1
|
Campion SL, Brenna E, Thomson E, Fischer W, Ladell K, McLaren JE, Price DA, Frahm N, McElrath JM, Cohen KW, Maenza JR, Walsh SR, Baden LR, Haynes BF, Korber B, Borrow P, McMichael AJ. Preexisting memory CD4+ T cells contribute to the primary response in an HIV-1 vaccine trial. J Clin Invest 2021; 131:e150823. [PMID: 34850742 PMCID: PMC8631594 DOI: 10.1172/jci150823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1-seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen.
Collapse
Affiliation(s)
- Suzanne L. Campion
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elena Brenna
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Elaine Thomson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Will Fischer
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | | | | | - David A. Price
- Division of Infection and Immunity and
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Nicole Frahm
- Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Juliana M. McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kristen W. Cohen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Janine R. Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Stephen R. Walsh
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Lindsey R. Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Barton F. Haynes
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Bette Korber
- Los Alamos National Laboratory, Santa Fe, New Mexico, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew J. McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Med 2020; 17:e1003117. [PMID: 32442195 PMCID: PMC7244095 DOI: 10.1371/journal.pmed.1003117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA plasmids promise a pragmatic alternative to viral vectors for prime-boost HIV-1 vaccines. We evaluated DNA plasmid versus canarypox virus (ALVAC) primes in 2 randomized, double-blind, placebo-controlled trials in southern Africa with harmonized trial designs. HIV Vaccine Trials Network (HVTN) 111 tested DNA plasmid prime by needle or needleless injection device (Biojector) and DNA plasmid plus gp120 protein plus MF59 adjuvant boost. HVTN 100 tested ALVAC prime and ALVAC plus gp120 protein plus MF59 adjuvant boost (same protein/adjuvant as HVTN 111) by needle. METHODS AND FINDINGS The primary endpoints for this analysis were binding antibody (bAb) responses to HIV antigens (gp120 from strains ZM96, 1086, and TV1; variable 1 and 2 [V1V2] regions of gp120 from strains TV1, 1086, and B.CaseA, as 1086 V1V2 and B.CaseA were correlates of risk in the RV144 efficacy trial), neutralizing antibody (nAb) responses to pseudoviruses TV1c8.2 and MW925.26, and cellular responses to vaccine-matched antigens (envelope [Env] from strains ZM96, 1086, and TV1; and Gag from strains LAI and ZM96) at month 6.5, two weeks after the fourth vaccination. Per-protocol cohorts included vaccine recipients from HVTN 100 (n = 186, 60% male, median age 23 years) enrolled between February 9, 2015, and May 26, 2015 and from HVTN 111 (n = 56, 48% male, median age 24 years) enrolled between June 21, 2016, and July 13, 2017. IgG bAb response rates were 100% to 3 Env gp120 antigens in both trials. Response rates to V1V2 were lower and similar in both trials except to vaccine-matched 1086 V1V2, with rates significantly higher for the DNA-primed regimen than the ALVAC-primed regimen: 96.6% versus 72.7% (difference = 23.9%, 95% CI 15.6%-32.2%, p < 0.001). Among positive responders, bAb net mean fluorescence intensity (MFI) was significantly higher with the DNA-primed regimen than ALVAC-primed for 1086 V1V2 (geometric mean [GM] 2,833.3 versus 1,200.9; ratio = 2.36, 95% CI 1.42-3.92, p < 0.001) and B.CaseA V1V2 (GM 2314.0 versus 744.6, ratio = 3.11, 95% CI 1.51-6.38, p = 0.002). nAb response rates were >98% in both trials, with significantly higher 50% inhibitory dilution (ID50) among DNA-primed positive responders (n = 53) versus ALVAC-primed (n = 182) to tier 1A MW965.26 (GM 577.7 versus 265.7, ratio = 2.17, 95% CI 1.67-2.83, p < 0.001) and to TV1c8.2 (GM 187.3 versus 100.4, ratio = 1.87, 95% CI 1.48-2.35, p < 0.001). CD4+ T-cell response rates were significantly higher with DNA plasmid prime via Biojector than ALVAC prime (91.4% versus 52.8%, difference = 38.6%, 95% CI 20.5%-56.6%, p < 0.001 for ZM96.C; 88.0% versus 43.1%, difference = 44.9%, 95% CI 26.7%-63.1%, p < 0.001 for 1086.C; 55.5% versus 2.2%, difference = 53.3%, 95% CI 23.9%-82.7%, p < 0.001 for Gag LAI/ZM96). The study's main limitations include the nonrandomized comparison of vaccines from 2 different trials, the lack of data on immune responses to other non-vaccine-matched antigens, and the uncertain clinical significance of the observed immunological effects. CONCLUSIONS In this study, we found that further investigation of DNA/protein regimens is warranted given enhanced immunogenicity to the V1V2 correlates of decreased HIV-1 acquisition risk identified in RV144, the only HIV vaccine trial to date to show any efficacy.
Collapse
|
3
|
Rezaei T, Khalili S, Baradaran B, Mosafer J, Rezaei S, Mokhtarzadeh A, de la Guardia M. Recent advances on HIV DNA vaccines development: Stepwise improvements to clinical trials. J Control Release 2019; 316:116-137. [PMID: 31669566 DOI: 10.1016/j.jconrel.2019.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023]
Abstract
According to WHO (World Health Organization) reports, more than 770,000 people died from HIV and almost 1.7 million people becoming newly infected in the worldwide in 2018. Therefore, many attempts should be done to produce a forceful vaccine to control the AIDS. DNA-based vaccines have been investigated for HIV vaccination by researches during the recent 20 years. The DNA vaccines are novel approach for induction of both type of immune responses (cellular and humoral) in the host cells and have many advantages including high stability, fast and easy of fabrication and absence of severe side effects when compared with other vaccination methods. Recent studies have been focused on vaccine design, immune responses and on the use of adjuvants as a promising strategy for increased level of responses, delivery approaches by viral and non-viral methods and vector design for different antigens of HIV virus. In this review, we outlined the aforementioned advances on HIV DNA vaccines. Then we described the future trends in clinical trials as a strong strategy even in healthy volunteers and the potential developments in control and prevention of HIV.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Faculty of Sciences, Shahid Rajee Teacher Training University, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Sarah Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
4
|
Abstract
Nasal delivery offers many benefits over traditional approaches to vaccine administration. These include ease of administration without needles that reduces issues associated with needlestick injuries and disposal. Additionally, this route offers easy access to a key part of the immune system that can stimulate other mucosal sites throughout the body. Increased acceptance of nasal vaccine products in both adults and children has led to a burgeoning pipeline of nasal delivery technology. Key challenges and opportunities for the future will include translating in vivo data to clinical outcomes. Particular focus should be brought to designing delivery strategies that take into account the broad range of diseases, populations and healthcare delivery settings that stand to benefit from this unique mucosal route.
Collapse
Affiliation(s)
- Helmy Yusuf
- a School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| | - Vicky Kett
- b School of Pharmacy, Queen's University of Belfast , Belfast , Antrim , UK
| |
Collapse
|
5
|
Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials. Vaccine 2015; 33:2347-53. [PMID: 25820067 DOI: 10.1016/j.vaccine.2015.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
Abstract
Plasmid DNA vaccines have been licensed for use in domesticated animals because of their excellent immunogenicity, but none have yet been licensed for use in humans. Here we report a retrospective analysis of 1218 healthy human volunteers enrolled in 10 phase I clinical trials in which DNA plasmids encoding HIV antigens were administered. Elicited T-cell immune responses were quantified by validated intracellular cytokine staining (ICS) stimulated with HIV peptide pools. HIV-specific binding and neutralizing antibody activities were also analyzed using validated assays. Results showed that, in the absence of adjuvants and boosting with alternative vaccines, DNA vaccines elicited CD8+ and CD4+ T-cell responses in an average of 13.3% (95% CI: 9.8-17.8%) and 37.7% (95% CI: 31.9-43.8%) of vaccine recipients, respectively. Three vaccinations (vs. 2) improved the proportion of subjects with antigen-specific CD8+ responses (p=0.02), as did increased DNA dosage (p=0.007). Furthermore, female gender and participants having a lower body mass index were independently associated with higher CD4+ T-cell response rate (p=0.001 and p=0.008, respectively). These vaccines elicited minimal neutralizing and binding antibody responses. These findings of the immunogenicity of HIV DNA vaccines in humans can provide guidance for future clinical trials.
Collapse
|
6
|
|
7
|
Chang DZ, Lomazow W, Joy Somberg C, Stan R, Perales MA. Granulocyte-Macrophage Colony Stimulating Factor: An Adjuvant for Cancer Vaccines. Hematology 2013; 9:207-15. [PMID: 15204102 DOI: 10.1080/10245330410001701549] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances immune responses by inducing the proliferation, maturation, and migration of dendritic cells, and the expansion and differentiation of B and T lymphocytes. There is significant data in pre-clinical animal models demonstrating the adjuvant effects of GM-CSF in a variety of cancer vaccine approaches, including cellular vaccines, viral vaccines, peptide and protein vaccines, and DNA vaccines. GM-CSF is an attractive vaccine adjuvant because of its immune modulation effects and low toxicity profile. The results in animal models have been confirmed in pilot clinical trials and several clinical trials are currently ongoing.
Collapse
Affiliation(s)
- David Z Chang
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
8
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
9
|
Abstract
The quest for an effective and safe HIV-1 vaccine has been and still is the aspiration of many scientists and clinicians worldwide. Until recently, the hopes for an effective vaccine were thwarted by the disappointing results and early termination in September 2007 of the STEP study, which saw a subgroup of male vaccine recipients at an increased risk of HIV-1 infection, and the failure of earlier trials of vaccines based on recombinant envelope proteins to provide any level of protection. The results of the STEP study raised important questions in the field of HIV vaccines, including the use of recombinant adenovirus vectors as immunogens, the rationale for the development of T-cell-based vaccines and the development pathway for these vaccines, in terms of assessment of immunogenicity and the challenge models used. The study of neutralizing antibodies has demonstrated that the induction of high-titre, broadly neutralizing antibodies in the majority of recipients is likely to be highly problematic. However, the results of the RV144 Thai trial released in September 2009 have brought new optimism to the field. This study employed envelope-based immunogens delivered as a priming vaccination with a recombinant poxvirus vector and boosting with recombinant proteins. This regimen provided modest protection to HIV-1 infection in a low-risk population. Although the correlates of protection are currently unknown, extensive studies are underway to try to determine these. Neutralizing antibodies were not induced in the RV144 study; however, considerable titres of binding antibodies to HIV-1 viral envelope (Env) were. It is speculated that these antibodies may have provided a means of protection by a mechanism such as antibody-dependent cell-mediated cytotoxicity. In addition, no CD8+ T-cell responses were induced, but robust CD4+ T-cell responses were, and correlates of protection are being sought by analysing the quality of this aspect of the vaccine-induced immune response. The current paradigm for an optimal HIV-1 vaccine is to design immunogens and vaccination protocols that allow the induction of both broadly neutralizing humoral and broadly reactive and effective cell-mediated immunity, to act at sites of possible infection and post-infection, respectively. However, this is challenged by the results of the RV144 trial as neither of these responses were induced but modest protection was observed. Understanding the biology and immunopathology of HIV-1 early following infection, its modes of transmission and the human immune system's response to the virus should aid in the rational design of vaccines of increased efficacy.
Collapse
Affiliation(s)
- C Mee Ling Munier
- HIV Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
10
|
Abstract
The Merck STEP and the Thai RV144 human immunodeficiency virus (HIV) vaccine trials confirmed that we still have a long way to go before developing a prophylactic HIV vaccine. The main issue at hand is that we have yet to identify an immunological correlate of protection against HIV. While many question the T-cell-based approach towards vaccine development, it is likely that T cells will be a necessary part of any vaccine strategy. CD8(+) T cells remain an attractive option because of their ability to specifically recognize and eliminate virally infected host cells. In this review, we recapitulate the evidence for CD8(+) T cells as an immunological correlate against HIV, but more importantly, we assess the means by which we evaluate their antiviral capacity. To achieve a breakthrough in the domain of T-cell-based HIV vaccine development, it has become abundantly clear that we must overhaul our system of immune monitoring and come up with a 'rational' tactic to evaluate the efficacy of HIV-specific CD8(+) T cells.
Collapse
|
11
|
Abstract
The use of gene constructs for DNA immunization offers several potential advantages over other commonly used vaccine approaches: (1) full-length cDNA provides multiple potential class I and class II epitopes, thus bypassing limitations of MHC restriction; (2) bacterial plasmid DNA contains immunogenic unmethylated CpG motifs (immunostimulatory sequences) that may act as a potent immunological adjuvant; and (3) DNA is relatively simple to purify in large quantities. The cDNA encoding the antigen of interest is cloned into a bacterial expression plasmid with a constitutively active promoter and this plasmid is injected into the skin or muscle where it is taken up by professional antigen-presenting cells, particularly dendritic cells, either through direct transfection or cross-priming. One can further enhance or modulate the immune response through co-delivery of DNA encoding cytokines or chemokines, including cytokine-Fc fusion molecules. The latter use molecular techniques to fuse a cytokine to the Fc portion of IgG1, creating a chimeric molecule with functional activity. In the present chapter, we will outline the approach to develop cytokine-Fc fusion genes as molecular adjuvants and will use GM-CSF as an example.
Collapse
|
12
|
Movsesyan N, Davtyan H, Mkrtichyan M, Petrushina I, Tiraturyan T, Ross T, Agadjanyan MG, Ghochikyan A, Cribbs DH. Low concentrations of anti-Aβ antibodies generated in Tg2576 mice by DNA epitope vaccine fused with 3C3d molecular adjuvant do not affect AD pathology. Hum Gene Ther 2010; 21:1569-76. [PMID: 20528468 PMCID: PMC2978548 DOI: 10.1089/hum.2009.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 06/08/2010] [Indexed: 12/23/2022] Open
Abstract
It has been demonstrated that an active vaccination strategy with protein- or DNA-based epitope vaccines composed of the immunodominant self B cell epitope of amyloid-β₄₂ (Aβ₄₂) and a non-self T helper (Th) cell epitope is an immunotherapeutic approach to preventing or treating Alzheimer's disease (AD). As a DNA-based epitope vaccine, we used a plasmid encoding three copies of Aβ(1-11) and Th cell epitope, PADRE (p3Aβ(1-11)-PADRE). We have previously reported that three copies of component of complement C3d (3C3d) acts as a molecular adjuvant significantly enhancing immune responses in wild-type mice of the H2(b) haplotype immunized with p3Aβ(1-11)-PADRE. Here, we tested the efficacy of p3Aβ(1-11)-PADRE and the same vaccine fused with 3C3d (p3Aβ(1-11)-PADRE-3C3d) in a transgenic (Tg) mouse model of AD (Tg2576) of the H2(bxs) immune haplotype. The overall responses to both vaccines were very weak in Tg2576 mice despite the fact that the 3C3d molecular adjuvant significantly enhanced the anti-Aβ response to 3Aβ(1-11)-PADRE. Importantly, generation of low antibody responses was associated with the strain of amyloid precursor protein Tg mice rather than with a molecular adjuvant, as a p3Aβ(1-11)-PADRE-3C3d vaccine induced significantly higher antibody production in another AD mouse model, 3xTg-AD of the H2(b) haplotype. Finally, this study demonstrated that low concentrations of antibodies generated by both DNA vaccines were not sufficient for the reduction of Aβ pathology in the brains of vaccinated Tg2576 animals, confirming previous reports from preclinical studies and the AN-1792 clinical trials, which concluded that the concentration of anti-Aβ antibodies may be essential for the reduction of AD pathology.
Collapse
Affiliation(s)
- Nina Movsesyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
- University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, Irvine, CA 92697
| | - Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
| | - Mikayel Mkrtichyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
| | - Irina Petrushina
- University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, Irvine, CA 92697
| | - Tigran Tiraturyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
| | - Ted Ross
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael G. Agadjanyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
- University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, Irvine, CA 92697
- Mechnikov Research Institute of Vaccine and Sera, Russian Academy of Medical Sciences, Moscow, Russia 105064
| | - Anahit Ghochikyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, CA 92647
| | - David H. Cribbs
- University of California, Irvine, Institute for Memory Impairments and Neurological Disorders, Irvine, CA 92697
- Department of Neurology, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
13
|
Improved DNA vaccination by skin-targeted delivery using dry-coated densely-packed microprojection arrays. J Control Release 2010; 148:327-33. [PMID: 20850487 DOI: 10.1016/j.jconrel.2010.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/04/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
HSV-2-gD2 DNA vaccine was precisely delivered to immunologically sensitive regions of the skin epithelia using dry-coated microprojection arrays. These arrays delivered a vaccine payload to the epidermis and the upper dermis of mouse skin. Immunomicroscopy results showed that, in 43 ± 5% of microprojection delivery sites, the DNA vaccine was delivered to contact with professional antigen presenting cells in the epidermal layer. Associated with this efficient delivery of the vaccine into the vicinity of the professional antigen presenting cells, we achieved superior antibody responses and statistically equal protection rate against an HSV-2 virus challenge, when compared with the mice immunized with intramuscular injection using needle and syringe, but with less than 1/10th of the delivered antigen.
Collapse
|
14
|
Ma CL, Wang GB, Gu RG, Wang F. Construction and characterization of calreticulin-HBsAg fusion gene recombinant adenovirus expression vector. World J Gastroenterol 2010; 16:3078-82. [PMID: 20572313 PMCID: PMC2890950 DOI: 10.3748/wjg.v16.i24.3078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To generate recombinant adenoviral vector containing calreticulin (CRT)-hepatitis B surface antigen (HBsAg) fusion gene for developing a safe, effective and HBsAg-specific therapeutic vaccine.
METHODS: CRT and HBsAg gene were fused using polymerase chain reaction (PCR), endonuclease digestion and ligation methods. The fusion gene was cloned into pENTR/D-TOPO transfer vector after the base pairs of DNA (CACC) sequence was added to the 5′ end. Adenoviral expression vector containing CRT-HBsAg fusion gene was constructed by homologous recombinantion. The human embryo kidney (HEK) 293A cells were transfected with linearized DNA plasmid of the recombinant adenoviral vector to package and amplify recombinant adenovirus. The recombinant adenovirus titer was characterized using the end-dilution assay. The expression of the CRT/HBsAg fusion protein in Ad-CRT/HBsAg infected 293A cells was detected by Western blotting.
RESULTS: The CRT-HBsAg fusion gene was characterized by PCR and sequencing and its length and sequence were confirmed to be accurate. The CRT-HBsAg fusion gene recombinant pENTR/D-TOPO transfer vector was constructed. The recombinant adenoviral vector, Ad-CRT/HBsAg, was generated successfully. The titer of Ad-CRT/HBsAg was characterized as 3.9 × 1011 pfu/mL. The CRT-HBsAg fusion protein was expressed by HEK 293A cells correctly.
CONCLUSION: CRT/HBsAg fusion gene recombinant replication-defective adenovirus expression vector is constructed successfully and this study has provided an experimental basis for further studies of Hepatitis B virus gene therapy.
Collapse
|
15
|
Medley CD, Muralidhara BK, Chico S, Durban S, Mehelic P, Demarest C. Quantitation of plasmid DNA deposited on gold particles for particle-mediated epidermal delivery using ICP-MS. Anal Bioanal Chem 2010; 398:527-35. [PMID: 20582693 DOI: 10.1007/s00216-010-3925-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/07/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
Abstract
DNA-plasmid-based vaccines are a promising class of next generation therapeutics. Particle-mediated epidermal delivery is an attractive method for the administration of DNA plasmid vaccines. This technology utilizes minute quantities of DNA plasmid which have been deposited onto the surface of 2-3-microm gold particles, and so the development of this technology requires the use of analytical methods that can accurately quantitate the amount of the DNA on the particle. Spectroscopic methods are generally insufficient for this task due to interference from the gold particle. ICP-MS circumvents this issue while allowing for the sensitive, reproducible, and accurate determination of the quantity of DNA on the particle surface. This report will detail the development and application of such a method.
Collapse
Affiliation(s)
- Colin D Medley
- Analytical Research and Development-Global Biologics, Pfizer Inc, St. Louis, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Zou Q, Zhong Y, Su H, Kang Y, Jin J, Liu Q, Geng S, Zhao G, Wang B. Enhancement of humoral and cellular responses to HBsAg DNA vaccination by immunization with praziquantel through inhibition TGF-beta/Smad2,3 signaling. Vaccine 2010; 28:2032-8. [PMID: 20188260 DOI: 10.1016/j.vaccine.2009.10.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Praziquantel (PZQ), which is used to treat all forms of schistosomiasis, has been shown to induce strong T cell activities and decrease T regulatory cell levels. In our study, we investigated whether PZQ may be used as an adjuvant for a hepatitis B surface antigen (HBsAg) DNA vaccine (pcD-S2) in eliciting strong humoral and cellular responses. Our data demonstrate that PZQ as an adjuvant increased T cell proliferation and an HBsAg-specific antibody response that was characterized by a higher ratio of IgG2a/IgG1. Moreover, a higher level of IFN-gamma in CD4(+) and CD8(+) T cells were elicited. In addition, a significantly antigen-specific cytotoxic T lymphocyte response was also observed. The expression of TGF-beta can be induced by HBsAg, while PZQ as an adjuvant can inhibit the expression of TGF-beta and TGF-beta/Smad2,3 signaling. The frequency of CD4(+)CD25(+)Foxp3(+) Treg cells was reduced. Importantly, the regulatory function of CD4(+)CD25(+) Treg cells was correspondingly impaired. Together, these results suggest that PZQ can enhance humoral and cellular responses to HBsAg DNA vaccination through inhibition TGF-beta/Smad2,3 signaling.
Collapse
Affiliation(s)
- Qiang Zou
- State Key Laboratory for Agro-Biotechnology, Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chadwick S, Kriegel C, Amiji M. Nanotechnology solutions for mucosal immunization. Adv Drug Deliv Rev 2010; 62:394-407. [PMID: 19931581 DOI: 10.1016/j.addr.2009.11.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 09/14/2009] [Indexed: 12/29/2022]
Abstract
The current prevalence of infectious diseases in many developing regions of the world is a serious burden, impacting both the general health as well as economic growth of these communities. Additionally, treatment with conventional medication becomes increasingly challenging due to emergence of new and drug resistant strains jeopardizing the progress made in recent years towards control and elimination of certain types of infectious diseases. Thus, from a public health perspective, prevention such as through immunization by vaccination, which has proven to be most effective, might be the best alternative to prevent and combat infectious diseases in these regions. To achieve this, development of wide-scale immunization programs become necessary including vaccines that can easily and widely be distributed, stored and administered. Mucosal vaccines offer great potential since they can be administered via oral or intranasal delivery route which does not require trained personnel, avoids the use of needles and improves overall patient compliance and acceptance. However, it necessitates the implementation of specific immunization strategies to improve their efficacy. Application of nanotechnology to design and create particle mediated delivery systems that can efficiently encapsulate vaccine components for protection of the sensitive payload, target the mucosal immune system and incorporate mucosal adjuvants maximizing immune response is key strategy to improve the effectiveness of mucosal vaccines.
Collapse
|
18
|
Liu T, Huang JC, Lu CL, Yang JL, Hu ZY, Gao F, Liu YX. Immunization with a DNA vaccine of testis-specific sodium-hydrogen exchanger by oral feeding or nasal instillation reduces fertility in female mice. Fertil Steril 2010; 93:1556-66. [DOI: 10.1016/j.fertnstert.2009.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 11/15/2022]
|
19
|
Prime-boost vaccination with recombinant mumps virus and recombinant vesicular stomatitis virus vectors elicits an enhanced human immunodeficiency virus type 1 Gag-specific cellular immune response in rhesus macaques. J Virol 2009; 83:9813-23. [PMID: 19625392 DOI: 10.1128/jvi.00550-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intramuscular inoculation of rhesus macaques with one or more doses of recombinant vesicular stomatitis virus (rVSV) expressing human immunodeficiency virus type 1 (HIV-1) Gag (rVSVgag) typically elicits peak cellular immune responses of 500 to 1,000 gamma interferon (IFN-gamma) enzyme-linked immunospots (ELISPOTS)/10(6) peripheral blood lymphocytes (PBL). Here, we describe the generation of a novel recombinant mumps virus (rMuV) expressing HIV-1 Gag (rMuVgag) and measure the Gag-specific cellular immune responses detected in rhesus macaques following vaccination with a highly attenuated form of rVSV expressing HIV-1 Gag (rVSVN4CT1gag1) and rMuVgag in various prime-boost combinations. Notably, peak Gag-specific cellular immune responses of 3,000 to 3,500 ELISPOTS/10(6) PBL were detected in macaques that were primed with rMuVgag and boosted with rVSVN4CT1gag1. Lower peak cellular immune responses were detected in macaques that were primed with rVSVN4CT1gag1 and boosted with rMuVgag, although longer-term gag-specific responses appeared to remain higher in this group of macaques. These findings indicate that rMuVgag may significantly enhance Gag-specific cellular immune responses when administered with rVSVN4CT1gag1 in heterologous prime-boost regimens.
Collapse
|
20
|
Abstract
Intramuscular (i.m.) DNA vaccination induces strong cellular immune responses in the mouse, but only at DNA doses that cannot be achieved in humans. Because antigen expression is weak after naked DNA injection, we screened five nonionic block copolymers of poly(ethyleneoxide)-poly(propyleneoxide) (PEO-PPO) for their ability to enhance DNA vaccination using a beta-galactosidase (betaGal) encoding plasmid, pCMV-betaGal, as immunogen. At a high DNA dose, formulation with the tetrafunctional block copolymers 304 (molecular weight [MW] 1,650) and 704 (MW 5,500) and the triblock copolymer Lutrol (MW 8,600) increased betaGal-specific interferon-gamma enzyme-linked immunosorbent spot (ELISPOT) responses 2-2.5-fold. More importantly, 704 allowed significant reductions in the dose of antigen-encoding plasmid. A single injection of 2 microg pCMV-betaGal with 704 gave humoral and ELISPOT responses equivalent to those obtained with 100 microg naked DNA and conferred protection in tumor vaccination models. However, 704 had no adjuvant properties for betaGal protein, and immune responses were only elicited by low doses of pCMV-betaGal formulated with 704 if noncoding carrier DNA was added to maintain total DNA dose at 20 microg. Overall, these results show that formulation with 704 and carrier DNA can reduce the dose of antigen-encoding plasmid by at least 50-fold.
Collapse
|
21
|
Chadwick S, Kriegel C, Amiji M. Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 2009; 9:427-40. [DOI: 10.1517/14712590902849224] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
|
23
|
Guimarães-Walker A, Mackie N, McCormack S, Hanke T, Schmidt C, Gilmour J, Barin B, McMichael A, Weber J, Legg K, Babiker A, Hayes P, Gotch F, Smith C, Dally L, Dorrell L, Cebere I, Kay R, Winstone N, Moore S, Goonetilleke N, Fast P, IAVI-006 Study Group. Lessons from IAVI-006, a phase I clinical trial to evaluate the safety and immunogenicity of the pTHr.HIVA DNA and MVA.HIVA vaccines in a prime-boost strategy to induce HIV-1 specific T-cell responses in healthy volunteers. Vaccine 2008; 26:6671-7. [PMID: 18812202 DOI: 10.1016/j.vaccine.2008.09.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 06/11/2008] [Accepted: 09/04/2008] [Indexed: 11/24/2022]
Abstract
IAVI-006 was the first large randomised, double-blinded, placebo-controlled Phase I clinical trial to systematically investigate the prime-boost strategy for induction of HIV-1 specific CD8+ cytotoxic T-lymphocytes (CTL) in a factorial trial design using (i) priming with 0.5 mg or 2 mg of pTHr.HIVA DNA vaccine, followed by (ii) two booster vaccinations with 5 x 10(7) MVA.HIVA at weeks 8 and 12 (early boost) or weeks 20 and 24 (late boost). This study set the basis for later clinical trials and demonstrated the safety of these candidate HIV vaccines. The safety and immunogenicity results are presented and the lessons derived from this clinical trial are discussed.
Collapse
Affiliation(s)
- A Guimarães-Walker
- Medical Research Council, Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
Collaborators
Don Stablein, Jason Kroll, G Schild, Barry Peters, Chris Conlon, Elizabeth Miller, Job Bwayo, Lucy Carpenter, Neil Almond, Walter Jaoko, Peter Smith, Charles Gilks, George Griffin, Richard Hayes, D Koech, Isaac Malonza, Jason Mwenda, Jeannie Pollock, Althea Thomas,
Collapse
|
24
|
Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D, Gilbert PB, Lama JR, Marmor M, Del Rio C, McElrath MJ, Casimiro DR, Gottesdiener KM, Chodakewitz JA, Corey L, Robertson MN, Step Study Protocol Team. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008; 372:1881-1893. [PMID: 19012954 PMCID: PMC2721012 DOI: 10.1016/s0140-6736(08)61591-3] [Citation(s) in RCA: 1355] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Observational data and non-human primate challenge studies suggest that cell-mediated immune responses might provide control of HIV replication. The Step Study directly assessed the efficacy of a cell-mediated immunity vaccine to protect against HIV-1 infection or change in early plasma HIV-1 levels. METHODS We undertook a double-blind, phase II, test-of-concept study at 34 sites in North America, the Caribbean, South America, and Australia. We randomly assigned 3000 HIV-1-seronegative participants by computer-generated assignments to receive three injections of MRKAd5 HIV-1 gag/pol/nef vaccine (n=1494) or placebo (n=1506). Randomisation was prestratified by sex, adenovirus type 5 (Ad5) antibody titre at baseline, and study site. Primary objective was a reduction in HIV-1 acquisition rates (tested every 6 months) or a decrease in HIV-1 viral-load setpoint (early plasma HIV-1 RNA measured 3 months after HIV-1 diagnosis). Analyses were per protocol and modified intention to treat. The study was stopped early because it unexpectedly met the prespecified futility boundaries at the first interim analysis. This study is registered with ClinicalTrials.gov, number NCT00095576. FINDINGS In a prespecified interim analysis in participants with baseline Ad5 antibody titre 200 or less, 24 (3%) of 741 vaccine recipients became HIV-1 infected versus 21 (3%) of 762 placebo recipients (hazard ratio [HR] 1.2 [95% CI 0.6-2.2]). All but one infection occurred in men. The corresponding geometric mean plasma HIV-1 RNA was comparable in infected male vaccine and placebo recipients (4.61 vs 4.41 log(10) copies per mL, one tailed p value for potential benefit 0.66). The vaccine elicited interferon-gamma ELISPOT responses in 75% (267) of the 25% random sample of all vaccine recipients (including both low and high Ad5 antibody titres) on whose specimens this testing was done (n=354). In exploratory analyses of all study volunteers, irrespective of baseline Ad5 antibody titre, the HR of HIV-1 infection between vaccine and placebo recipients was higher in Ad5 seropositive men (HR 2.3 [95% CI 1.2-4.3]) and uncircumcised men (3.8 [1.5-9.3]), but was not increased in Ad5 seronegative (1.0 [0.5-1.9]) or circumcised (1.0 [0.6-1.7]) men. INTERPRETATION This cell-mediated immunity vaccine did not prevent HIV-1 infection or reduce early viral level. Mechanisms for insufficient efficacy of the vaccine and the increased HIV-1 infection rates in subgroups of vaccine recipients are being explored.
Collapse
Affiliation(s)
- Susan P Buchbinder
- HIV Research Section, San Francisco Department of Public Health, San Francisco, CA, USA.
| | | | - Ann Duerr
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel W Fitzgerald
- GHESKIO, Port-au-Prince, Haiti; Weill Medical College of Cornell University, New York, NY, USA
| | - Robin Mogg
- Merck Research Laboratories, North Wales, PA, USA
| | - David Li
- Merck Research Laboratories, North Wales, PA, USA
| | | | - Javier R Lama
- Asociacion Civil IMPACTA Salud y Educacion, Miraflores, Lima, Peru
| | | | | | | | | | | | | | - Lawrence Corey
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | |
Collapse
|
25
|
Chege GK, Shephard EG, Meyers A, van Harmelen J, Williamson C, Lynch A, Gray CM, Rybicki EP, Williamson AL. HIV-1 subtype C Pr55gag virus-like particle vaccine efficiently boosts baboons primed with a matched DNA vaccine. J Gen Virol 2008; 89:2214-2227. [PMID: 18753231 DOI: 10.1099/vir.0.83501-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A DNA vaccine expressing human immunodeficiency virus type 1 (HIV-1) southern African subtype C Gag (pTHGag) and a recombinant baculovirus Pr55gag virus-like particle prepared using a subtype C Pr55gag protein (Gag VLP) was tested in a prime-boost inoculation regimen in Chacma baboons. The response of five baboons to Gag peptides in a gamma interferon (IFN-gamma) enzyme-linked immunospot (ELISPOT) assay after three pTHGag immunizations ranged from 100 to 515 spot-forming units (s.f.u.) per 10(6) peripheral blood mononuclear cells (PBMCs), whilst the response of two baboons to the Gag VLP vaccine ranged from 415 to 465 s.f.u. per 10(6) PBMCs. An increase in the Gag-specific response to a range of 775-3583 s.f.u. per 10(6) PBMCs was achieved by boosting with Gag VLPs the five baboons that were primed with pTHGag. No improvement in Gag responses was achieved in this prime-boost inoculation regimen by increasing the number of pTHGag inoculations to six. IFN-gamma responses were mapped to several peptides, some of which have been reported to be targeted by PBMCs from HIV-1 subtype C-infected individuals. Gag VLPs, given as a single-modality regimen, induced a predominantly CD8+ T-cell IFN-gamma response and interleukin-2 was a major cytokine within a mix of predominantly Th1 cytokines produced by a DNA-VLP prime-boost modality. The prime-boost inoculation regimen induced high serum p24 antibody titres in all baboons, which were several fold above that induced by the individual vaccines. Overall, this study demonstrated that these DNA prime/VLP boost vaccine regimens are highly immunogenic in baboons, inducing high-magnitude and broad multifunctional responses, providing support for the development of these products for clinical trials.
Collapse
Affiliation(s)
- Gerald K Chege
- Institute of Primate Research, PO Box 24481, Karen 00502, Nairobi, Kenya.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Enid G Shephard
- MRC/UCT Liver Research Centre, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Ann Meyers
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Joanne van Harmelen
- Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Carolyn Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Alisson Lynch
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Clive M Gray
- National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, Johannesburg, South Africa
| | - Edward P Rybicki
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Rondebosch, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Anna-Lise Williamson
- National Health Laboratory Service, Groote Schuur Hospital, Observatory, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa.,Medical Virology, Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
26
|
Megati S, Garcia-Hand D, Cappello S, Roopchand V, Masood A, Xu R, Luckay A, Chong SY, Rosati M, Sackitey S, Weiner DB, Felber BK, Pavlakis GN, Israel ZR, Smith LR, Eldridge JH, Sidhu MK, Egan MA. Modifying the HIV-1 env gp160 gene to improve pDNA vaccine-elicited cell-mediated immune responses. Vaccine 2008; 26:5083-94. [PMID: 18485543 PMCID: PMC7294827 DOI: 10.1016/j.vaccine.2008.03.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plasmid DNA (pDNA) vaccines are effective at eliciting immune responses in a wide variety of animal model systems, however, pDNA vaccines have generally been incapable of inducing robust immune responses in clinical trials. Therefore, to identify means to improve pDNA vaccine performance, we compared various post-transcriptional and post-translational genetic modifications for their ability to improve antigen-specific CMI responses. Mice vaccinated using a sub-optimal 100 mcg dose of a pDNA encoding an unmodified primary isolate HIV-1(6101) env gp160 failed to demonstrate measurable env-specific CMI responses. In contrast, significant env-specific CMI responses were seen in mice immunized with pDNA expression vectors encoding env genes modified by RNA optimization or codon optimization. Further modification of the RNA optimized env gp160 gene by the addition of (i) a simian retrovirus type 1 constitutive RNA transport element; (ii) a murine intracisternal A-particle derived RNA transport element; (iii) a tissue plasminogen activator protein signal leader sequences; (iv) a beta-catenin derived ubiquitination target sequence; or (v) a monocyte chemotactic protein-3 derived signal sequence failed to further improve the induction of env-specific CMI responses. Therefore, modification of the env gp160 gene by RNA or codon optimization alone is necessary for high-level rev-independent expression and results in robust env-specific CMI responses in immunized mice. Importantly, further modification(s) of the env gene to alter cellular localization or increase proteolytic processing failed to result in increased env-specific immune responses. These results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
| | | | - Sarah Cappello
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Vidia Roopchand
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Amjed Masood
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Rong Xu
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Amara Luckay
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Siew-Yen Chong
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Margherita Rosati
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, United States
| | | | - David B. Weiner
- University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, United States
| | - Barbara K. Felber
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, United States
| | - George N. Pavlakis
- National Cancer Institute-Frederick, Frederick, MD 21702-1201, United States
| | - Zimra R. Israel
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | - Larry R. Smith
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| | | | | | - Michael A. Egan
- Wyeth Vaccines Research, Pearl River, NY 10965, United States
| |
Collapse
|
27
|
Kennedy JS, Co M, Green S, Longtine K, Longtine J, O'Neill MA, Adams JP, Rothman AL, Yu Q, Johnson-Leva R, Pal R, Wang S, Lu S, Markham P. The safety and tolerability of an HIV-1 DNA prime-protein boost vaccine (DP6-001) in healthy adult volunteers. Vaccine 2008; 26:4420-4. [PMID: 18588934 PMCID: PMC2571083 DOI: 10.1016/j.vaccine.2008.05.090] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 05/20/2008] [Accepted: 05/23/2008] [Indexed: 11/26/2022]
Abstract
This report describes the safety observations following administration of a polyvalent DNA prime-protein boost HIV-1 vaccine formulated with adjuvant QS21. Local injection site reactions were the most common (65% of subjects), and included type IV delayed-type hypersensitivity (DTH) reactions at prior DNA inoculation sites in 12 of 28 (43%) subjects following protein vaccination. Systemic reactions revealed two cases of vasculitis temporally related to inoculation with recombinant Env protein+QS21 adjuvant. Questions remain regarding the cause of the vasculitis, but the unique DTH observation may have contributed to the high level of immune responses previously reported for this vaccine.
Collapse
Affiliation(s)
- Jeffrey S Kennedy
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang J, Su B, Ding Z, Du X, Wang B. Cimetidine enhances immune response of HBV DNA vaccination via impairment of the regulatory function of regulatory T cells. Biochem Biophys Res Commun 2008; 372:491-6. [DOI: 10.1016/j.bbrc.2008.04.191] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 11/16/2022]
|
29
|
Daubersies P, Ollomo B, Sauzet JP, Brahimi K, Perlaza BL, Eling W, Moukana H, Rouquet P, de Taisne C, Druilhe P. Genetic immunisation by liver stage antigen 3 protects chimpanzees against malaria despite low immune responses. PLoS One 2008; 3:e2659. [PMID: 18628827 PMCID: PMC2441826 DOI: 10.1371/journal.pone.0002659] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 06/05/2008] [Indexed: 11/19/2022] Open
Abstract
Background The true interest of genetic immunisation might have been hastily underestimated based on overall immunogenicity data in humans and lack of parallelism with other, more classical immunisation methods. Principal Findings Using malaria Liver Stage Antigen-3 (LSA-3), we report that genetic immunization induces in chimpanzees, the closest relative of humans, immune responses which are as scarce as those reported using other DNA vaccines in humans, but which nonetheless confer strong, sterile and reproducible protection. The pattern was consistent in 3/4 immunized apes against two high dose sporozoite challenges performed as late as 98 and 238 days post-immunization and by a heterologous strain. Conclusions These results should, in our opinion, lead to a revisiting of the value of this unusual means of immunisation, using as a model a disease, malaria, in which virulent challenges of volunteers are ethically acceptable.
Collapse
Affiliation(s)
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Karima Brahimi
- Unité de Parasitologie Biomédicale, Institut Pasteur, Paris, France
| | | | - Wijnand Eling
- Department of Medical Microbiology, University of Nijmegen, Nijmegen, The Netherlands
| | - Hubert Moukana
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Pierre Rouquet
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | - Pierre Druilhe
- Unité de Parasitologie Biomédicale, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
30
|
Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008; 7:175-91. [PMID: 18324888 DOI: 10.1586/14760584.7.2.175] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite remarkable progress in the field of DNA vaccine research since its discovery in the early 1990 s, the formal acceptance of this novel technology as a new modality of human vaccines depends on the successful demonstration of its safety and efficacy in advanced clinical trials. Although clinical trials conducted so far have provided overwhelming evidence that DNA vaccines are well tolerated and have an excellent safety profile, the early designs of DNA vaccines failed to demonstrate sufficient immunogenicity in humans. However, studies conducted over the last few years have led to promising results, particularly when DNA vaccines were used in combination with other forms of vaccines. Here, we provide a review of the data from reported DNA vaccine clinical studies with an emphasis on the ability of DNA vaccines to elicit antigen-specific, cell-mediated and antibody responses in humans. The majority of these trials are designed to test candidate vaccines against several major human pathogens and the remaining studies tested the immunogenicity of therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Shan Lu
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, LRB 304, Worcester, MA 01605, USA.
| | | | | |
Collapse
|
31
|
Coutsinos Z, Absi Z, Henin Y, Guillet JG, Launay O. [Designing an effective AIDS vaccine: strategies and current status]. Rev Med Interne 2008; 29:632-41. [PMID: 18258341 DOI: 10.1016/j.revmed.2007.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 11/12/2007] [Accepted: 12/09/2007] [Indexed: 11/30/2022]
Abstract
PURPOSE The human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome induce account for over 40 million deaths in the past 20 years. Given that the currently available treatments to prevent HIV transmission and disease are not effective in eradicating the virus, vaccination likely represents the only efficacious adapted response to the global impact of this infection. This paper reviews the challenges encountered in the development of an HIV vaccine as well as the different vaccine approaches and main HIV vaccine candidates evaluated in clinical trials. CURRENT KNOWLEDGE AND KEY POINTS In spite the tremendous progress in HIV research, the major challenges that are encountered in the development of an HIV vaccine remain of scientific order and include viral specificities, absence of correlates of immune protection and limitations of existing animal models. Over 30 vaccine candidates have been evaluated in clinical trials. These vaccine approaches include the use of recombinant envelope proteins, DNA vaccines, live-vectored recombinant vaccines, subunit vaccines and prime-boost regimens combining various vaccine candidates. Although the protective efficacy of these candidate vaccines has yet to be demonstrated, some vaccination regiments appear to dampen initial viremia and prolong disease-free survival. FUTURE PROSPECTS AND PROJECTS Faced with the challenges in developing an HIV vaccine, international consortia and new methodologies have been proposed in order to accelerate the development and screening process of new candidate HIV vaccines. Moreover, in the absence of a protective vaccine, the impact of a vaccine that confers partial protection needs to be seriously considered.
Collapse
Affiliation(s)
- Z Coutsinos
- Pôle de médecine, CIC de vaccinologie Cochin-Pasteur, groupe hospitalier Cochin-Saint-Vincent de Paul, AP-HP, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | | | | | | | | |
Collapse
|
32
|
Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 2007; 26:215-23. [PMID: 18055072 DOI: 10.1016/j.vaccine.2007.10.061] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/22/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
We evaluated EP HIV-1090 vaccine, a DNA plasmid encoding 21 cytotoxic T-lymphocyte (CTL) epitopes of human immunodeficiency virus type 1 (HIV-1) and the pan-DR helper T-lymphocyte epitope (PADRE), in a dose escalation, randomized, double-blinded, placebo-controlled Phase 1 trial. Vaccine, at 0.5, 2.0, or 4.0mg doses, or placebo was injected four times over 6 months. Forty-two healthy, HIV-1-uninfected adults were enrolled. Using an interferon-gamma ELISPOT assay, a response to PADRE was detected in one vaccine recipient. Three vaccine recipients raised anti-HIV-1 CD8+ CTL measured by chromium-release assay. The vaccine was safe and well-tolerated, but only weakly immunogenic.
Collapse
|
33
|
Boyer JD, Robinson TM, Kutzler MA, Vansant G, Hokey DA, Kumar S, Parkinson R, Wu L, Sidhu MK, Pavlakis GN, Felber BK, Brown C, Silvera P, Lewis MG, Monforte J, Waldmann TA, Eldridge J, Weiner DB. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid. Proc Natl Acad Sci U S A 2007; 104:18648-53. [PMID: 18000037 PMCID: PMC2141831 DOI: 10.1073/pnas.0709198104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Indexed: 11/18/2022] Open
Abstract
The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-gamma-producing CD8(+) and CD4(+) effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-gamma was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication.
Collapse
Affiliation(s)
- Jean D. Boyer
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Tara M. Robinson
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Michele A. Kutzler
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | | | - David A. Hokey
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Sanjeev Kumar
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Rose Parkinson
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | - Ling Wu
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| | | | - George N. Pavlakis
- Vaccine Branch, National Cancer Institute, Building 535, Room 210, Frederick, MD 21702
| | - Barbara K. Felber
- Vaccine Branch, National Cancer Institute, Building 535, Room 210, Frederick, MD 21702
| | - Charles Brown
- Viral Pathogenesis and Vaccine Branch, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Peter Silvera
- Life Sciences Division, Southern Research Institute (SRI), Frederick, MD 21701
| | - Mark G. Lewis
- **Research Section, Bioqual, Rockville, MD 20850; and
| | | | - Thomas A. Waldmann
- Metabolism Branch, National Cancer Institute, Building 10, Room 4N115, Frederick, MD 21702
| | | | - David B. Weiner
- *Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, Philadelphia, PA 19104
| |
Collapse
|
34
|
A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis. Infect Immun 2007; 76:334-8. [PMID: 17967859 DOI: 10.1128/iai.00943-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experimental DNA plasmid vaccine was developed based on a well-characterized and protective peptide epitope derived from a bacterial porin protein. For this study, we used the P1.16b serosubtype epitope, located in variable region (VR)2 in loop 4 of the PorA outer membrane (OM) porin from Neisseria meningitidis serogroup B strain MC58. A plasmid that encoded the entire loop (pPorAloop4) was prepared, as well as a fusion plasmid that encoded the loop in tandem with the fragment C (FrC) immunostimulatory sequence from tetanus toxin (pPorAloop4-FrC). The constructs were used for intramuscular immunization without exogenous adjuvant. Murine antisera raised to the pPorAloop4-FrC DNA fusion plasmid reacted significantly with OMs in enzyme-linked immunosorbent assay and with whole bacteria by immunofluorescence, whereas antisera raised to the pPorAloop4 DNA plasmid and to control plasmid showed little or no reactivity. Significantly, only the pPorALoop4-FrC plasmid induced bactericidal antibodies, demonstrating that the intrinsic immunostimulatory sequence was essential for inducing a protective immune response. The antibodies raised to the P1.16b pPorALoop4-FrC plasmid were serosubtype specific, showing no significant immunofluorescence reactivity or bactericidal activity against other PorA variants. These data provide proof of principle for a DNA fusion plasmid strategy as a novel approach to preparing vaccines based on defined, protective epitopes.
Collapse
|
35
|
Robinson TM, Sidhu MK, Pavlakis GN, Felber BK, Silvera P, Lewis MG, Eldridge J, Weiner DB, Boyer JD. Macaques co-immunized with SIVgag/pol-HIVenv and IL-12 plasmid have increased cellular responses. J Med Primatol 2007; 36:276-84. [PMID: 17669216 DOI: 10.1111/j.1600-0684.2007.00245.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The cell mediated immune profiles following immunization with a recombinant DNA vaccine was assessed in the simian-human immunodeficiency virus (SHIV) and Macaque model. Earlier work demonstrated increased numbers of antigen specific CD8 and CD4 effector cells able to secrete IFN-gamma. METHOD The vaccine strategy included co-immunization of a DNA based vaccine alone or in combination with a macaque IL-12 expressing plasmid (pmacIL12). Antigen activated lymphocytes were studied for activation of a set of immunological molecules. RESULTS The current study demonstrates lymphocytes isolated and activated from the group that was immunized with DNA and pmacIL12 had a higher level of IFN-gamma producing cells. We also observed a different immunological profile when comparing the cells isolated from macaques immunized with DNA as compared to those animals that also received pmacIL12. CONCLUSION The observed immune profiles are reflective of the co-delivery of pmacIL12 and demonstrates that IL-12 can increase the magnitude and polyfunctionality of the cellular immune response.
Collapse
MESH Headings
- Animals
- Flow Cytometry
- Gene Products, env/genetics
- Gene Products, env/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Humans
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Interferon-gamma/blood
- Interleukin-12/genetics
- Interleukin-12/immunology
- Macaca fascicularis
- Plasmids/genetics
- Plasmids/immunology
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Random Allocation
- Retroviridae Proteins/genetics
- Retroviridae Proteins/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- SAIDS Vaccines/genetics
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/urine
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
|
36
|
Induction of HIV-specific functional immune responses by a multiclade HIV-1 DNA vaccine candidate in healthy Ugandans. Vaccine 2007; 25:7737-42. [PMID: 17920731 DOI: 10.1016/j.vaccine.2007.08.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/09/2007] [Accepted: 08/19/2007] [Indexed: 11/23/2022]
Abstract
A phase I randomized, double blind, placebo-controlled trial to assess the immunogenicity of a multiclade HIV-1 DNA plasmid vaccine was conducted in 31 HIV-1-negative Ugandans. Following immunization with DNA at 0, 1, and 2 months, the frequency of HIV-specific immune responses was assessed up to 10 months using a standard chromium release assay (CRA), lymphoproliferative assay (LPA), and antibody dependent cell-mediated cytotoxicity assay (ADCC). Seven of 15 (47%) vaccinees demonstrated CTL activity using the CRA to HIV-1 Env B with responses observed 1 month following the second vaccination and as late as 7 months following complete immunization. Additionally, lymphoproliferative reponses were observed in 14/15 vaccinees against p24. No CTL or LPA responses were observed at baseline or in the placebo group. ADCC activity was minimally induced by DNA vaccination. This study demonstrates that immunization with DNA alone induces CTL and lymphoproliferative responses in a population that will participate in a phase IIb study evaluating HIV-1 DNA priming followed by boosting with a replication-defective recombinant adenovirus vector.
Collapse
|
37
|
Hinkula J. Clarification of how HIV-1 DNA and protein immunizations may be better used to obtain HIV-1-specific mucosal and systemic immunity. Expert Rev Vaccines 2007; 6:203-12. [PMID: 17408370 DOI: 10.1586/14760584.6.2.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
More focused research on a mucosal HIV-1 vaccine is needed urgently. An increasing amount of collected data, using heterologous multimodality prime-booster strategies, suggest that an efficient and protective HIV-1 vaccine must generate broad, long-lasting HIV-specific CD8(+) cytotoxic T-lymphocyte and neutralizing antibody responses. In the mucosa, these responses would be most effective if a preferential stimulus of HIV-1 neutralizing secretory immunoglobulin A and G were obtained. The attractive property of mucosal immunization is the obtained mucosal and systemic immunity, whereas systemic immunization induces a more limited immunity, predominantly in systemic sites. These objectives will require new vaccine regimens, such as multiclade HIV DNA and protein vaccines (nef, tat, gag and env expressed in DNA plasmids) delivered onto mucosal surfaces with needle-free delivery methods, such as nasal drop, as well as oral and rectal/vaginal delivery, and should merit clinical trials.
Collapse
Affiliation(s)
- Jorma Hinkula
- Department of Molecular Virology, Linkoping University, Linkoping, Sweden.
| |
Collapse
|
38
|
Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V, Garcia-Hand D, Abdullah R, Braun R, Montefiori DC, Rosati M, Felber BK, Pavlakis GN, Mathiesen I, Israel ZR, Eldridge JH, Egan MA. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 2007; 81:5257-69. [PMID: 17329330 PMCID: PMC1900241 DOI: 10.1128/jvi.00055-07] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/20/2007] [Indexed: 12/13/2022] Open
Abstract
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Amara Luckay
- Wyeth Vaccines Research, 401 N. Middletown Rd., Bldg. 180/216-10, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Peters BS, Jaoko W, Vardas E, Panayotakopoulos G, Fast P, Schmidt C, Gilmour J, Bogoshi M, Omosa-Manyonyi G, Dally L, Klavinskis L, Farah B, Tarragona T, Bart PA, Robinson A, Pieterse C, Stevens W, Thomas R, Barin B, McMichael AJ, McIntyre JA, Pantaleo G, Hanke T, Bwayo J. Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine 2007; 25:2120-7. [PMID: 17250931 DOI: 10.1016/j.vaccine.2006.11.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 11/05/2006] [Accepted: 11/07/2006] [Indexed: 01/20/2023]
Abstract
BACKGROUND Two parallel studies evaluated safety and immunogenicity of a prophylactic HIV-1 vaccine in 192 HIV-seronegative, low-risk volunteers. Modified vaccinia virus Ankara (MVA) and plasmid DNA (pTHr) expressed HIV-1 clade A gag p24 and p17 fused to a string of 25 overlapping CD8+ T cell epitopes (HIVA). METHODS These studies compared intramuscular, subcutaneous, and intradermal MVA at dosage levels ranging from 5x10(6)-2.5x10(8) pfu. In Study IAVI-010, DNA vaccine was given as a prime at months 0 and 1, followed by MVA as a boost at months 5 and 8. In Study IAVI-011, MVA alone was given at months 0 and 2. Regular safety monitoring was performed. Immunogenicity was measured by the interferon (IFN)-gamma ELISPOT assay on peripheral blood mononuclear cells (PBMC). RESULTS No serious adverse events were attributed to either vaccine; most adverse events were mild or moderate, although MVA resulted in some severe local reactions. Five vaccine recipients had at least one positive IFN-gamma ELISPOT response, but none were sustained. CONCLUSION This HIV-1 vaccine candidate was in general safe and well-tolerated. Local reactions were common, but tolerable. Detectable immune responses were infrequent.
Collapse
|
40
|
Du X, Zheng G, Jin H, Kang Y, Wang J, Xiao C, Zhang S, Zhao L, Chen A, Wang B. The adjuvant effects of co-stimulatory molecules on cellular and memory responses to HBsAg DNA vaccination. J Gene Med 2007; 9:136-46. [PMID: 17310492 DOI: 10.1002/jgm.1004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because DNA vaccines on their own tend to induce weak immune responses in humans, adjuvant methods are needed in order to improve their efficacy. The co-stimulatory molecules 4-1BBL, OX40L, and CD70 have been shown to induce strong T cell activities; therefore, in this study, we investigated whether they may be used as molecular adjuvants for a hepatitis B surface antigen (HBsAg) DNA vaccine (pcDS2) in eliciting strong cellular and memory responses. Compared to mice immunized with pcDS2 alone, addition of the co-stimulatory molecules increased T cell proliferation and an HBsAg-specific antibody response that was marked with a higher ratio of IgG2a/IgG1. Importantly, pcDS2 plus these co-stimulatory molecules elicited a higher level of IFN-gamma and IL-4 in CD4(+) T cells and a higher level of IFN-gamma in CD8(+) T cells. In addition, a significantly robust antigen-specific cytotoxic T lymphocyte (CTL) response and the production of long-term memory CD8(+) T cells were also observed in the groups immunized with pcDS2 plus 4-1BBL, OX40L, or CD70. Consistently, as late as 100 days after immunization, upregulated expressions of BCL-2, Spi2A, IL-7Ra, and IL-15Ra were still observed in mice immunized with pcDS2 plus these co-stimulatory molecules, suggesting the generation of memory T cells in these groups. Together, these results suggest that the co-stimulatory molecules 4-1BBL, OX40L, or CD70 can enhance the immunogenicity of HBsAg DNA vaccines, resulting in strong humoral, cellular, and memory responses. This approach may lead to an effective therapeutic vaccine for chronic hepatitis B virus (HBV) infection.
Collapse
Affiliation(s)
- Xiaogang Du
- State Key Laboratory for Agro-Biotechnology, Department of Microbiology and Immunology, College of Biological Science, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Encke J, Bernardin J, Geib J, Barbakadze G, Bujdoso R, Stremmel W. Genetic vaccination with Flt3-L and GM-CSF as adjuvants: Enhancement of cellular and humoral immune responses that results in protective immunity in a murine model of hepatitis C virus infection. World J Gastroenterol 2006; 12:7118-25. [PMID: 17131473 PMCID: PMC4087772 DOI: 10.3748/wjg.v12.i44.7118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether transfection of plasmid DNA encoding these cytokines enhances both humoral and cellular immune responses to hepatitis C virus (HCV) in a murine model.
METHODS: We established a tumor model of HCV infection using syngenic mouse myeloma cells stably transfected with NS5. Co-vaccination of DNA encoding granulocyte macrophage colony-stimulating factor (GM-CSF) and Flt-3 ligand together with a plasmid encoding for the HCV NS5 protein was carried out. Mice were sacrificed 14 d after the last immunization event with collection of spleen cells and serum to determine humoral and cellular immune responses.
RESULTS: Co-vaccination of DNA encoding GM-CSF and Flt-3 ligand together with a plasmid encoding for the HCV NS5 protein induced increased antibody responses and CD4+ T cell proliferation to this protein. Vaccination with DNA encoding GM-CSF and Flt-3L promoted protection against tumor formation and/or reduction in mice co-immunized with cytokine-encoding DNA constructs. This suggests this strategy is capable of generating cytotoxic T lymphocyte activity in vivo. Following inoculation with plasmid DNA encoding Flt-3L, no increase in spleen size or in dendritic cell (DC) and natural killer cell numbers was observed. This was in contrast to a dramatic increase of both cell types after administration of recombinant Flt3-L in vivo. This suggests that vaccination with plasmid DNA encoding cytokines that regulate DC generation and mobilization may not promote unwanted side effects, such as autoimmunity, splenic fibrosis or hematopoietic malignancies that may occur with administration of recombinant forms of these proteins.
CONCLUSION: Our data support the view that plasmid DNA vaccination is a promising approach for HCV immunization, and may provide a general adjuvant vaccination strategy against malignancies and other pathogens.
Collapse
Affiliation(s)
- Jens Encke
- Gastroenterology, Hepatology, Infectious Diseases, Intoxications, Department of Internal Medicine IV, University of Heidelberg Medical School, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Goonetilleke N, Moore S, Dally L, Winstone N, Cebere I, Mahmoud A, Pinheiro S, Gillespie G, Brown D, Loach V, Roberts J, Guimaraes-Walker A, Hayes P, Loughran K, Smith C, De Bont J, Verlinde C, Vooijs D, Schmidt C, Boaz M, Gilmour J, Fast P, Dorrell L, Hanke T, McMichael AJ. Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 Gag coupled to CD8+ T-cell epitopes. J Virol 2006; 80:4717-28. [PMID: 16641265 PMCID: PMC1472051 DOI: 10.1128/jvi.80.10.4717-4728.2006] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/02/2006] [Indexed: 11/20/2022] Open
Abstract
A double-blind randomized phase I trial was conducted in human immunodeficiency virus type 1 (HIV-1)-negative subjects receiving vaccines vectored by plasmid DNA and modified vaccinia virus Ankara (MVA) expressing HIV-1 p24/p17 gag linked to a string of CD8(+) T-cell epitopes. The trial had two groups. One group received either two doses of MVA.HIVA (2x MVA.HIVA) (n=8) or two doses of placebo (2x placebo) (n=4). The second group received 2x pTHr.HIVA followed by one dose of MVA.HIVA (n=8) or 3x placebo (n=4). In the pTHr.HIVA-MVA.HIVA group, HIV-1-specific T-cell responses peaked 1 week after MVA.HIVA vaccination in both ex vivo gamma interferon (IFN-gamma) ELISPOT (group mean, 210 spot-forming cells/10(6) cells) and proliferation (group mean stimulation index, 37), with assays detecting positive responses in four out of eight and five out of eight subjects, respectively. No HIV-1-specific T-cell responses were detected in either assay in the 2x MVA.HIVA group or subjects receiving placebo. Using a highly sensitive and reproducible cultured IFN-gamma ELISPOT assay, positive responses mainly mediated by CD4(+) T cells were detected in eight out of eight vaccinees in the pTHr.HIVA-MVA.HIVA group and four out of eight vaccinees in the 2x MVA.HIVA group. Importantly, no false-positive responses were detected in the eight subjects receiving placebo. Of the 12 responders, 11 developed responses to previously identified immunodominant CD4(+) T-cell epitopes, with 6 volunteers having responses to more than one epitope. Five out of 12 responders also developed CD8(+) T-cell responses to the epitope string. Induced T cells produced a variety of anti-viral cytokines, including tumor necrosis factor alpha and macrophage inflammatory protein 1 beta. These data demonstrate that prime-boost vaccination with recombinant DNA and MVA vectors can induce multifunctional HIV-1-specific T cells in the majority of vaccinees.
Collapse
MESH Headings
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Amino Acid Sequence
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cells, Cultured
- Double-Blind Method
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Gene Products, gag/immunology
- Gene Products, gag/metabolism
- Genetic Vectors
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/immunology
- Humans
- Immunization, Secondary
- Lymphocyte Activation/immunology
- Molecular Sequence Data
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
Collapse
Affiliation(s)
- Nilu Goonetilleke
- Centre for Clinical Vaccinology and Tropical Medicine and MRC Human Immunology Unit, University of Oxford, Oxford OX3 7LJ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Egan MA, Megati S, Roopchand V, Garcia-Hand D, Luckay A, Chong SY, Rosati M, Sackitey S, Weiner DB, Felber BK, Pavlakis GN, Israel ZR, Eldridge JH, Sidhu MK. Rational design of a plasmid DNA vaccine capable of eliciting cell-mediated immune responses to multiple HIV antigens in mice. Vaccine 2006; 24:4510-23. [PMID: 16140439 DOI: 10.1016/j.vaccine.2005.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Given the importance of the HIV-specific cell-mediated immune response in the early control and resolution of HIV infection and the observed correlation between pre-challenge vaccine elicited CTL responses and post challenge outcome in SHIV/rhesus macaque experiments, we sought to identify several candidate plasmid DNA (pDNA) vaccine designs capable of eliciting robust and balanced cell-mediated immune responses to multiple HIV-1 derived antigens in mice for further vaccine development. To rationally construct candidate vaccines for immunogenicity testing, we determined the relative immunogenicity of the individual HIV-derived vaccine antigens (env, gag, pol, nef, tat and vif) and the relative strength of various transcriptional control elements (HCMV, SCMV, HSV Lap1) in Balb/c mice. Next, a number of 1-, 2-, 3- and 4-vector pDNA vaccine designs were tested for their ability to elicit HIV-1 antigen-specific CMI responses. For these studies, Balb/c mice were immunized with a fixed total pDNA vaccine dose of 100 mcg in combination with 25 mcg plasmid-based murine IL-12 and tested for the induction of HIV-1 antigen-specific CMI responses by IFN-gamma ELISpot analysis. The results of this study indicate that all pDNA vaccine designs were capable of eliciting CMI responses to multiple HIV-1 antigens. As a result of this iterative comparative analysis, we have identified a number of pDNA vaccine candidates capable of eliciting potent, balanced CMI responses to multiple HIV-1 derived antigens. These results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Michael A Egan
- Vaccine Discovery, Wyeth Vaccines Research, 401 N. Middletown Rd, Bldg. 180/216-10, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boyer JD, Robinson TM, Kutzler MA, Parkinson R, Calarota SA, Sidhu MK, Muthumani K, Lewis M, Pavlakis G, Felber B, Weiner D. SIV DNA vaccine co-administered with IL-12 expression plasmid enhances CD8 SIV cellular immune responses in cynomolgus macaques. J Med Primatol 2005; 34:262-70. [PMID: 16128921 DOI: 10.1111/j.1600-0684.2005.00124.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Current evidence suggests that a strong induced CD8 human immunodeficiency virus type 1 (HIV-1)-specific cell mediated immune response may be an important aspect of an HIV vaccine. The response rates and the magnitude of the CTL responses induced by current DNA vaccines in humans need to be improved and cellular immune responses to DNA vaccines can be enhanced in mice by co-delivering DNA plasmids expressing immune modulators. Two reported to work well in the mouse systems are interleukin (IL)-12 and CD40L. We sought to compare these molecular adjuvants in a primate model system. The cDNA for macaque IL-12 and CD40L were cloned into DNA vectors. Groups of cynomolgus macaques were immunized with 2 mg of plasmid expressing SIVgag alone or in combination with either IL-12 or CD40L. CD40L did not appear to enhance the cellular immune response to SIVgag antigen. However, more robust results were observed in animals co-injected with the IL-12 molecular adjuvant. The IL-12 expanded antigen-specific IFN-gamma positive effector cells as well as granzyme B production. The vaccine immune responses contained both a CD8 component as well a CD4 component. The adjuvanted DNA vaccines illustrate that IL-12 enhances a CD8 vaccine immune response, however, different cellular profiles.
Collapse
Affiliation(s)
- Jean D Boyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schadeck EB, Sidhu M, Egan MA, Chong SY, Piacente P, Masood A, Garcia-Hand D, Cappello S, Roopchand V, Megati S, Quiroz J, Boyer JD, Felber BK, Pavlakis GN, Weiner DB, Eldridge JH, Israel ZR. A dose sparing effect by plasmid encoded IL-12 adjuvant on a SIVgag-plasmid DNA vaccine in rhesus macaques. Vaccine 2005; 24:4677-87. [PMID: 16288822 DOI: 10.1016/j.vaccine.2005.10.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An experimental pDNA vaccine adjuvant expressing IL-12 was evaluated for its ability to augment the humoral and cellular immune responses elicited by a SIVmac239 gag p39 expressing pDNA vaccine. To determine the effect of vaccine dose on the immune response, rhesus macaques were immunized with 1.5 mg or 5.0 mg of SIVmac239 gag pDNA, with or without co-immunization of IL-12 pDNA at 1.5 mg and 5.0 mg, respectively. Serum antibody responses to simian immunodeficiency virus (SIV) gag were increased 10-fold (p=0.044, 0.002) in macaques receiving IL-12 pDNA. Cellular immune responses, monitored by SIV gag-specific IFN-gamma ELISpot assay, were also significantly higher (p=0.007, 0.019) when the pDNA vaccine was co-immunized with IL-12 pDNA at high and low doses. There was no statistical difference between the immune responses elicited by the high and low dose of IL-12 pDNA (p=0.221, 0.917), a finding which could allow a dose reduction of vaccine without the concomitant loss of imunogenicity. Furthermore, analysis of the breadth of the T-cell response during the vaccination schedule, using overlapping peptides to SIV gag, demonstrated a significant correlation (p=0.0002) between the magnitude and breadth of the immune responses in the vaccines. These results have important implications for the continuing development of an effective, safe low dose pDNA vaccine adjuvant suitable for human use.
Collapse
|
46
|
He X, Jiang L, Wang F, Xiao Z, Li J, Liu LS, Li D, Ren D, Jin X, Li K, He Y, Shi K, Guo Y, Zhang Y, Sun S. Augmented humoral and cellular immune responses to hepatitis B DNA vaccine adsorbed onto cationic microparticles. J Control Release 2005; 107:357-72. [PMID: 16099068 DOI: 10.1016/j.jconrel.2005.06.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 06/13/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Plasmid expressing HBV small envelope antigen was formulated with poly(lactide-co-glycolide-acid) (PLGA) and cetyltrimethylammonium bromide (CTAB) to generate highly uniform microparticles. Controlled release of DNA from these microparticles was demonstrated in vitro and in vivo using flow cytometry and confocal laser scanning microscopy with the focus on localization and quantitatively evaluation of antigen-presenting cells (APCs) involved in the expression of target antigen. Compared to mice vaccinated with naked DNA, mice immunized with PLGA-CTAB-DNA microparticles displayed a much higher percentage of CD11c+, HBsAg-expressing APCs in the draining lymph nodes at 24 h and day 14 postinoculation. In addition, a prolonged transcription of plasmid DNA was detected by RT-PCR in mice immunized with the microparticles. A significantly enhanced immunogenicity of PLGA-CTAB-DNA over naked DNA was observed in immunized mice, including higher levels of antibody production, interferon gamma (IFN-gamma) secretion and cytotoxic T lymphocyte activity. Mice immunized with PLGA-CTAB-DNA microparticles also showed greater efficacy of immunoprotection against challenge of transplanted HBsAg-expressing tumor cells. Our data suggest that controlled release of the PLGA-CTAB-DNA microparticles might involve in the mechanisms of its augmented immunogenicity and enhanced immunoprotection.
Collapse
Affiliation(s)
- Xiaowen He
- Department of Medical Genetics, The Second Military Medical University, No.800 Xiangyin Road Yangpu district, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Estcourt MJ, Létourneau S, McMichael AJ, Hanke T. Vaccine route, dose and type of delivery vector determine patterns of primary CD8+ T cell responses. Eur J Immunol 2005; 35:2532-40. [PMID: 16144036 DOI: 10.1002/eji.200535184] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamics of primary CD8+ T cell responses following administration of modified virus Ankara (MVA)- and DNA-vectored vaccines was investigated in a mouse model. To overcome the low frequency of naive antigen-specific precursors and follow the early expansion events, naive CFSE-labelled T cell receptor-transgenic F5 lymphocytes were transferred into syngeneic non-transgenic recipients prior to vaccination. Using the i.d., i.v. and i.m. routes and increasing recombinant MVA (rMVA) vaccine doses, the primary response was analysed on a divisional basis at local and distant lymphoid organs at various times after vaccination. The results indicated that F5 cell divisions were initiated in the local draining lymph nodes and cells only after five to six divisions appeared at more distant sites. The rMVA dose affected frequencies of cells entering division and at the peak response. When priming induced by rMVA and plasmid DNA was compared, dramatic differences in the cycling patterns were observed with plasmid DNA inducing a response slower and more sustained over the first 2 wk than rMVA. Both rMVA and DNA induced comparable IFN-gamma production, which increased with cell divisions. Taken together, the vaccine type, dose and route have a strong influence on the spatial and temporal patterns of initial T cell responses.
Collapse
Affiliation(s)
- Marie J Estcourt
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom
| | | | | | | |
Collapse
|
48
|
Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM. Phase I Study of a Plasmid DNA Vaccine Encoding MART-1 in Patients with Resected Melanoma at Risk for Relapse. J Immunother 2005; 28:382-8. [PMID: 16000957 DOI: 10.1097/01.cji.0000162779.88687.4c] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Immunization with plasmid DNA represents an attractive method for increasing cellular immune responses against cancer antigens. The safety and immunologic response of a plasmid encoding the MART-1 melanocyte differentiation antigen was evaluated in 12 patients with resected melanoma at risk for relapse. As a control, patients were also administered a plasmid encoding hepatitis B surface antigen (HBsAg). After establishing immunologic activity of the vaccines in mice, groups of three to six HLA-A2-positive patients were enrolled into one of three cohorts in which they received intramuscular injections of the MART-1 plasmid into the right deltoid and the HBsAg plasmid into the left deltoid at doses of 0.1, 0.3, or 1.0 mg on days 1, 43, 85, and 127. Injections were well tolerated. Toxicity was limited to grade 1 pain and injection site tenderness. Systemic toxicity was not observed. Although baseline MART-1-specific lymphoproliferative and ELISPOT responses were evident, no patient manifested increases after injection of the MART-1 plasmid. Furthermore, changes in MART-1-specific precursors were not evident after immunization as assessed by an in vitro stimulation assay. No patients manifested a lymphoproliferative response to HBsAg antigen, and significant antibody responses to HBsAg were also not observed. Although injections were safe, the authors could not show significant immunologic responses to plasmid encoding MART-1 or HBsAg using the dose, schedule, and route of administration applied. This study underscores species differences in the ability to respond to plasmid immunogens.
Collapse
Affiliation(s)
- Pierre L Triozzi
- University of Alabama at Birmingham Comprehensive Cancer Center, Alabama 35294-3300, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Egan MA, Chong SY, Megati S, Montefiori DC, Rose NF, Boyer JD, Sidhu MK, Quiroz J, Rosati M, Schadeck EB, Pavlakis GN, Weiner DB, Rose JK, Israel ZR, Udem SA, Eldridge JH. Priming with plasmid DNAs expressing interleukin-12 and simian immunodeficiency virus gag enhances the immunogenicity and efficacy of an experimental AIDS vaccine based on recombinant vesicular stomatitis virus. AIDS Res Hum Retroviruses 2005; 21:629-43. [PMID: 16060834 DOI: 10.1089/aid.2005.21.629] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the various approaches being developed as prophylactic HIV vaccines, those based on a heterologous plasmid DNA prime, live vector boost vaccination regimen appear especially promising in the nonhuman primate/simian-human immunodeficiency virus (SHIV) challenge model. In this study, we sought to determine whether a series of intramuscular priming immunizations with a plasmid DNA vaccine expressing SIVgag p39, in combination with plasmid expressed rhesus IL-12, could effectively enhance the immunogenicity and postchallenge efficacy of two intranasal doses of recombinant vesicular stomatitis virus (rVSV)-based vectors expressing HIV-1 env 89.6P gp160 and SIVmac239 gag p55 in rhesus macaques. In macaques receiving the combination plasmid DNA prime, rVSV boost vaccination regimen we observed significantly increased SIVgag- specific cell-mediated and humoral immune responses and significantly lower viral loads postintravenous SHIV89.6P challenge relative to macaques receiving only the rVSV vectored immunizations. In addition, the plasmid DNA prime, rVSV boost vaccination regimen also tended to increase the preservation of peripheral blood CD4+ cells and reduce the morbidity and mortality associated with SHIV89.6P infection. An analysis of immune correlates of protection after SHIV89.6P challenge revealed that the prechallenge SHIV-specific IFN-gamma ELISpot response elicited by vaccination and the ability of the host to mount a virus-specific neutralizing antibody response postchallenge correlated with postchallenge clinical outcome. The correlation between vaccine-elicited cell-mediated immune responses and an improved clinical outcome after SHIV challenge provides strong justification for the continued development of a cytokine-enhanced plasmid DNA prime, rVSV vector boost immunization regimen for the prevention of HIV infection.
Collapse
Affiliation(s)
- Michael A Egan
- Wyeth Vaccines Research, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dean HJ, Haynes J, Schmaljohn C. The role of particle-mediated DNA vaccines in biodefense preparedness. Adv Drug Deliv Rev 2005; 57:1315-42. [PMID: 15935876 DOI: 10.1016/j.addr.2005.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Particle-mediated epidermal delivery (PMED) of DNA vaccines is based on the acceleration of DNA-coated gold directly into the cytoplasm and nuclei of living cells of the epidermis, facilitating DNA delivery and gene expression. Professional antigen-presenting cells and keratinocytes in the skin are both targeted, resulting in antigen presentation via direct transfection and cross-priming mechanisms. Only a small number of cells need to be transfected to elicit humoral, cellular and memory responses, requiring only a low DNA dose. In recent years, data have accumulated on the utility of PMED for delivery of DNA vaccines against a number of viral pathogens, including filoviruses, flaviviruses, poxviruses, togaviruses and bunyaviruses. PMED DNA immunization of rodents and nonhuman primates results in the generation of neutralizing antibody, cellular immunity, and protective efficacy against a broad range of viruses of public health concern.
Collapse
Affiliation(s)
- Hansi J Dean
- PowderJect Vaccines, Inc. 8551 Research Way, Middleton, WI 53562, USA.
| | | | | |
Collapse
|