardium of MI mice. We demonstrated that METTL14 methylated the primary transcript miRNA (pri-miR-5099), promoting the recognition by DiGeorge critical region 8 (DGCR8) and the maturation processing of pri-miR-5099. Mature microRNA-5099-3p (miR-5099-3p) inhibited the expression of E74 like ETS transcription factor 1 (ELF1), which transcriptionally regulated pyroptosis factors such as acysteinyl aspartate-specific proteinase 1 (caspase-1) and gasdermin D (GSDMD), ultimately leading to cardiomyocyte pyroptosis. This study reveals that myocardial infarction-induced miR-5099-3p excessive maturation via m6A modification promotes the development and progression of cardiomyocyte pyroptosis.
Collapse
Affiliation(s)
- Hang Yu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Sui Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jun-Nan Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Zhen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xian-Zhi Lang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Ning Liu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Long Qin
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xu Su
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qing-Wei Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ya-Dong Xue
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li-Ling Gong
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ning Xu
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ming Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wen-Shuang Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xing-Miao Zhao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wan-Yu Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yi-Jing Yao
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xi-Ming Chen
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhen Zhang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Han-Xiang Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ben-Zhi Cai
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| | - Jia-Min Li
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| | - Ning Wang
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150080, China.
| |
Collapse
|
3
|
Wu SY, Peng ZM, Deng FY, Xiong JY, Luo PY, Han XJ, Zhang Z. SP1 promotes triple-negative breast cancer progression by targeting USP5. Cancer Cell Int 2025; 25:177. [PMID: 40375299 PMCID: PMC12083124 DOI: 10.1186/s12935-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is characterized by the absence of targeted therapies and a dismal prognosis, necessitating a critical exploration of the molecular mechanisms driving TNBC pathogenesis and the identification of novel therapeutic targets. While dysregulated USP5 expression has been observed in various malignancies, its specific functions and mechanisms in TNBC remain poorly understood. METHODS The study utilized a combination of TCGA database analysis, immunohistochemistry staining (IHC), quantitative RT-PCR, and western blotting assay to investigate the expression of USP5 and SP1 in TNBC. Furthermore, the study examined the role of the SP1-USP5 axis and the USP5 inhibitor periplocin in TNBC progression through CCK-8 assay, colony formation assay, EDU incorporation assay, and tumor xenograft experiments. Additionally, the study explored the underlying mechanisms involved in the regulation of USP5 expression in TNBC using luciferase assay, ChIP-qPCR, quantitative RT-PCR, and western blotting assay. In order to ascertain potential inhibitors of USP5 activity, a combination of the Molecular Operating Environment (MOE) multi-functional docking platform, cellular thermal shift assay, and in vitro USP5 activity assay were utilized. RESULTS In the current investigation, it was observed that the expression of USP5 was elevated in TNBC and was significantly correlated with decreased overall survival rates among patients. The upregulation of USP5 was found to be mediated by the transcription factor SP1 through its binding to the USP5 promoter, consequently facilitating the progression of TNBC. Notably, the natural compound periplocin was identified as a promising inhibitor of USP5, demonstrating potential efficacy in impeding the advancement of TNBC. CONCLUSIONS Our research findings indicate that the SP1-USP5 signaling pathway is significantly involved in the advancement of TNBC, and periplocin's ability to target USP5 presents a potential therapeutic approach for managing TNBC. These results offer valuable insights for the development of novel treatment strategies for TNBC patients.
Collapse
Affiliation(s)
- Shi-Yi Wu
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Zi-Mei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Feng-Yi Deng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Jin-Yong Xiong
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Pu-Ying Luo
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China.
- Jiangxi Province Key Laboratory of Immunity and Inflammation, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| |
Collapse
|
4
|
Yang X, Ding A, Wu S, Jiang Z, Li Y, Huang X, Duan L, Cheng S, Zheng S, Gao S. FuHsi regulates rDNA transcription and promotes tumor progression. Sci Bull (Beijing) 2025:S2095-9273(25)00494-3. [PMID: 40374472 DOI: 10.1016/j.scib.2025.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/16/2025] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Affiliation(s)
- Xiaohui Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China; Chinese Academy of Sciences (CAS) Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ao Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Songzhe Wu
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ziyue Jiang
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Yifei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xianting Huang
- Department of Oncology, Jiangyin People's Hospital, Jiangyin 214400, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shuwen Cheng
- Medical School Of Nanjing University, Nanjing 210046, China
| | - Shizhong Zheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan Gao
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Šerý O, Sheardová K, Dziedzinska R, Zeman T, Vyhnálek M, Marková H, Laczó J, Lochman J, Vrzalová K, Balcar VJ, Hort J. ABCB1 Gene Polymorphisms and Their Contribution to Cognitive Decline in Mild Cognitive Impairment: A Next-Generation Sequencing Study. J Gerontol A Biol Sci Med Sci 2025; 80:glaf055. [PMID: 40168071 DOI: 10.1093/gerona/glaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Indexed: 04/02/2025] Open
Abstract
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
Collapse
Affiliation(s)
- Omar Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kateřina Sheardová
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- First Neurology Department, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Radka Dziedzinska
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Tomáš Zeman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Martin Vyhnálek
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Hana Marková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczó
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Kamila Vrzalová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir J Balcar
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Neuroscience Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jakub Hort
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
6
|
Pearson-Gallion B, Finney AC, Scott ML, Connelly Z, Alam S, Peretik JM, Ben Dhaou C, Bhuiyan MS, Traylor JG, DeGrado WF, Jo H, Yu X, Rom O, Pattillo CB, Dhanesha N, Yurdagul A, Orr AW. Fibronectin-dependent integrin signaling drives EphA2 expression in vascular smooth muscle cells. Am J Physiol Cell Physiol 2025; 328:C1623-C1636. [PMID: 40241381 DOI: 10.1152/ajpcell.01021.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Vascular smooth muscle cells undergo a phenotypic shift to a "synthetic" phenotype during atherosclerosis characterized by downregulation of contractile markers and augmented proliferation, migration, and extracellular matrix deposition. While absent in contractile smooth muscle cells, the receptor tyrosine kinase EphA2 shows enhanced expression in synthetic vascular smooth muscle in vitro and in atherosclerotic plaques in vivo. EphA2 deletion in atheroprone ApoE knockout mice reduces plaque size, fibrous tissue, and smooth muscle content. However, the mechanisms regulating smooth muscle EphA2 expression remain unknown. Although serum strongly induces EphA2 expression, individual growth factors and insulin all failed to stimulate EphA2 expression in smooth muscle cells. In contrast, adhesion to fibronectin stimulated the expression of EphA2, while blunting serum-induced fibronectin deposition attenuated EphA2 expression, suggesting a critical role for fibronectin signaling. Fibronectin binds to a subset of extracellular matrix-binding integrins, and blocking fibronectin-integrin interactions or inhibiting specific fibronectin-binding integrins both attenuated EphA2 expression. Furthermore, pharmacological inhibition of fibronectin-binding integrins significantly reduced EphA2 expression in atherosclerotic plaques. RNA sequencing analysis of fibronectin-associated gene expression pointed to NF-κB as a likely transcription factor mediating fibronectin-responsive genes. Adhesion to fibronectin enhanced NF-κB activation in smooth muscle cells and inhibiting NF-κB blunted EphA2 expression associated with fibronectin. In addition, chromatin immunoprecipitation showed that NF-κB directly interacts with the EphA2 promoter, and mutating this site blunts fibronectin-dependent EphA2 promoter activity. Together these data identify a novel role for fibronectin-dependent integrin signaling in the induction of smooth muscle EphA2 expression.NEW & NOTEWORTHY Here, we demonstrate a novel interplay between cell-cell and cell-matrix adhesions, showing that fibronectin-dependent integrin signaling promotes NF-κB activation and interaction with the EphA2 promoter to drive smooth muscle EphA2 expression, whereas integrin inhibition attenuates EphA2 expression in atherosclerotic plaques in vivo. Although this relationship has clear implications on smooth muscle fibroproliferative remodeling in atherosclerosis, the matrix-specific regulation of EphA2 expression may impact a variety of pathological conditions.
Collapse
MESH Headings
- Animals
- Fibronectins/metabolism
- Fibronectins/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Receptor, EphA2/genetics
- Receptor, EphA2/metabolism
- Signal Transduction/physiology
- Myocytes, Smooth Muscle/metabolism
- Mice
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Integrins/metabolism
- Humans
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Mice, Inbred C57BL
- Cell Adhesion
- NF-kappa B/metabolism
- Male
- Cells, Cultured
- Extracellular Matrix/metabolism
- Apolipoproteins E/genetics
- Mice, Knockout
Collapse
Grants
- DK131859 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- 17PRE33440111 American Heart Association (AHA)
- Malcolm Feist
- Carrol Feist
- 18POST34080495 American Heart Association (AHA)
- Center for Cardiovascular Diseases and Sciences
- CA226285 HHS | NIH | National Cancer Institute (NCI)
- HL158546 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK136685 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- DK134011 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- HL150233 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL172970 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753-01S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL145753-03S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- LSU | LSUS | LSU Health Shreveport (Louisiana Health Shreveport, Louisiana State University Shreveport)
- HL145131 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167758 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 13GRNT17050093 American Heart Association (AHA)
- HL133497 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL141155 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL17397 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 20POST35220022 American Heart Association (AHA)
- HL139755 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Brenna Pearson-Gallion
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Alexandra C Finney
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Zachary Connelly
- Department of Urology, University of South Florida, Tampa, Florida, United States
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Cyrine Ben Dhaou
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - James G Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States
| | - Xiuping Yu
- Department of Biochemistry and Molecular Biology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Oren Rom
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana, United States
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
7
|
Wei Y, Li J, Jin J, Gao J, Xie Q, Lu C, Zhu G, Yang F. Genome-Wide Characterization, Comparative Analysis, and Expression Profiling of SWEET Genes Family in Four Cymbidium Species (Orchidaceae). Int J Mol Sci 2025; 26:3946. [PMID: 40362189 PMCID: PMC12071608 DOI: 10.3390/ijms26093946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The SWEET (Sugar Will Eventually be Exported Transporters) protein family plays a key role in plant growth, adaptation, and stress responses by facilitating soluble sugar transport. However, their functions in Cymbidium remain poorly understood. This study identified 59 SWEET genes across four Cymbidium species, encoding conserved MtN3/saliva domains. Despite variations in exon-intron structures, gene motifs and domains were highly conserved. Phylogenetic analysis grouped 95 SWEET proteins from six species into four clades, with gene expansion driven by whole-genome, segmental, and tandem duplications. Cis-element analysis and expression profiling across 72 samples revealed diverse regulatory patterns. Notably, SWEET genes showed peak expression in floral development, leaf morph variations, and diurnal rhythms. qRT-PCR and transcription factor binding analysis further highlighted their regulatory roles in floral patterning, leaf variation, and metabolic rhythms. These findings provide a foundation for future studies on SWEET gene function and their potential molecular breeding value in orchids.
Collapse
Affiliation(s)
- Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.W.); (J.L.); (J.J.); (J.G.); (Q.X.); (C.L.); (G.Z.)
| |
Collapse
|
8
|
Naz S, Chatha AMM. Transforming growth factor-beta gene family in Labeo rohita: Genome-wide molecular characterization and phylogenetic relationship with other vertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101511. [PMID: 40267860 DOI: 10.1016/j.cbd.2025.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Recent advancements in animal genetics, biotechnology, and bioinformatics can potentially contribute to the required improvement in fish production and quality. Current study explored for the first-time, various genes from Transforming growth factor-beta (TGF-β) gene family which could play vital role in growth and development of Labeo rohita, an economically important freshwater fish. A number of tools and analysis like characterizing the selected genes, multiple alignment and clade-wise phylogeny, dual Synteny analysis and chromosomal distribution, characterization of proteins, secondary structure and 3D models of proteins, PROSITE scan analysis, and transcription factor binding sites (TFBSs) of selected genes were performed to explore the relationship between selected genes from Labeo rohita and referenced species (Homo sapiens, Danio rerio, Oreochromis niloticus, Chelonia mydas, and Parus major). The study evaluated 27 genes from TGF-β gene family. The results suggested that physicochemical characteristics of studied genes exhibit a basic nature with the few exceptions. Two main clades (BPM like and GDF like) were obtained by the phylogenetic analysis across six vertebrate species. Homogeneity was observed in the gene structure for all selected genes of TGF-β gene superfamily. TGF-β family and TGF-β propeptide family were dominant in domain regions of studied genes. Gene structure comparisons suggested that the TGF-β gene superfamily has arisen by gene duplications events. The study identified five pairs of duplicated gene (segmental duplications) with the Ka/Ks < 1, indicating the negative selection pressure of these genes. The length of selected TFBSs (GATA, HOXD, STAT, HNF-1A, and YY1) ranged from 5 to 9 bp, with the HOXD having maximum bp. This study explored the molecular characterization for TGF-β gene family and related proteins in L. rohita and will potentially serve as basis of development of novel strategies in improvement of fish culture.
Collapse
Affiliation(s)
- Saima Naz
- Department of Zoology, Government Sadiq College Women University, Bahawalpur, Pakistan.
| | - Ahmad Manan Mustafa Chatha
- Department of Entomology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan.
| |
Collapse
|
9
|
Yuan Z, Janmey PA, McCulloch CA. Structure and function of vimentin in the generation and secretion of extracellular vimentin in response to inflammation. Cell Commun Signal 2025; 23:187. [PMID: 40251523 PMCID: PMC12007377 DOI: 10.1186/s12964-025-02194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The canonical functions of vimentin in cell mechanics and migration have been recently expanded by the discovery of new roles for extracellular vimentin (ECV) in immune responses to infection, injury and cancer. In contrast with the predominantly filamentous form of intracellular vimentin, ECV exists largely as soluble oligomers. The release of ECV from intact cells is dependent on mechanisms that regulate the assembly and disassembly of intracellular vimentin, which are influenced by discrete post-translational modifications. In this review we highlight the processes that promote the conversion of intracellular and insoluble vimentin filaments to ECV and secretion mechanisms. Insights into the regulation of ECV release from stromal and immune cells could provide new diagnostic and therapeutic approaches for assessing and controlling inflammatory diseases.
Collapse
Affiliation(s)
- Zhiyao Yuan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China
| | - Paul A Janmey
- Dept. of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christopher A McCulloch
- Faculty of Dentistry, University of Toronto, Room 461, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
10
|
Chen ZS, Peng SI, Leong LI, Gall-Duncan T, Wong NSJ, Li TH, Lin X, Wei Y, Koon AC, Huang J, Sun JKL, Turner C, Tippett L, Curtis MA, Faull RLM, Kwan KM, Chow HM, Ko H, Chan TF, Talbot K, Pearson CE, Chan HYE. Mutant huntingtin induces neuronal apoptosis via derepressing the non-canonical poly(A) polymerase PAPD5. Nat Commun 2025; 16:3307. [PMID: 40204699 PMCID: PMC11982267 DOI: 10.1038/s41467-025-58618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play crucial roles in post-transcriptional gene regulation. Poly(A) RNA polymerase D5 (PAPD5) catalyzes the addition of adenosine to the 3' end of miRNAs. In this study, we demonstrate that the Yin Yang 1 protein, a transcriptional repressor of PAPD5, is recruited to both RNA foci and protein aggregates, resulting in an upregulation of PAPD5 expression in Huntington's disease (HD). Additionally, we identify a subset of PAPD5-regulated miRNAs with increased adenylation and reduced expression in our disease model. We focus on miR-7-5p and find that its reduction causes the activation of the TAB2-mediated TAK1-MKK4-JNK pro-apoptotic pathway. This pathway is also activated in induced pluripotent stem cell-derived striatal neurons and post-mortem striatal tissues isolated from HD patients. In addition, we discover that a small molecule PAPD5 inhibitor, BCH001, can mitigate cell death and neurodegeneration in our disease models. This study highlights the importance of PAPD5-mediated miRNA dysfunction in HD pathogenesis and suggests a potential therapeutic direction for the disease.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lok I Leong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terence Gall-Duncan
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nathan Siu Jun Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ho Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuming Wei
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alex Chun Koon
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Junzhe Huang
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clinton Turner
- Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- School of Psychology, University of Auckland, Auckland, New Zealand
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- University Research Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- School of Psychology, University of Auckland, Auckland, New Zealand
- Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Ko
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford, UK
| | - Christopher E Pearson
- Genetics & Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Shelley CS, Galiègue-Zouitina S, Andritsos LA, Epperla N, Troussard X. The role of the JunD-RhoH axis in the pathogenesis of hairy cell leukemia and its ability to identify existing therapeutics that could be repurposed to treat relapsed or refractory disease. Leuk Lymphoma 2025; 66:637-655. [PMID: 39689307 DOI: 10.1080/10428194.2024.2438800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024]
Abstract
Hairy cell leukemia (HCL) is an indolent malignancy of mature B-lymphocytes. While existing front-line therapies achieve excellent initial results, a significant number of patients relapse and become increasingly treatment resistant. A major molecular driver of HCL is aberrant interlocking expression of the transcription factor JunD and the intracellular signaling molecule RhoH. Here we discuss the molecular basis of how the JunD-RhoH axis contributes to HCL pathogenesis. We also discuss how leveraging the JunD-RhoH axis identifies CD23, CD38, CD66a, CD115, CD269, integrin β7, and MET as new potential therapeutic targets. Critically, preclinical studies have already demonstrated that targeting CD38 with isatuximab effectively treats preexisiting HCL. Isatuximab and therapeutics directed against each of the other six new HCL targets are currently in clinical use to treat other disorders. Consequently, leveraging the JunD-RhoH axis has identified a battery of therapies that could be repurposed as new means of treating relapsed or refractory HCL.
Collapse
Affiliation(s)
| | | | - Leslie A Andritsos
- Division of Hematology Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Narendranath Epperla
- Division of Hematology, University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Xavier Troussard
- Hematology CHU Caen Normandie, INSERM1245, MICAH, Normandie University of Caen and Rouen, UNIROUEN, UNICAEN, Hematology Institute, University Hospital Caen, Caen, France
| |
Collapse
|
12
|
Liu J, Shi X, Zhang Z, Cen X, Lin L, Wang X, Chen Z, Zhang Y, Zheng X, Wu B, Miao Y. Deep Neural Network-Mining of Rice Drought-Responsive TF-TAG Modules by a Combinatorial Analysis of ATAC-Seq and RNA-Seq. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40165388 DOI: 10.1111/pce.15489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Drought is a critical risk factor that impacts rice growth and yields. Previous studies have focused on the regulatory roles of individual transcription factors in response to drought stress. However, there is limited understanding of multi-factor stresses gene regulatory networks and their mechanisms of action. In this study, we utilised data from the JASPAR database to compile a comprehensive dataset of transcription factors and their binding sites in rice, Arabidopsis, and barley genomes. We employed the PyTorch framework for machine learning to develop a nine-layer convolutional deep neural network TFBind. Subsequently, we obtained rice RNA-seq and ATAC-seq data related to abiotic stress from the public database. Utilising integrative analysis of WGCNA and ATAC-seq, we effectively identified transcription factors associated with open chromatin regions in response to drought. Interestingly, only 81% of the transcription factors directly bound to the opened genes by testing with TFBind model. By this approach we identified 15 drought-responsive transcription factors corresponding to open chromatin regions of targets, which enriched in the terms related to protein transport, protein allocation, nitrogen compound transport. This approach provides a valuable tool for predicting TF-TAG-opened modules during biological processes.
Collapse
Affiliation(s)
- Jingpeng Liu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ximiao Shi
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhitai Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuexiang Cen
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lixian Lin
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaowei Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongxian Chen
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangzi Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binghua Wu
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Mu H, Zhang Q, Zuo D, Wang J, Tao Y, Li Z, He X, Meng H, Wang H, Shen J, Sun M, Jiang Y, Zhao W, Han J, Yang M, Wang Z, Lv Y, Yang Y, Xu J, Zhang T, Yang L, Lin J, Tang F, Tang R, Hu H, Cai Z, Sun W, Hua Y. Methionine intervention induces PD-L1 expression to enhance the immune checkpoint therapy response in MTAP-deleted osteosarcoma. Cell Rep Med 2025; 6:101977. [PMID: 39983717 PMCID: PMC11970323 DOI: 10.1016/j.xcrm.2025.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/10/2024] [Accepted: 01/28/2025] [Indexed: 02/23/2025]
Abstract
Osteosarcoma (OS), a malignant bone tumor with limited treatment options, exhibits low sensitivity to immune checkpoint therapy (ICT). Through genomics and transcriptomics analyses, we identify a subgroup of OS with methylthioadenosine phosphorylase (MTAP) deletion, which contributes to ICT resistance, leading to a "cold" tumor microenvironment. MTAP-deleted OS relies on methionine metabolism and is sensitive to methionine intervention, achieved through either dietary restriction or inhibition of methionine adenosyltransferase 2a (MAT2A), a key enzyme in methionine metabolism. We further demonstrate that methionine intervention triggers programmed death-ligand 1 (PD-L1) transcription factor IKAROS family zinc finger 1 (IKZF1) and enhances PD-L1 expression in MTAP-deleted OS cells. Methionine intervention also activates the immune-related signaling pathways in MTAP-deleted OS cells and attracts CD8+ T cells, thereby enhancing the efficacy of ICT. Combining methionine intervention with ICT provides a significant survival benefit in MTAP-deleted OS murine models, suggesting a rationale for combination regimens in OS ICT.
Collapse
Affiliation(s)
- Haoran Mu
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Zuo
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jinzeng Wang
- National Research Center for Translational Medicine at Shanghai, State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yining Tao
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhen Li
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co., Ltd., Shanghai, China
| | - Xin He
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Huanliang Meng
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Hongsheng Wang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jiakang Shen
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengxiong Sun
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yafei Jiang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Weisong Zhao
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Mengkai Yang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhuoying Wang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yu Lv
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Yuqin Yang
- Department of Laboratory Animal Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Tao Zhang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China; Simcere Zaiming Pharmaceutical Co., Ltd., Shanghai, China
| | - Haiyan Hu
- The Drug and Device Phase I Clinical Research Ward/Demonstration Research Ward of Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| | - Yingqi Hua
- Department of Orthopedic Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Bone Tumor Institution, Shanghai, China.
| |
Collapse
|
14
|
Zhang Z, Su V, Wiese CB, Cheng L, Wang D, Cui Y, Kallapur A, Kim J, Wu X, Tran PH, Zhou Z, Casero D, Li W, Hevener AL, Reue K, Sallam T. A genome-wide ATLAS of liver chromatin accessibility reveals that sex dictates diet-induced nucleosome dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.13.623052. [PMID: 40161732 PMCID: PMC11952359 DOI: 10.1101/2024.11.13.623052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The three-dimensional organization of the genome plays an important role in cellular function. Alterations between open and closed chromatin states contributes to DNA binding, collaborative transcriptional activities and informs post-transcriptional processing. The liver orchestrates systemic metabolic control and has the ability to mount a rapid adaptive response to environmental challenges. We interrogated the chromatin architecture in liver under different dietary cues. Using ATAC-seq, we mapped over 120,000 nucleosome peaks, revealing a remarkably preserved hepatic chromatin landscape across feeding conditions. Stringent analysis of nucleosome rearrangements in response to diet revealed that sex is the dominant factor segregating changes in chromatin accessibility. A lipid-rich diet led to a more accessible chromatin confirmation at promoter regions in female mice along with enrichment of promoter binding CCAAT-binding domain proteins. Male liver exhibited stronger binding for nutrient sensing nuclear receptors. Integrative analysis with gene expression corroborated a role for chromatin states in informing functional differences in metabolic traits. We distinguished the impact of gonadal sex and chromosomal sex as determinants of chromatin modulation by diet using the Four Core Genotypes mouse model. Our data provide mechanistic evidence underlying the regulation for the critical sex-dimorphic GWAS gene, Pnpla3 . In summary, we provide a comprehensive epigenetic resource in murine liver that uncovers the complexity of chromatin dynamics in response to diet and sex. Highlights ATAC-Seq, RNA-Seq, and FCG model-integrated analysis unravel sex differences in chromatin accessibility and transcriptome responses to dietary challenges.Lipid-rich diet led to sex-biased chromatin confirmation at promoter regions.Gonadal sex emerged as the most prevalent determinant of the sex bias hepatic chromatin modulation by lipid-rich diets. The critical sex-dimorphic GWAS gene Pnpla3 is suppressed by testosterone, which underlies hepatic differences in expression between the sexes.
Collapse
|
15
|
Zeljic K, Pavlovic D, Stojkovic G, Dragicevic S, Ljubicic J, Todorovic N, Nikolic A. Analysis of TNS3-203 and LRRFIP1-211 Transcripts as Oral Cancer Biomarkers. J Oral Pathol Med 2025; 54:151-160. [PMID: 39888120 DOI: 10.1111/jop.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A recent pan-cancer transcriptome analysis indicated differential activity of alternative promoters of genes TNS3 and LRRFIP1 in head and neck squamous cell carcinoma compared to non-cancerous tissue. The promoters upregulated in head and neck squamous cell carcinoma regulate expression of transcripts TNS3-203 and LRRFIP1-211. OBJECTIVE Our aim was to investigate the biomarker potential of TNS3-203 and LRRFIP1-211 transcripts in oral cancer, the most common type of head and neck cancer. MATERIALS AND METHODS An in silico approach was used to characterize the promoters and transcripts of interest. Relative expression of TNS3-203 and LRRFIP1-211 transcripts was evaluated by qRT-PCR in a group of 46 oral cancer patients in samples of cancer and adjacent non-cancerous tissue. RESULTS TNS3-203 was significantly overexpressed in oral cancer compared with matched non-cancerous tissue, so this transcript can potentially be used as a diagnostic biomarker. There were no differences in LRRFIP1-211 level between analyzed tissues. None of the investigated transcripts has prognostic potential in oral cancer. CONCLUSION The results obtained indicate the diagnostic potential of TNS3-203, but not LRRFIP1-211 transcript and its role in oral carcinogenesis.
Collapse
Affiliation(s)
- Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dunja Pavlovic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Goran Stojkovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sandra Dragicevic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Ljubicic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Nikola Todorovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
| | - Aleksandra Nikolic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| |
Collapse
|
16
|
Shen Z, Liu Z, Wang H, Landrock D, Noh JY, Zang QS, Lee C, Farnell YZ, Chen Z, Sun Y. Fructose induces inflammatory activation in macrophages and microglia through the nutrient-sensing ghrelin receptor. FASEB J 2025; 39:e70412. [PMID: 39985299 PMCID: PMC11846021 DOI: 10.1096/fj.202402531r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
High fructose corn syrup (HFCS) is a commonly used sweetener in soft drinks and processed foods, and HFCS exacerbates inflammation when consumed in excess. Fructose, a primary component of HFCS; however, it is unclear whether fructose directly activates inflammatory signaling. Growth hormone secretagogue receptor (GHSR) is a receptor of the nutrient-sensing hormone ghrelin. We previously reported that GHSR ablation mitigates HFCS-induced inflammation in adipose tissue and liver, shifting macrophages toward an anti-inflammatory spectrum. Since inflammation is primarily governed by innate immune cells, such as macrophages in the peripheral tissues and microglia in the brain, this study aims to investigate whether GHSR autonomously regulates pro-inflammatory activation in macrophages and microglia upon fructose exposure. GHSR deletion mutants of RAW 264.7 macrophages and the immortalized microglial cell line (IMG) were generated using CRISPR-Cas9 gene editing. After treating the cells with equimolar concentrations of fructose or glucose for 24 h, fructose increased mRNA and protein expression of GHSR and pro-inflammatory cytokines (Il1β, Il6, and Tnfα) in both macrophages and microglia, suggesting that fructose activates Ghsr and induces inflammation directly in macrophages and microglia. Remarkably, GHSR deletion mutants (Ghsrmutant) of macrophages and microglia exhibited reduced inflammatory responses to fructose, indicating that GHSR mediates fructose-induced inflammation. Furthermore, we found that GHSR regulates fructose transport and fructose metabolism and mediates fructose-induced inflammatory activation through CREB-AKT-NF-κB and p38 MAPK signaling pathways. Our results underscore that fructose triggers inflammation, and reducing HFCS consumption would reduce disease risk. Moreover, these findings reveal for the first time that the nutrient-sensing receptor GHSR plays a crucial role in fructose-mediated inflammatory activation, suggesting that targeting GHSR may be a promising therapeutic approach to combat the immunotoxicity of foods that contain fructose.
Collapse
Affiliation(s)
- Zheng Shen
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Zeyu Liu
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Hongying Wang
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Danilo Landrock
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Ji Yeon Noh
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Qun Sophia Zang
- Department of SurgeryLoyola University Chicago Health Science CampusMaywoodIllinoisUSA
| | - Chih‐Hao Lee
- Genomics Research Center, Academia SinicaTaipeiTaiwan
| | - Yuhua Z. Farnell
- Department of Poultry ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Zheng Chen
- Department of Biochemistry and Molecular BiologyThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Yuxiang Sun
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
17
|
Pacheco-Hernandez AF, Rodriguez-Ramos I, Vazquez-Santillan K, Valle-Rios R, Velasco-Velázquez M, Aquino-Jarquin G, Martínez-Ruiz GU. The Regulatory Role of CTCF in IL6 Gene Transcription Assessed in Breast Cancer Cell Lines. Pharmaceuticals (Basel) 2025; 18:305. [PMID: 40143084 PMCID: PMC11944638 DOI: 10.3390/ph18030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Breast cancer (BrCa) patients with tumors expressing high interleukin-6 (IL6) levels have poor clinical outcomes. In BrCa, altered occupancy of CCCTC-binding factor (CTCF) within its DNA binding sites deregulates the expression of its targeted genes. In this study, we investigated whether CTCF contributes to the altered IL6 expression in BrCa. Methods/Results: We performed CTCF gain- and loss-of-function assays in BrCa cell lines and observed an inverse correlation between CTCF and IL6 expression levels. To understand how CTCF negatively regulates IL6 gene expression, we performed luciferase gene reporter assays, site-directed mutagenesis assays, and chromatin immunoprecipitation assays. Our findings revealed that CTCF interacted with the IL6 promoter, a form of regulation disrupted in a CpG methylation-independent fashion in MDA-MB-231 and Tamoxifen-resistant MCF7 cells. Data from TCGA and GEO databases allowed us to explore the clinical implications of our results. An inverse correlation between CTCF and IL6 expression levels was seen in disease-free survival BrCa patients but not in patients who experienced cancer recurrence. Conclusions: Our findings provide evidence that the CTCF-mediated negative regulation of the IL6 gene is lost in highly tumorigenic BrCa cells.
Collapse
Affiliation(s)
- Angel Francisco Pacheco-Hernandez
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Itayesitl Rodriguez-Ramos
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
| | - Karla Vazquez-Santillan
- Precision Medicine Innovation Laboratory, National Institute of Genomic Medicine, Mexico City 14610, Mexico;
| | - Ricardo Valle-Rios
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunology and Proteomics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| | - Marco Velasco-Velázquez
- Department of Pharmacology, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section, Genomics, Genetics, and Bioinformatics Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico;
| | - Gustavo Ulises Martínez-Ruiz
- Research Division, School of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.F.P.-H.); (I.R.-R.); (R.V.-R.)
- Immunobiology and Oncology Research Laboratory, ‘Federico Gómez’ Children’s Hospital of Mexico, Mexico City 06720, Mexico
| |
Collapse
|
18
|
Alper M, Sav FN, Keleş Y, Eroğlu KP, Keskin SD, Köçkar F. STAT-3, ELK-1, and c- Jun contributes IL-6 mediated ADAMTS-8 upregulation in colorectal cancer. Mol Biol Rep 2025; 52:246. [PMID: 39969607 DOI: 10.1007/s11033-025-10342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND ADAMTSs are extracellular matrix metalloproteinases that mainly process extracellular matrix components and closely related tumorigenesis. ADAMTS-8 is an anti-angiogenic member of the family and is dysregulated in common cancers. The tumor suppressor function of the ADAMTS-8 has been demonstrated in colorectal cancer. Although ADAMTS-8 plays a critical role in tumor progression, transcriptional regulatory features haven't been studied yet. MATERIALS AND METHODS The human ADAMTS-8 promoter was cloned into the pMetLuc Reporter vector. Basal promoter activity and the effect of the IL-6 on ADAMTS-8 promoter activity were determined by transient transfection assays in SW480 cells. QRT-PCR and Western blot analyses assessed the impact of IL-6 on ADAMTS-8 mRNA and protein expressions. Functional binding of the specific transcription factors to the ADAMTS-8 promoter region was evaluated by ChIP qPCR and EMSA. RESULTS Our results demonstrated that the ADAMTS-8 promoter includes multiple binding sites for transcription factors that could be activated in the inflammatory pathways. IL-6 stimulation increased ADAMTS-8 promoter activity, also mRNA, and protein expressions. Pathway inhibition studies showed that IL-6-mediated induction of ADAMTS-8 was achieved through p38/MAPK, NF-κB, PI3K, and SAPK/JNK pathways. STATs, Elk-1, and c-Jun functionally bind to the ADAMTS-8 promoter region. CONCLUSION It can be concluded that inflammation is a strong positive regulator of the ADAMTS-8 gene.
Collapse
Affiliation(s)
- Meltem Alper
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, Izmir, Turkey.
| | - Feyza Nur Sav
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| | - Yasemin Keleş
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| | - Kübra Paspal Eroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
- Department of Medical Biology, Faculty of Medicine, Ufuk University, Ankara, Turkey
| | - Saliha Derya Keskin
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| | - Feray Köçkar
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Balıkesir University, Balikesir, Turkey
| |
Collapse
|
19
|
Lauterbach‐Rivière L, Thuringer L, Feld P, Toews LK, Schüssler J, Klinz J, Gläser L, Lohse S, Sternjakob A, Gasparoni G, Kattler‐Lackes K, Walter J, Lauterbach MA, Rahmann S, Möller L, Laue M, Janssen M, Stöckle M, Schmit D, Fliser D, Smola S. Tumor Necrosis Factor-Alpha Inhibits the Replication of Patient-Derived Archetype BK Polyomavirus While Activating Rearranged Strains. J Med Virol 2025; 97:e70210. [PMID: 39949253 PMCID: PMC11826303 DOI: 10.1002/jmv.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
To date, no drugs are approved for BK polyomavirus (BKPyV) reactivation, a major cause of nephropathy after kidney transplantation. Recently, tumor necrosis factor-α (TNF-α) blockade has been proposed as a promising therapy, however, the effect of TNF-α on the clinically most common archetype (ww) BKPyV remained unclear. Assays in primary renal proximal tubule epithelial cells (RPTEC) allowed efficient replication only of BKPyV strains with rearranged (rr) non-coding control regions (NCCR), which may develop at later disease stages, but not of ww-BKPyV. Here, we optimized culture conditions allowing robust replication of patient-derived ww-BKPyV, while efficiently preserving their ww-NCCR. TNF-α promoted rr-BKPyV replication, while the TH1 cytokine IFN-γ suppressed it, also in the presence of TNF-α. Surprisingly, TNF-α alone was sufficient to suppress all ww-BKPyV strains tested. Comprehensive analysis using siRNAs, and chimeric or mutated BKPyV-strains revealed that the response to TNF-α depends on the NCCR type, and that the NF-κB p65 pathway but not the conserved NF-κB binding site is essential for the TNF-α-induced enhancement of rr-BKPyV replication. Our data suggest that in immunosuppressed patients with archetype-dominated infections, TNF-α blockade could interfere with natural TNF-α-mediated anti-BKPyviral control, and this could be detrimental when IFN-γ-driven TH1 responses are impaired. Ongoing inflammation, however, could lead to the selection of rearrangements responding to NCCR-activating pathways downstream of NF-κB p65 signaling, that may overcome the initial TNF-α-mediated suppression. Our findings also highlight the importance of using clinically relevant BKPyV isolates for drug testing and discovery, for which this new assay paves the way.
Collapse
Affiliation(s)
| | - Lucia Thuringer
- Institute of VirologySaarland University Medical CenterHomburgGermany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection ResearchSaarland University CampusSaarbrückenGermany
| | - Pascal Feld
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | | | - Jessica Schüssler
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | - Jonas Klinz
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | - Lars Gläser
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | - Stefan Lohse
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | - Anna Sternjakob
- Institute of VirologySaarland University Medical CenterHomburgGermany
| | | | | | - Jörn Walter
- Department of GeneticsSaarland UniversitySaarbrückenGermany
| | - Marcel A. Lauterbach
- Molecular Imaging, Center for Integrative Physiology and Molecular MedicineSaarland UniversityHomburgGermany
| | - Sven Rahmann
- Algorithmic Bioinformatics, Center for Bioinformatics Saar, Saarland Informatics CampusSaarland UniversitySaarbrückenGermany
| | - Lars Möller
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| | - Michael Laue
- Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens, Robert Koch InstituteBerlinGermany
| | - Martin Janssen
- Department of UrologySaarland University Medical CenterHomburgGermany
| | - Michael Stöckle
- Department of UrologySaarland University Medical CenterHomburgGermany
| | - David Schmit
- Department of NephrologySaarland University Medical CenterHomburgGermany
| | - Danilo Fliser
- Department of NephrologySaarland University Medical CenterHomburgGermany
| | - Sigrun Smola
- Institute of VirologySaarland University Medical CenterHomburgGermany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection ResearchSaarland University CampusSaarbrückenGermany
| |
Collapse
|
20
|
Sadhu N, He Y, Kashyap Y, Ilktach G, Wang MA, Yao Y, Wilkie DJ, Molokie RE, Wang ZJ. Sex-stratified association of variants in the serotonin 1A receptor gene with acute crisis pain among African American patients with sickle cell disease. Exp Hematol 2025; 142:104692. [PMID: 39615579 DOI: 10.1016/j.exphem.2024.104692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Patients with sickle cell disease (SCD) experience pain in their daily lives. Both the acute and chronic pain phenotypes of this disease exhibit high variability, making pain management a challenge. The underlying reasons for the phenotypic variability are poorly understood. Given the importance of serotonergic neurotransmission in pain signaling, we aimed to explore the role of variants in the 5-HT1A receptor gene (HTR1A) on pain variability in SCD. Four variants (rs6449693, rs878567, rs6294, and rs10042486) in HTR1A were genotyped in a cohort of 131 African Americans with SCD. Acute and chronic pain were measured by the acute care utilization and the McGill Pain Questionnaire, respectively. Association analyses were performed for three genetic models (additive, dominant, and recessive). Three variants (rs6449693, rs6294, and rs10042486) in HTR1A showed significant association with crisis pain in both the additive and dominant models. Although the G allele of rs6449693 and the C allele of rs10042486 associated with lower acute crisis pain, the T allele of rs6294 associated with increased acute crisis pain. Sex-stratified analyses revealed that the associations of these three variants with acute pain were significant only in men, but not in women. Furthermore, the A allele rs878567 that did not reach statistical significance in the overall cohort showed a significant association with lower crisis pain in men. To our knowledge, as the first study to explore the role of HTR1A variants in sickle cell pain, we identified that four variants across the gene are associated with acute crisis pain in SCD in a sex-stratified manner.
Collapse
Affiliation(s)
- Nilanjana Sadhu
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL
| | - Ying He
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL; Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL
| | - Yavnika Kashyap
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL
| | - Giokdjen Ilktach
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL
| | - Michael A Wang
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL
| | - Robert E Molokie
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL; Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL; Jesse Brown Veteran's Administration Medical Center, Chicago, IL; Division of Hematology/Oncology, University of Illinois College of Medicine, Chicago, IL
| | - Zaijie Jim Wang
- Department of Pharmaceutical Sciences, University of Illinois College of Pharmacy, Chicago, IL; Comprehensive Sickle Cell Center, University of Illinois Chicago, Chicago, IL; Jesse Brown Veteran's Administration Medical Center, Chicago, IL; Department of Neurology & Rehabilitation, University of Illinois College of Medicine, Chicago, IL; Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL.
| |
Collapse
|
21
|
Wei X, Si A, Zhao S, Fu Y, Li J, Aishanjiang K, Ma Y, Yu C, Yu B, Cui C, Wang H, Kong X, Li S, Kong X, Tong Y, Wu H. CircUCK2(2,3) promotes cancer progression and enhances synergistic cytotoxicity of lenvatinib with EGFR inhibitors via activating CNIH4-TGFα-EGFR signaling. Cell Mol Biol Lett 2025; 30:15. [PMID: 39885395 PMCID: PMC11781035 DOI: 10.1186/s11658-025-00690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated. METHODS We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing. CircUCK2(2,3) levels were measured in two independent HCC cohorts using quantitative real-time PCR (qRT-PCR). We explored the functions of circUCK2(2,3) using gain- and loss-of-function assays. Techniques such as RNA-sequencing, RNA immunoprecipitation (RIP), polysome fractionation, RNA pulldown, dual luciferase reporter assay, inhibitors of EGFR downstream signaling, CRISPR-Cas9, and medium transfer assays were employed to investigate the regulatory mechanisms and the protumoral activities of circUCK2(2,3). Additionally, in vitro cytotoxic assays and patient-derived xenograft (PDX) models assessed the effects of circUCK2(2,3) on the cytotoxic synergy of lenvatinib and EGFR inhibitors. RESULTS CircUCK2(2,3) is upregulated in HCC tissues and serves as an independent risk factor for poor recurrence-free survival. The expression of circUCK2(2,3) is independent on its host gene, UCK2, but is regulated by its upstream promoter and flanking inverted complementary sequences. Functionally, circUCK2(2,3) enhances HCC proliferation, migration, and invasion, both in vitro and in vivo. Mechanistically, by sponging miR-149-5p, circUCK2(2,3) increases CNIH4 levels, which in turn amplifies TGFα secretion, resulting in the activation of EGFR and downstream pAKT and pERK signaling pathways. Moreover, circUCK2(2,3) overexpression sensitizes HCC cells to EGFR inhibitors, and increases the synergistic cytotoxicity of combined lenvatinib and EGFR inhibitor treatment. CONCLUSIONS CircUCK2(2,3) regulates a novel oncogenic pathway, miR-149-5p-CNIH4-TGFα-EGFR, in HCC, presenting a viable therapeutic target and biomarker for the precision treatment of HCC.
Collapse
Affiliation(s)
- Xindong Wei
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Anfeng Si
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210015, China
| | - Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Fu
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jilei Li
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Kedeerya Aishanjiang
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 831399, China
| | - Yujie Ma
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Chang Yu
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Chunhong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hui Wang
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianming Kong
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316100, China.
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China.
| | - Ying Tong
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai JiaoTong University, Shanghai, 200003, China.
| | - Hailong Wu
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China.
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Pharmacy, Joint Innovation Laboratory for Cell Therapy Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
22
|
Jia F, Wang F, Li S, Cui Y, Yu Y. Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss. BMC Med Genomics 2025; 18:11. [PMID: 39810209 PMCID: PMC11734420 DOI: 10.1186/s12920-024-02067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss. These samples are mainly from fibroblasts and keratinocytes. Through differential gene expression analysis, we identified key genes, including ICAM1, SLC1A1, and CD24, which have already been shown to play important roles in neurogenic hearing loss. Furthermore, we predicted potential transcriptional regulatory factors that may modulate the expression of these genes. Enrichment analysis revealed biological processes and pathways associated with hearing loss, highlighting the involvement of circadian rhythm disruption and other neuro-related disorders. Although our study is limited by the sample size and the absence of larger-scale investigations, the identified genes and regulatory factors provide valuable insights into the molecular mechanisms underlying hearing loss. Further molecular and cellular experiments are necessary to validate these findings and elucidate the precise regulatory mechanisms involved. In conclusion, our study contributes to the understanding of hearing loss pathogenesis and offers potential targets for molecular diagnostics and gene-based therapies. This provides a foundation for further research into personalized approaches to diagnosing and treating hearing loss.
Collapse
Affiliation(s)
- Fengfeng Jia
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Fang Wang
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Song Li
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yunhua Cui
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China
| | - Yongmei Yu
- Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.
| |
Collapse
|
23
|
Chen Z, Zhang X, Teng J, Jiang L, Zhang Q. HSF1 and CPSF1 affect milk fat and protein synthesis by regulating the AKT/mTOR signaling pathway. J Anim Sci 2025; 103:skaf009. [PMID: 39932399 PMCID: PMC11897896 DOI: 10.1093/jas/skaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
In our previous genome-wide association study on milk production traits in Chinese Holstein cows, HSF1 (heat shock factor 1) and CPSF1 (cleavage and polyadenylation specific factor 1) were found to be strongly associated with milk fat and protein percentages. However, their roles in milk fat and protein synthesis and the underlying mechanism are still largely unknown. In this study, we verified the effects of their expressions on milk fat and milk protein synthesis in MAC-T cells. We showed that HSF1 can participate in the AKT/mTOR signaling pathway, one of the most important pathways for fat and protein synthesis, through its interaction with the AKT protein and influence the downstream genes in this pathway to regulate milk fat and milk protein synthesis. We also found that HSF1, as a transcription factor, can bind to the promoter region of CPSF1 to regulate its transcription and expression, which in turn modulates the expression of SREBP1 and thereby influences the synthesis of milk fat.
Collapse
Affiliation(s)
- Zhujun Chen
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an, China
| | - Jun Teng
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
24
|
Wang Y, Zhou B, Lian X, Yu S, Huang B, Wu X, Wen L, Zhu C. KIF18A Is a Novel Target of JNK1/c-Jun Signaling Pathway Involved in Cervical Tumorigenesis. J Cell Physiol 2025; 240:e31516. [PMID: 39749722 DOI: 10.1002/jcp.31516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025]
Abstract
Cervical cancer remains a significant global health concern. KIF18A, a kinesin motor protein regulating microtubule dynamics during mitosis, is frequently overexpressed in various cancers, but its regulatory mechanisms are poorly understood. This study investigates KIF18A's role in cervical cancer and its regulation by the JNK1/c-Jun signaling pathway. Cell growth was assessed in vitro using MTT and colony formation assays, and in vivo using a nude mouse xenograft model with KIF18A knockdown HeLa cells. The Genomic Data Commons (GDC) data portal was used to identify KIF18A-related protein kinases in cervical cancer. Western blot analysis was employed to analyze phosphor-c-Jun, c-Jun, and KIF18A expression levels following JNK1 inhibition, c-Jun knockdown/overexpression, and KIF18A knockdown in cervical cancer cells. Chromatin immunoprecipitation (ChIP) and luciferase reporter assays were performed to assess c-Jun binding and transcriptional activity of the KIF18A promoter. KIF18A knockdown significantly impaired cervical cancer cell growth both in vitro and in vivo. A strong positive correlation was observed between JNK1 and KIF18A expression in cervical and other cancers. JNK1 inhibition decreased both KIF18A expression and c-Jun phosphorylation. c-Jun was found to directly bind to and activate the KIF18A promoter. Furthermore, c-Jun knockdown inhibited cervical cancer cell growth, and this effect was partially rescued by KIF18A overexpression. This study demonstrates that the JNK1/c-Jun pathway activates KIF18A expression, which is essential for cervical cancer cell growth. Targeting the JNK/c-Jun/KIF18A axis may represent a promising novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Bowen Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xiaoying Lian
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Siqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Baihai Huang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Xinyue Wu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lianpu Wen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
25
|
Ding W, Han W, Shi CT, Yao LQ, Liang ZW, Zhou MH, Wang HN. Roles of the CDCA gene family in breast carcinoma. Sci Prog 2025; 108:368504241312305. [PMID: 39814554 PMCID: PMC11736775 DOI: 10.1177/00368504241312305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Cell division cycle-associated (CDCA) genes are dysregulated in carcinomas. Our study aims to identify similarities and differences of the clinical roles of CDCAs in breast cancer (BRCA) and to explore their potential mechanisms. In GEPIA, compared to normal tissues, expressions of CDCAs were higher in BRCA and sub-types. In addition, CDCAs were significantly positively related to stages and predicted worse survival in BRCA. In CancerSEA, expression levels of most CDCAs were strongly positively related to cell cycle, DNA damage, DNA repair, and proliferation. In TIMER, CDCAs were linked with immune infiltration levels of BRCA, including Dendritic cell, B cell and so on, and were positively related to most of the common markers of immune cells, especially CD38 of B cell and IL12RB2 of Th1. In GeneMANIA, there were complex interactions and co-expression relationships between CDCAs and cell division-associated genes. In addition, CDCA1, CDCA3, CDCA5, CDCA6 and CDCA8 had a high proportion of amplification in BRCA, and CDCA1, CDCA2, CDCA5, CDCA7 and CDCA8 had high levels of body DNA methylation. Among 11 transcription factors possibly combining promoters of all CDCAs, FOXP3 and YY1 were significantly higher in BRCA in comparison to normal tissues, and both had a positive relationship with all CDCAs in GEPIA and IHC. In addition, silencing FOXP3 or YY1 decreased levels of CDCAs in MDA-MB-231. In summary, CDCAs have various similarities in clinical functions, functional states, immune infiltration, and mechanisms, and they may become novel potential biomarkers for BRCA.
Collapse
Affiliation(s)
- Wei Ding
- Ultrasonic Department, Kunshan Women and Children's HealthCare Hospital, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan Jiangsu, PR China
| | - Wei Han
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, PR China
- Department of Science and Education, Kunshan Women and Children's HealthCare Hospital, Kunshan Jiangsu, PR China
| | - Chun-Tao Shi
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi, Jiangsu, PR China
| | - Li-Qian Yao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, PR China
| | - Zhi-Wei Liang
- Central Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, PR China
| | - Ming-Hui Zhou
- Central Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, PR China
| | - Hao-Nan Wang
- Oncology Department, Affiliated Wuxi Fifth People's Hospital of Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
26
|
Liu PC, Huang SY, Lin KI, Hsieh SL, Leu CM. Suppression of NF-κB and downstream XBP1 by DcR3 contributes to a decrease in antibody secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:72-84. [PMID: 40073262 DOI: 10.1093/jimmun/vkae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Decoy receptor 3 (DcR3), a soluble receptor in the tumor necrosis factor receptor superfamily, regulates the functions of monocytes, macrophages, dendritic cells, and T cells. Previous studies have demonstrated that DcR3 suppresses B cell proliferation in vitro and ameliorates autoimmune diseases in animal models; however, whether and how DcR3 regulates antibody production is unclear. Using a DcR3 transgenic mouse model, we found that DcR3 impaired the T cell-dependent antigen-stimulated antibody response. The number of Ag-specific antibody-secreting cells was transiently reduced, but the concentration of specific antibodies continued to decrease in the DcR3 transgenic mice, implying a direct suppression of antibody production by DcR3. In vitro assays showed that the DcR3-Fc fusion protein attenuated T cell-dependent induced antibody production and reduced the expression of secretory Igh and Xbp1. We found that nuclear factor κB (NF-κB) activity was essential for the expression of Xbp1 in activated B cells. DcR3-Fc attenuated anti-CD40-induced NF-κB activity and Xbp1 promoter activity. Furthermore, DcR3-Fc decreased the expression of Xbp1 in Blimp1+ antibody-secreting cells. Restoration of spliced XBP1 (X-box binding protein 1) in DcR3-treated B cells increased the secretory Ighg1 transcript levels, suggesting that reducing XBP1 is one of the mechanisms by which DcR3 regulates antibody production both in vitro and in vivo. Collectively, these results indicate that in addition to blocking proliferation, DcR3 impairs NF-κB activation, subsequently decreasing the expression of Xbp1, eventually leading to a reduction in antibody secretion.
Collapse
Affiliation(s)
- Po-Chun Liu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Szu-Ying Huang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei City, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Chuen-Miin Leu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
27
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell MD, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak‐Vance MA, Haines JL. Examination of MGMT as a risk gene for dementia in the Amish. Alzheimers Dement 2025; 21:e14356. [PMID: 39711484 PMCID: PMC11782184 DOI: 10.1002/alz.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Recently, the O-6-methylguanine-DNA methyltransferase (MGMT) locus was proposed as influencing the risk of Alzheimer's disease (AD) in women who did not carry the apolipoprotein E ε4 allele. We examined an Amish founder population for any influence of genetic variation in and around the MGMT locus on the risk for dementia. METHODS Genetic association was performed for single nucleotide polymorphisms (SNPs) surrounding the MGMT locus. A total of 946 individuals of Amish descent between the ages of 76 and 95 who were classified as cognitively impaired or cognitively unimpaired were included. Multiple statistical models were applied to test for replication. RESULTS The results for the previously associated individual SNPs were not significant. However, a different SNP (rs7909468) generated significant results under a model different from the previous report. DISCUSSION The MGMT locus may influence the risk of AD, although its genetic mechanisms remain unclear and warrant further study. HIGHLIGHTS Association analyses around the O-6-methylguanine-DNA methyltransferase (MGMT) locus showed a study-significant single nucleotide polymorphism (SNP), rs7909468, in a female cognitively impaired group lacking the apolipoprotein E ε4 genotype. Functional implications of rs7909468 are relatively unexplored, but in silico analyses indicate it may regulate MGMT expression. rs7909468 was not in linkage disequilibrium with other SNPs found to be significant in this region and appears as a distinct novel association.
Collapse
Affiliation(s)
- Leighanne R. Main
- Departments of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Cleveland Institute of Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Cleveland Institute of Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Audrey Lynn
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Cleveland Institute of Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Renee A. Laux
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Kristy L. Miskimen
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Michael D. Osterman
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Paula K. Ogrocki
- Department of NeurologyUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of NeurologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Alan J. Lerner
- Department of NeurologyUniversity Hospitals Cleveland Medical CenterClevelandOhioUSA
- Department of NeurologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - M. Denise Fuzzell
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sarada L. Fuzzell
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Sherri D. Hochstetler
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Daniel A. Dorfsman
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Laura J. Caywood
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael B. Prough
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Larry D. Adams
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jason E. Clouse
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Sharlene D. Herington
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - William K. Scott
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Margaret A. Pericak‐Vance
- John P. Hussman Institute for Human GenomicsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Dr. John T. Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jonathan L. Haines
- Departments of Genetics and Genome SciencesCase Western Reserve UniversityClevelandOhioUSA
- Department of Population and Quantitative Health SciencesCase Western Reserve University School of MedicineClevelandOhioUSA
- Cleveland Institute of Computational BiologyCase Western Reserve University School of MedicineClevelandOhioUSA
| |
Collapse
|
28
|
Nganya C, Bryant S, Alnakhalah A, Allen-Boswell T, Cunningham S, Kanu S, Williams A, Philio D, Dang K, Butler E, Player A. Analyses of the MYBL1 Gene in Triple Negative Breast Cancer: Evidence of Regulation of the VCPIP1 Gene and Identification of a Specific Exon Overexpressed in Tumor Cell Lines. Int J Mol Sci 2024; 26:279. [PMID: 39796135 PMCID: PMC11719811 DOI: 10.3390/ijms26010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Previous data show that the knockdown of the MYBL1 gene in the MDA-MB-231 cell line leads to the downregulation of VCPIP1 gene expression. In addition, MYBL1 and VCPIP1 genes are co-expressed and dysregulated in some of the same triple negative breast cancer patient samples. We propose that the co-expression of the two genes is attributed to the MYBL1 transcription factor regulation of the VCPIP1 gene. We identify the MYBL1 transcription factor binding site upstream of the VCPIP1 start site and show that the MYBL1 protein can bind to the sequence identified in the VCPIP1 promoter region. Combined with the results from the knockdown study, these data support the ability of MYBL1 to regulate the VCPIP1 gene. The VCPIP1 gene functions as a deubiquitinating enzyme involved in DNA repair, protein positioning, and the assembly of the Golgi apparatus during mitotic signaling. The transcriptional regulation of VCPIP1 by the MYBL1 gene could implicate MYBL1 in these processes, which might contribute to tumor processes in TNBC. Although both genes are involved in cell cycle regulatory mechanisms, converging signaling mechanisms have not been identified. In a separate study, we performed sequence alignment of the MYBL1 transcript variants and identified an exon unique to the canonical variant. Probes that specifically target the unique MYBL1 exon show that the exon is overexpressed in tumor cell lines compared to non-tumor breast cells. We are classifying this unique MYBL1 exon as a tumor-associated exon.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Audrey Player
- Department of Biology, Texas Southern University, Houston, TX 77004, USA; (C.N.); (S.B.); (A.A.); (T.A.-B.); (S.C.); (S.K.); (A.W.); (D.P.); (K.D.); (E.B.)
| |
Collapse
|
29
|
Wang C, Dong D, Zhao N, Liu Y, Bai C, Hua J, Cui R, Wei X, Zhao T, Ji N, Yang S, Zhao J, Li H, Li Y. Tumor-derived CCL15 regulates RNA m 6A methylation in cancer-associated fibroblasts to promote hepatocellular carcinoma growth. Cancer Lett 2024; 611:217420. [PMID: 39734010 DOI: 10.1016/j.canlet.2024.217420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy characterized by rapid growth. The interaction between tumor cells and cancer-associated fibroblasts (CAFs) significantly influences HCC progression. CCL15, a CC chemokine family member, is predominantly expressed in HCC and strongly correlates with tumor size, indicating its critical role in HCC growth. However, previous studies suggest that CCL15 does not directly stimulate cancer cell proliferation. The specific role and mechanism of CCL15 in HCC proliferation remain unknown. Here, we identified that CCL15 was predominantly overexpressed by HCC cells through single-cell RNA sequencing data and immunofluorescence. We discovered that CCL15 promotes HCC growth by stimulating the crosstalk between HCC cells and CAFs via CCR1 signaling, as evidenced by co-culture assays, organoid models, and allograft models. Mechanistically, CCL15 induced the expression of FTO in CAFs through the STAT3 pathway. By m6A sequencing and RNA sequencing, we found that CEBPA mRNA, a transcription factor regulating CXCL5 expression, was a target of FTO. CXCL5, secreted by CAFs, activated the CXCR2 receptor on HCC cells and enhanced their proliferation. Notably, we found that interfering with CCL15 signaling using a neutralizing antibody attenuated HCC growth in heterotypic co-injection and patient-derived xenograft murine models. Finally, CXCL5 also upregulated CCL15 expression in HCC cells by modulating P53 expression through MDM2, forming a positive feedback loop. Our study unveiled CCL15 as a key mediator in HCC progression, facilitating communication between HCC cells and CAFs. This highlights a novel regulatory axis in HCC and suggests that targeting CCL15 could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Chaomin Wang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Na Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, PR China
| | - Changsen Bai
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Jialei Hua
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ranliang Cui
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ting Zhao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Ning Ji
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China
| | - Shuaini Yang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jie Zhao
- Department of Kidney Transplantation, Tianjin First Central Hospital, Tianjin, 300110, PR China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China; Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, PR China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, PR China.
| |
Collapse
|
30
|
Imam M, Kianian A, Bhat S, Fure Lukes VE, Greiner-Tollersrud L, Edholm ES. Subgroup specific transcriptional regulation of salmonid non-classical MHC class I L lineage genes following viral challenges and interferon stimulations. Front Immunol 2024; 15:1463345. [PMID: 39759529 PMCID: PMC11695323 DOI: 10.3389/fimmu.2024.1463345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Non-classical MHC class I genes which, compared to classical MHC class I, are typically less polymorphic and have more restricted expression patterns are attracting interest because of their potential to regulate immune responses to various pathogens. In salmonids, among the numerous non-classical MHC class I genes identified to date, L lineage genes, including Sasa-LIA and Sasa-LGA1, are differentially induced in response to microbial challenges. In the present study, we show that while transcription of both Sasa-LIA and Sasa-LGA1 are induced in response to SAV3 infection the transcriptional induction patterns are distinct for each gene. While elevated Sasa-LGA1 expression is maintained long-term following in vivo SAV3 infection Sasa-LIA expression is transient, returning to near baseline weeks prior to viral clearance. Furthermore, by contrasting L lineage transcriptional induction potential of SAV3 with that of IPNV we show that Sasa-LIA and Sasa-LGA1 transcriptional induction is tightly interconnected with select type I and type II interferon induction. Both type I and type II interferon stimulation, to varying degrees, induce Sasa-LIA and Sasa-LGA1 expression. Compared to IFNa1 and IFNc, IFN-gamma was a more effective inducer of both Sasa-LIA and Sasa-LGA1 while IFNb showed no activity. Furthermore, IFNa was a more potent inducer of Sasa-LIA compared to IFNc. The involvement of type I IFN and IFN gamma in regulation of Sasa-LIA and Sasa-LGA1 expression was further substantiated by analysis of their respective promoter regions which indicate that ISRE and GAS like elements most likely cooperatively regulate Sasa-LIA expression while IFN gamma induced expression of Sasa-LGA1 is critically dependent on a single, proximally located ISRE element. Together, these findings imply that Sasa-LIA and Sasa-LGA1 play important but likely functionally distinct roles in the anti-viral response of salmonids and that these two molecules may serve as immune regulators promoting more effective antiviral states.
Collapse
Affiliation(s)
| | | | | | | | | | - Eva-Stina Edholm
- Norwegian College of Fishery Science, Faculty of Bioscience, Fisheries and Economics,
University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
31
|
Kang N, Liu N, Liu M, Zhang S, Yang Y, Hou J, Tan D, Gao Z, Xie Y, Shen Z, Liu J. Identification and characterization of host factor VCPIP1 as a multi-functional positive regulator of hepatitis B virus. J Virol 2024; 98:e0158124. [PMID: 39494904 DOI: 10.1128/jvi.01581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) remains an important public health challenge. Viral covalently closed circular DNA (cccDNA) persists in infected hepatocytes and serves as the template for transcribing all viral RNA species. HBV regulatory protein X (HBx) interacts with other viral and cellular proteins to play diverse functions in viral life cycle, including modulation of cccDNA transcription activity. Here, we used proximity labeling coupled with proteomic analysis to screen for HBx-interacting host proteins. One of the identified candidates, deubiquitinating enzyme valosin-containing protein-interacting protein 1 (VCPIP1), directly binds HBx and stabilizes HBx by reducing its proteasomal degradation, which corroborated a recent report. VCPIP1-mediated upregulation of HBV transcription, antigen expression, and genome replication was demonstrated using a series of HBV replication and infection models. More importantly, VCPIP1 was found to upregulate HBV in the absence of HBx. Mechanistic studies revealed that VCPIP1 HBx-independently associates with HBV enhancer I/X promoter (EnI/Xp) and positively modulates both its promoter and enhancer activities, partially through promoting the binding of YY1 transcription factor to EnI/Xp. Results presented here expand the recently described role of VCPIP1 in HBV life cycle and establish it as a multi-functional positive regulator of this virus. IMPORTANCE Hepatitis B virus (HBV) encodes the regulatory protein HBx that plays crucial roles in viral life cycle and cellular processes through interacting with viral and cellular proteins. Identifying HBx-interacting proteins may reveal novel aspects of host-virus interactions. In this work, proximity labeling coupled with proteomic analysis identified multiple HBx-interacting host factors, and among these, valosin-containing protein-interacting protein 1 (VCPIP1) was confirmed to directly bind HBx and reduce its proteasomal degradation, corroborating a recent report. In addition to upregulating HBx-expressing HBV, we showed that VCPIP1 also positively regulates mutant HBV lacking HBx expression. This novel HBx-independent function of VCPIP1 was shown to involve its association with one viral promoter/enhancer element, which upregulated the latter's promoter and enhancer activities. These results establish VCPIP1 as a positive regulator of HBV that acts through multiple, diverse mechanisms and might also contribute toward revealing novel cellular functions of VCPIP1.
Collapse
Affiliation(s)
- Ning Kang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nannan Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shimei Zhang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Yang
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia Hou
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Tan
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zixiang Gao
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Children's Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (NHC and MOE and CAMS), Department of Medical Microbiology and Parasitology, Shanghai Institute of Infectious Diseases and Biosecurity, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Wanniarachchi DV, Viswakula S, Wickramasuriya AM. The evaluation of transcription factor binding site prediction tools in human and Arabidopsis genomes. BMC Bioinformatics 2024; 25:371. [PMID: 39623329 PMCID: PMC11613939 DOI: 10.1186/s12859-024-05995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The precise prediction of transcription factor binding sites (TFBSs) is pivotal for unraveling the gene regulatory networks underlying biological processes. While numerous tools have emerged for in silico TFBS prediction in recent years, the evolving landscape of computational biology necessitates thorough assessments of tool performance to ensure accuracy and reliability. Only a limited number of studies have been conducted to evaluate the performance of TFBS prediction tools comprehensively. Thus, the present study focused on assessing twelve widely used TFBS prediction tools and four de novo motif discovery tools using a benchmark dataset comprising real, generic, Markov, and negative sequences. TFBSs of Arabidopsis thaliana and Homo sapiens genomes downloaded from the JASPAR database were implanted in these sequences and the performance of tools was evaluated using several statistical parameters at different overlap percentages between the lengths of known and predicted binding sites. RESULTS Overall, the Multiple Cluster Alignment and Search Tool (MCAST) emerged as the best TFBS prediction tool, followed by Find Individual Motif Occurrences (FIMO) and MOtif Occurrence Detection Suite (MOODS). In addition, MotEvo and Dinucleotide Weight Tensor Toolbox (DWT-toolbox) demonstrated the highest sensitivity in identifying TFBSs at 90% and 80% overlap. Further, MCAST and DWT-toolbox managed to demonstrate the highest sensitivity across all three data types real, generic, and Markov. Among the de novo motif discovery tools, the Multiple Em for Motif Elicitation (MEME) emerged as the best performer. An analysis of the promoter regions of genes involved in the anthocyanin biosynthesis pathway in plants and the pentose phosphate pathway in humans, using the three best-performing tools, revealed considerable variation among the top 20 motifs identified by these tools. CONCLUSION The findings of this study lay a robust groundwork for selecting optimal TFBS prediction tools for future research. Given the variability observed in tool performance, employing multiple tools for identifying TFBSs in a set of sequences is highly recommended. In addition, further studies are recommended to develop an integrated toolbox that incorporates TFBS prediction or motif discovery tools, aiming to streamline result precision and accuracy.
Collapse
Affiliation(s)
- Dinithi V Wanniarachchi
- Department of Plant Sciences, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - Sameera Viswakula
- Department of Statistics, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | | |
Collapse
|
33
|
Maiti AK. Bioinformatic analysis predicts the regulatory function of noncoding SNPs associated with Long COVID-19 syndrome. Immunogenetics 2024; 76:279-290. [PMID: 39042286 DOI: 10.1007/s00251-024-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Long or Post COVID-19 is a condition of collected symptoms persisted after recovery from COVID-19. Host genetic factors play a crucial role in developing Long COVID-19, and GWAS studies identified several SNPs/genes in various ethnic populations. In African-American population two SNPS, rs10999901 (C>T, p = 3.6E-08, OR = 1.39, MAF-0,27, GRCH38, chr10:71584799 bp) and rs1868001 (G>A, p = 6.7E-09, OR = 1.40, MAF-0.46, GRCH38, chr10:71587815 bp) and in Hispanic population, rs3759084 (A>C, p = 9.7E-09, OR = 1.56, MAF-0.17, chr12: 81,110,156 bp) are strongly associated with Long COVID-19. All these three SNPs reside in noncoding regions implying their regulatory function in the genome. In silico dissection suggests that rs10999901 and rs1868001 physically interact with the CDH23 and C10orf105 genes. Both SNPs act as distant enhancers and bind with several transcription factors (TFs). Further, rs10999901 SNP is a CpG that is methylated in CD4++ T cells and monocytes and loses its methylation due to transition from C>T. rs3759084 is located in the promoter (- 687 bp) of MYF5, acts as a distant enhancer, and physically interacts with PTPRQ. These results offer plausible explanations for their association and provide the basis for experiments to dissect the development of symptoms of Long COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Department of Genetics and Genomics, Mydnavar, 28475 Greenfield Rd, Southfield, USA.
| |
Collapse
|
34
|
Porvari K, Horioka K, Kaija H, Pakanen L. Amphiregulin is overexpressed in human cardiac tissue in hypothermia deaths; associations between the transcript and stress hormone levels in cardiac deaths. Ann Med 2024; 56:2420862. [PMID: 39506618 PMCID: PMC11544741 DOI: 10.1080/07853890.2024.2420862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Amphiregulin (AREG) is a growth factor linked to cardioprotection and heart pathology during myocardial stress. Our aim was to investigate cardiac AREG expression, its potential as a postmortem hypothermia marker and its possible stress hormone dependency in different types of deaths. MATERIALS AND METHODS Heart RNA was isolated from hypothermic, cardiac and non-cardiac deaths. Relative AREG mRNA levels and urine stress hormone concentrations were measured by qPCR and enzyme-linked immunosorbent assays from eight different death cause groups. Receiver operating characteristic curve was used to evaluate a cut-off point for AREG expression as a hypothermia marker. Regulatory elements were predicted by PROMO. RESULTS The AREG mRNA levels were significantly higher in hypothermic deaths than in most cardiac and non-cardiac deaths. AREG expression indicated hypothermic deaths with nearly 70% sensitivity and specificity. However, high expression levels were also detected in non-ischaemic deaths. The highest concentrations of adrenaline and cortisol were detected in hypothermic deaths, while the highest noradrenaline concentrations associated with atherosclerotic heart disease (AHD) deaths with acute myocardial infarction and trauma deaths. There were no significant correlations between stress hormones and AREG mRNA in hypothermic and non-cardiac deaths, whereas moderate-to-high associations were detected in cardiac deaths. Putative response elements for cortisol and catecholamines were found in AREG. CONCLUSIONS Severe hypothermia activates cardiac AREG expression practicable as a postmortem hypothermia marker. Cortisol and catecholamines may act as transcriptional modifiers of this gene, especially in long-term ischaemic heart disease. However, the exact role of these hormones in upregulation of AREG during hypothermia remains unclear.
Collapse
Affiliation(s)
- Katja Porvari
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Kie Horioka
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Helena Kaija
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Lasse Pakanen
- Research Unit of Biomedicine and Internal Medicine, Department of Forensic Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Forensic Medicine Unit, Finnish Institute for Health and Welfare, Oulu, Finland
| |
Collapse
|
35
|
Yu B, Zeng A, Liu H, Yang Z, Gu C, Luo X, Fu M. LncRNA HOXA11-AS intercepts the POU2F2-mediated downregulation of SLC3A2 in osteoarthritis to suppress ferroptosis. Cell Signal 2024; 124:111399. [PMID: 39251054 DOI: 10.1016/j.cellsig.2024.111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent ailment characterized by the gradual degradation of joints, resulting in discomfort and restricted movement. The recently proposed mechanism of ferroptosis is intricately associated with the initiation and progression of OA. Our study found that the long non-coding RNA HOXA11-AS reduces ferroptosis by increasing the expression of SLC3A2 through the transcription factor POU2F2. MATERIALS AND METHODS HOXA11-AS was identified through lncRNA microarray analysis, and its impact on chondrocytes and extracellular matrix was assessed using real-time quantitative PCR, western blotting, and CCK8 assays. Subsequently, overexpression of HOXA11-AS in the knee joints of mice confirmed its protective efficacy on chondrocyte phenotype in the OA model. The involvement of HOXA11-AS in regulating ferroptosis via SLC3A2 was further validated through RNA sequencing analysis of mouse cartilage and the assessment of malondialdehyde levels and glutathione peroxidase activity. Finally, a combination of RNA sequencing, pull-down assays, mass spectrometry (MS), and chromatin immunoprecipitation (ChIP) techniques was employed to identify POU2F2 as the crucial transcription factor responsible for repressing the expression of SLC3A2, which can be effectively inhibited by HOXA11-AS. RESULTS Our study demonstrated that HOXA11-AS effectively enhanced the metabolic homeostasis of chondrocytes, and alleviated the progression of OA in vitro and in vivo experiments. Furthermore, HOXA11-AS was found to enhance SLC3A2 expression, a key regulator of ferroptosis, by interacting with the transcriptional repressor POU2F2. CONCLUSIONS HOXA11-AS promotes SLC3A2 expression and inhibits chondrocyte ferroptosis, by binding to the transcriptional repressor POU2F2, offering a promising and innovative therapeutic approach for OA.
Collapse
Affiliation(s)
- Baoxi Yu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Anyu Zeng
- Department of Bone and Soft Tissue Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China.
| | - Hailong Liu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Zhijian Yang
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Cheng Gu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xuming Luo
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Ming Fu
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, PR China; Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
36
|
Chatterjee P, Ghosh D, Chowdhury SR, Roy SS. ETS1 drives EGF-induced glycolytic shift and metastasis of epithelial ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119805. [PMID: 39159682 DOI: 10.1016/j.bbamcr.2024.119805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Epithelial ovarian cancer (EOC), a leading cause of gynecological cancer-related morbidity and mortality and the most common type of ovarian cancer (OC), is widely characterized by alterations in the Epidermal Growth Factor (EGF) signaling pathways. The phenomenon of metastasis is largely held accountable for the majority of EOC-associated deaths. Existing literature reports substantiate evidence on the indispensable role of metabolic reprogramming, particularly the phenomenon of the 'Warburg effect' or aerobic glycolysis in priming the cancer cells towards Epithelial to Mesenchymal transition (EMT), subsequently facilitating EMT. Considering the diverse roles of growth factor signaling across different stages of oncogenesis, our prime emphasis was laid on unraveling mechanistic details of EGF-induced 'Warburg effect' and resultant metastasis in EOC cells. Our study puts forth Ets1, an established oncoprotein and key player in OC progression, as the prime metabolic sensor to EGF-induced cues from the tumor microenvironment (TME). EGF treatment has been found to induce Ets1 expression in OC cells predominantly through the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) pathway activation. This subsequently results in pronounced glycolysis, characterized by an enhanced lactate production through transcriptional up-regulation of key determinant genes of the central carbon metabolism namely, hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4). Furthermore, this study reports an unforeseen combinatorial blockage of HK2 and MCT4 as an effective approach to mitigate cellular metastasis in OC. Collectively, our work proposes a novel mechanistic insight into EGF-induced glycolytic bias in OC cells and also sheds light on an effective therapeutic intervention approach exploiting these insights.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
37
|
Shao A, Kissil JL, Fan CM. The L27 domain of MPP7 enhances TAZ-YY1 cooperation to renew muscle stem cells. EMBO Rep 2024; 25:5667-5686. [PMID: 39496834 PMCID: PMC11624273 DOI: 10.1038/s44319-024-00305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Stem cells regenerate differentiated cells to maintain and repair tissues and organs. They also replenish themselves, i.e. self-renew, to support a lifetime of regenerative capacity. Here we study the renewal of skeletal muscle stem cell (MuSC) during regeneration. The transcriptional co-factors TAZ/YAP (via the TEAD transcription factors) regulate cell cycle and growth while the transcription factor YY1 regulates metabolic programs for MuSC activation. We show that MPP7 and AMOT join TAZ and YY1 to regulate a selected number of common genes that harbor TEAD and YY1 binding sites. Among these common genes, Carm1 can direct MuSC renewal. We demonstrate that the L27 domain of MPP7 enhances the interaction as well as the transcriptional activity of TAZ and YY1, while AMOT acts as an intermediate to bridge them together. Furthermore, MPP7, TAZ and YY1 co-occupy the promoters of Carm1 and other common downstream genes. Our results define a renewal program comprised of two progenitor transcriptional programs, in which selected key genes are regulated by protein-protein interactions, dependent on promoter context.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Joseph L Kissil
- Department of Molecular Oncology, The H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
38
|
Wu L, Jiang S, Zhou X, Li W, Ke J, Liu Z, Ren L, Lu Q, Li F, Tang C, Zhu L. Endothelial KDM5B Regulated by Piezo1 Contributes to Disturbed Flow Induced Atherosclerotic Plaque Formation. J Cell Mol Med 2024; 28:e70237. [PMID: 39643939 PMCID: PMC11624123 DOI: 10.1111/jcmm.70237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024] Open
Abstract
Epigenetic modifications play an important role in disturbed flow (d-flow) induced atherosclerotic plaque formation. By analysing a scRNA-seq dataset of the left carotid artery (LCA) under d-flow conditions, we found that Jarid1b (KDM5B) was upregulated primarily in a subcluster of endothelial cells in response to d-flow stimulation. We therefore investigated the mechanism of KDM5B expression and the role of KDM5B in endothelial cell. Intriguingly, activation of Piezo1, a major endothelial mechanosensor, was found to promote KDM5B expression, which was reversed by Piezo1 inhibition in HUVECs. Downstream of Piezo1, ETS1 expression and c-JUN phosphorylation were enhanced by d-flow or Piezo1 activation, leading to an increase in KDM5B expression. Furthermore, knockdown of either KDM5B or Piezo1 was found to prevent d-flow induced H3K4me3 demethylation, which was supported by the pharmacological inhibition of Piezo1 in HUVECs. RNA sequencing on shKdm5b HUVECs implied that KDM5B is associated with endothelial inflammation and atherosclerosis. Using partial carotid ligation surgery on Kdm5bf/f Cdh5cre mice with mAAV-PCSK9D377Y infected, we showed that endothelial KDM5B deficiency reduced atherosclerotic lesions in hypercholesterolemic mice. Our findings indicate that endothelial KDM5B expression induced by d-flow via the Piezo1 pathway promotes atherosclerotic plaque formation, providing targets for the prevention or therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- Lili Wu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Shanshan Jiang
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Xiao Zhou
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Wei Li
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Jiaqi Ke
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Ziting Liu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Lijie Ren
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Qiongyu Lu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Fengchan Li
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
| | - Chaojun Tang
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
- Collaborative Innovation Center of Hematology of Jiangsu ProvinceSoochow UniversityJiangsu ProvinceChina
- Suzhou Key Laboratory of Thrombosis and Vascular BiologySuzhouChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Zhu
- Cyrus Tang Medical InstituteSoochow UniversitySuzhouChina
- Collaborative Innovation Center of Hematology of Jiangsu ProvinceSoochow UniversityJiangsu ProvinceChina
- Suzhou Key Laboratory of Thrombosis and Vascular BiologySuzhouChina
- National Clinical Research Center for Hematologic DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSoochow UniversitySuzhouChina
- Suzhou Ninth Hospital affiliated to Soochow UniversitySoochow UniversitySuzhouChina
| |
Collapse
|
39
|
Nag M, Fogle JE, Pillay S, Del Prete GQ, De Paris K. Tissue-Specific DNA Methylation Changes in CD8 + T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses 2024; 16:1839. [PMID: 39772149 PMCID: PMC11680437 DOI: 10.3390/v16121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Robust CD8+ T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8+ T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription. Hypermethylated gene promoters are associated with transcriptional silencing and, conversely, hypomethylated promoters indicate gene activation. In this study, we evaluated DNA methylation signatures of CD8+ T cells isolated from several different anatomic compartments during pediatric AIDS-virus infection by utilizing the SIVmac239/251 infected infant rhesus macaque model. We performed a stepwise methylation analysis starting with total cellular DNA, to immunomodulatory cytokine promoters, to specific CpG sites within the cytokine promoters in CD8+ T cells isolated from peripheral blood, lymph nodes, and intestinal tissue during the chronic phase of infection. Tissue-specific methylation patterns were determined for transcriptionally active promoters of key immunomodulatory cytokines: interferon gamma (IFNγ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNFα). In this study, we observed tissue-specific differences in CD8+ T cell modulation by DNA methylation in SIV-infected infant macaques, highlighting the importance of evaluating cells from both blood and tissues to obtain a complete picture of CD8+ T cell regulation during pediatric HIV infection.
Collapse
Affiliation(s)
- Mukta Nag
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | | | - Santhoshan Pillay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| |
Collapse
|
40
|
Zeng Q, Liu J, Liu X, Liu N, Wu W, Watson RG, Zou D, Wei Y, Guo R. Association between genetic polymorphisms and gestational diabetes mellitus susceptibility in a Chinese population. Front Endocrinol (Lausanne) 2024; 15:1397423. [PMID: 39659616 PMCID: PMC11628248 DOI: 10.3389/fendo.2024.1397423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Although the association between HHEX, IGF2BP2, and FTO polymorphisms and the risk of GDM has been investigated in several studies, the findings have been inconsistent across different populations. The study aimed to investigate the association between genetic polymorphisms and GDM risk in a Chinese population. Methods 502 control volunteers and 500 GDM patients were enrolled. IGF2BP2 rs11705701 and rs4402960, FTO rs9939609, and HHEX rs1111875 and rs5015480 were all genotyped using the SNPscan™ genotyping assay. The independent sample t-test, logistic regression, and chi-square test were used to assess the variations in genotype and allele and their relationships with the risk of GDM. The blood glucose level, gestational week of delivery, and newborn weight were compared using a one-way ANOVA. Results After adjusting for confounding factors, the results show that the rs1111875 heterozygous (OR=1.370; 95% CI: 1.040-1.805; P = 0.025) and overdominant (OR=1.373; 95% CI: 1.049-1.796; P = 0. 021) models are significantly associated with an increased risk of GDM, especially for the age ≥ 30 years group: heterozygote (OR=1.646; 95% CI: 1.118-2.423; P=0.012) and overdominant (OR=1.553; 95% CI: 1.064-2.266; P = 0.022) models. In the age ≥ 30 years, the rs5015480 overdominant model (OR=1.595; 95% CI: 1.034-2.459; P = 0.035) and the rs9939609 heterozygote model (OR=1.609; 95% CI: 1.016-2.550; P=0.043), allele (OR=1. 504; 95% CI: 1.006-2.248; P = 0.047), dominant model (OR=1.604; 95% CI: 1.026-2.505; P = 0.038), and overdominant model (OR=1.593; 95% CI: 1.007-2.520; P = 0.047) were associated with a significantly increased risk of GDM; Additionally, people with the TC genotype of rs1111875 had a substantially higher 1-hour blood glucose level than TT genotype (P < 0.05). The results of the meta-analysis showed that the A allele of rs11705701 was associated with an increased risk of diabetes mellitus (P < 0.05). Conclusion The study indicates that the TC genotype of rs1111875 is linked to a higher risk of GDM, particularly in women aged 30 years or older. Additionally, rs5015480 and rs9939609 were significantly associated with GDM in the same age group. These SNPs may therefore be more closely linked to GDM in older mothers.
Collapse
Affiliation(s)
- Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Jia Liu
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Xin Liu
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Na Liu
- Department of Pediatrics, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Weibiao Wu
- Medical Genetics Laboratory, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Ray Gyan Watson
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Dehua Zou
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, Jinan University, Guangzhou, Guangdong, China
| | - Yue Wei
- Department of Ultrasound, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, Guangdong, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| |
Collapse
|
41
|
Caiado H, Cancela ML, Conceição N. Transcriptional Regulation of the Human MGP Promoter: Identification of Downstream Repressors. Int J Mol Sci 2024; 25:12597. [PMID: 39684309 DOI: 10.3390/ijms252312597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. MGP has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers. Using bioinformatic approaches, transcription factor binding sites (TFBSs) containing CpG dinucleotides were identified in the MGP promoter, including those for YY1, GATA1, and C/EBPα. We carried out functional tests using transient transfections with a luciferase reporter assay, primarily for the transcription factors YY1, GATA1, C/EBPα, and RUNX2. By co-transfection analysis, we found that YY1, GATA1, and C/EBPα repressed the MGP promoter. Furthermore, the co-transfection with RUNX2 activated the MGP promoter. In addition, MGP expression is negatively or positively correlated with the studied TFs' expression levels in several cancer types. This study provides novel insights into MGP regulation by demonstrating that YY1, GATA1, and C/EBPα are negative regulators of the MGP promoter, and DNA methylation may influence their activity. The dysregulation of these mechanisms in cancer should be further elucidated.
Collapse
Affiliation(s)
- Helena Caiado
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Natércia Conceição
- Center of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
42
|
Asgari D, Nayduch D, Meisel RP. Defensins of the Stable Fly (Stomoxys calcitrans) have Developmental-Specific Regulation and Evolve at Different Rates. Integr Comp Biol 2024; 64:1300-1308. [PMID: 38637295 DOI: 10.1093/icb/icae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Organisms produce antimicrobial peptides (AMPs) either in response to infection (induced) or continuously (constitutively) to combat microbes encountered during normal trophic activities and/or through pathogenic infections. The expression of AMPs is tightly regulated, often with specificity to particular tissues or developmental stages. As a result, AMPs face varying selective pressures based on the microbes the organism's tissue or developmental stage encounters. Here, we analyzed the evolution and developmental-specific expression of Defensins, which are ancient AMPs in insects, in the stable fly (Stomoxys calcitrans). Stable fly larvae inhibit microbe-rich environments, whereas adult flies, as blood-feeders, experience comparatively fewer encounters with diverse microbial communities. Using existing RNA-seq datasets, we identified six Defensins that were only expressed in larvae (larval Defensins) and five that were not expressed in larvae (non-larval Defensins). Each of the non-larval Defensins was expressed in at least one adult tissue sample. Half of the larval Defensins were induced by mating or feeding in adults, and all three of the induced Defensins were located downstream of canonical binding sites for an Imd transcription factor involved in the highly conserved NF-κB signaling that regulates induction of AMPs. The larval and non-larval Defensins were located in distinct genomic regions, and the amino acid sequences of the larval Defensins formed a monophyletic clade. There were more amino acid substitutions across non-larval Defensins, with multiple genes losing a highly conserved furin cleavage site thought to be required for the removal of the amino terminus from the mature Defensin domain. However, larval Defensins had a higher proportion of radical amino acid substitutions, altering amino acid size and polarity. Our results reveal insights into the developmental stage-specific regulation of AMPs, and they suggest different regulatory regimes impose unique selection pressures on AMPs, possibly as a result of variation in exposure to microbial communities across development.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
43
|
Li Y, Zheng R, Jiang L, Yan C, Liu R, Chen L, Jin W, Luo Y, Zhang X, Tang J, Dai Z, Jiang W. A noncoding variant confers pancreatic differentiation defect and contributes to diabetes susceptibility by recruiting RXRA. Nat Commun 2024; 15:9771. [PMID: 39532884 PMCID: PMC11557932 DOI: 10.1038/s41467-024-54151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Human genetics analysis has identified many noncoding SNPs associated with diabetic traits, but whether and how these variants contribute to diabetes is largely unknown. Here, we focus on a noncoding variant, rs6048205, and report that the risk-G variant impairs the generation of PDX1+/NKX6-1+ pancreatic progenitor cells and further results in the abnormal decrease of functional β cells during pancreatic differentiation. Mechanistically, this risk-G variant greatly enhances RXRA binding and over-activates FOXA2 transcription, specifically in the pancreatic progenitor stage, which in turn represses NKX6-1 expression. Consistently, inducible FOXA2 overexpression could phenocopy the differentiation defect. More importantly, mice carrying risk-G exhibit abnormal pancreatic islet architecture and are more sensitive to streptozotocin or a high-fat diet to develop into diabetes eventually. This study not only identifies a causal noncoding variant in diabetes susceptibility but also dissects the underlying gain-of-function mechanism by recruiting stage-specific factors.
Collapse
Affiliation(s)
- Yinglei Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ran Liu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Luyi Chen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Luo
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Xiafei Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
44
|
Xia Y, Xie Y, Zhang H, Liu L. STAT4 gene polymorphisms in human diseases. Front Immunol 2024; 15:1479418. [PMID: 39575235 PMCID: PMC11578735 DOI: 10.3389/fimmu.2024.1479418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family, which is a group of transcription factors that regulate cytokine signaling. Genetic polymorphisms in STAT4 strongly influence immune responses and disease outcomes, especially in cancer and autoimmune diseases. Several studies have indicated that certain STAT4 gene variants are associated with alterations in STAT4 expression and/or activity and that there is a close relationship between STAT4 polymorphisms and drug efficacy. However, the underlying mechanisms are complex, and the roles of these polymorphisms in disease acquisition, progression, and severity are of widespread concern. Therefore, we provide an overview of the clinical significance of polymorphisms in STAT4 and the mechanisms by which these STAT4 variants are involved in various diseases.
Collapse
Affiliation(s)
- Yan Xia
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| | - Yanni Xie
- Department of Endocrinology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| | - Hao Zhang
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lunzhi Liu
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| |
Collapse
|
45
|
Chen Z, Vallega KA, Wang D, Quan Z, Fan S, Wang Q, Leal T, Ramalingam SS, Sun SY. Inhibition of hTERT/telomerase/telomere mediates therapeutic efficacy of osimertinib in EGFR mutant lung cancer. J Exp Med 2024; 221:e20240435. [PMID: 39297884 PMCID: PMC11413468 DOI: 10.1084/jem.20240435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
The inevitable acquired resistance to osimertinib (AZD9291), an FDA-approved third-generation EGFR tyrosine kinase inhibitor (EGFR-TKI) for the treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring EGFR activating or T790M resistant mutations, limits its long-term clinical benefit. Telomere maintenance via telomerase reactivation is linked to uncontrolled cell growth and is a cancer hallmark and an attractive cancer therapeutic target. Our effort toward understanding the action mechanisms, including resistance mechanisms, of osimertinib has led to the identification of a novel and critical role in maintaining c-Myc-dependent downregulation of hTERT, a catalytic subunit of telomerase, and subsequent inhibition of telomerase/telomere and induction of telomere dysfunction in mediating therapeutic efficacy of osimertinib. Consequently, osimertinib combined with the telomere inhibitor, 6-Thio-dG, which is currently tested in a phase II trial, effectively inhibited the growth of osimertinib-resistant tumors, regressed EGFRm NSCLC patient-derived xenografts, and delayed the emergence of acquired resistance to osimertinib, warranting clinical validation of this strategy to manage osimertinib acquired resistance.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Karin A. Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Zihan Quan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Ticiana Leal
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
46
|
Main LR, Song YE, Lynn A, Laux RA, Miskimen KL, Osterman MD, Cuccaro ML, Ogrocki PK, Lerner AJ, Vance JM, Fuzzell D, Fuzzell SL, Hochstetler SD, Dorfsman DA, Caywood LJ, Prough MB, Adams LD, Clouse JE, Herington SD, Scott WK, Pericak-Vance MA, Haines JL. Genetic analysis of cognitive preservation in the midwestern Amish reveals a novel locus on chromosome 2. Alzheimers Dement 2024; 20:7453-7464. [PMID: 39376159 PMCID: PMC11567819 DOI: 10.1002/alz.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age. METHODS Genome-wide association and linkage analyses were performed on 946 examined and sampled Amish individuals, aged 76-95, who were either cognitively unimpaired (CU) or impaired (CI). RESULTS A total of 12 single nucleotide polymorphisms (SNPs) demonstrated suggestive association (P ≤ 5 × 10-4) with cognitive preservation. Genetic linkage analyses identified > 100 significant (logarithm of the odds [LOD] ≥ 3.3) SNPs, some which overlapped with the association results. Only one locus on chromosome 2 retained significance across multiple analyses. DISCUSSION A novel significant result for cognitive preservation on chromosome 2 includes the genes LRRTM4 and CTNNA2. Additionally, the lead SNP, rs1402906, impacts the POU3F2 transcription factor binding affinity, which regulates LRRTM4 and CTNNA2. HIGHLIGHTS GWAS and linkage identified over 100 loci associated with cognitive preservation. One locus on Chromosome 2 retained significance over multiple analyses. Predicted TFBSs near rs1402906 regulate genes associated with neurocognition.
Collapse
Affiliation(s)
- Leighanne R Main
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yeunjoo E Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Audrey Lynn
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Renee A Laux
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristy L Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael D Osterman
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael L Cuccaro
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Paula K Ogrocki
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alan J Lerner
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jeffery M Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Denise Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sarada L Fuzzell
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sherri D Hochstetler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel A Dorfsman
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J Caywood
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael B Prough
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Larry D Adams
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jason E Clouse
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sharlene D Herington
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - William K Scott
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Margaret A Pericak-Vance
- John P Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida, USA
- Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Departments of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Institute of Computational Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
47
|
Deng G, Zhang Y, Song J, Ma X, Luo Y, Fei X, Jiang J, Ru Y, Tai Z, Zhu Q, Ma X, Kuai L, Li B, Zhang Y, Luo Y. Liquiritin exerts psoriasis therapy and prevention by regulating the YY1/RBP3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155951. [PMID: 39182383 DOI: 10.1016/j.phymed.2024.155951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Psoriasis (PSO) poses a global health threat. The current research challenge in PSO is relapse. Liquiritin (LIQ), a major active compound from Glycyrrhiza inflata Batalin, has multiple pharmacological properties, including anti-inflammatory and anti-proliferative. Nonetheless, the precise mechanisms underlying LIQ's therapeutic actions in PSO and prevention abilities remain elusive. PURPOSE The present study aimed to delve into the potential to treat and prevent PSO and the mechanism of LIQ. METHODS The anti-inflammatory and anti-proliferative effects of LIQ were studied in vitro with the HaCaT cell line. Then, Transcriptional analysis and bioinformatic analysis were used to determine the internal associations of the target set. Subsequently, functional experiment, luciferase report assay, ChIP-PCR, and immunohistochemical validation of clinical samples were performed to investigate the mechanism of LIQ. Finally, the anti-psoriatic effects and prevention abilities of LIQ were verified in vivo with imiquimod (IMQ)-induced PSO-like mouse models. RESULTS Here, we identified differentially expressed genes in LIQ-stimulated HaCaT cells and Retinol-Binding Protein 3 (RBP3) as the core target, whereas YY1 was a predicted upstream transcription factor of RBP3. The YY1/RBP3 axis was obviously altered after administering LIQ at optimal doses of 20 μM in vitro and 100 µg/ml in vivo. LIQ can significantly inhibit the progression of PSO in vivo. Notably, LIQ also prevented the relapse of psoriatic lesions induced by the second round of low-dose IMQ. Mechanistically, we observed that LIQ could increase the promotion of YY1 for RBP3 by enhancing the binding affinity between them. CONCLUSION These findings revealed that the YY1/RBP3 axis is a potential psoriatic target, and LIQ is a promising and innovative therapeutic candidate for the treatment and prevention of PSO.
Collapse
Affiliation(s)
- Guoshu Deng
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yulin Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jiankun Song
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoxuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xiaoya Fei
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yi Ru
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ying Zhang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
48
|
MacKenzie ACE, Sams MP, Lin J, Batista CR, Lim M, Riarh CK, DeKoter RP. Negative regulation of activation-induced cytidine deaminase gene transcription in developing B cells by a PU.1-interacting intronic region. Mol Immunol 2024; 175:103-111. [PMID: 39332244 DOI: 10.1016/j.molimm.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Activation-induced cytidine deaminase (AID, encoded by Aicda) plays a key role in somatic hypermutation and class switch recombination in germinal center B cells. However, off-target effects of AID are implicated in human leukemia and lymphoma. A mouse model of precursor B cell acute lymphoblastic leukemia driven by deletion of the related transcription factors PU.1 and Spi-B revealed C->T transition mutations compatible with being induced by AID. Therefore, we hypothesized that PU.1 negatively regulates Aicda during B cell development. Aicda mRNA transcript levels were increased in leukemia cells and bone marrow pre-B cells lacking PU.1 and/or Spi-B, relative to wild type cells. Using chromatin immunoprecipitation, PU.1 was found to interact with a negative regulatory region (R2-1) within the first intron of Aicda. CRISPR-Cas9-induced mutagenesis of R2-1 in cultured pre-B cells resulted in upregulation of Aicda in response to lipopolysaccharide stimulation. Mutation of the PU.1 interaction site and neighboring sequences resulted in reduced repressive ability of R2-1 in transient transfection analysis followed by luciferase assays. These results show that a PU.1-interacting intronic region negatively regulates Aicda transcription in developing B cells.
Collapse
Affiliation(s)
- Allanna C E MacKenzie
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Mia P Sams
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jane Lin
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Carolina Reyes Batista
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Michelle Lim
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Chanpreet K Riarh
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada
| | - Rodney P DeKoter
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
49
|
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT, Fan J. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res 2024; 11:71. [PMID: 39465383 PMCID: PMC11514876 DOI: 10.1186/s40779-024-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Qing-De Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yue-Hua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
50
|
Ibrahim MK, Liu CD, Zhang L, Yu X, Kim ES, Liu Z, Jo S, Liu Y, Huang Y, Gao SJ, Guo H. The loss of hepatitis B virus receptor NTCP/SLC10A1 in human liver cancer cells is due to epigenetic silencing. J Virol 2024; 98:e0118724. [PMID: 39297647 PMCID: PMC11495020 DOI: 10.1128/jvi.01187-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Human Na+-taurocholate cotransporting polypeptide (hNTCP) is predominantly expressed in hepatocytes, maintaining bile salt homeostasis and serving as a receptor for hepatitis B virus (HBV). hNTCP expression is downregulated during hepatocellular carcinoma (HCC) development. In this study, we investigated the molecular mechanisms underlying hNTCP dysregulation using HCC tissues and cell lines, and primary human hepatocytes (PHHs). Firstly, we observed a significant reduction of hNTCP in HCC tumors compared to adjacent and normal tissues. Additionally, hNTCP mRNA levels were markedly lower in HepG2 cells compared to PHHs, which was corroborated at the protein level by immunoblotting. Sanger sequencing confirmed identical sequences for hNTCP promoter, exons, and mRNA coding sequences between PHH and HepG2 cells, indicating no mutations or splicing alterations. We then assessed the epigenetic status of hNTCP. The hNTCP promoter, with low CG content, showed no significant methylation differences between PHH and HepG2 cells. Chromatin immunoprecipitation coupled with qPCR (ChIP-qPCR) revealed a loss of activating histone posttranslational modification (PTM) H3K27ac near the hNTCP transcription start site (TSS) in HepG2 cells. This loss was also confirmed in HCC tumor cells compared to adjacent and background cells. Treating HepG2 cells with histone deacetylase inhibitors enhanced H3K27ac accumulation and glucocorticoid receptor (GR) binding at the hNTCP TSS, significantly increasing hNTCP mRNA and protein levels, and rendering the cells susceptible to HBV infection. In summary, histone PTM-related epigenetic mechanisms play a critical role in hNTCP dysregulation in liver cancer cells, providing insights into hepatocarcinogenesis and its impact on chronic HBV infection. IMPORTANCE HBV is a hepatotropic virus that infects human hepatocytes expressing the viral receptor hNTCP. Without effective antiviral therapy, chronic HBV infection poses a high risk of liver cancer. However, most liver cancer cell lines, including HepG2 and Huh7, do not support HBV infection due to the absence of hNTCP expression, and the mechanism underlying this defect remains unclear. This study demonstrates a significant reduction of hNTCP in hepatocellular carcinoma samples and HepG2 cells compared to normal liver tissues and primary human hepatocytes. Despite identical hNTCP genetic sequences, epigenetic analyses revealed a loss of the activating histone modification H3K27ac near the hNTCP transcription start site in cancer cells. Treatment with histone deacetylase inhibitors restored H3K27ac levels, reactivated hNTCP expression, and rendered HepG2 cells susceptible to HBV infection. These findings highlight the role of epigenetic modulation in hNTCP dysregulation, offering insights into hepatocarcinogenesis and its implications for chronic HBV infection.
Collapse
MESH Headings
- Humans
- Organic Anion Transporters, Sodium-Dependent/metabolism
- Organic Anion Transporters, Sodium-Dependent/genetics
- Symporters/genetics
- Symporters/metabolism
- Hepatitis B virus/genetics
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Hep G2 Cells
- Liver Neoplasms/virology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Epigenesis, Genetic
- Promoter Regions, Genetic
- Hepatocytes/virology
- Hepatocytes/metabolism
- DNA Methylation
- Histones/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Receptors, Virus/metabolism
- Receptors, Virus/genetics
- Hepatitis B/virology
- Hepatitis B/genetics
- Hepatitis B/metabolism
Collapse
Affiliation(s)
- Marwa K. Ibrahim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cheng-Der Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Liyong Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaoyang Yu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elena S. Kim
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhentao Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Sumin Jo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
| | - Yuanjie Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|