1
|
Sohrabi R, Mousavi SN, Shapouri R, Nasiri Z, Heidarzadeh S, Shokri R. The gut dysbiosis of mothers with gestational diabetes and its correlation with diet. Sci Rep 2025; 15:18566. [PMID: 40425685 PMCID: PMC12117083 DOI: 10.1038/s41598-025-03767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025] Open
Abstract
The gut dysbiosis has been observed in gestational diabetes mellitus (GDM). However, changes in bacterial population are different among various countries due to genetic, environmental, and dietary differences. We compared the gut dominant phylum and some genus in GDM versus normo-glycemic pregnant in Iranian population, considering dietary intake. In this case-control study, 50 women diagnosed with GDM and 50 healthy pregnant, aged 18-35 yrs, during spring and summer, were participated. GDM was diagnosed based on the International Association of Diabetes and Pregnancy Groups criteria. The bacterial populations were determined based on 16SrRNA gene expression. Actinomycetota (p = 0.02), and Bifidobacterium spp. (p = 0.001) was significantly higher in the gut of healthy mothers than the GDM. However, bacteroides was significantly higher in the gut of GDM mothers than the healthies (p = 0.02). Daily calorie intake showed a negative correlation with population of Bacteroidota (p = 0.04) and Actinomycetota (p = 0.009), but dietary carbohydrate and fat showed a positive correlation. Increase in dietary intake of mono- and poly-unsaturated fatty acids (MUFAs and PUFAs) was associated with higher Bacteroidota in the gut (p = 0.02 and p = 0.04). However, dietary cholesterol showed a negative correlation with population of Bacteroidota and Bifidobacterium spp. (p = 0.003 and p = 0.02). GDM was correlated with the gut dysbiosis. Daily calorie and cholesterol intake was positively associated with dysbiosis. However total intake of carbohydrates, MUFAs and PUFAs showed a protective effect.
Collapse
Affiliation(s)
- Roya Sohrabi
- Department of Microbiology, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Reza Shapouri
- Department of Microbiology, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
- Biology Research Center, Islamic Azad University, Zanjan Branch, Zanjan, Iran.
| | - Zahra Nasiri
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Shokri
- Department of Microbiology, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| |
Collapse
|
2
|
Kong Y, Yang H, Nie R, Zhang X, Zuo F, Zhang H, Nian X. Obesity: pathophysiology and therapeutic interventions. MOLECULAR BIOMEDICINE 2025; 6:25. [PMID: 40278960 PMCID: PMC12031720 DOI: 10.1186/s43556-025-00264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic metabolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite advances in nutritional science and public health initiatives, sustained weight management success rates and prevention in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environmental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major complications-including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver disease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, malignancies, and psychological comorbidities-and critically evaluate current anti-obesity strategies. Particular emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for developing safe, accessible, and effective obesity treatments.
Collapse
Affiliation(s)
- Yue Kong
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Rong Nie
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuxiang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fan Zuo
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Xin Nian
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
3
|
Petitclerc I, Perron J, Dugas C, Mayer T, Raymond F, Di Marzo V, Veilleux A, Robitaille J. Association between gestational diabetes mellitus, maternal health and diet, and gut microbiota in mother-infant dyads. BMC Pregnancy Childbirth 2025; 25:486. [PMID: 40275186 PMCID: PMC12023395 DOI: 10.1186/s12884-025-07584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) increasingly affects women and predisposes both mothers and their infants to short- and long-term health consequences. Emerging research links GDM to maternal gut microbiota dysbiosis. However, the impact of GDM on the infant gut microbiota remains unclear. This cross-sectional study aims to explore potential associations between GDM and the gut microbiota in mothers and their infants, as well as correlations between maternal diet, cardiometabolic profile, and gut microbiota composition. METHODS Gut microbiota taxonomic composition was characterized by 16S rRNA gene sequencing on fecal samples collected at 2 months postpartum from 28 mothers, including 17 with (GDM+) and 11 without (GDM-) GDM, as well as 30 infants, 17 GDM + and 13 GDM-. Variations in overall composition and specific taxa between GDM + and GDM- were assessed. Correlations between maternal cardiometabolic profile, dietary intakes, and taxa were performed. RESULTS GDM was associated with the overall composition of gut microbiota between GDM + and GDM- in the maternal group, but not in infants. No statistically significant difference in alpha diversity between groups was found in either mothers or infants. However, 14 taxa showed significantly different abundance between GDM + and GDM- mothers, and 4 taxa differed in infants. Specific taxa at the family rank were correlated with maternal dietary and cardiometabolic variables in both mothers and infants. CONCLUSIONS GDM exposition was associated with gut microbiota composition in both mothers and infants at two months postpartum. This study enhances our understanding of how maternal health could be linked with the gut microbiota of mothers and their infants. TRIAL REGISTRATION NCT02872402 (2016-08-04, https://clinicaltrials.gov/study/NCT02872402?term=NCT02872402&rank=1 ) and NCT04263675 (2020-02-07, https://clinicaltrials.gov/study/NCT04263675?term=NCT04263675&rank=1 ).
Collapse
Affiliation(s)
- Isabelle Petitclerc
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Perron
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Camille Dugas
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Thomas Mayer
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Frédéric Raymond
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vincenzo Di Marzo
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Université Laval, Quebec City, QC, G1V 4G5, Canada
| | - Alain Veilleux
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada
- Canada Research Excellence Chair in the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Julie Robitaille
- Centre de recherche Nutrition, Santé et Société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, G1V 0A6, Canada.
- School of Nutrition, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
4
|
Cao J, Wang S, Ding R, Liu Y, Yuan B. Comparative analyses of the gut microbiome of two sympatric rodent species, Myodes rufocanus and Apodemus peninsulae, in northeast China based on metagenome sequencing. PeerJ 2025; 13:e19260. [PMID: 40226542 PMCID: PMC11988107 DOI: 10.7717/peerj.19260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
The gut microbiota is integral to an animal's physiology, influencing nutritional metabolism, immune function, and environmental adaptation. Despite the significance of gut microbiota in wild rodents, the Korean field mouse (Apodemus peninsulae) and the gray red-backed vole (Myodes rufocanus) remain understudied. To address this, a metagenomic sequencing analysis of the gut microbiome of these sympatric rodents in northeast China's temperate forests was conducted. Intestinal contents were collected from A. peninsulae and M. rufocanus within the Mudanfeng National Nature Reserve. High-throughput sequencing elucidated the gut microbiome's composition, diversity, and functional pathways. Firmicutes, Bacteroidetes, and Proteobacteria were identified as the dominant phyla, with M. rufocanus showing greater microbiome diversity. Key findings indicated distinct gut bacterial communities between the species, with M. rufocanus having a higher abundance of Proteobacteria. The gut microbiota of A. peninsulae and M. rufocanus differed marginally in functional profiles, specifically in the breakdown of complex carbohydrates, which might reflect their distinct food preferences albeit both being herbivores with a substantial dietary overlap. The investigation further elucidated gut microbiota's contributions to energy metabolism and environmental adaptation mechanisms. This study aligns with information on rodent gut microbiota in literature and highlights the two understudied rodent species, providing comparative data for future studies investigating the role of gut microbiota in wildlife health and ecosystem functioning.
Collapse
Affiliation(s)
- Jing Cao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Shengze Wang
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| | - Ruobing Ding
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Yijia Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan, China
| | - Baodong Yuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
5
|
Schenkelaars N, Wekema L, Faas MM, Steegers-Theunissen RP, Schoenmakers S. Protocol of the PROMOTE study: characterization of the microbiome, the immune response, and one-carbon metabolism in preconceptional and pregnant women with and without obesity (an observational subcohort of the Rotterdam Periconception cohort). PLoS One 2025; 20:e0319618. [PMID: 40173397 PMCID: PMC11964453 DOI: 10.1371/journal.pone.0319618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
INTRODUCTION Preconceptional and maternal obesity are well-known risk factors for pregnancy and fetal complications including gestational diabetes, hypertensive disorders, and macrosomia. Maternal obesity is associated with offspring obesity and increased healthcare costs. To disrupt the cycle of obesity, we aim to investigate the impact of the composition of the maternal microbiota (bacteria and viruses) throughout preconception and pregnancy and the associations with the immune responses and one-carbon metabolism (1-CM) as an underlying mechanism in the pathophysiology of increased adverse pregnancy outcomes in maternal obesity. METHODS AND ANALYSIS The PROMOTE study is a subcohort of the Rotterdam Periconceptional Cohort, a hospital-based observational cohort study. We will include 70 women per BMI group: ≥ 30 kg/m2 or 18.5-25 kg/m2, at different time points in each group: 10 preconceptional, 50 in the first trimester (with longitudinal follow-up during pregnancy, delivery and postpartum) and 10 in the third trimester of pregnancy. Which makes a total of 140 inclusions. Vaginal and rectal bacteriome, virome, and blood samples are collected. In the third trimester inclusions, only faecal samples are collected. Microbiota samples will be analysed using 16S rRNA sequencing. Bacteriome and virome profiles are compared between the BMI subgroups, associations with general immune responses and 1-CM markers will be shown. TRIAL REGISTRATION ClinicalTrials.gov (NCT05754645).
Collapse
Affiliation(s)
- Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Vanderpeet CL, Dorey ES, Neal ES, Mullins T, McIntyre DH, Callaway LK, Barrett HL, Dekker Nitert M, Cuffe JSM. Dietary Fibre Modulates Gut Microbiota in Late Pregnancy Without Altering SCFA Levels, and Propionate Treatement Has No Effect on Placental Explant Function. Nutrients 2025; 17:1234. [PMID: 40218992 PMCID: PMC11990268 DOI: 10.3390/nu17071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Dietary fibre promotes health, partly by mediating gut microbiota and short-chain fatty acid (SCFA) production. Pregnancy alters the relationship between dietary composition and the gut microbiota, and it is unclear if fibre intake during late pregnancy alters the abundance of SCFA bacteria and circulating SFCA concentrations. The aim of this study was to determine the impact of dietary fibre on faecal microbiome composition and circulating concentrations of SCFA acetate, butyrate, and propionate in late pregnancy. We also aimed to assess the impact of propionate treatment on placental function using cultured placental explants. Methods: 16S rRNA gene amplicon sequencing was performed on faecal DNA collected at 28 weeks of gestation from participants enrolled in the SPRING cohort study consuming a low or adequate fibre diet. Circualting SCFA were assessed. Placental explants were treated with sodium propionate. Results: Fibre intake did not impact microbial diversity or richness but did impact the abundance of specific bacterial genera. Pregnant participants with low-fibre diets had a greater abundance of Bacteroides and Sutterella, and dietary fibre intake (mg/day) negatively correlated with genera, including Sutterella, Bilophila, and Bacteroides. SCFA concentrations did not differ between groups but circulating concentrations of acetate, propionate, and butyrate did correlate with the abundance of key bacterial genera. Propionate treatment of placental explants did not alter mRNA expression of fatty acid receptors, antioxidants, or markers of apoptosis, nor did it impact pAMPK levels. Conclusions: This study demonstrates that the impact of dietary fibre on SCFA concentrations in pregnant women is modest, although this relationship may be difficult to discern given that other dietary factors differed between groups. Furthermore, this study demonstrates that propionate does not impact key pathways in placental tissue, suggesting that previous associations between this SCFA and placental dysfunction may be due to other maternal factors.
Collapse
Affiliation(s)
- Chelsea L. Vanderpeet
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - Emily S. Dorey
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Elliott S. Neal
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - Thomas Mullins
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| | - David H. McIntyre
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
| | - Leonie K. Callaway
- Department of Obstetric Medicine, Royal Brisbane and Women’s Hospital, Herston, QLD 4059, Australia;
| | - Helen L. Barrett
- Mater Research Institute, The University of Queensland, South Brisbane, QLD 4101, Australia; (E.S.D.); (D.H.M.); (H.L.B.)
- Mater Hospital Brisbane, South Brisbane, QLD 4101, Australia
- Royal Hospital for Women, Randwick, NSW 2031, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW 2033, Australia
| | - Marloes Dekker Nitert
- School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.V.); (E.S.N.); (T.M.)
| |
Collapse
|
7
|
Gao Y, Liu J, Liu X, Hao Y, Pan Z, He X, Liu B, Duan X. Persimmon leaf extract ameliorates hyperlipidemia by modulating lipid genes expression and gut microbiota in high-fat-diet-fed mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40165393 DOI: 10.1002/jsfa.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/18/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Hyperlipidemia is characterized by abnormally elevated blood lipids. Persimmon leaf has multiple pharmacological activities and is valued for its lipid-lowering effect. However, few reports have revealed the hypolipidemic mechanism of persimmon leaf. In this study, compositions from the ethanol extract of persimmon leaf (PLE) were identified by high-resolution liquid chromatography-electrospray ionization-tandem mass spectrometry and high-performance liquid chromatography. The mechanism of PLE against hyperlipidemia induced by high-fat diet in mice was then explored based on lipid gene expression and gut microbiota. RESULTS The study demonstrated that 27 compositions from PLE were identified, of which the primary hypolipidemic compositions were astragalin, hyperoside, catechin, chlorogenic acid, and quercetin. Supplementation of PLE could reduce serum lipids, liver injury, lipid accumulation, and inflammation. The analysis of lipid gene expression indicated that PLE downregulated the expression of lipid synthesis genes FAS (fatty acid synthase; P < 0.001), ACC (acetyl coenzyme A carboxylase; P < 0.01), SCD1 (stearyl coenzyme A dehydrogenase 1; P < 0.05) and SREBP-1c (sterol regulatory element binding protein 1c; P < 0.01), while upregulating the expression of lipid degradation genes PPAR-α (peroxide-activated receptor alpha; P < 0.05) and CYP7A1 (cholesterol 7α-hydroxylase; P < 0.05). Simultaneously, PLE greatly recovered the intestinal short-chain fatty acid content, especially butyric acid (P < 0.05), valeric acid (P < 0.01) and isovaleric acid (P < 0.05). Furthermore, 16S rRNA analysis showed that PLE decreased the Firmicutes/Bacteroidetes ratio and increased the abundance of Lactobacillus, Turicibacter, and Dubosiella microbiota, which maintained the homeostasis of intestinal flora. CONCLUSION PLE could prevent lipid metabolism disorders and modulate gut microbiota homeostasis in hyperlipidemic rats. This study provides insights into PLE as a natural active substance for the prevention of hyperlipidemia. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanyuan Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Jing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Xiaojuan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Yuexin Hao
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Zhaofeng Pan
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Xiaohua He
- College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, People's Republic of China
- Fuping Modern Agriculture Comprehensive Demonstration Station, Northwest A&F University, Fuping, People's Republic of China
| |
Collapse
|
8
|
El-Baz AM, El-Mahmoudy AA, Saber S, ElRakaiby MT. The coadministration of Lactobacillus probiotic augments the antitumor effect of telmisartan in rats. AMB Express 2025; 15:38. [PMID: 40044961 PMCID: PMC11883082 DOI: 10.1186/s13568-025-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent disease with a high mortality rate and is significantly affected by microbial dysbiosis. Recent research suggests that modulation of the gut microbiome can have therapeutic benefits and that Angiotensin-II Type 1 Receptor (AT1R) can stimulate cell growth, angiogenesis, and resistance to apoptosis in various cancers. In this study, the adjunctive administration of Lactobacillus spp. and telmisartan, an AT1R blocker, was explored in the treatment of CRC. The effect of telmisartan and a mixture of probiotic species, Lactobacillus delbrueckii and Lactobacillus fermentum, was assessed on key biomarkers and selected gut microbiota taxa in 1,2-dimethylhydrazine-induced CRC in rats. Angiogenesis, inflammation, and apoptosis were assessed by measuring vascular endothelial growth factor (VEGF), carcinoembryonic antigen (CEA), Interleukin 6 (IL-6), and Annexin V levels, respectively. The relative abundance of selected gut microbial taxa, including Bacteroides spp., Clostridium spp., Clostridium coccoides, Ruminococcus spp., and Lactobacillus spp. was analyzed to determine the change in the microbial composition in the different experimental groups of the animal model. This study demonstrated that the unique combination therapy using a Lactobacillus mixture and telmisartan effectively reduced VEGF and IL-6 levels, indicating decreased angiogenesis and inflammation. Lactobacillus spp. co-administration with telmisartan boosted programmed cell death, reversed dysbiosis, improved histopathological outcomes, and reduced CEA levels. These findings offer a new perspective on the role of Lactobacillus spp. and telmisartan in CRC treatment. Further research on their adjunctive use and therapeutic potential are needed to enhance clinical efficacy.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Amany A El-Mahmoudy
- Dakahliya Health Directorate, Ministry of Health and Population, Dakahliya, 35931, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt
| | - Marwa T ElRakaiby
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
9
|
El-Baz AM, El-Mahmoudy AA, Saber S, ElRakaiby MT. The coadministration of Lactobacillus probiotic augments the antitumor effect of telmisartan in rats. AMB Express 2025; 15:38. [DOI: https:/doi.org/10.1186/s13568-025-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/07/2025] [Indexed: 05/14/2025] Open
Abstract
Abstract
Colorectal cancer (CRC) is a prevalent disease with a high mortality rate and is significantly affected by microbial dysbiosis. Recent research suggests that modulation of the gut microbiome can have therapeutic benefits and that Angiotensin-II Type 1 Receptor (AT1R) can stimulate cell growth, angiogenesis, and resistance to apoptosis in various cancers. In this study, the adjunctive administration of Lactobacillus spp. and telmisartan, an AT1R blocker, was explored in the treatment of CRC. The effect of telmisartan and a mixture of probiotic species, Lactobacillus delbrueckii and Lactobacillus fermentum, was assessed on key biomarkers and selected gut microbiota taxa in 1,2-dimethylhydrazine-induced CRC in rats. Angiogenesis, inflammation, and apoptosis were assessed by measuring vascular endothelial growth factor (VEGF), carcinoembryonic antigen (CEA), Interleukin 6 (IL-6), and Annexin V levels, respectively. The relative abundance of selected gut microbial taxa, including Bacteroides spp., Clostridium spp., Clostridium coccoides, Ruminococcus spp., and Lactobacillus spp. was analyzed to determine the change in the microbial composition in the different experimental groups of the animal model. This study demonstrated that the unique combination therapy using a Lactobacillus mixture and telmisartan effectively reduced VEGF and IL-6 levels, indicating decreased angiogenesis and inflammation. Lactobacillus spp. co-administration with telmisartan boosted programmed cell death, reversed dysbiosis, improved histopathological outcomes, and reduced CEA levels. These findings offer a new perspective on the role of Lactobacillus spp. and telmisartan in CRC treatment. Further research on their adjunctive use and therapeutic potential are needed to enhance clinical efficacy.
Collapse
|
10
|
Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol 2025; 168:104423. [PMID: 39793281 DOI: 10.1016/j.jri.2025.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Proper regulation of intestinal permeability is essential for maintaining the integrity of the intestinal mucosal barrier. An abnormal increase in permeability can significantly contribute to the onset and progression of various diseases, including autoimmune disorders, metabolic conditions, allergies, and inflammatory bowel diseases. The potential connection between intestinal permeability and maternal health during pregnancy is increasingly recognized, yet a comprehensive review remains lacking. Pregnancy triggers a series of physiological structural adaptations and significant hormonal fluctuations that collectively contribute to an increase in intestinal permeability. Although an increase in intestinal permeability is typically a normal physiological response during pregnancy, an abnormal rise is associated with immune dysregulation, metabolic disorders, and various pregnancy-related complications, such as recurrent pregnancy loss, gestational diabetes mellitus, overweight and obesity during pregnancy, intrahepatic cholestasis of pregnancy, and preeclampsia. This paper discusses the components of the intestinal mucosal barrier, the concept of intestinal permeability and its measurement methods, and the mechanisms and physiological significance of increased intestinal permeability during pregnancy. It thoroughly explores the association between abnormal intestinal permeability during pregnancy and maternal diseases, aiming to provide evidence for the pathophysiology of disease development in pregnant women. Additionally, the paper examines intervention methods, such as gut microbiota modulation and nutritional interventions, to regulate intestinal permeability during pregnancy, improve immune and metabolic states, and offer feasible strategies for the prevention and adjuvant treatment of clinical pregnancy complications.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - JinXiang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Ren X, Wang L, Yu C, An J, Fu S, Sun H, Zhao M, Te R, Bai X, Yuan J, Liu Y, He J. Impact of oat grain supplementation on growth performance, rumen microbiota, and fatty acid profiles in Hu sheep. Front Microbiol 2025; 16:1528298. [PMID: 40092034 PMCID: PMC11907649 DOI: 10.3389/fmicb.2025.1528298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
The intestinal microbiota plays a vital role in animal growth and development. In this study, we explored the impact of oat grain dietary supplementation on growth performance, intestinal microbiota, short-chain fatty acids (SCFAs), and fatty acids (FAs) in Hu sheep. Thirty-two Hu lambs were randomly assigned to a control group (RC) or an oat grain-supplemented group (RO). After 90 days on their respective diets, rumen digesta were collected from six randomly selected Hu lambs per group to assess microbial diversity, SCFAs, and FAs. The RO diet significantly enhanced growth in Hu sheep (p < 0.01) and increased α-diversity, as indicated by Chao1 and Shannon indices. Core phyla in both groups were Firmicutes and Bacteroidota, with predominant genera including Prevotella, Rikenellaceae_RC9_gut_group, and F082. Oat grain supplementation led to significant shifts in microbial composition, increasing the abundance of Acidobacteriota, Proteobacteria, Chloroflexi, Actinobacteriota, and Subgroup_2, while decreasing Bacteroidota and Oscillospiraceae (p < 0.05). The RO group also exhibited lower levels of isobutyric and citraconic acids but higher levels of azelaic acid (p < 0.05). These results indicate that oat grain supplementation enhances beneficial rumen microbes and optimizes FAs and SCFAs composition, thereby promoting weight gain in Hu sheep.
Collapse
Affiliation(s)
- Xiaoqi Ren
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liwei Wang
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chuanzong Yu
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jianghong An
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shaoyin Fu
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Hua Sun
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Mengran Zhao
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Rigele Te
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xiaobo Bai
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Jingda Yuan
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongbin Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiangfeng He
- Research Institute of Biotechnology, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
12
|
Faas MM, Smink AM. Shaping immunity: the influence of the maternal gut bacteria on fetal immune development. Semin Immunopathol 2025; 47:13. [PMID: 39891756 PMCID: PMC11787218 DOI: 10.1007/s00281-025-01039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
The development of the fetal immune response is a highly complex process. In the present review, we describe the development of the fetal immune response and the role of the maternal gut bacteria in this process. In contrast to the previous belief that the fetal immune response is inert, it is now thought that the fetal immune response is uniquely tolerant to maternal and allo-antigens, but able to respond to infectious agents, such as bacteria. This is accomplished by the development of T cells toward regulatory T cells rather than toward effector T cells, but also by the presence of functional innate immune cells, such as monocytes and NK cells. Moreover, in fetuses there is different programming of CD8 + T cells and memory T cells toward innate immune cells rather than to adaptive immune cells. The maternal gut bacteria are important in shaping the fetal immune response by producing bacterial products and metabolites that pass the placenta into the fetus and influence development of the fetal immune response. Insight into how and when these products affect the fetal immune response may open new treatment options with pre- or probiotics to affect the maternal gut bacteria and therewith the fetal immune response.
Collapse
Affiliation(s)
- Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands
| |
Collapse
|
13
|
Su Z, Liu L, Zhang J, Guo J, Wang G, Zeng X. A scientometric visualization analysis of the gut microbiota and gestational diabetes mellitus. Front Microbiol 2025; 16:1485560. [PMID: 39980689 PMCID: PMC11841407 DOI: 10.3389/fmicb.2025.1485560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Background The prevalence of gestational diabetes mellitus (GDM), a condition that is widespread globally, is increasing. The relationship between the gut microbiota and GDM has been a subject of research for nearly two decades, yet there has been no bibliometric analysis of this correlation. This study aimed to use bibliometrics to explore the relationship between the gut microbiota and GDM, highlighting emerging trends and current research hotspots in this field. Results A total of 394 papers were included in the analysis. China emerged as the preeminent nation in terms of the number of publications on the subject, with 128 papers (32.49%), whereas the United States had the most significant impact, with 4,874 citations. The University of Queensland emerged as the most prolific institution, contributing 18 publications. Marloes Dekker Nitert was the most active author with 16 publications, and Omry Koren garnered the most citations, totaling 154. The journal Nutrients published the most studies (28 publications, 7.11%), whereas PLoS One was the most commonly co-cited journal, with a total of 805 citations. With respect to keywords, research focuses can be divided into 4 clusters, namely, "the interrelationship between the gut microbiota and pregnancy, childbirth," "the relationship between adverse metabolic outcomes and GDM," "the gut microbiota composition and metabolic mechanisms" and "microbiota and ecological imbalance." Key areas of focus include the interactions between the gut microbiota and individuals with GDM, as well as the formation and inheritance of the gut microbiota. Increasing attention has been given to the impact of probiotic supplementation on metabolism and pregnancy outcomes in GDM patients. Moreover, ongoing research is exploring the potential of the gut microbiota as a biomarker for GDM. These topics represent both current and future directions in this field. Conclusion This study provides a comprehensive knowledge map of the gut microbiota and GDM, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Zehao Su
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guan Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Wang YF, Wang XY, Chen BJ, Yang YP, Li H, Wang F. Impact of microplastics on the human digestive system: From basic to clinical. World J Gastroenterol 2025; 31:100470. [PMID: 39877718 PMCID: PMC11718642 DOI: 10.3748/wjg.v31.i4.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/08/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024] Open
Abstract
As a new type of pollutant, the harm caused by microplastics (MPs) to organisms has been the research focus. Recently, the proportion of MPs ingested through the digestive tract has gradually increased with the popularity of fast-food products, such as takeout. The damage to the digestive system has attracted increasing attention. We reviewed the literature regarding toxicity of MPs and observed that they have different effects on multiple organs of the digestive system. The mechanism may be related to the toxic effects of MPs themselves, interactions with various substances in the biological body, and participation in various signaling pathways to induce adverse reactions as a carrier of toxins to increase the time and amount of body absorption. Based on the toxicity mechanism of MPs, we propose specific suggestions to provide a theoretical reference for the government and relevant departments.
Collapse
Affiliation(s)
- Ya-Fen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xin-Yi Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bang-Jie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yi-Pin Yang
- First Clinical Medical College, Anhui Medical University, Hefei 230000, Anhui Province, China
| | - Hao Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
15
|
Fricker AD, Sejane K, Desai M, Snyder MW, Duran L, Mackelprang R, Bode L, Ross MG, Flores GE. A Pilot Study Exploring the Relationship Between Milk Composition and Microbial Capacity in Breastfed Infants. Nutrients 2025; 17:338. [PMID: 39861468 PMCID: PMC11768495 DOI: 10.3390/nu17020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Maternal obesity may contribute to childhood obesity in a myriad of ways, including through alterations of the infant gut microbiome. For example, maternal obesity may contribute both directly by introducing a dysbiotic microbiome to the infant and indirectly through the altered composition of human milk that fuels the infant gut microbiome. In particular, indigestible human milk oligosaccharides (HMOs) are known to shape the composition of the infant gut microbiome. The goal of this study was to characterize the HMO profiles of normal-weight and overweight mothers and to quantitatively link HMO concentrations to the taxonomic composition and functional potential of the infant gut microbiome. METHODS Normal-weight (BMI = 18.5-24.9; n = 9) and overweight/obese (OW/OB; BMI > 25; n = 11) breastfeeding mothers and their infants were enrolled in this single-center, cross-sectional pilot study. Human milk from the mothers and rectal stool swabs from the infants were collected 7-9 weeks postpartum. The HMO composition, microbiome composition, and microbial functions were assessed using HPLC, 16S rRNA gene sequencing, and metagenomic sequencing, respectively. RESULTS Neither the HMO profiles nor the infant microbiome composition varied according to maternal BMI status. Taxonomically, the gut microbiota of infants were dominated by typical gut lineages including Bifidobacterium. Significant correlations between individual HMOs and bacterial genera were identified, including for Prevotella, a genus of the Bacteroidota phylum that was positively correlated with the concentrations of lacto-N-neotetraose (LNnT) and lacto-N-hexaose (LNH). Using metagenomic assembled genomes, we were also able to identify the broad HMO-degradative capacity across the Bifidobacterium and Prevotella genera. CONCLUSIONS These results suggest that the maternal BMI status does not impact the HMO profiles of human milk. However, select HMOs were correlated with specific bacterial taxa, suggesting that the milk composition influences both the taxonomic composition and the functional capacity of the infant gut microbiome.
Collapse
Affiliation(s)
- Ashwana D. Fricker
- Department of Biology, California State University, Northridge, CA 91330, USA; (A.D.F.)
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Kristija Sejane
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA (L.B.)
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA;
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| | - Michael W. Snyder
- Department of Biology, California State University, Northridge, CA 91330, USA; (A.D.F.)
| | - Luis Duran
- Department of Biology, California State University, Northridge, CA 91330, USA; (A.D.F.)
| | - Rachel Mackelprang
- Department of Biology, California State University, Northridge, CA 91330, USA; (A.D.F.)
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA 92093, USA (L.B.)
| | - Michael G. Ross
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA;
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Gilberto E. Flores
- Department of Biology, California State University, Northridge, CA 91330, USA; (A.D.F.)
| |
Collapse
|
16
|
Weldegebreal F, Ayana DA, Wilfong T, Dheresa M, Yadeta TA, Negesa AS, Demmu YM, Tesfa T, Alemu TN, Eticha TG, Geremew A, Roba KT, Abdissa A, Assefa N, Negash AA, Cools P, Tura AK. Relationship between vaginal and gut microbiome and pregnancy outcomes in eastern Ethiopia: a protocol for a longitudinal maternal-infant cohort study (the EthiOMICS study). BMJ Open 2025; 15:e092461. [PMID: 39762107 PMCID: PMC11748928 DOI: 10.1136/bmjopen-2024-092461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
INTRODUCTION Although evidence exists on the impact of microbiota on pregnancy outcomes in many high-resource settings, there is a lack of research in many low-resource settings like Ethiopia. This study aims to fill this gap by studying the gut and vaginal microbiota changes throughout pregnancy and assess how these changes relate to pregnancy outcomes among a cohort of pregnant women in eastern Ethiopia. METHODS AND ANALYSIS Vaginal and stool samples will be collected using DNA/RNA Shield Collection kits three times starting at 12-22 weeks, 28-36 weeks and at birth (within 7 days). Postnatally, newborns' skin swabs (at birth) and rectal swabs will be obtained until 2 years of age. Moreover, breast milk samples at birth and 6 months and environmental samples (water, indoor air and soil) will be collected at enrolment, birth, 6, 12 and 24 months post partum. DNA will be extracted using Roche kits. Metagenomic sequencing will be performed to identify metataxonomic profiling and assess variations in microbial profiles, and α and β diversity of the microbiota. Information on socioeconomic, behavioural, household and biological factors will be collected at enrolment. The collected data will be coded, entered into EpiData 3.1 and analysed using Stata 17. ETHICS AND DISSEMINATION The Institutional Health Research Ethics Review Committee (Ref No. IHRERC/033/2022) of Haramaya University, Ethiopia has approved this study ethically. Written informed consent regarding the study and sample storage for biobanking will be obtained from all participants. Results will be published in international peer-reviewed journals, and summaries will be provided to the study funders. Clinical study data will be submitted to Data Compass (https://datacompass.lshtm.ac.uk/), and molecular profiles of the microbiome and whole-genome sequences will be submitted to the European Nucleotide Archive (https://www. ebi.ac.uk/ena). Requests for data should be directed to daberaf@gmail.com. The decision to share data will be made by the study steering committee under the College of Health and Medical Sciences, Haramaya University, Ethiopia.
Collapse
Affiliation(s)
- Fitsum Weldegebreal
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Desalegn Admassu Ayana
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tara Wilfong
- School of Public Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Merga Dheresa
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tesfaye Assebe Yadeta
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Akewok Sime Negesa
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Yohannes Mulugeta Demmu
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tewodros Tesfa
- School of Medical Laboratory Sciences, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tegbaru Nibrat Alemu
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Tadesse Gure Eticha
- School of Medicine, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Abraham Geremew
- School of Environmental Health, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Kedir Teji Roba
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | | | - Nega Assefa
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Piet Cools
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, Gent, Belgium
| | - Abera Kenay Tura
- School of Nursing, Haramaya University College of Health and Medical Sciences, Harar, Ethiopia
- Obstetrics and Gynaecology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
17
|
Ghosh A, Gorain B. Mechanistic insight of neurodegeneration due to micro/nano-plastic-induced gut dysbiosis. Arch Toxicol 2025; 99:83-101. [PMID: 39370473 DOI: 10.1007/s00204-024-03875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Despite offering significant conveniences, plastic materials contribute substantially in developing environmental hazards and pollutants. Plastic trash that has not been adequately managed may eventually break down into fragments caused by human or ecological factors. Arguably, the crucial element for determining the biological toxicities of plastics are micro/nano-forms of plastics (MPs/NPs), which infiltrate the mammalian tissue through different media and routes. Infiltration of MPs/NPs across the intestinal barrier leads to microbial architectural dysfunction, which further modulates the population of gastrointestinal microbes. Thereby, it triggers inflammatory mediators (e.g., IL-1α/β, TNF-α, and IFN-γ) by activating specific receptors located in the gut barrier. Mounting evidence indicates that MPs/NPs disrupt host pathophysiological function through modification of junctional proteins and effector cells. Moreover, the alteration of microbial diversity by MPs/NPs causes the breakdown of the blood-brain barrier and translocation of metabolites (e.g., SCFAs, LPS) through the vagus nerve. Potent penetration affects the neuronal networks, neuronal protein accumulation, acceleration of oxidative stress, and alteration of neurofibrillary tangles, and hinders distinctive communicating pathways. Conclusively, alterations of these neurotoxic factors are possibly responsible for the associated neurodegenerative disorders due to the exposure of MPs/NPs. In this review, the hypothesis on MPs/NPs associated with gut microbial dysbiosis has been interlinked to the distinct neurological impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Arya Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
18
|
Ma G, Yang P, Lu T, Chen Z, Zhou J, Tye KD, Xiao X. The impact of gut microbiota in full-term pregnant women on immune regulation during pregnancy: A prospective, exploratory study. J Obstet Gynaecol Res 2025; 51:e16180. [PMID: 39632255 DOI: 10.1111/jog.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
AIM This study aims to investigate the correlation between gut microbiota and both placental local immune function and the maternal systemic immune system in pregnant women. METHODS Twenty-six pregnant women were included in this study, utilizing high-throughput sequencing for gut microbiota analysis. Immune cells and cytokine levels were measured in placental tissue and peripheral venous blood. Integration of gut microbiota data with immune parameters was performed using R, and network correlation analysis was conducted with Cytoscape software. RESULTS In placental tissues, gut microbiota predominantly influences B lymphocytes (CD3-CD19+/CD3-), indicating a potential bidirectional regulatory role. The impact on CD56+CD16+/CD56+CD16- and CD4+/CD8+ ratios appear minor. Notably, a significant positive correlation was observed between gut microbiota and the placental cytokine interleukin (IL)-5. In peripheral blood, gut microbiota was primarily associated with negative regulation of peripheral B lymphocytes and positive regulation of peripheral Treg cells. Minimal effects are observed on peripheral macrophages and NK cell subtypes. The most substantial impact on peripheral immune balance was reflected in the CD4+/CD8+ ratio, showing a predominant negative correlation, while the influence on the CD56+CD16+/CD56+CD16- ratio is minimal. A significant negative correlation was found between gut microbiota and peripheral cytokines IL-1 and IL-18, while the interaction with the peripheral interferon-γ/IL-4 ratio appears relatively less pronounced. CONCLUSIONS The close correlation between gut microbiota and placental local immune function, as well as maternal systemic immune responses, is evident. This study contributes to a preliminary understanding of the immunomodulatory relationship of gut microbiota during pregnancy.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Shah SAUR, Tang B, He D, Hao Y, Nabi G, Wang C, Kou Z, Wang K. Physiological function of gut microbiota and metabolome on successful pregnancy and lactation in the captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis)†. Biol Reprod 2024; 111:1249-1261. [PMID: 39135547 PMCID: PMC11647103 DOI: 10.1093/biolre/ioae123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 12/17/2024] Open
Abstract
Gestation period in captive Yangtze finless porpoise (YFP) is a well-coordinated and dynamic process, involving both systemic and local alterations. The gut microbiota and its connection to fecal metabolites are crucial in supporting fetal development and ensuring maternal health during reproductive stages. This study evaluates changes in the gut microbiota and their correlation with fecal metabolites in captive YFPs during different reproductive stages. The results reveal that microbial community structure changed significantly during reproductive stages, while gut microbial diversity remained stable. The genus unclassified Peptostrptococcaceae, Corynebacterium, and norank KD4-96 were significantly greater in non-pregnancy (NP), Terrisporobacter was significantly greater in lactating (LL), and Clostridium was significantly higher in early-pregnancy (EP) compared to the other groups. The host fecal metabolome exhibited significant alterations during the reproductive stages. Indoxyl sulfate, octadecatrienoic acid, and methionyl-methionine were significantly higher in the NP; galactosylglycerol, chondroitin 6-sulfate, and lumichrome were significantly higher in the EP and mid-pregnancy (MP); and valylleucine and butyryl-l-carnitine were significantly higher in the LL. The altered metabolites were mostly concentrated in pathways associated with arachidonic acid metabolism (significantly altered in NP), leucine, valine, and isoleucine biosynthesis (significantly altered in EP and MP), and glycerophospholipid metabolism (significantly altered in LL compared to others stages). Additionally, we found a strong link between variations in the host metabolism and alterations in the fecal bacteria of captive YFP. In conclusion, this study provides detailed insights into host metabolic and fecal bacterial changes in captive YFP during reproduction stages, providing important knowledge for improving the reproductive management in the captive YFP.
Collapse
Affiliation(s)
- Syed Ata Ur Rahman Shah
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Dekui He
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
21
|
Ma G, Chen Z, Li Z, Xiao X. Unveiling the neonatal gut microbiota: exploring the influence of delivery mode on early microbial colonization and intervention strategies. Arch Gynecol Obstet 2024; 310:2853-2861. [PMID: 39589476 DOI: 10.1007/s00404-024-07843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Recent research has emphasized the critical importance of establishing the neonatal gut microbiota for overall health and immune system development, prompting deeper studies about the early formation of neonatal gut microbiota and its influencing factors. Various factors, including maternal and environmental factors, affect the early formation of neonatal gut microbiota, in which delivery mode has been considered as one of the most crucial influencing factors. In recent years, the increasing trend of cesarean section during childbirth has become a serious challenge for global public health. This review thoroughly analyzes the effects of vaginal delivery and cesarean section on the establishment of neonatal gut microbiota and the potential long-term impacts. In addition, we analyze and discuss interventions such as probiotics, prebiotics, vaginal seeding, fecal microbiota transplantation, and breastfeeding to address the colonization defects of the neonatal gut microbiota caused by cesarean section, aiming to provide theoretical basis for the prevention and treatment of colonization defects and related diseases in infants caused by cesarean section in clinical practice and to provide a theoretical foundation for optimizing the development of neonatal gut microbiota.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Jiang S, Qin J, Shi L, Feng J, Mo J, Su W, Cheng Y, Lv J, Li Q, Li S, Zeng L, Han B, Zhou J. Association among Gestational Weight Gain, Fucosylated Human Milk Oligosaccharides, and Breast Milk Microbiota─An Evidence in Healthy Mothers from Northwest China. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25135-25145. [PMID: 39476856 PMCID: PMC11565758 DOI: 10.1021/acs.jafc.4c07050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/14/2024]
Abstract
This study investigates the relationship among maternal secretor status, human milk oligosaccharides (HMOs), and the composition of breastmilk microbiota in a cohort of healthy mothers from Shaanxi province, China. The results demonstrated that 78.9% of the mothers were secretors, exhibiting an active fucosyltransferase 2 gene (fut2) and producing α-1,2 fucosylated HMOs, which significantly affected the HMO profile. Secretor mothers had higher levels of 2'-FL and LNFPI in contrast to nonsecretors who displayed high levels of 3'-FL, LNFPII, and LNT. Furthermore, secretor mothers exhibited greater diversity in HMOs compared with nonsecretors, although no significant differences were observed in the breast milk microbiota composition. A correlation was identified between specific HMOs (2'-FL, 3'-FL, 6'-SL, and LNFPI) and the microbiota composition. Notably, mothers with normal weight gain during pregnancy demonstrated higher microbial diversity, with increased abundance of beneficial genera such as Bifidobacterium, Lactobacillus, and Ligilactobacillus. These findings contribute to the development of potential guidelines for providing personalized nutrition.
Collapse
Affiliation(s)
- Sijin Jiang
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jiale Qin
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lu Shi
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jiayu Feng
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jianhui Mo
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Wanghong Su
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yue Cheng
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jia Lv
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department
of Pediatrics, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Qiang Li
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Shaoru Li
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lingxia Zeng
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Bei Han
- School
of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Zhou
- Department
of Pediatrics, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| |
Collapse
|
23
|
Stevens AJ, Heiwari TM, Rich FJ, Bradley HA, Gur TL, Galley JD, Kennedy MA, Dixon LA, Mulder RT, Rucklidge JJ. Randomised control trial indicates micronutrient supplementation may support a more robust maternal microbiome for women with antenatal depression during pregnancy. Clin Nutr 2024; 43:120-132. [PMID: 39361984 DOI: 10.1016/j.clnu.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND AND AIMS We investigated the effects of high dose dietary micronutrient supplementation or placebo on the human gut microbiome in pregnant women who had moderate symptoms of antenatal depression. There is a significant absence of well-controlled clinical studies that have investigated the dynamic changes of the microbiome during pregnancy and the relationship among diet, microbiome and antenatal depression. This research is among the first to provide an insight into this area of research. METHODS This 12 - week study followed a standard double blinded randomised placebo-controlled trial (RCT) design with either high dose micronutrients or active placebo. Matching stool microbiome samples and mood data were obtained at baseline and post-treatment, from participants between 12 and 24 weeks gestation. Stool microbiome samples from 33 participants (17 in the placebo and 16 in the treatment group) were assessed using 16s rRNA sequencing. Data preparation and statistical analysis was predominantly performed using the QIIME2 bioinformatic software tools for 16s rRNA analysis. RESULTS Microbiome community structure became increasingly heterogenous with decreased diversity during the course of the study, which was represented by significant changes in alpha and beta diversity. This effect appeared to be mitigated by micronutrient administration. There were less substantial changes at the genus level, where Coprococcus decreased in relative abundance in response to micronutrient administration. We also observed that a higher abundance of Coprococcus and higher alpha diversity correlated with higher antenatal depression scores. CONCLUSIONS Micronutrient treatment appeared to support a more diverse (alpha diversity) and stable (beta diversity) microbiome during pregnancy. This may aid in maintaining a more resilient or adaptable microbial community, which would help protect against decreases or fluctuations that are observed during pregnancy.
Collapse
Affiliation(s)
- Aaron J Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand.
| | - Thalia M Heiwari
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Fenella J Rich
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, Wellington, 6021, New Zealand
| | - Hayley A Bradley
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| | - Tamar L Gur
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jeffrey D Galley
- Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Martin A Kennedy
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, 8011, New Zealand
| | - Lesley A Dixon
- New Zealand College of Midwives, Christchurch, New Zealand
| | - Roger T Mulder
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand; Canterbury District Health Board, Christchurch, New Zealand
| | - Julia J Rucklidge
- School of Psychology, Speech and Hearing, University of Canterbury, New Zealand
| |
Collapse
|
24
|
Cervantes-Monroy E, Zarzoza-Mendoza IC, Canizales-Quinteros S, Morán-Ramos S, Villa-Morales J, López-Contreras BE, Carmona-Sierra FV, Rodríguez-Cruz M. Influence of Early Life Factors on the Breast Milk and Fecal Microbiota of Mother-Newborn Dyads. Microorganisms 2024; 12:2142. [PMID: 39597531 PMCID: PMC11596411 DOI: 10.3390/microorganisms12112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 11/29/2024] Open
Abstract
Maternal gut and breast milk (BM) are key in vertically transmission bacteria to infants, shaping their gut microbiota in early life. Although the establishment of early gut microbiota is known, the role of the combined influence of maternal factors and newborn characteristics is not explored. In this study, we aimed to assess the influence of maternal BMI and total body fat, age, delivery mode, and newborn sex on the diversity and composition of the BM and gut microbiota (GM) in mother-newborn dyads. In this cross-sectional study, of the 986 pregnant women candidates, 53 participated, and, finally, 40 mother-newborn dyads exclusively breastfeeding at 20-28 days postpartum were included. Metataxonomic profiling of DNA extracted from BM and fecal samples was conducted using 16S rRNA sequencing. Globally, the findings offer valuable insights that excessive adiposity, age, and C-section delivery influence a lower abundance of specific taxa in the BM, maternal gut, and gut of newborns. Also, the simultaneous analysis of maternal factors and newborn characteristics shows that maternal age and newborn sex explain an important variation in the microbiota composition. These results add to the understanding of the intricate interplay between maternal factors and the microbial communities that influence early-life gut and BM microbiota.
Collapse
Affiliation(s)
- Emmanuel Cervantes-Monroy
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Unidad de Posgrado, Edificio D, 1° Piso. Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Imelda C. Zarzoza-Mendoza
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Sofia Morán-Ramos
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | - Judith Villa-Morales
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| | - Blanca E. López-Contreras
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (S.C.-Q.); (S.M.-R.); (B.E.L.-C.)
- Instituto Nacional de Medicina Genómica (INMEGEN), Ciudad de México 14610, Mexico
| | - Fairt V. Carmona-Sierra
- Unidad de Medicina Familiar Number 4, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico;
| | - Maricela Rodríguez-Cruz
- Laboratorio de Nutrición Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Ciudad de México 06720, Mexico; (E.C.-M.); (I.C.Z.-M.); (J.V.-M.)
| |
Collapse
|
25
|
Padiyar S, Nandakumar V, Kollikonda S, Karnati S, Sangwan N, Aly H. Maternal and infant microbiome and birth anthropometry. iScience 2024; 27:110312. [PMID: 39386758 PMCID: PMC11462025 DOI: 10.1016/j.isci.2024.110312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 10/12/2024] Open
Abstract
Preterm birth is the leading cause of neonatal mortality and morbidity. Microbiome dysbiosis in the mother and infant may contribute to their adverse outcomes. 16S rRNA amplicon sequencing was performed on all samples. Phyloseq, microbiomeSeq, and NetCoMi were utilized for bioinformatics analysis. Statistical tests included the Wilcoxon test, ANOVA, permutational multivariate analysis of variance (PERMANOVA), and linear regression. Statistical significance was set at p value <0.05. The establishment of an infant's microbiome most likely begins in utero and is influenced by the maternal microbiome. Infants' samples were enriched with Salmonella. There is a complex interplay among the microbial taxa noticeable at birth, exhibiting variability in interaction within the same host and across different hosts. Both maternal and infant microbiomes influence the anthropometric measures determined at birth, and a sex-based difference in correlation exists. This study highlights the potential role of maternal and infant microbiomes in improving pregnancy and neonatal outcomes.
Collapse
Affiliation(s)
- Swetha Padiyar
- Neonatology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | - Swapna Kollikonda
- Department of Obstetrics & Gynecology, Cleveland Clinic, Cleveland, OH, USA
| | - Sreenivas Karnati
- Division of Neonatology, Cleveland Clinic Children’s, Cleveland, OH, USA
| | - Naseer Sangwan
- Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hany Aly
- Division of Neonatology, Cleveland Clinic Children’s, Cleveland, OH, USA
| |
Collapse
|
26
|
Wang Y, Gao P, Qin W, Li H, Zheng J, Meng L, Li B. Gut microbiota variation across generations regarding the diet and life stage in Harmonia axyridis (Coleoptera: Coccinellidae). INSECT SCIENCE 2024; 31:1365-1377. [PMID: 38183402 DOI: 10.1111/1744-7917.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
We attempt to determine the effect of the dietary switch from a native to non-native prey on the gut microbiota in the predaceous ladybird Harmonia axyridis larvae and adults and examine how the dietary effect may vary across generations. We fed H. axyridis with different diets, native aphid Megoura japonica (Matsumura) versus non-native mealybug Phenacoccus solenopsis (Tinsley), for 5 generations and sequenced microbes in the gut of the 3rd instar larvae and adults of the 1st, 3rd, and 5th generations. In addition, we identified microbes in M. japonica and P. solenopsis. The 2 prey species differed in microbial community as measured by abundances of prevalent microbial genera and diversity. In H. axyridis, abundances of some prevalent microbial genera differed between the 2 diets in the 1st and 3rd generations, but the difference disappeared in the 5th generation; this tendency is more obvious in adults than in larvae. Overall, gut microbial assemblages became gradually cohesive over generations. Microbial diversity differed between diets in the 1st and 3rd generations but became similar in the 5th generation. Major prevalent gut microbial genera are predicted to be associated with metabolic functions of H. axyridis and associated genera are more abundant for consuming the mealybug than the aphid. Our findings from this study suggest that the gut microbiota in H. axyridis is flexible in response to the dietary switch, but tends toward homogeneity in microbial composition over generations.
Collapse
Affiliation(s)
- Yansong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ping Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wenquan Qin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hongran Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jie Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ling Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Baoping Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Ratsika A, Codagnone MG, Bastiaanssen TFS, Hoffmann Sarda FA, Lynch CMK, Ventura-Silva AP, Rosell-Cardona C, Caputi V, Stanton C, Fülling C, Clarke G, Cryan JF. Maternal high-fat diet-induced microbiota changes are associated with alterations in embryonic brain metabolites and adolescent behaviour. Brain Behav Immun 2024; 121:317-330. [PMID: 39032541 DOI: 10.1016/j.bbi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
The developing central nervous system is highly sensitive to nutrient changes during the perinatal period, emphasising the potential impact of alterations of maternal diet on offspring brain development and behaviour. A growing body of research implicates the gut microbiota in neurodevelopment and behaviour. Maternal overweight and obesity during the perinatal period has been linked to changes in neurodevelopment, plasticity and affective disorders in the offspring, with implications for microbial signals from the maternal gut. Here we investigate the impact of maternal high-fat diet (mHFD)-induced changes in microbial signals on offspring brain development, and neuroimmune signals, and the enduring effects on behaviour into adolescence. We first demonstrate that maternal caecal microbiota composition at term pregnancy (embryonic day 18: E18) differs significantly in response to maternal diet. Moreover, mHFD resulted in the upregulation of microbial genes in the maternal intestinal tissue linked to alterations in quinolinic acid synthesis and elevated kynurenine levels in the maternal plasma, both neuronal plasticity mediators related to glutamate metabolism. Metabolomics of mHFD embryonic brains at E18 also detected molecules linked to glutamate-glutamine cycle, including glutamic acid, glutathione disulphide, and kynurenine. During adolescence, the mHFD offspring exhibited increased locomotor activity and anxiety-like behaviour in a sex-dependent manner, along with upregulation of glutamate-related genes compared to controls. Overall, our results demonstrate that maternal exposure to high-fat diet results in microbiota changes, behavioural imprinting, altered brain metabolism, and glutamate signalling during critical developmental windows during the perinatal period.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Martin G Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Fabiana A Hoffmann Sarda
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Caoimhe M K Lynch
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Cristina Rosell-Cardona
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Valentina Caputi
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | | | - Christine Fülling
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
28
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
29
|
Liu X, Wang Z, Teng C, Wang Z. Changes in gut microbiota and metabolites of mice with intravenous graphene oxide-induced embryo toxicity. Toxicol Res 2024; 40:571-584. [PMID: 39345742 PMCID: PMC11436620 DOI: 10.1007/s43188-024-00242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 10/01/2024] Open
Abstract
The expanding applications of graphene oxide (GO) nanomaterials have attracted interest in understanding their potential adverse effects on embryonic and fetal development. Numerous studies have revealed the importance of the maternal gut microbiota in pregnancy. In this study, we established a mouse GO exposure model to evaluate embryo toxicity induced by intravenous administration of GO during pregnancy. We also explored the roles of gut microbiota and fecal metabolites using a fecal microbiota transplantation (FMT) intervention model. We found that administration of GO at doses up to 1.25 mg/kg caused embryo toxicity, characterized by significantly increased incidences of fetal resorption, stillbirths, and decreased birth weight. In pregnant mice with embryo toxicity, the richness of the maternal gut microbiota was dramatically decreased, and components of the microbial community were disturbed. FMT alleviated the decrease in birth weight by remodeling the gut microbiota, especially via upregulation of the Firmicutes/Bacteroidetes ratio. We subsequently used untargeted metabolomics to identify characteristic fecal metabolites associated with GO exposure. These metabolites were closely correlated with the phyla Actinobacteria, Proteobacteria, and Cyanobacteria. Our findings offer new insights into the embryo toxic effects of GO exposure during pregnancy; they emphasize the roles of gut microbiota-metabolite interactions in adverse pregnancy outcomes induced by GO or other external exposures, as demonstrated through FMT intervention. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00242-3.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191 China
- Institute of Reproductive and Child Health, Peking University/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, 100191 China
| | - Zengjin Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| | - Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237 China
| | - Zhiping Wang
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012 Shandong China
| |
Collapse
|
30
|
Tas GG, Sati L. Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 2024; 41:2585-2605. [PMID: 39172320 PMCID: PMC11535107 DOI: 10.1007/s10815-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Lactobacillus rhamnosus is a type of bacteria known as a probiotic and is often used to support the health of the digestive system and vaginal flora. This type of bacteria has an important role, showing positive effects on female reproductive biology, particularly by maintaining the balance of microorganisms in the vagina, reducing the risk of infection, and strengthening the immune system to support maternal health during pregnancy. There are also studies showing that these probiotics prevent maternal obesity and gestational diabetes. Consuming probiotics containing Lactobacillus rhamnosus strains may support the intestinal health of breastfeeding mothers, but they may also contribute to the health of offspring. Therefore, this review focuses on the current available data for examining the effects of Lactobacillus rhamnosus strains on female reproductive biology and offspring health. A systematic search was conducted in the PubMed and Web of Science databases from inception to May 2024. The search strategy was performed using keywords and MeSH (Medical Subject Headings) terms. Inconsistent ratings were resolved through discussion. This review is strengthened by multiple aspects of the methodological approach. The systematic search strategy, conducted by two independent reviewers, enabled the identification and evaluation of all relevant literature. Although there is a limited number of studies with high heterogeneity, current literature highlights the important contribution of Lactobacillus rhamnosus probiotics in enhancing female reproductive health and fertility. Furthermore, the probiotic bacteria in breast milk may also support the intestinal health of newborn, strengthen the immune system, and protect them against diseases at later ages.
Collapse
Affiliation(s)
- Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
31
|
Katimbwa DA, Kim Y, Kim MJ, Jeong M, Lim J. Solubilized β-Glucan Supplementation in C57BL/6J Mice Dams Augments Neurodevelopment and Cognition in the Offspring Driven by Gut Microbiome Remodeling. Foods 2024; 13:3102. [PMID: 39410136 PMCID: PMC11476385 DOI: 10.3390/foods13193102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A maternal diet rich in dietary fiber, such as β-glucan, plays a crucial role in the offspring's acquisition of gut microbiota and the subsequent shaping of its microbiome profile and metabolome. This in turn has been shown to aid in neurodevelopmental processes, including early microglial maturation and immunomodulation via metabolites like short chain fatty acids (SCFAs). This study aimed to investigate the effects of oat β-glucan supplementation, solubilized by citric acid hydrolysis, from gestation to adulthood. Female C57BL/6J mice were orally supplemented with soluble oat β-glucan (ObG) or carboxymethyl cellulose (CMC) via drinking water at 200 mg/kg body weight during breeding while the control group received 50 mg/kg body weight of carboxymethyl cellulose. ObG supplementation increased butyrate production in the guts of both dams and 4-week-old pups, attributing to alterations in the gut microbiota profile. One-week-old pups from the ObG group showed increased neurodevelopmental markers similar to four-week-old pups that also exhibited alterations in serum markers of metabolism and anti-inflammatory cytokines. Notably, at 8 weeks, ObG-supplemented pups exhibited the highest levels of spatial memory and cognition compared to the control and CMC groups. These findings suggest a potential enhancement of neonatal neurodevelopment via shaping of early-life gut microbiome profile, and the subsequent increased later-life cognitive function.
Collapse
Affiliation(s)
- Dorsilla A. Katimbwa
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- Department of Food Biomaterials, Kyungpook National University, Daegu 41566, Republic of Korea;
| |
Collapse
|
32
|
Huang W, Hu W, Fang M, Zhang Q, Zhang Y, Wang H. Impacts of prenatal environmental exposures on fetal-placental-maternal bile acid homeostasis and long-term health in offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116929. [PMID: 39213751 DOI: 10.1016/j.ecoenv.2024.116929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
During pregnancy, the maternal body undergoes a series of adaptative physiological changes, leading to a slight increase in serum bile acid (BA) levels. Although the fetal liver can synthesize BAs since the first trimester through the alternative pathway, the BA metabolic system is immature in the fetus. Compared to adults, the fetus has a distinct composition of BA pool and limited expression of BA synthesis enzymes and transporters. Besides, the "enterohepatic circulation" of BAs is absent in fetus. Thus, fetal BAs need to be transported to the mother through the placenta for further metabolism and excretion, and maternal BAs can also be transported to the fetus. That is what we call the "fetal-placental-maternal BA circulation". Various BA transporters and nuclear receptors are essential for maintaining the balance of this BA circulation to ensure normal fetal development. However, prenatal adverse environments can alter fetal BA metabolism, resulting in intrauterine developmental abnormalities and susceptibility to a variety of adult chronic diseases. This review summarizes the current understanding of the fetal-placental-maternal BA circulation and discusses the effects of prenatal adverse environments on this particular BA circulation, aiming to provide a theoretical basis for exploring early prevention and treatment strategies for BA metabolism-associated adverse pregnancy outcomes and long-term impairments.
Collapse
Affiliation(s)
- Wen Huang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
33
|
Abdul Kalam Saleena L, Chang SK, Simarani K, Arunachalam KD, Thammakulkrajang R, How YH, Pui LP. A comprehensive review of Bifidobacterium spp: as a probiotic, application in the food and therapeutic, and forthcoming trends. Crit Rev Microbiol 2024; 50:581-597. [PMID: 37551693 DOI: 10.1080/1040841x.2023.2243617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Recently, more consumers are interested in purchasing probiotic food and beverage products that may improve their immune health. The market for functional foods and beverages that include Bifidobacterium is expanding because of their potential uses in both food and therapeutic applications. However, maintaining Bifidobacterium's viability during food processing and storage remains a challenge. Microencapsulation technique has been explored to improve the viability of Bifidobacterium. Despite the technical, microbiological, and economic challenges, the market potential for immune-supporting functional foods and beverages is significant. Additionally, there is a shift toward postbiotics as a solution for product innovation, a promising postbiotic product that can be incorporated into various food and beverage formats is also introduced in this review. As consumers become more health-conscious, future developments in the functional food and beverage market discussed in this review could serve as a reference for researchers and industrialist.
Collapse
Affiliation(s)
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman Kampar, Perak, Malaysia
| | - Khanom Simarani
- Faculty of Science, Institute Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kantha Deivi Arunachalam
- Directorate of Research, Center For Environmental Nuclear Research, SRM Institute of Science and Technology, SRM Nagar, Chennai, India
- Faculty of Sciences, Marwadi University, Rajkot, India
| | | | - Yu Hsuan How
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Liew Phing Pui
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Hu M, Du Y, Li W, Zong X, Du W, Sun H, Liu H, Zhao K, Li J, Farooq MZ, Wu J, Xu Q. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol Nutr Food Res 2024; 68:e2400251. [PMID: 39097954 DOI: 10.1002/mnfr.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Indexed: 08/06/2024]
Abstract
Bioactive peptides (BPs) are protein fragments with beneficial effects on metabolism, physiology, and diseases. This review focuses on proteolytic BPs, which are produced by the action of gut microbiota on proteins in food and have demonstrated to influence the composition of gut microbes. And gut microbiota are candidate targets of BPs to alleviate oxidative stress, enhance immunity, and control diseases, including diabetes, hypertension, obesity, cancer, and immune and neurodegenerative diseases. Despite promising results, further research is needed to understand the mechanisms underlying the interactions between BPs and gut microbes, and to identify and screen more BPs for industrial applications. Overall, BPs offer potential as therapeutic agents for various diseases through their interactions with gut microbes, highlighting the importance of continued research in this area.
Collapse
Affiliation(s)
- Mingyang Hu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyue Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaomei Zong
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huizeng Sun
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ke Zhao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, China
| | - Jianxiong Li
- Wuhan Jason Biotech Co., Ltd., Wuhan, 430070, China
| | - Muhammad Zahid Farooq
- Department of Animal Science, University of Veterinary and Animal Science, Lahore, 54000, Pakistan
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Ag/For Building, Edmonton, Alberta, T6G 2P5, Canada
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
35
|
Luecke SM, Aryee G, Holman DB, Schmidt KN, King LE, Crouse MS, Ward AK, Dahlen CR, Caton JS, Amat S. Effects of dietary restriction and one-carbon metabolite supplementation during the first 63 days of gestation on the maternal gut, vaginal, and blood microbiota in cattle. Anim Microbiome 2024; 6:48. [PMID: 39210404 PMCID: PMC11360793 DOI: 10.1186/s42523-024-00335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Maternal diet quality and quantity have significant impacts on both maternal and fetal health and development. The composition and function of the maternal gut microbiome is also significantly influenced by diet; however, little is known about the impact of gestational nutrient restriction on the bovine maternal microbiome during early gestation, which is a critical stage for maternal microbiome-mediated fetal programming to take place. The objective of the present study was to evaluate the impacts of diet restriction and one-carbon metabolite (OCM) supplementation during early gestation on maternal ruminal, vaginal, and blood microbiota in cattle. Thirty-three beef heifers (approx. 14 months old) were used in a 2 × 2 factorial experiment with main factors of target gain (control [CON]; targeted 0.45 kg/d gain vs restricted [RES]; targeted - 0.23 kg/d gain), and OCM supplementation (+ OCM vs - OCM; n = 8/treatment; except n = 9 for RES-OCM). Heifers were individually fed, starting treatment at breeding (d 0) and concluding at d 63 of gestation. Ruminal fluid and vaginal swabs were collected on d - 2, d 35, and d 63 (at necropsy) and whole blood was collected on d 63 (necropsy). Bacterial microbiota was assessed using 16S rRNA gene (V3-V4) sequencing. RESULTS Overall ruminal microbiota structure was affected by gain, OCM, time, and their interactions. The RES heifers had greater microbial richness (observed ASVs) but neither Shannon nor Inverse Simpson diversity was significantly influenced by gain or OCM supplementation; however, on d 63, 34 bacterial genera showed differential abundance in the ruminal fluid, with 25 genera enriched in RES heifers as compared to CON heifers. In addition, the overall interaction network structure of the ruminal microbiota changed due to diet restriction. The vaginal microbiota community structure was influenced by gain and time. Overall microbial richness and diversity of the vaginal microbiota steadily increased as pregnancy progressed. The vaginal ecological network structure was distinctive between RES and CON heifers with genera-genera interactions being intensified in RES heifers. A relatively diverse bacterial community was detected in blood samples, and the composition of the blood microbiota differed from that of ruminal and vaginal microbiota. CONCLUSION Restricted dietary intake during early gestation induced significant alterations in the ruminal microbiota which also extended to the vaginal microbiota. The composition of these two microbial communities was largely unaffected by OCM supplementation. Blood associated microbiota was largely distinctive from the ruminal and vaginal microbiota.
Collapse
Affiliation(s)
- Sarah M Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Devin B Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Kaycie N Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Layla E King
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Alison K Ward
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
36
|
Wekema L, Schoenmakers S, Schenkelaars N, Laskewitz A, Huurman RH, Liu L, Walters L, Harmsen HJM, Steegers-Theunissen RPM, Faas MM. Diet-Induced Obesity in Mice Affects the Maternal Gut Microbiota and Immune Response in Mid-Pregnancy. Int J Mol Sci 2024; 25:9076. [PMID: 39201761 PMCID: PMC11354285 DOI: 10.3390/ijms25169076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Maternal obesity during pregnancy is associated with adverse pregnancy outcomes. This might be due to undesired obesity-induced changes in the maternal gut microbiota and related changes in the maternal immune adaptations during pregnancy. The current study examines how obesity affects gut microbiota and immunity in pregnant obese and lean mice during mid-pregnancy (gestational day 12 (GD12)). C57BL/6 mice were fed a high-fat diet or low-fat diet from 8 weeks before mating and during pregnancy. At GD12, we analyzed the gut microbiota composition in the feces and immune responses in the intestine (Peyer's patches, mesenteric lymph nodes) and the peripheral circulation (spleen and peripheral blood). Maternal obesity reduced beneficial bacteria (e.g., Bifidobacterium and Akkermansia) and changed intestinal and peripheral immune responses (e.g., dendritic cells, Th1/Th2/Th17/Treg axis, monocytes). Numerous correlations were found between obesity-associated bacterial genera and intestinal/peripheral immune anomalies. This study shows that maternal obesity impacts the abundance of specific bacterial gut genera as compared to lean mice and deranges maternal intestinal immune responses that subsequently change peripheral maternal immune responses in mid-pregnancy. Our findings underscore the opportunities for early intervention strategies targeting maternal obesity, ideally starting in the periconceptional period, to mitigate these obesity-related pregnancy effects.
Collapse
Affiliation(s)
- Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Anne Laskewitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Romy H. Huurman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Lisa Walters
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Régine P. M. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
37
|
Karami S, Mousavi SN, Shapouri R, Naderloo H, Heidarzadeh S, Afshar D. Breast milk dominant phyla and probiotic bacteria in the obese lactating women compared with normal weights. Sci Rep 2024; 14:19199. [PMID: 39160300 PMCID: PMC11333490 DOI: 10.1038/s41598-024-70070-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
The main purpose was to determine the abundance of dominant phyla, Bifidobacterium spp., and Lactobacillus in breast milk of obese mothers versus normal-weights in fourth month of lactation in Iranian population. Sixty health women at the fourth month of breastfeeding, aged 18-40 years, were included and categorized based on body mass index (BMI) to the obese (BMI ≥ 30 kg/m2) and normal-weights (18.5 ≤ BMI ≤ 24.9). Bacterial DNA was extracted and qPCR of the 16S region was performed after human milk donation in a sterile condition. A multiple linear mixed model was used to determine the effective factors on the phyla population. Bifidobacterium spp. was significantly higher in milk of normal-weight group than the obese. The current weight showed a significant effect on the Actinobacteria abundance in milk. The Bacteroidetes and Firmicutes were significantly lower in mother's milk with cesarean section (p = 0.04). Pre-pregnancy obesity decreased the Firmicutes and Lactobacillus abundance in maternal milk (p = 0.04 and p = 0.01). The Actinobacteria and Bifidobacterium spp. showed a significant effect on infant's height (p = 0.008 and p = 0.04). The maternal current and pre-pregnancy weight showed an important effect on abundance of Actinobacteria and Bifidobacterium spp., as the good phyla and genus in milk which are associated with the infant's height.
Collapse
Affiliation(s)
- Shahla Karami
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Khorramshahr Blv, Honarestan St., 3rd Shaban St., Shahid Avval Ave, Zanjan, Iran.
| | - Reza Shapouri
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
| | - Hasti Naderloo
- Department of Nutrition, School of Public Health, Zanjan University of Medical Sciences, Khorramshahr Blv, Honarestan St., 3rd Shaban St., Shahid Avval Ave, Zanjan, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
38
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
39
|
Chen Z, Xiao L, Sun Q, Chen Q, Hua W, Zhang J. Effects of Acremonium terricola Culture on Lactation Performance, Immune Function, Antioxidant Capacity, and Intestinal Flora of Sows. Antioxidants (Basel) 2024; 13:970. [PMID: 39199216 PMCID: PMC11352107 DOI: 10.3390/antiox13080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
This study aimed to determine the effects of different doses of Acremonium terricola culture (ATC) on lactation performance, immune function, antioxidant capacity, and intestinal flora of sows. Forty-five Landrace sows (3-6 parity) were randomly assigned to the following three treatments from 85 days of gestation to 21 days after farrowing: a control diet (CON, basal diet), a low-dose Acremonium terricola culture diet (0.2% ATC, basal diet + 0.2% ATC), and a high-dose Acremonium terricola culture diet (0.4% ATC, basal diet + 0.4% ATC). Compared with the CON group, the supplementation of 0.2% ATC increased the average daily milk yield of sows by 4.98%, increased milk fat, total solids, and freezing point depression on day 1 postpartum (p < 0.05), increased serum concentration of Triiodothyronine, Thyroxin, and Estradiol on day 21 postpartum (p < 0.05). Compared with the CON group, the supplementation of 0.4% ATC increased the average daily milk yield of sows by 9.38% (p < 0.05). Furthermore, the supplementation of 0.2% ATC increased serum concentration of IgG, IgM, and IFN-γ, CD4 on day 1 postpartum (p < 0.05) and increased serum concentration of immunoglobulin A ( IgA), immunoglobulin G (IgG), immunoglobulin M ( IgM), complement 3 (C3), cluster of differentiation 4 (CD4), cluster of differentiation 8 (CD8), interferon-γ (IFN-γ) on day 21 postpartum (p < 0.05), while the supplementation of 0.4% ATC reduced serum concentration of IL-2 on day 21 postpartum (p < 0.05). Moreover, the supplementation of 0.4% ATC significantly increased serum concentration of catalase (CAT) (p < 0.05). Additionally, the supplementation of ATC affected the relative abundance of the intestinal flora at different taxonomic levels in sows and increased the abundance of beneficial bacteria such as in the norank_f__Eubacterium_coprostanoligenes group, Eubacterium_coprostanoligenes group, and Lachnospiraceae_XPB1014 group of sows, while reducing the abundance of harmful bacteria such as Phascolarctobacterium and Clostridium_sensu_stricto_1. These data revealed that the supplementation of ATC during late gestation and lactation can improve lactation performance, immune function, antioxidant capacity, and the gut microbiota. Compared with supplementation of 0.4% ATC, 0.2% ATC enhances the levels of thyroid-related hormones, specific antibodies, and cytokines in serum, promotes the diversity of beneficial gut microbiota, beneficial bacteria in the intestine, reduces the population of harmful bacteria, and thereby bolsters the immunity of sows. Hence, 0.2% ATC is deemed a more optimal concentration.
Collapse
Affiliation(s)
- Zhirong Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qian Sun
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| | - Weidong Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; (Z.C.); (L.X.); (Q.S.); (Q.C.)
| |
Collapse
|
40
|
Zhang X, Chen L, Zhang T, Gabo R, Wang Q, Zhong Z, Yao M, Wei W, Su X. Duodenal microbiota dysbiosis in functional dyspepsia and its potential role of the duodenal microbiota in gut-brain axis interaction: a systematic review. Front Microbiol 2024; 15:1409280. [PMID: 39165566 PMCID: PMC11333454 DOI: 10.3389/fmicb.2024.1409280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Background and aims Functional dyspepsia (FD) is a common gastrointestinal disorder associated with brain-gut interaction disturbances. In recent years, accumulating evidence points to the duodenum as a key integrator in dyspepsia symptom generation. Investigations into the pathological changes in the duodenum of FD patients have begun to focus on the role of duodenal microbiota dysbiosis. This review summarizes duodenal microbiota changes in FD patients and explores their relationship with gut-brain interaction dysregulation. Methods Ten databases, including PubMed, MEDLINE, and the Cochrane Library, were searched from inception to 10th October 2023 for clinical interventional and observational studies comparing the duodenal microbiota of FD patients with controls. We extracted and qualitatively summarized the alpha diversity, beta diversity, microbiota composition, and dysbiosis-related factors. Results A total of nine studies, consisting of 391 FD patients and 132 non-FD controls, were included. The findings reveal that the alpha diversity of the duodenal microbiota in FD patients does not exhibit a significant difference compared to non-FD controls, although an upward trend is observed. Furthermore, alterations in the duodenal microbiota of FD patients are associated with the symptom burden, which, in turn, impacts their quality of life. In FD patients, a considerable number of duodenal microbiota demonstrate a marked ascending trend in relative abundance, including taxa such as the phylum Fusobacteria, the genera Alloprevotella, Corynebacterium, Peptostreptococcus, Staphylococcus, Clostridium, and Streptococcus. A more pronounced declining trend is observed in the populations of the genera Actinomyces, Gemella, Haemophilus, Megasphaera, Mogibacterium, and Selenomonas within FD patients. A negative correlation in the relative abundance changes between Streptococcus and Prevotella is identified, which correlates with the severity of symptom burden in FD patients. Moreover, the alterations in specific microbial communities in FD patients and their potential interactions with the gut-brain axis merit significant attention. Conclusion Microbial dysbiosis in FD patients is linked to the onset and exacerbation of symptoms and is related to the disorder of gut-brain interaction. Larger-scale, higher-quality studies, along with comprehensive meta-omics research, are essential to further elucidate the characteristics of the duodenal microbiota in FD patients and its role in FD pathogenesis.Systematic review registration: CRD42023470279, URL: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023470279.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Wei
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Su
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Bui TPN. The Human Microbiome as a Therapeutic Target for Metabolic Diseases. Nutrients 2024; 16:2322. [PMID: 39064765 PMCID: PMC11280041 DOI: 10.3390/nu16142322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The human microbiome functions as a separate organ in a symbiotic relationship with the host. Disruption of this host-microbe symbiosis can lead to serious health problems. Modifications to the composition and function of the microbiome have been linked to changes in host metabolic outcomes. Industrial lifestyles with high consumption of processed foods, alcoholic beverages and antibiotic use have significantly altered the gut microbiome in unfavorable ways. Therefore, understanding the causal relationship between the human microbiome and host metabolism will provide important insights into how we can better intervene in metabolic health. In this review, I will discuss the potential use of the human microbiome as a therapeutic target to improve host metabolism.
Collapse
Affiliation(s)
- Thi Phuong Nam Bui
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
42
|
Wekema L, Schoenmakers S, Schenkelaars N, Laskewitz A, Liu L, Walters L, Harmsen HJM, Steegers-Theunissen RPM, Faas MM. Obesity and diet independently affect maternal immunity, maternal gut microbiota and pregnancy outcome in mice. Front Immunol 2024; 15:1376583. [PMID: 39072322 PMCID: PMC11272480 DOI: 10.3389/fimmu.2024.1376583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Maternal obesity poses risks for both mother and offspring during pregnancy, with underlying mechanisms remaining largely unexplored. Obesity is associated with microbial gut dysbiosis and low-grade inflammation, and also the diet has a major impact on these parameters. This study aimed to investigate how maternal obesity and diet contribute to changes in immune responses, exploring potential associations with gut microbiota dysbiosis and adverse pregnancy outcomes in mice. Methods Before mating, C57BL/6 mice were assigned to either a high-fat-diet (HFD) or low-fat-diet (LFD) to obtain obese (n=17) and lean (n=10) mice. To distinguish between the effects of obesity and diet, 7 obese mice were switched from the HFD to the LFD from day 7 until day 18 of pregnancy ("switch group"), which was the endpoint of the study. T helper (Th) cell subsets were studied in the spleen, mesenteric lymph nodes (MLN) and Peyer's patches (PP), while monocyte subsets and activation status were determined in maternal blood (flow cytometry). Feces were collected before and during pregnancy (day 7,14,18) for microbiota analysis (16S rRNA sequencing). Pregnancy outcome included determination of fetal and placental weight. Results Obesity increased splenic Th1 and regulatory T cells, MLN Th1 and PP Th17 cells and enhanced IFN-γ and IL-17A production by splenic Th cells upon ex vivo stimulation. Switching diet decreased splenic and PP Th2 cells and classical monocytes, increased intermediate monocytes and activation of intermediate/nonclassical monocytes. Obesity and diet independently induced changes in the gut microbiota. Various bacterial genera were increased or decreased by obesity or the diet switch. These changes correlated with the immunological changes. Fetal weight was lower in the obese than the lean group, while placental weight was lower in the switch than the obese group. Discussion This study demonstrates that obesity and diet independently impact peripheral and intestinal immune responses at the end of pregnancy. Simultaneously, both factors affect specific bacterial gut genera and lead to reduced fetal or placental weight. Our data suggest that switching diet during pregnancy to improve maternal health is not advisable and it supports pre/probiotic treatment of maternal obesity-induced gut dysbiosis to improve maternal immune responses and pregnancy outcome.
Collapse
Affiliation(s)
- Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anne Laskewitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lisa Walters
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
43
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
44
|
Tochitani S, Tsukahara T, Inoue R. Perturbed maternal microbiota shapes offspring microbiota during early colonization period in mice. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:335-352. [PMID: 38692912 PMCID: PMC11377213 DOI: 10.2183/pjab.100.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Recent studies have highlighted the impact of disrupted maternal gut microbiota on the colonization of offspring gut microbiota, with implications for offspring developmental trajectories. The extent to which offspring inherit the characteristics of altered maternal gut microbiota remains elusive. In this study, we employed a mouse model where maternal gut microbiota disruption was induced using non-absorbable antibiotics. Systematic chronological analyses of dam fecal samples, offspring luminal content, and offspring gut tissue samples revealed a notable congruence between offspring gut microbiota profiles and those of the perturbed maternal gut microbiota, highlighting the profound influence of maternal microbiota on early-life colonization of offspring gut microbiota. Nonetheless, certain dominant bacterial genera in maternal microbiota did not transfer to the offspring, indicating a bacterial taxonomy-dependent mechanism in the inheritance of maternal gut microbiota. Our results embody the vertical transmission dynamics of disrupted maternal gut microbiota in an animal model, where the gut microbiota of an offspring closely mirrors the gut microbiota of its mother.
Collapse
Affiliation(s)
- Shiro Tochitani
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- Department of Child Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
45
|
Chandel N, Maile A, Shrivastava S, Verma AK, Thakur V. Establishment and perturbation of human gut microbiome: common trends and variations between Indian and global populations. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e8. [PMID: 39776539 PMCID: PMC11704572 DOI: 10.1017/gmb.2024.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 01/11/2025]
Abstract
Human gut microbial species are crucial for dietary metabolism and biosynthesis of micronutrients. Digested products are utilised by the host as well as several gut bacterial species. These species are influenced by various factors such as diet, age, geographical location, and ethnicity. India is home to the largest human population in the world. It is spread across diverse ecological and geographical locations. With variable dietary habits and lifestyles, Indians have unique gut microbial composition. This review captures contrasting and common trends of gut bacterial community establishment in infants (born through different modes of delivery), and how that bacterial community manifests itself along infancy, through old age between Indian and global populations. Because dysbiosis of the gut community structure is associated with various diseases, this review also highlights the common and unique bacterial species associated with various communicable as well as noncommunicable diseases such as diarrhoea, amoebiasis, malnutrition, type 2 diabetes, obesity, colorectal cancer, inflammatory bowel disease, and gut inflammation and damage to the brain in the global and Indian population.
Collapse
Affiliation(s)
- Nisha Chandel
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| | - Anwesh Maile
- DBT-Centre for Microbial Informatics, University of Hyderabad, Hyderabad, India
| | - Suyesh Shrivastava
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Anil Kumar Verma
- ICMR-National Institute of Research in Tribal Health (NIRTH), Jabalpur, India
| | - Vivek Thakur
- Department of Systems and Computational Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
46
|
Chaudhary PP, Kaur M, Myles IA. Does "all disease begin in the gut"? The gut-organ cross talk in the microbiome. Appl Microbiol Biotechnol 2024; 108:339. [PMID: 38771520 PMCID: PMC11108886 DOI: 10.1007/s00253-024-13180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
The human microbiome, a diverse ecosystem of microorganisms within the body, plays pivotal roles in health and disease. This review explores site-specific microbiomes, their role in maintaining health, and strategies for their upkeep, focusing on oral, lung, vaginal, skin, and gut microbiota, and their systemic connections. Understanding the intricate relationships between these microbial communities is crucial for unraveling mechanisms underlying human health. Recent research highlights bidirectional communication between the gut and distant microbiome sites, influencing immune function, metabolism, and disease susceptibility. Alterations in one microbiome can impact others, emphasizing their interconnectedness and collective influence on human physiology. The therapeutic potential of gut microbiota in modulating distant microbiomes offers promising avenues for interventions targeting various disorders. Through interdisciplinary collaboration and technological advancements, we can harness the power of the microbiome to revolutionize healthcare, emphasizing microbiome-centric approaches to promote holistic well-being while identifying areas for future research.
Collapse
Affiliation(s)
- Prem Prashant Chaudhary
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mahaldeep Kaur
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Myles
- Laboratory of Clinical Immunology and Microbiology, Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
47
|
Beckers KF, Flanagan JP, Sones JL. Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. Int J Obes (Lond) 2024; 48:439-448. [PMID: 38145995 PMCID: PMC10978494 DOI: 10.1038/s41366-023-01438-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Obesity is becoming a worldwide pandemic with over one billion people affected. Of women in the United States, who are of childbearing age, two-thirds of them are considered overweight/obese. Offspring of women with obesity have a greater likelihood of developing cardiometabolic disease later in life, therefore making obesity a transgenerational issue. Emerging topics such as maternal microbial dysbiosis with altered levels of bacterial phyla and maternal obesity programming offspring cardiometabolic disease are a novel area of research discussed in this review. In the authors' opinion, beneficial therapeutics will be developed from knowledge of bacterial-host interactions at the most specific level possible. Although there is an abundance of obesity-related microbiome research, it is not concise, readily available, nor easy to interpret at this time. This review details the current knowledge regarding the relationship between obesity and the gut microbiome, with an emphasis on maternal obesity.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Juliet P Flanagan
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA.
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
- Clinical Sciences, Colorado State University College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, USA.
| |
Collapse
|
48
|
Faghfuri E, Gholizadeh P. The role of Akkermansia muciniphila in colorectal cancer: A double-edged sword of treatment or disease progression? Biomed Pharmacother 2024; 173:116416. [PMID: 38471272 DOI: 10.1016/j.biopha.2024.116416] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is the second most cancer-related death worldwide. In recent years, probiotics have been used to reduce the potential risks of CRC and tumors with various mechanisms. Different bacteria have been suggested to play different roles in the progression, prevention, or treatment of CRC. Akkermansia muciniphila is considered a next-generation probiotic for preventing and treating some diseases. Therefore, in this review article, we aimed to describe and discuss different mechanisms of A. muciniphila as an intestinal microbiota or probiotic in CRC. Some studies suggested that the abundance of A. muciniphila was higher or increased in CRC patients compared to healthy individuals. However, the decreased abundance of A. muciniphila was associated with severe symptoms of CRC, indicating that A. muciniphila did not play a role in the development of CRC. In addition, A. muciniphila administration elevates gene expression of proliferation-associated molecules such as S100A9, Dbf4, and Snrpd1, or markers for cell proliferation. Some other studies suggested that inflammation and tumorigenesis in the intestine might promoted by A. muciniphila. Overall, the role of A. muciniphila in CRC development or inhibition is still unclear and controversial. Various methods of bacterial supplementation, such as viability, bacterial number, and abundance, could all influence the colonization effect of A. muciniphila administration and CRC progression. Overall, A. mucinipila has been revealed to modulate the therapeutic potential of immune checkpoint inhibitors. Preliminary human data propose that oral consumption of A. muciniphila is safe, but its efficacy needs to be confirmed in more human clinical studies.
Collapse
Affiliation(s)
- Elnaz Faghfuri
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pourya Gholizadeh
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
49
|
Sun Y, Hao Y, Wang S, Chen X. Changes in the bacterial communities of Harmonia axyridis (Coleoptera: Coccinellidae) in response to long-term cold storage and progressive loss of egg viability in cold-stored beetles. Front Microbiol 2024; 15:1276668. [PMID: 38533331 PMCID: PMC10964723 DOI: 10.3389/fmicb.2024.1276668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Bacteria have a profound influence on life history and reproduction of numerous insects, while the associations between hosts and bacteria are substantially influenced by environmental pressures. Cold storage is crucial for extending the shelf life of insects used as tools for biological control, but mostly causes detrimental effects. In this study, we observed a great decrease in egg hatch rate of cold-stored Harmonia axyridis during the later oviposition periods. Furthermore, most eggs produced by their F1 offspring exhibited complete loss of hatchability. We hypothesized that long-term exposure to cold may greatly alter the bacterial community within the reproductive tracts of H. axyridis, which may be an important factor contributing to the loss of egg viability. Through sequencing of the 16S rRNA gene, we discovered considerable changes in the bacterial structure within the reproductive tracts of female cold-stored beetles (LCS_F) compared to non-stored beetles (Control_F), with a notable increase in unclassified_f_Enterobacteriaceae in LCS_F. Furthermore, in accordance with the change of egg hatchability, we observed a slight variation in the microbial community of eggs produced by cold-stored beetles in early (Egg_E) and later (Egg_L) oviposition periods as well as in eggs produced by their F1 offspring (Egg_F1). Functional predictions of the microbial communities revealed a significant decrease in the relative abundance of substance dependence pathway in LCS_F. Moreover, this pathway exhibited relatively lower abundance levels in both Egg_L and Egg_F1 compared to Egg_E. These findings validate that long-term cold storage can greatly modify the bacterial composition within H. axyridis, thereby expanding our understanding of the intricate bacteria-insect host interactions.
Collapse
Affiliation(s)
- Yuanxing Sun
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | | | | | | |
Collapse
|
50
|
Song Y, Bai Y, Liu C, Zhai X, Zhang L. The impact of gut microbiota on autoimmune thyroiditis and relationship with pregnancy outcomes: a review. Front Cell Infect Microbiol 2024; 14:1361660. [PMID: 38505287 PMCID: PMC10948601 DOI: 10.3389/fcimb.2024.1361660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Autoimmune thyroiditis (AITD) is a T-cell-mediated, organ- specific autoimmune disease caused by interactions between genetic and environmental factors. Patients with AITD show thyroid lymphocyte infiltration and an increase in the titer of thyroid autoimmune antibodies, thereby altering the integrity of thyroid follicle epithelial cells and dysregulating their metabolism and immune function, leading to a decrease in multi-tissue metabolic activity. Research has shown that patients with AITD have a significantly higher risk of adverse pregnancy outcomes, such as infertility and miscarriage. Levothyroxine(LT4) treatment can improve the pregnancy outcomes of normal pregnant women with thyroid peroxidase antibodies(TPOAb) positivity, but it is not effective for invitro fertilization embryo transfer (IVF-ET) in women with normal thyroid function and positive TPOAb. Other factors may also influence pregnancy outcomes of patients with AITD. Recent studies have revealed that the gut microbiota participates in the occurrence and development of AITD by influencing the gut-thyroid axis. The bacterial abundance and diversity of patients with Hashimoto thyroiditis (HT) were significantly reduced, and the relative abundances of Bacteroides, fecal Bacillus, Prevotella, and Lactobacillus also decreased. The confirmation of whether adjusting the composition of the gut microbiota can improve pregnancy outcomes in patients with AITD is still pending. This article reviews the characteristics of the gut microbiota in patients with AITD and the current research on its impact in pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Le Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|