1
|
Fu W, Sun A, Dai H. Lipid metabolism involved in progression and drug resistance of breast cancer. Genes Dis 2025; 12:101376. [PMID: 40256431 PMCID: PMC12008617 DOI: 10.1016/j.gendis.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 06/22/2024] [Indexed: 04/22/2025] Open
Abstract
Breast cancer is the most common malignant tumor threatening women's health. Alteration in lipid metabolism plays an important role in the occurrence and development of many diseases, including breast cancer. The uptake, synthesis, and catabolism of lipids in breast cancer cells are significantly altered, among which the metabolism of fatty acids, cholesterols, sphingolipids, and glycolipids are most significantly changed. The growth, progression, metastasis, and drug resistance of breast cancer cells are tightly correlated with the increased uptake and biosynthesis of fatty acids and cholesterols and the up-regulation of fatty acid oxidation. Cholesterol and its metabolite 27-hydroxycholesterol promote the progression of breast cancer in a variety of ways. The alteration of lipid metabolism could promote the epithelial-mesenchymal transition of breast cancer cells and lead to changes in the tumor immune microenvironment that are conducive to the survival of cancer cells. While the accumulation of ceramide in cancer cells shows an inhibitory effect on breast cancer. This review focuses on lipid metabolism and elaborates on the research progress of the correlation between different lipid metabolism and the growth, progression, and drug resistance of breast cancer.
Collapse
Affiliation(s)
- Wenxiang Fu
- Renji School of Clinical Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, The Affiliated Huaian Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, Jiangsu 223001, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
2
|
Fujii Y, Asadi Z, Mehla K. Cathepsins: Emerging targets in the tumor ecosystem to overcome cancers. Semin Cancer Biol 2025; 112:150-166. [PMID: 40228591 DOI: 10.1016/j.semcancer.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Cathepsins, a group of lysosomal peptidases, have traditionally been recognized as tumor facilitators. Recent research, however, highlights their critical role in orchestrating cancer and the tumor microenvironment (TME). Primality, cathepsins degrade extracellular matrix, enabling cancer cells to invade and metastasize, while also promoting vascular endothelial infiltration and subsequent angiogenesis. Additionally, cathepsins boost fibroblast growth, thereby supporting tumor progression. More importantly, cathepsins are pivotal in modulating immune cells within the TME by regulating their recruitment, antigen processing and presentation, differentiation, and cell death, primarily contributing to immune suppression. Given their overexpression in tumors and elevated levels in the circulation of cancer patients, it is crucial to consider the systemic effects of cathepsins. Although the comprehensive role of cathepsins in cancer patients' bodies remains underexplored, they likely influence systemic immunity and inflammation, cellular metabolism, muscle wasting, and distant metastasis through their unique proteolytic functions. Notably, cathepsins also confer resistance to chemoradiotherapy by rewriting the cellular profile within the TME. In this context, promising results are emerging from studies combining cathepsin inhibitors with conventional therapies to suppress tumor development effectively. This review aims to decipher the cathepsin-driven networks within cancer cells and the TME, detailing their contribution to chemoradioresistance by reshaping both micro- and macroenvironments. Furthermore, we explore current and future perspectives on therapies targeting cathepsins' interactions, offering insights into innovative treatment strategies.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA
| | - Zahra Asadi
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences, Oklahoma City, OK 73014, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Luo W, Sun Y, Cao L. TSPAN31 Activates Fatty Acid Metabolism and PI3K/AKT Pathway to Promote Tumor Progression in Breast Cancer. Mol Carcinog 2025; 64:1078-1089. [PMID: 40135650 DOI: 10.1002/mc.23912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Breast cancer (BC) is one of the most common human malignancies, but the mechanisms of BC have not been fully elucidated. Recently, tetraspanin 31 (TSPAN31) is reported to be linked to cancer progression. However, the function of TSPAN31 remains unclear in BC. Investigation of the function and potential mechanism of TSPAN31 in BC was the purpose of this study. Immunohistochemistry, western blot, and quantitative real-time polymerase chain reaction were applied to measure TSPAN31 expression. Loss and gain functional experiments were utilized to survey the influences of TSPAN31 on BC biological process, including cell growth, invasion, migration, and fatty acid metabolism. Mechanistically, Kyoto Encyclopedia of Genes and Genomes analysis based on DepMap database and Gene Set Enrichment Analysis based on The Cancer Genome Atlas database were executed to find TSPAN31-related pathway. Western blot was carried out to assess the changes of fatty acid synthase (FASN), sterol regulatory element binding protein 1 (SREBP1), acyl-CoA synthetase long-chain family member 1 (ACSL1), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-PI3K, protein kinase B (AKT), and p-AKT. In human non-triple negative breast cancer tissues and cells, TSPAN31 expression was upregulated. TSPAN31 knockdown induced BC cell apoptosis, inhibited cell proliferation, invasion, migration, and fatty acid metabolism, and reduced the protein levels of FASN, SREBP1, ACSL1, p-PI3K/PI3K, and p-AKT/AKT. In contrast, TSPAN31 overexpression led to the opposite results. Additionally, the activator of PI3K (740 Y-P) attenuated the inhibition of TSPAN31 knockdown on fatty acid metabolism, proliferation, and invasion in BC cells. Through activation of fatty acid metabolism and PI3K/AKT pathway, TSPAN31 played a carcinogenic role in BC. For the mechanism of BC tumorigenesis, our study provides an interesting insight.
Collapse
Affiliation(s)
- Wenquan Luo
- Breast and Thyroid Surgery Department, Feicheng People's Hospital, Feicheng, Shandong, China
| | - Yuxiang Sun
- Breast and Thyroid Surgery Department, Feicheng People's Hospital, Feicheng, Shandong, China
| | - Liang Cao
- Radiotherapy Department, Taian Tumor Prevention and Treatment Hospital, Taian, Shandong, China
| |
Collapse
|
4
|
Ang B, Yang T, Jiang H, Cheng Y, Chen Y, Qie X, Yin L, Wang T, Chen Q, Wang Z, Zeng M, Adhikari B, He Z, Chen J. Enzymatic Synthesis and Evaluation of Eight Methylated Quercetin Products: In Vitro Chemical Properties and Adipogenesis Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40393977 DOI: 10.1021/acs.jafc.5c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The methoxylated modification of flavonoids has been reported to enhance stability and permeability; however, its effect on the improvement of activity is not clear. In this study, Citrus depressa flavonoid O-methyltransferase 5 and Sorghum vulgare 7-O-methyltransferase were recombinantly expressed and successfully converted quercetin (QUE) into eight methoxylated products, which were isolated and identified with a purity exceeding 95%. All products except rhamnetin (RHA) showed improved stability, while only 5,7,3',4'-EMQ, 7,3',4'-TMQ, and 3,7,3',4'-EMQ had higher uptake ratios. Compared to QUE, 5,7,3',4'-EMQ and RHA significantly reduced the intracellular triglyceride level, while 3,5,7,3',4'-PMQ, 3,3',4'-TMQ and 3,7,3',4'-EMQ increased it. 5,7,3',4'-EMQ and RHA also significantly downregulated both the mRNA and protein levels of peroxisome proliferator-activated receptor γ, while 3,5,7,3',4'-PMQ and 3,7,3',4'-EMQ upregulated PPARγ at the transcriptional level to about ten times higher than that of QUE. The structure-activity relationship analysis highlighted the importance of C3-OH retention and dual methoxylation of the A-ring. In summary, this study efficiently produced eight structurally well-defined QUE methoxylation products via biotransformation, established an in vitro initial structure-activity relationship for regulating adipogenesis, and provided a potential structure for PPARγ regulation, a central target of lipid metabolism.
Collapse
Affiliation(s)
- Beijun Ang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian Yang
- Analytical and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongtao Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yong Cheng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuejiao Qie
- MOE Key Laboratory of Population Health across Life Cycle/School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Liduan Yin
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Tong Wang
- Yantai New Era Health Industry Co., Ltd., Yantai, Shandong 264000, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Xu L, Xiao T, Chao T, Xiong H, Yao W. From genes to therapy: a lipid Metabolism-Related genetic risk model predicts HCC outcomes and enhances immunotherapy. BMC Cancer 2025; 25:895. [PMID: 40389832 DOI: 10.1186/s12885-025-14306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 05/09/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is related to dysregulated lipid metabolism and immunosuppressive microenvironment. This study developed a genetic risk model using lipid metabolism-related genes to predict survival and immune patterns in HCC patients. METHODS Differentially expressed genes (DEGs) related to lipid metabolism were identified in HCC via the TCGA-LIHC dataset. A risk model for survival prediction was constructed via DEGs related to survival. The immune signature associated with the risk model was also evaluated by the CIBERSORT algorithm, tumor immune dysfunction and exclusion algorithm, and single sample gene set enrichment analysis. RESULTS This study identified six lipid metabolism-related genes, ADH4, LCAT, CYP2C9, CYP17A1, LPCAT1, and ACACA, to construct a lipid metabolism-related gene risk model that can divide HCC patients into low- and high-risk groups. Internal and external validation verified that the risk model could be a signature that could effectively predict HCC patient prognosis. High-risk patients showed disrupted immune cell profiles, reduced tumor-killing capacity, and increased expression of immune checkpoint genes. However, they responded more favorably to immune checkpoint inhibitor (ICB) therapy. The top ten hub genes related to the risk model were associated with tumor progression and deteriorating prognosis. In vitro experiments verified that the downregulation of the top 1 hub gene CDK1 was correlated to the HCC cell proliferation. CONCLUSION The risk model constructed using lipid metabolism-related genes could effectively predict prognosis and was related to the immunosuppressive microenvironment and ICB immunotherapy. The hub genes related to the risk model were potential therapeutic targets.
Collapse
Affiliation(s)
- Lei Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Xiao
- Department of Ultrasonography, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Shah A, Johnson E, Ponnusamy MP, Batra SK. Emerging pathways yielding opportunities for future treatments in pancreatic ductal adenocarcinoma. Expert Opin Ther Targets 2025. [PMID: 40382194 DOI: 10.1080/14728222.2025.2507035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/05/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy that is often diagnosed at a late stage, resulting in poor survival rates and limited treatment options. Several factors contribute to the dismal prognosis of PDAC, including the absence of reliable biomarkers and effective therapies, as well as the complex biology of the disease. AREAS COVERED The pathobiology of PDAC encompasses its unique mutational landscape, desmoplastic stroma, and immune suppressive tumor microenvironment (TME). These characteristics are influenced by an intricate network of signaling pathways activated by oncogenic KRAS, DNA damage and repair machinery, metabolic adaptations, and aberrant mucin expression. This review summarizes our current understanding of these pathways to explore their potential for therapeutic vulnerabilities in PDAC. We discuss how recent efforts to elucidate these pathways have identified novel targets and treatments for this dreadful disease. EXPERT OPINION The complex biology of PDAC complicates the effectiveness of single therapeutic agents. To achieve durable clinical responses in patients with PDAC, it is essential to simultaneously inhibit multiple parallel or unrelated pathways. Therefore, a combination therapeutic regimen is necessary to significantly improve treatment outcomes that rely solely on biologically driven concepts. These studies suggest ways to expand our understanding of the therapeutic vulnerabilities in PDAC.
Collapse
Affiliation(s)
- Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Esther Johnson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
7
|
Tu DY, Peng R, Jin SJ, Su BB, Fan SS, Zhang JH, Wang SY, Miao YY, Jiang GQ, Zhang C, Cao J, Bai DS. MARCH8 suppresses hepatocellular carcinoma by promoting SREBP1 degradation and modulating fatty acid de novo synthesis. Cell Death Dis 2025; 16:391. [PMID: 40379644 DOI: 10.1038/s41419-025-07707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors of the digestive system, and its prevalence is currently increasing. The current study aims to elucidate the mechanism by which membrane-associated RING-CH8 (MARCH8) impedes the progression of HCC. MARCH8 was identified as a distinct prognostic marker for recurrence-free survival (RFS) and overall survival (OS) in patients with HCC. This study shows that MARCH8 hinders lipid deposition by suppressing the expression of key enzymes for the de novo synthesis of fatty acids (FAs) via RNA sequencing, untargeted metabolomics, and a series of in vivo and in vitro experiments. Further experimental validation demonstrated that MARCH8 was a novel E3 ligase of sterol regulatory element binding protein 1 (SREBP1). And, it primarily promoted the degradation of SREBP1, thereby suppressing the expression of key enzymes involved in the de novo synthesis of FAs. In conclusion, this study has identified MARCH8 as a key "switch" that can be targeted to prevent de novo FA synthesis in HCC cells. This finding may have substantial implications for discovering innovative therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dao-Yuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China
| | - Bing-Bing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Song-Song Fan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jia-Hao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shun-Yi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yang-Yang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
8
|
Meng Y, Guo J, Xu H, Shuang S, Dong C. Light-up lipid droplets dynamic behaviors using rationally designed carbon dots. Talanta 2025; 287:127625. [PMID: 39874795 DOI: 10.1016/j.talanta.2025.127625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Lipid droplets (LDs) are essential organelles used to store lipids and participate in cellular lipid metabolism. Imaging LDs is an intuitive approach to comprehend their biological functions. Herein, the LDs-targeted CDs (LD-CDs) featuring robust solvatochromic emission were elaborately designed by a Schiff base reaction using 1, 2-diamino-4-fluorobenzene, 3-dimethylaminophenol, and thiourea as precursors. The LD-CDs exhibited a remarkable sensitivity to polarity changes over a broad linear range (0.0205-0.3213), owing to its unique intramolecular charge transfer effect (ICT). Moreover, the favorable lipophilicity of LD-CDs endows it with the capability to light up LDs with high specificity. Due to their good lipophilicity and biocompatibility, the LD-CDs were able to differentiate cancer cells from normal cells and keep real-time track of LDs dynamic behaviors, including dissociation, migration, and fusion. Leveraging the multifunctionality of LD-CDs, we have also observed the dynamic changes of lysosomes and LDs during lipophagy. Additionally, the LD-CDs were employed to reveal the polarity change of LDs in living cells and zebrafish under oleic acid stimulation and to visualize lipid metabolism in zebrafish. We deem that this work will expand the applications of CDs in biological imaging and make further contributions to the field of LDs-associated metabolism and diseases.
Collapse
Affiliation(s)
- Yachu Meng
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jianhua Guo
- School of Environmental Science and Engineering, Shanxi University of Electronic Science and Technology, Linfen, 041000, China.
| | - Hongmei Xu
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- Institute of Environmental Science and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Wu GF, Luo ZG, Gao K, Ren Y, Shen C, Ying XR. LRP8 Regulates Lipid Metabolism to Stimulate Malignant Progression and Cisplatin Resistance in Bladder Cancer. Kaohsiung J Med Sci 2025:e70042. [PMID: 40372166 DOI: 10.1002/kjm2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 03/31/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Low-density lipoprotein receptor-related protein 8 (LRP8) is a crucial regulator of lipid metabolism and is implicated in the development and treatment of various cancers. However, its role in bladder cancer (BCa) remains unknown. We analyzed LRP8 expression in BCa using the TCGA database and clinical samples. We manipulated LRP8 expression in tumor cell lines using siRNA or overexpression plasmid transfection. Cell proliferation, migration, invasion, apoptosis, and drug resistance were assessed through CCK-8, transwell, flow cytometry, and IC50 assays. Additionally, a rescue experiment confirmed the association between LRP8 and lipid metabolism. LRP8 was significantly upregulated in BCa tissues and cells. Knockdown of LRP8 reduced tumor cell proliferation, migration, invasion, and increased apoptosis while enhancing cisplatin sensitivity. Overexpression of LRP8 boosted malignant progression and cisplatin resistance in tumor cells. The expression level of LRP8 is positively linked with the expression of lipid metabolism-related genes, phospholipid accumulation, and triglyceride accumulation. Notably, inhibiting lipid metabolism reversed the malignant progression and cisplatin resistance induced by LRP8 overexpression. LRP8 could promote BCa malignant progression and cisplatin resistance through lipid metabolism regulation.
Collapse
Affiliation(s)
- Gang-Feng Wu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Zhen-Gang Luo
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Ke Gao
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Ren
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Chong Shen
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiang-Rong Ying
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
10
|
Carbone F, Després JP, Ioannidis JPA, Neeland IJ, Garruti G, Busetto L, Liberale L, Ministrini S, Vilahur G, Schindler TH, Macedo MP, Di Ciaula A, Krawczyk M, Geier A, Baffy G, Faienza MF, Farella I, Santoro N, Frühbeck G, Yárnoz-Esquiroz P, Gómez-Ambrosi J, Chávez-Manzanera E, Vázquez-Velázquez V, Oppert JM, Kiortsis DN, Sbraccia P, Zoccali C, Portincasa P, Montecucco F. Bridging the gap in obesity research: A consensus statement from the European Society for Clinical Investigation. Eur J Clin Invest 2025:e70059. [PMID: 40371883 DOI: 10.1111/eci.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/12/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Most forms of obesity are associated with chronic diseases that remain a global public health challenge. AIMS Despite significant advancements in understanding its pathophysiology, effective management of obesity is hindered by the persistence of knowledge gaps in epidemiology, phenotypic heterogeneity and policy implementation. MATERIALS AND METHODS This consensus statement by the European Society for Clinical Investigation identifies eight critical areas requiring urgent attention. Key gaps include insufficient long-term data on obesity trends, the inadequacy of body mass index (BMI) as a sole diagnostic measure, and insufficient recognition of phenotypic diversity in obesity-related cardiometabolic risks. Moreover, the socio-economic drivers of obesity and its transition across phenotypes remain poorly understood. RESULTS The syndemic nature of obesity, exacerbated by globalization and environmental changes, necessitates a holistic approach integrating global frameworks and community-level interventions. This statement advocates for leveraging emerging technologies, such as artificial intelligence, to refine predictive models and address phenotypic variability. It underscores the importance of collaborative efforts among scientists, policymakers, and stakeholders to create tailored interventions and enduring policies. DISCUSSION The consensus highlights the need for harmonizing anthropometric and biochemical markers, fostering inclusive public health narratives and combating stigma associated with obesity. By addressing these gaps, this initiative aims to advance research, improve prevention strategies and optimize care delivery for people living with obesity. CONCLUSION This collaborative effort marks a decisive step towards mitigating the obesity epidemic and its profound impact on global health systems. Ultimately, obesity should be considered as being largely the consequence of a socio-economic model not compatible with optimal human health.
Collapse
Affiliation(s)
- Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Québec, Canada
- VITAM - Centre de Recherche en santé Durable, Centre intégré Universitaire de santé et de Services Sociaux de la Capitale-Nationale, Québec, Québec, Canada
| | - John P A Ioannidis
- Department of Medicine, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
- Department of Biomedical Science, Stanford Cardiovascular Institute, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Ian J Neeland
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Cardiovascular Disease, Harrington Heart and Vascular Institute, Cleveland, Ohio, USA
| | - Gabriella Garruti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Luca Busetto
- Department of Medicine, University of Padua, Padua, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Cardiology Department, Luzerner Kantonspital, Lucerne, Switzerland
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, IIB-Sant Pau, Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | - Thomas H Schindler
- Washington University in St. Louis, Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Cardiovascular Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Paula Macedo
- APDP - Diabetes Portugal, Education and Research Center, Lisbon, Portugal
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, NMS | FCM, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Agostino Di Ciaula
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Andreas Geier
- Interdisciplinary Amyloidosis Center of Northern Bavaria, University Hospital of Würzburg, Würzburg, Germany
- Department of Internal Medicine II, Hepatology, University Hospital of Würzburg, Würzburg, Germany
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Ilaria Farella
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Nicola Santoro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Yárnoz-Esquiroz
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Department of Endocrinology and Nutrition, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBERObn (CIBER Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Chávez-Manzanera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Jean-Michel Oppert
- Department of Nutrition, Pitié-Salpêtrière Hospital (AP-HP), Human Nutrition Research Center Ile-de-France (CRNH IdF), Sorbonne University, Paris, France
| | - Dimitrios N Kiortsis
- Atherothrombosis Research Centre, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paolo Sbraccia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, New York, USA
- Institute of Molecular Biology and Genetics (Biogem), Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale (IPNET), c/o Nefrologia, Grande Ospedale Metropolitano, Reggio Calabria, Italy
| | - Piero Portincasa
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro", Bari, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Genoa, Italy
| |
Collapse
|
11
|
Li X, Gao Y, Fan S, Yang J, Zhang Y, Yang X, Cai C, Huang M, Bi H. Lipidomic profiling reveals the dynamic changes of hepatic lipidome during the fasting-refeeding transition in mice. J Pharm Biomed Anal 2025; 264:116966. [PMID: 40383105 DOI: 10.1016/j.jpba.2025.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Liver plays a pivotal role in maintaining energy homeostasis during fasting-refeeding transition. We previously reported that fasting-refeeding induces the dynamic changes of liver size. However, the alterations in hepatic lipid profiles during these dynamic changes remain unclear. Therefore, the present study aimed to clarify the effect of fasting and refeeding on hepatic lipid homeostasis in mice using lipidomics analysis and to identify the specific lipids that vary during the fasting-refeeding transition. In this study, C57BL/6 mice were fasted for 24 h and subsequently refed for 1, 3, 6, 12, and 24 h, respectively. Liver and serum samples were collected at each time point for further analysis. The results demonstrated that fasting obviously decreased the liver size accompanying with hepatic lipid accumulation, which were all returned to normal level after refeeding. Lipidomics analysis revealed that a total of 309 lipids were significantly disturbed, over half of them belonged to triacylglycerol (TG). Consistently, fasting significantly altered the expression of genes associated with fatty acid uptake, TG synthesis and metabolism, which were returned to baseline level after refeeding. In conclusion, these findings demonstrated that fasting induced liver shrinkage and the change of lipid profiling, especially TG accumulation in liver, while these effects can be reversed after refeeding.
Collapse
Affiliation(s)
- Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Seum T, Cardoso R, Stevenson-Hoare J, Holleczek B, Schöttker B, Hoffmeister M, Brenner H. Exploring metabolomics for colorectal cancer risk prediction: evidence from the UK Biobank and ESTHER cohorts. BMC Med 2025; 23:283. [PMID: 40361100 PMCID: PMC12077020 DOI: 10.1186/s12916-025-04107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND While metabolic pathway alterations are linked to colorectal cancer (CRC), the predictive value of pre-diagnostic metabolomic profiling in CRC risk assessment remains to be clarified. This study evaluated the predictive performance of a metabolomics risk panel (MRP) both independently and in combination with established risk factors. METHODS We derived, internally validated (IV), and externally validated (EV) a metabolomics risk panel (MRP) for CRC from data of the UK Biobank (UKB) and the German ESTHER cohort. Baseline blood samples were assessed for 249 metabolites using nuclear magnetic resonance spectroscopy analysis. We applied LASSO Cox proportional hazards regression to identify metabolites for inclusion in the MRP and evaluated the model performance using the concordance index (C-index). We compared the performance of the MRP to an environmental risk panel (ERP; sex, age, body mass index, smoking status, and alcohol consumption) and a genetic risk panel (GRP; polygenic risk score). RESULTS The study included 154,892 participants of the UKB cohort (mean age at baseline 54.5 years; 55.5% female) with 1879 incident CRC and 3242 participants of the ESTHER cohort (mean age 61.5 years; 52.2% female) with 103 CRC cases. Twenty-three metabolites, primarily amino acid and lipid-related metabolites, were selected for the MRP, showing moderate predictive performance (C-index 0.60 [IV] and 0.54 [EV]). The ERP and GRP showed superior performance, with C-index values of 0.73 (IV) and 0.69 (EV). Adding the MRP to these risk models did not change the C-indices in both cohorts. CONCLUSIONS Genetic and environmental risk information provided strong predictive accuracy for CRC risk, with no improvements from adding metabolomics data. These findings suggest that metabolomics data may have limited impact on enhancing established CRC risk models in clinical practice.
Collapse
Affiliation(s)
- Teresa Seum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, Heidelberg, 69120, Germany
| | - Rafael Cardoso
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
| | - Joshua Stevenson-Hoare
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident-Baltz-Strasse 5, Saarbrücken, 66119, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg, 69120, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany, 69120.
| |
Collapse
|
13
|
Park IR, Chung YG, Chung SM, Moon JS, Yoon JS, Won KC. Association between obstructive sleep apnea risk and atherosclerosis: A nationwide cross-sectional study in the Korean population. PLoS One 2025; 20:e0322897. [PMID: 40341843 PMCID: PMC12061421 DOI: 10.1371/journal.pone.0322897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/29/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVES Obstructive sleep apnea (OSA) increases the risk of all-cause and cardiovascular mortality. This study aimed to investigate the association between OSA and atherogenic risk in the Koreans. METHODS Data from 8,158 participants (mean age, 57.9 ± 11.7; male/female, 1:1.4) obtained from the Korea National Health and Nutrition Examination Survey between 2019 and 2021. OSA risk was screened using the STOP-BANG score, and atherogenic risk was measured using the atherogenic index of plasma (AIP). Logistic regression was used to evaluate the association between the STOP-BANG scores and high AIP and subgroups according to the presence of diabetes. RESULTS The proportions of individuals with atherogenic risk (AIP > 0.24) were 13.7%, 27.6%, and 34.7% in the low-, intermediate-, and high-OSA risk groups (p < 0.001). After adjustment, individuals with intermediate and high OSA risk had 1.35 (95% confidence interval [CI], 1.16-1.58; p < 0.001) and 1.32 (95% CI, 1.08-1.61; p = 0.006) times higher odds of having atherogenic risk than those with low OSA risk. Among patients without diabetes, high OSA risk was not an independent factor affecting atherogenic risk (hazard ratio [HR], 1.17; 95% CI, 0.93-1.47). However, among patients with diabetes, compared with those with low OSA risk, those with intermediate (HR, 1.51; 95% CI, 1.05-2.19) and high OSA risk (HR, 1.58; 95% CI, 1.02-2.46) had significantly increased atherogenic risk. CONCLUSION OSA is linked to increased atherogenic risk in the Koreans, especially in individuals with diabetes, thus highlighting the importance of routine OSA screening to manage and reduce cardiovascular risks.
Collapse
Affiliation(s)
- Il Rae Park
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| | - Yong Geun Chung
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| | - Seung Min Chung
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| | - Jun Sung Moon
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| | - Ji Sung Yoon
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| | - Kyu Chang Won
- Department of Intermal Medicine, Yeungnam University College of Medicine, Daegu
| |
Collapse
|
14
|
Xu J, Luo X, Su W, Jia G, Cai H, Li D, Li R, Wang X, Yang Y, Wang T, Zuo C. Turning Waste into Treasure: Radiation Byproduct-Induced Fe(III)/Fe(II) Conversion for Efficient Ferroptosis to Improve Iodine-131-Based Transarterial Radioembolization for Liver Tumors. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40338615 DOI: 10.1021/acsami.5c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Transarterial radioembolization (TARE) is a primary palliative treatment for advanced liver cancer. Nonetheless, its therapeutic efficacy is frequently hindered by resistance to tumor cell apoptosis induced by inter-radiotherapy. Induction of multiple cell death modalities provides a potential solution to this challenge. Ferroptosis, a distinct form of cell death from apoptosis, is dependent on the intracellular Fe2+-mediated Fenton reaction for the production of hydroxyl radicals (·OH) and is gaining recognition as a promising approach for cancer treatment. In this study, we synthesized a therapeutic radionuclide iodine-131 (131I)-based TARE agent by combining 131I-labeled iron-based MIL-88B(Fe) nanoparticles (NPs) (abbreviated as 131I-MIL-88B(Fe)) with Lipiodol to achieve a combined apoptosis-ferroptosis tumor therapy. Specifically, a mixture of Lipiodol and 131I-MIL-88B(Fe) NPs was injected into the liver tumors through the hepatic artery. Lipiodol blocks the arterial blood supply of the tumor, causing tumor tissue necrosis, whereas 131I inter-radiotherapy damages deoxyribonucleic acid (DNA) through direct action or indirectly via the production of ·OH through H2O radiolysis, leading to tumor cell apoptosis. Importantly, hydrated electrons (eaq-), a byproduct of H2O radiolysis, promoted the conversion of Fe3+ to Fe2+ in MIL-88B(Fe) NPs, enhancing the efficacy of the Fenton reaction and triggering ferroptosis. In vitro experiments demonstrated that compared to 131I alone, 131I-MIL-88B(Fe) NPs significantly enhanced ferroptosis-mediated tumor cell death due to 131I-induced Fe2+ production, which increased catalytic activity in the Fenton reaction. In a rat model bearing orthotopic N1S1 liver tumors, TARE with Lipiodol and 131I-MIL-88B(Fe) NPs induced tumor cell necrosis, apoptosis, and ferroptosis, resulting in improved therapeutic outcomes. This study leverages eaq- to facilitate Fe3+/Fe2+ conversion for efficient ferroptosis, turning waste into a valuable resource. This demonstrated the innovative integration of multiple treatment strategies to augment the efficacy of TARE in liver cancer therapy.
Collapse
Affiliation(s)
- Jiangnan Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xiu Luo
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Weiwei Su
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Radiology, Naval Medical Centre, Shanghai 200052, China
| | - Guorong Jia
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Danni Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Rou Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Xiangdong Wang
- Mini-Invasive Intervention Center, the Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Yefa Yang
- Mini-Invasive Intervention Center, the Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Tao Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Changjing Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
- Department of Nuclear Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| |
Collapse
|
15
|
Zhou S, Liu Y, Zhang N, Sun L, Ji C, Cui T, Chu Q, Zhang S, Wang J, Liu L. Glycolytic enzyme PFKFB4 governs lipolysis by promoting de novo lipogenesis to drive the progression of hepatocellular carcinoma. Cancer Lett 2025; 626:217774. [PMID: 40339954 DOI: 10.1016/j.canlet.2025.217774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/21/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Hepatocellular carcinoma (HCC) is among the most aggressive malignancies, marked by high recurrence rates and limited treatment efficacy, especially in HBV-associated HCC (HBV-HCC). This subtype exhibits pronounced metabolic reprogramming, with lipid synthesis playing a pivotal role in driving tumor aggressiveness and therapeutic resistance. However, the molecular mechanisms underlying this metabolic shift remain unclear. In our study, analysis of the LIHC-TCGA database and comparisons between HCC tissues and adjacent peri-tumoral tissues revealed that 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4) is significantly upregulated in HBV-HCC. Moreover, elevated PFKFB4 expression correlates with poorer prognosis and unfavorable overall survival among HBV-HCC patients. Functional assays demonstrated that PFKFB4 promotes HCC proliferation by enhancing glycolysis and de novo lipid synthesis. Notably, PFKFB4 not only increases glycolytic flux but also upregulates sterol regulatory element-binding protein 1 (SREBP1) expression via its enzymatic activity. Mechanistically, PFKFB4 suppresses phosphorylated AMP-activated protein kinase (p-AMPK) through enhanced aerobic glycolysis, which in turn stimulates the level of SREBP1. Collectively, these findings position PFKFB4 as a critical mediator of metabolic reprogramming in HBV-HCC and a promising therapeutic target.
Collapse
Affiliation(s)
- Shuo Zhou
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Ning Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shugeng Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China; Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China; Department of Organ Transplantation Center, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
16
|
Xiong L, Cheng J. Rewiring lipid metabolism to enhance immunotherapy efficacy in melanoma: a frontier in cancer treatment. Front Oncol 2025; 15:1519592. [PMID: 40376583 PMCID: PMC12078133 DOI: 10.3389/fonc.2025.1519592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/31/2025] [Indexed: 05/18/2025] Open
Abstract
Immunotherapy has transformed the landscape of melanoma treatment, offering significant extensions in survival for many patients. Despite these advancements, nearly 50% of melanoma cases remain resistant to such therapies, highlighting the need for novel approaches. Emerging research has identified lipid metabolism reprogramming as a key factor in promoting melanoma progression and resistance to immunotherapy. This reprogramming not only supports tumor growth and metastasis but also creates an immunosuppressive environment that impairs the effectiveness of treatments such as immune checkpoint inhibitors (ICIs). This review delves into the intricate relationship between lipid metabolism and immune system interactions in melanoma. We will explore how alterations in lipid metabolic pathways contribute to immune evasion and therapy resistance, emphasizing recent discoveries in this area. Additionally, we also highlights novel therapeutic strategies targeting lipid metabolism to enhance immune checkpoint inhibitor (ICI) efficacy.
Collapse
Affiliation(s)
- Lihua Xiong
- Department of Dermatology, Cheng Du Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Jian Cheng
- Department of Chinese Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Guo S, Zhang L, Ren J, Lu Z, Ma X, Liu X, Jin H, Li J. The roles of enhancer, especially super-enhancer-driven genes in tumor metabolism and immunity. Int J Biol Macromol 2025; 308:142414. [PMID: 40132720 DOI: 10.1016/j.ijbiomac.2025.142414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Abnormal metabolism is a characteristic of malignant tumors. Numerous factors play roles in the regulation of tumor metabolism. As epigenetic regulators, enhancers, especially the super-enhancers (SEs), serve as platforms for transcription factors that regulate the expression of metabolism-related enzymes or transporters at the gene level. In this study, we review the effects of enhancer/ SE-driven genes on tumor metabolism and immunity. Enhancers/SEs play regulatory roles in glucose metabolism (glycolysis, gluconeogenesis, tricarboxylic acid (TCA) cycle, pyruvate, and pentose phosphate pathway, lipid metabolism (cholesterol, fatty acid, phosphatide, and sphingolipid), and amino acid metabolism (glutamine, tryptophan, arginine, and cystine). By regulating tumor metabolism, enhancers and SEs can reprogram tumor microenvironment, especially the status of various immune cells. Therefore, interfering enhancers/SEs that regulate the tumor metabolism is likely to enhance the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Songyue Guo
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Lu Zhang
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Jiao Ren
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xiaolin Ma
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Xinling Liu
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Hongchuan Jin
- Department of Medical Oncology, Cancer Center of Zhejiang University, Sir Run Run Shaw hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China.
| | - Jiaqiu Li
- Department of Oncology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, Shandong, China; Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
18
|
Xu X, Chen J, Bai M, Liu T, Zhan S, Li J, Ma Y, Zhang Y, Wu L, Zhao Z, Liu S, Chen X, Fang F, Guo H, Sun Y, Yang R. Plasma tsRNA Signatures Serve as a Novel Biomarker for Bladder Cancer. Cancer Sci 2025; 116:1255-1267. [PMID: 39948752 PMCID: PMC12044647 DOI: 10.1111/cas.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 05/02/2025] Open
Abstract
Bladder cancer (BLCA) is one of the most common tumors of the urinary tract. The diagnosis of BLCA is mostly by invasive tests, which are damaging and unsuitable for early screening. Current non-invasive diagnostic modalities are insufficient in sensitivity and specificity. Therefore, novel diagnostic markers are urgently needed to facilitate early detection of bladder cancer. tRNA-derived small RNAs (tsRNAs) are considered to be novel and potentially biologically functional non-coding RNAs (ncRNAs). tsRNAs have been used to help early diagnosis of a variety of tumors. However, whether tsRNAs in BLCA are altered or involved in BLCA progression or regulation remains unclear. Here, we identified a group of up-regulated tsRNAs in BLCA by sequencing tsRNAs in the plasma of BLCA patients and normal controls and further screened two highly correlated tsRNAs with BLCA in the training set and validation set, which were named as tRF-1:28-chrM.Ser-TGA and tiRNA-1:34-Glu-CTC-1-M2. ROC analyses of the expression profiles of these two tsRNAs by the validation set identified a high diagnostic value. We also found that circulating tRF-1:28-chrM.Ser-TGA and tiRNA-1:34-Glu-CTC-1-M2 were specifically expressed and released by BLCA cells and were positively correlated with the degree of disease malignancy. In vitro and in vivo experiments revealed that the two tsRNAs exacerbated BLCA progression and played a role in promoting tumor lipid metabolism. Our study screened two plasma tsRNAs that could serve as valuable early screening and diagnostic biomarkers for BLCA and is also expected to provide potential novel molecular targets for the treatment of BLCA.
Collapse
Affiliation(s)
- Xinyan Xu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
| | - Jinbang Chen
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingJiangsuChina
| | - Ming Bai
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - TianYao Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, TianjinTianjin's Clinical Research Center for CancerTianjinChina
| | - Shoubin Zhan
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingJiangsuChina
| | - Jiazheng Li
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - YuanChun Ma
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yulin Zhang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Liming Wu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zihan Zhao
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Siyang Liu
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xi Chen
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Feng Fang
- Department of Pharmacology, School of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuChina
| | - Hongqian Guo
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
| | - Ying Sun
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, School of Life SciencesNanjing UniversityNanjingJiangsuChina
| | - Rong Yang
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical BiotechnologyNanjingJiangsuChina
- Nanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingJiangsuChina
| |
Collapse
|
19
|
An Y, Song H, Qiu H, Jiang J, Shi J. Lipid Metabolism in Gastrointestinal Malignancies: Exploring Dysregulation, Biomarkers, and Treatment Strategies. Cancer Med 2025; 14:e70975. [PMID: 40391753 DOI: 10.1002/cam4.70975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/09/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Gastrointestinal malignancies are a major public health concern worldwide, characterized by high incidence and mortality rates. Despite continuous advancements in existing treatment methods, overall survival rates remain low. Lipid metabolism plays a crucial role in the occurrence, progression, and treatment of gastrointestinal malignancies. Its involvement in the metabolic reprogramming of tumor cells, regulation of the tumor microenvironment, and drug response has become a research hotspot. MATERIALS & METHODS This review summarizes current research related to lipid metabolism mechanisms, biomarkers, and therapies in GI cancers, with emphasis on its interaction with the tumor microenvironment.
Collapse
Affiliation(s)
- Yan An
- Department of Anesthesiology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Huihui Song
- Obstetrical Medicine Center, Weifang People's Hospital, Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jun Jiang
- Department of Anesthesiology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology and Metabolism, School of Clinical Medicine, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
20
|
Gao H, Zheng S, Liang J, Wang Y, Chen L, Li H, Chen Y, Zhang F, Shi H, Han A. m6A-induced DEAD-box RNA helicase 21 enhances lipid metabolism via 3‑hydroxy-3-methylglutaryl-CoA synthases 1 in colorectal cancer. Transl Oncol 2025; 55:102373. [PMID: 40127603 PMCID: PMC11979938 DOI: 10.1016/j.tranon.2025.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Altered lipid metabolism is a well-known hallmark of cancer. However, the underlying mechanisms of altered lipid metabolism in colorectal cancer (CRC) progression requires further investigation. Previously we have revealed that DEAD-box RNA helicase 21 (DDX21) promotes CRC metastasis via liquid-liquid phase separation. In this study, we identify DDX21 as a novel regulator of lipid metabolism in CRC. METHODS In vitro and in vivo assays illustrated the biological role of DDX21 and YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in CRC lipid metabolism and progression. Bioinformatics analysis, ChIP, meRIP, RIP, RNA stability assay and dual-luciferase reporter assay were applied to explore the underlying molecular mechanisms. The expression levels and prognostic role of YTHDF1/DDX21/HMGCS1 axis in CRC patients were analyzed by immunohistochemical staining and Kaplan-Meier plotter. RESULTS DDX21 enhanced CRC progression via promoting lipid metabolism. Mechanistically, YTHDF1 enhanced DDX21 mRNA stability by recognizing its m6A-modified sites. DDX21 further binded to 3‑hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) promoter region and directly activated HMGCS1 transcription. Moreover, our clinical data showed that a simultaneously high expression of YTHDF1, DDX21 and HMGCS1 predicted an unfavorable overall survival in CRC patients. CONCLUSIONS Our study demonstrates that the YTHDF1/DDX21/HMGCS1 axis promotes CRC progression via regulating lipid metabolism and DDX21 might be a promising target for CRC therapy.
Collapse
Affiliation(s)
- Huabin Gao
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuai Zheng
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiangtao Liang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuting Wang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lin Chen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yongyu Chen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fenfen Zhang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huijuan Shi
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Anjia Han
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
21
|
Wang Y, Wu Q, Wei X, Huang G, Feng G, Xu H, Gou X. Increased Immune Infiltration and Improved Prognosis of Head and Neck Squamous Cell Carcinoma Associated with Reduced Ancient Ubiquitous Protein 1 Gene Expression. Mol Biotechnol 2025; 67:1826-1842. [PMID: 38862860 DOI: 10.1007/s12033-024-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/08/2024] [Indexed: 06/13/2024]
Abstract
This study aimed to explore the molecular mechanism underlying the prognostic role of ancient ubiquitous protein 1 (AUP1) in head and neck squamous cell carcinoma (HNSCC) and its relationship with the tumor immune microenvironment. Various web resources were used to analyze the differential expression of AUP1 and its role in the HNSCC pathogenesis. A nomogram aimed at predicting 1-, 3-, and 5-year survival rates was developed based on the patient's clinicopathological characteristics and AUP1 expression pattern. Several algorithms and analytical tools were used to explore the correlation between AUP1 expression and sensitivity to immune checkpoint gene therapy by evaluating infiltrating immune cells in patients with HNSCC. Higher AUP1 mRNA and protein expression levels were observed in most tumors and HNSCC than in the normal tissues. High AUP1 expression was an independent predictive risk factor for the overall survival of patients as it was closely associated with the patients' T, M, clinical, and pathological stages and lymphovascular invasion in HNSCC. In conclusion, AUP1 is involved in the occurrence and progression of HNSCC, may be used as an independent prognostic factor in patients with HNSCC, and could serve as a potential intervention target to improve immunotherapy sensitivity in HNSCC.
Collapse
Affiliation(s)
- Yi Wang
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Wu
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao Wei
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Gang Huang
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Guangyong Feng
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Hui Xu
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaoxia Gou
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
22
|
He T, Wang ZY, Xu B, Zhong CJ, Wang LN, Shi HC, Yang ZY, Zhou SQ, Li H, Hu B, Zhu XD, Shen YH, Zhou J, Fan J, Sun HC, Huang C. CXCL6 Reshapes Lipid Metabolism and Induces Neutrophil Extracellular Trap Formation in Cholangiocarcinoma Progression and Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503009. [PMID: 40305734 DOI: 10.1002/advs.202503009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/31/2025] [Indexed: 05/02/2025]
Abstract
The chemokine CXCL6 is identified as a pivotal regulator of biological processes across multiple malignancies. However, its function in cholangiocarcinoma (CCA) is underexplored. Tumor profiling for CXCL6 is performed using a public database. Both in vitro and in vivo experiments are utilized to evaluate the oncogenic effects of CXCL6 on CCA. Additionally, RNA-Seq is employed to detect transcriptomic changes related to CXCL6 expression in CCA cells and neutrophils. Molecular docking, fluorescence colocalization, and Co-IP are used to elucidate a direct interaction between JAKs and CXCR1/2. Additionally, LC-MS lipidomics and explored the impact of CXCL6 on immunotherapy in vivo. CXCL6 is upregulated in CCA tissues and promoted the proliferation and metastasis of CCA. Mechanistically, CXCL6 regulated the CXCR1/2-JAK-STAT/PI3K axis in CCA via autocrine signaling, leading to lipid metabolic reprogramming, and promoted neutrophil extracellular traps (NETs) formation by activating the RAS/MAPK pathway in neutrophils. Eventually, NETs formation induced immunotherapy resistance in CCA by blocking CD8+T cell infiltration. CXCL6 modulates CCA progression through the CXCR1/2-JAK-STAT/PI3K axis and reshaping its lipid metabolism. CXCL6 also mediates immunotherapy resistance through NETs, which may be a potential therapeutic target and biomarker for CCA.
Collapse
Affiliation(s)
- Tian He
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yi Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bin Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng-Jie Zhong
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lu-Na Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huan-Chen Shi
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zi-Yue Yang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shi-Qi Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bo Hu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiao-Dong Zhu
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying-Hao Shen
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jia Fan
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Huang
- Department of Hepatobiliary Surgery and Liver Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
23
|
Zhang W, Xu Y, Fang Y, Li M, Li D, Guo H, Li H, He J, Miao L. Ubiquitination in lipid metabolism reprogramming: implications for pediatric solid tumors. Front Immunol 2025; 16:1554311. [PMID: 40370434 PMCID: PMC12075147 DOI: 10.3389/fimmu.2025.1554311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Pediatric solid tumors represent a significant subset of childhood cancers, accounting for approximately 60% of new diagnoses. Despite advancements in therapeutic strategies, survival rates remain markedly disparate between high-income and resource-limited settings, underscoring the urgent need for novel and effective treatments. Lipid metabolic reprogramming is a fundamental hallmark of cancer, driving tumor progression, therapeutic resistance, and immune evasion through enhanced fatty acid uptake, increased de novo lipid synthesis, and activated fatty acid β-oxidation (FAO). Ubiquitination, a dynamic post-translational modification mediated by the ubiquitin-proteasome system (UPS), plays a crucial role in regulating lipid metabolism by modulating the stability and activity of key metabolic enzymes and transporters involved in cholesterol and fatty acid pathways. This review comprehensively examines the complex interplay between ubiquitination and lipid metabolic reprogramming in pediatric solid tumors. It delineates the mechanisms by which ubiquitination influences cholesterol biosynthesis, uptake, efflux, and fatty acid synthesis and oxidation, thereby facilitating tumor growth and survival. Furthermore, the review identifies potential UPS-mediated therapeutic targets and explores the feasibility of integrating ubiquitination-based strategies with existing treatments. By targeting the UPS to disrupt lipid metabolism pathways, novel therapeutic avenues may emerge to enhance treatment efficacy and overcome resistance in pediatric oncology. This synthesis of current knowledge aims to provide a foundation for the development of innovative, precision medicine approaches to improve clinical outcomes for children afflicted with solid tumors.
Collapse
Affiliation(s)
- Weixin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Yingjin Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Di Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Hang Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Hou YJ, Yang XX, Meng HX. Mitochondrial metabolism in laryngeal cancer: therapeutic mechanisms and prospects. Biochim Biophys Acta Rev Cancer 2025; 1880:189335. [PMID: 40311711 DOI: 10.1016/j.bbcan.2025.189335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Tumours reprogram pathways that regulate nutrient uptake and metabolism to meet the biosynthetic, bioenergetic, and redox requirements of cancer cells. This phenomenon is known as metabolic reprogramming and is edited by the deletion of oncogenes and the activation of proto-oncogenes. This article highlights the pathological mechanisms associated with metabolic reprogramming in laryngeal cancer (LC), including enhanced glycolysis, tricarboxylic acid cycle, nucleotide synthesis, lipid synthesis and metabolism, and amino acid metabolism, with a special emphasis on glutamine, tryptophan, and arginine metabolism. All these changes are regulated by HPV infection, hypoxia, and metabolic mediators in the tumour microenvironment. We analyzed the function of metabolic reprogramming in the development of drug resistance during standard LC treatment, which is challenging. In addition, we revealed recent advances in targeting metabolic strategies, assessing the strengths and weaknesses of clinical trials and treatment programs to attack resistance. This review summarises some currently important biomarkers and lays the foundation for therapeutic pathways in LC.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
25
|
Tong ZH, Guo WJ, Xu YJ, Zhang Y, Wang WF. Agrimonia Pilosa Extract suppresses NSCLC growth through regulating PI3K/AKT/Bcl-2 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025:119892. [PMID: 40311718 DOI: 10.1016/j.jep.2025.119892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/12/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agrimonia Pilosa is a traditional Chinese medicine with a long history, which is often used in clinic alone or in combined with other Chinese herb medicine to anti-inflammatory, hemostasis and treat many types cancers, including lung cancer. Agrimonia Pilosa Extract (APE) is extracted from the Agrimonia Pilosa. The potential molecular mechanism of APE on the non-small cell lung cancer remains unclear. AIM OF THIS STUDY The aim of this study was to investigate the molecular mechanism of APE induced apoptosis in NSCLC cells and its effect on metabolism. MATERIALS AND METHODS Constructed mouse transplantation tumor models to evaluate the anti-tumor effect of APE by pharmacodynamics test, histological staining and TUNEL staining. Analyzed alterations in metabolites and metabolic pathways in serum and tumor tissues from tumor-bearing mice by liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics. In addition, the key proteins and genes on the signaling pathway were verified by Western blotting (WB) and real-time fluorescence quantitative PCR(RT-qPCR) to reveal the anti-tumor mechanism of APE. RESULTS APE inhibited tumor growth by promoting apoptosis and caused metabolic changes. Specifically, they inhibited the PI3K/AKT/Bcl-2 signaling pathway while upregulating apoptotic markers such as TP53, Bax, Caspase-3, and Cytochrome c. Through metabolomics analysis of mouse serum and tumor tissue, 120 different metabolites were identified, including glutamate, PC(24:0/18:0), and LysoPE(18:0/0). Among these, 13 serum metabolites were down-regulated, 16 were up-regulated, 28 tumor metabolites were down-regulated, and 63 were up-regulated. Studies indicate that APE can regulate metabolic disorders associated with non-small cell lung cancer by influencing pathways like glycerophospholipid metabolism, amino acid metabolism, and the TCA cycle, thereby inducing cell apoptosis and leading to significant metabolic changes. CONCLUSIONS In this study, APE affected the apoptosis of non-small cell lung cancer cells by regulating the PI3K/AKT/Bcl-2 signal transduction pathway and various metabolic pathways thereby inhibited the growth of tumor cells.This deepened the understanding of the metabolic characteristics and apoptosis-related pathways in APE intervened NSCLC, and provided a reference for further research on the mechanism of action of its anticancer drugs.
Collapse
Affiliation(s)
- Ze-Hua Tong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Wen-Jun Guo
- Jilin Academy of Traditional Chinese Medicine Sciences, Jilin Changchun 130012, P. R. China
| | - Ya-Juan Xu
- Jilin Academy of Traditional Chinese Medicine Sciences, Jilin Changchun 130012, P. R. China
| | - Yue Zhang
- Department of Integrated Chinese and Western Medicine, Jilin Cancer Hospital, Changchun 130012, P. R. China.
| | - Wei-Fang Wang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, P. R. China.
| |
Collapse
|
26
|
Liu Y, Yang J, Yu F, Li L, Zhao N, Lu C, Lu A, He X. Research advances in traditional Chinese medicine formulae and active components targeting lipid metabolism for hepatocellular carcinoma therapy. Front Pharmacol 2025; 16:1528671. [PMID: 40351413 PMCID: PMC12062747 DOI: 10.3389/fphar.2025.1528671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) has a relatively poor prognosis and a high degree of malignancy. However, the therapeutic drugs are limited. In recent years, abnormal lipid metabolism and its important role in HCC has been reported, and emerging studies found that some formulae and active components of traditional Chinese medicine (TCM) can regulate abnormal lipid metabolism in HCC, showing their good application prospects. Therefore, this article summarizes the changes and the roles of lipid metabolites in HCC progression, and discusses the role of formulae and active components of TCM for the treatment of HCC based on their regulation on abnormal lipid metabolism. A deeper understanding of their relationship may help the precise use of these formulae and active components in HCC.
Collapse
Affiliation(s)
- Yang Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fenghua Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Systems Medicine and Health Sciences, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Liu H, Ge W, Yu X, Luo J, Zhang J, Yang M, Cao L, Zhang Y, Wang R, Yang C, Li P, Tian M, Peng X, Peng L, Wu D, Liu M, Liang Q, Zhang S, Li W, Rong P, Li H, Ma X, Wang W. CRISPR/Cas9-mediated SHP-1-knockout T cells combined with simvastatin enhances anti-tumor activity in humanized-PDX HCC model. iScience 2025; 28:112266. [PMID: 40241752 PMCID: PMC12003012 DOI: 10.1016/j.isci.2025.112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/04/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) resists immunotherapy due to its immunosuppressive microenvironment. Sarcoma homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) inhibits T cell receptor signaling, and its pharmacological inhibition is limited by poor selectivity and membrane permeability. Here, we generated CRISPR-edited SHP-1-knockout (KO) CD8+ T cells to enhance adoptive therapy against HCC. Single-cell RNA sequencing of HCC patient T cells revealed elevated SHP-1 in exhausted subsets. SHP-1-KO T cells exhibited increased effector memory T cells (TEM) proportions and enhanced IFN-γ/Granzyme B/perforin secretion, improving cytotoxicity against HCC lines. In humanized PDX models, SHP-1-KO T cells demonstrated superior tumor-killing activity. Transcriptomics identified upregulated lipid metabolism pathways, with HMGCR as a hub gene. Combining SHP-1-KO T cells with simvastatin (HMGCR inhibitor) synergistically amplified anti-HCC efficacy. This study proposes a dual strategy combining SHP-1-targeted cell therapy and metabolic modulation to overcome immunotherapy resistance, offering a translatable approach for HCC treatment.
Collapse
Affiliation(s)
- Huaping Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Wu Ge
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Xiaoping Yu
- Department of Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianwei Luo
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Mengyu Tian
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - XiaoPei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Lei Peng
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Di Wu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Muqi Liu
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Qi Liang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengwang Zhang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Hailan Li
- Department of Radiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University
| | - Xiaoqian Ma
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, the 3 Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Institute for Cell Transplantation and Gene Therapy, Central South University, Changsha, Hunan, China
- Molecular Imaging Research Center of Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Luo Y, Liu J, Qu P, Han S, Li X, Wang Y, Su X, Zeng J, Li J, Deng S, Liang Q, Hou L, Cheng P. The crosstalk of breast cancer and ischemic heart disease. Cell Death Discov 2025; 11:185. [PMID: 40251177 PMCID: PMC12008236 DOI: 10.1038/s41420-025-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/20/2025] Open
Abstract
In recent years, the continuous optimization of anti-tumor therapy has greatly improved the cancer-specific survival rate for patients with breast cancer (BC). The prevention and treatment of breast cancer-related heart diseases have become a new breakthrough in improving the long-term survival for BC patient. The cardiac damages caused by BC treatment are increasingly prominent among BC patients, of which ischemic heart disease (IHD) is the most prominent. Besides, the systemic inflammatory response activated by tumor microenvironment c an induce and exacerbate IHD and increase the risk of myocardial infarction (MI). Conversely, IHD can also exert detrimental effects on tumors. MI not only increases the risk of BC, but also induces specialized immune cell to BC and accelerates the progression of BC. Meanwhile, the treatment of IHD can also promote BC metastasis and transition to more aggressive phenotypes. Although BC and IHD are diseases of two independent systems, their crosstalk increases the difficulty of anti-cancer treatment and IHD management, which reduces the survival for both diseases. Therefore, this review mainly explores the mutual influence and underlying mechanisms between BC and IHD, aiming to provide insights for improving the long-term survival for patients with BC or IHD.
Collapse
Affiliation(s)
- Yunbo Luo
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jun Liu
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Peng Qu
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Shiqi Han
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Xue Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China
| | - Yali Wang
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Xiaohan Su
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jiao Zeng
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Jinsui Li
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Shishan Deng
- Department of Academician (expert) Workstation, Biological Targeting Laboratory of Breast Cancer, Breast and Thyroid Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, P. R. China
| | - Qi Liang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People's Republic of China.
- School of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637007, People's Republic of China.
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China.
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu, 610072, P.R. China.
| |
Collapse
|
29
|
Gao A, Zou J, Zeng T, Qin M, Tang X, Yi T, Song G, Zhong J, Zeng Y, Zhou W, Gao Q, Zhang Q, Zhang J, Li Y. IGF2BP3/ESM1/KLF10/BECN1 positive feedback loop: a novel therapeutic target in ovarian cancer via lipid metabolism reprogramming. Cell Death Dis 2025; 16:308. [PMID: 40240362 PMCID: PMC12003649 DOI: 10.1038/s41419-025-07571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Ovarian cancer (OC) is often detected at an advanced stage and has a high recurrence rate after surgery or chemotherapy. Thus, it is essential to develop new strategies for OC treatment. This study tended to investigate the effects of endothelial cell-specific molecule 1 (ESM1) in OC. The impact of ESM1 on lipid metabolism was investigated through the regulation of ESM1 expression. Differential genes regulated by ESM1 were screened by mRNA sequencing. The role of autophagy in ESM1 regulation on lipid metabolism was explored using autophagy inhibitor chloroquine (CQ). Co-IP, dual-luciferase reporter assay, actinomycin D treatment assay, and others were used to analyze the mechanism of ESM1 regulation on lipid metabolism. The xenograft mouse model was constructed to explore the impact of ESM1 regulation on OC development. The regulatory mechanism of ESM1 in OC patient samples was verified by using microarray analysis and the Log-rank (Mantel-Cox) test. After ESM1 silencing, cholesterol synthesis decreased and lipolysis increased. mRNA sequencing revealed that ESM1 regulation on lipid metabolism was related to Beclin 1 (BECN1). In vitro experiments, ESM1 inhibited lipolysis by suppressing BECN1-mediated autophagy. BECN1 expression was regulated by the transcription factor Kruppel-like factor 10 (KLF10). The competitive binding between BECN1 and HSPA5 promoted the ubiquitination degradation of HMGCR, thereby inhibiting cholesterol production. The intervention experiment with exogenous cholesterol showed a positive correlation between m6A reader IGF2BP3 expression and cholesterol content. Mechanistically, IGF2BP3 regulated the stability of ESM1 mRNA. In vivo experiments, ESM1 modified by m6A methylation promoted cholesterol synthesis and inhibited lipolysis. High expression of ESM1 predicted poor prognosis in OC patients. ESM1 regulated lipid metabolism through IGF2BP3/ESM1/KLF10/BECN1 positive feedback, which was a promising target for OC treatment.
Collapse
Affiliation(s)
- Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Juan Zou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Qin
- Department of Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Guangming Song
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jie Zhong
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Qin Gao
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
30
|
Wang Y, Chen J, Wang Z, Luo X, Wu N, Wang J. HKDC1 promotes ovarian cancer progression through boosting lipid metabolism and immune escape by stabilizing G6PC/G6PC2. Commun Biol 2025; 8:615. [PMID: 40234623 PMCID: PMC12000390 DOI: 10.1038/s42003-025-08031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/02/2025] [Indexed: 04/17/2025] Open
Abstract
Ovarian cancer (OC) is a significant health challenge, yet the mechanisms driving its progression remain unclear. This study explored the role of hexokinase domain-containing protein 1 (HKDC1) in OC, focusing on tumor growth, lipid metabolism, and immune evasion. Human OC cell lines (SKOV3 and HEY) and the murine OC cell line (ID8) were used to knock down and overexpress HKDC1. An ID8-based epithelial OC mouse model was established to validate the in vitro findings. Our results demonstrated that HKDC1 was upregulated in OC and promoted cell proliferation, migration, and invasion. HKDC1 enhanced lipid accumulation by elevating levels of free fatty acids (FFA), triglycerides, phospholipids, cholesterol, and neutral lipid, while upregulating key enzymes (ACC1, FASN, SCD1, HMGCS1, and HMGCR). It promoted immune escape through PD-L1 upregulation, inhibiting T cell proliferation and reducing IFN-γ, granzyme B, and perforin levels while increasing PD-1 levels. HKDC1 knockdown reversed these effects, which were restored by adding FFA. Mechanistically, HKDC1 interacted with and stabilized glucose-6-phosphatase catalytic subunits (G6PC/G6PC2), supporting its tumor-promoting functions. These findings were confirmed in an OC mouse model, highlighting HKDC1 as a key driver of OC progression through lipid biosynthesis and immune suppression, offering potential therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Zhan Wang
- Lung Cancer and Gastrointestinal Unit, Department of Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Xia Luo
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Nayiyuan Wu
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China
| | - Jing Wang
- Department of the Central Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, P. R. China.
| |
Collapse
|
31
|
Yu HC, Jin L, Bai L, Zhang YJ, Yang ZX. C12ORF49 inhibits ferroptosis in hepatocellular carcinoma cells via reprogramming SREBP1/SCD1-mediated lipid metabolism. Cell Death Discov 2025; 11:178. [PMID: 40240331 PMCID: PMC12003882 DOI: 10.1038/s41420-025-02480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Altered lipid metabolism is an emerging hallmark of cancer, which is involved in various aspects of the cancer phenotypes. C12ORF49 has recently been identified as a pivotal regulator of sterol regulatory element binding proteins (SREBPs), a family of transcriptional factors that govern lipid biosynthesis. Nevertheless, the function of C12ORF49 in human cancers has not been studied. Here, we show that C12ORF49 levels are higher in HCC tissue than in nearby non-cancerous liver tissue. Additionally, increased C12ORF49 expression is linked to poorer survival outcomes in HCC patients. Functional experiments uncovered that knockdown of C12ORF49 inhibited HCC cell survival and tumor growth by inducing ferroptosis, whereas the opposites were observed upon C12ORF49 overexpression. Mechanistically, C12ORF49 promotes SREBP1/SCD-regulated production of monounsaturated fatty acids, which inhibits ferroptosis in HCC cells. Furthermore, silencing C12ORF49 combined with Sorafenib treatment showed a synergistic effect in inducing HCC cell death. Together, our findings suggest a critical role of C12ORF49 in the evasion of ferroptosis in HCC cells, highlighting the potential of targeting C12ORF49 as a therapeutic strategy to enhance the efficacy of Sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Heng-Chao Yu
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Liang Jin
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Lu Bai
- Department of Clinical Laboratory, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jia Zhang
- Department of Clinical Medicine, Shananxi University of Chinese Medicine, Xianyang, China
| | - Zhao-Xu Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
32
|
Chen R, Chen T, Li X, Yu J, Lin M, Wen S, Zhang M, Chen J, Yi B, Zhong H, Li Z. SREBP2 as a central player in cancer progression: potential for targeted therapeutics. Front Pharmacol 2025; 16:1535691. [PMID: 40308757 PMCID: PMC12041066 DOI: 10.3389/fphar.2025.1535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have identified the reprogramming of lipid metabolism as a critical hallmark of malignancy. Enhanced cholesterol uptake and increased cholesterol biosynthesis significantly contribute to the rapid growth of tumors, with cholesterol also playing essential roles in cellular signaling pathways. Targeting cholesterol metabolism has emerged as a promising therapeutic strategy in oncology. The sterol regulatory element-binding protein-2 (SREBP2) serves as a primary transcriptional regulator of genes involved in cholesterol biosynthesis and is crucial for maintaining cholesterol homeostasis. Numerous studies have reported the upregulation of SREBP2 across various cancers, facilitating tumor progression. This review aims to provide a comprehensive overview of the structure, biological functions, and regulatory mechanisms of SREBP2. Furthermore, we summarize that SREBP2 plays a crucial role in various cancers and tumor microenvironment primarily by regulating cholesterol, as well as through several non-cholesterol pathways. We also particularly emphasize therapeutic agents targeting SREBP2 that are currently under investigation. This review seeks to enhance our understanding of SREBP2's involvement in cancer and provide theoretical references for cancer therapies that target SREBP2.
Collapse
Affiliation(s)
- Ruiqi Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Li
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junfeng Yu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
33
|
Abou Hjeily B, Nevaneeth BC, Samborski W, Szekanecz Z, Grygiel-Górniak B. Inflammatory Pathways to Carcinogenesis: Deciphering the Rheumatoid Arthritis-Lung Cancer Connection. Cancers (Basel) 2025; 17:1330. [PMID: 40282506 PMCID: PMC12026397 DOI: 10.3390/cancers17081330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy. If the disease is aggressive or left untreated, it becomes debilitating, affects a patient's functionality, and reduces the quality of life. Disease-modifying anti-rheumatic drugs (DMARDs), both conventional, targeted, and biological, decrease the disease progression and are key components of effective treatment. Recently, there has been a continuous debate about the possible carcinogenicity of various DMARDs. Lung cancer is a leading cause of cancer death worldwide. The available data show an increased risk of lung cancer in RA patients, but the link between RA and cancer is poorly understood. Carcinogenesis in RA seems to be related to chronic inflammation, familial predisposition, risky behaviors (e.g., smoking), and iatrogenic complications. The main mechanisms of carcinogenic processes in patients with RA are the up-regulation of interleukin-6 (IL-6) cytokine production and wingless/integrated WNT signaling. Up-regulation of WNT5A is an important mechanism that links chronic inflammatory pathways to carcinogenesis observed in RA patients. Concomitant up-regulation of transcription factor STAT3 promotes cell proliferation and inhibits apoptosis. Conversely, suppressed inflammatory processes by DMARDs may decrease the risk of lung cancer. In this article, we discuss the molecular mechanisms of lung cancer in RA and the role of DMARDs in this process. Furthermore, we analyze the molecular effect of drug-induced cancer, which affects transcription factors and thus modulates carcinogenic processes. Finally, we describe risk factors and present preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Boushra Abou Hjeily
- Rheumatology Research Group, Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Science, 61-701 Poznan, Poland
| | - Briana Candace Nevaneeth
- Rheumatology Research Group, Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Science, 61-701 Poznan, Poland
| | - Włodzimierz Samborski
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Science, 61-701 Poznan, Poland;
| | - Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Bogna Grygiel-Górniak
- Department of Rheumatology, Rehabilitation and Internal Diseases, Poznan University of Medical Science, 61-701 Poznan, Poland;
| |
Collapse
|
34
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Wu H, Gu S, Xie S, Li X, Wang B, Liu Y, Huang Q. A pan-cancer analysis targeting the oncogenic role of ATP-binding cassette transporter A1 in human tumors. Front Oncol 2025; 15:1513992. [PMID: 40297807 PMCID: PMC12034663 DOI: 10.3389/fonc.2025.1513992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives ABCA1 is involved in the development and progression of a wide range of malignant tumors, so to further clarify the role of ABCA1 expression therein, and to search for new breakthroughs in the treatment of tumors and cancers, we launched a thorough pan-cancer analysis of ABCA1. Methods Based on the manipulation of TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus), Human Protein Atlas (HPA) datasets and various bioinformatics tools, The oncogenic role of ABCA1 in 33 tumor types was explored from six aspects: gene expression, prognosis, variation, immunohistochemistry, correlation of tumor-associated fibroblastic infiltration, and enriched analysis of related genes. The potential value of ABCA1 was also mined, such as: ABCA1 may be a potential marker of tumor metastasis, play a role in cancer resistance, and its expression may inhibit the spread of tumor cells. Results Based on the analysis results, we found that ABCA1 is expressed elevated and mutated in tumor samples of 33 cancer types compared with matched normal tissues, and these mutations may be related to the mechanism of cancer, metastatic ability, and prognosis, etc. Meanwhile, we also investigated the correlation between ABCA1 expression and tumor-associated fibroblast infiltration, and described its association with corresponding miRNAs, which can provide scientific basis for clinical diagnosis. Conclusions Our study thoroughly illustrates the impact of ABCA1's systemic presence across various forms of cancer. Given its specificity to tumors, ABCA1 holds promise as a biomarker for cancer diagnosis, monitoring for recurrence, and predicting outcomes. Consequently, our research could significantly bolster the case for utilizing ABCA1 in the therapeutic approach to cancer.
Collapse
Affiliation(s)
- Huidan Wu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Shinong Gu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Shuyuan Xie
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Xuanwen Li
- Department of Clinical Nutrition, Tianjin Beichen Traditional Chinese Medicine Hospital, Tian Jin, China
| | - Bingye Wang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Yuxuan Liu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Qing Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| |
Collapse
|
36
|
Jiang J, Yan Y, Yang C, Cai H. Immunogenic Cell Death and Metabolic Reprogramming in Cancer: Mechanisms, Synergies, and Innovative Therapeutic Strategies. Biomedicines 2025; 13:950. [PMID: 40299564 PMCID: PMC12024911 DOI: 10.3390/biomedicines13040950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
Immunogenic cell death (ICD) is a promising cancer therapy where dying tumor cells release damage-associated molecular patterns (DAMPs) to activate immune responses. Recent research highlights the critical role of metabolic reprogramming in tumor cells, including the Warburg effect, oxidative stress, and lipid metabolism, in modulating ICD and shaping the immune microenvironment. These metabolic changes enhance immune activation, making tumors more susceptible to immune surveillance. This review explores the molecular mechanisms linking ICD and metabolism, including mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, and ferroptosis. It also discusses innovative therapeutic strategies, such as personalized combination therapies, metabolic inhibitors, and targeted delivery systems, to improve ICD efficacy. The future of cancer immunotherapy lies in integrating metabolic reprogramming and immune activation to overcome tumor immune evasion, with multi-omics approaches and microbiome modulation offering new avenues for enhanced treatment outcomes.
Collapse
Affiliation(s)
| | | | - Chunhui Yang
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| | - Hong Cai
- Department of Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian 116023, China; (J.J.); (Y.Y.)
| |
Collapse
|
37
|
Jiang Y, Qian Z, Wang C, Wu D, Liu L, Ning X, You Y, Mei J, Zhao X, Zhang Y. Targeting B7-H3 inhibition-induced activation of fatty acid synthesis boosts anti-B7-H3 immunotherapy in triple-negative breast cancer. J Immunother Cancer 2025; 13:e010924. [PMID: 40221152 PMCID: PMC11997833 DOI: 10.1136/jitc-2024-010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most malignant breast cancer, highlighting the need for effective immunotherapeutic targets. The immune checkpoint molecule B7-H3 has recently gained attention as a promising therapeutic target due to its pivotal role in promoting tumorigenesis and cancer progression. However, the therapeutic impact of B7-H3 inhibitors (B7-H3i) remains unclear. METHODS Transcriptomic and metabolomic analyses were conducted to explore the underlying mechanisms of B7-H3 inhibition in TNBC. The therapeutic efficacy of the combined treatment strategy was substantiated through comprehensive phenotypic assays conducted in vitro and validated in vivo using animal models. RESULTS B7-H3 blockade induces a "primed for death" stress state in cancer cells, leading to distinct alterations in metabolic pathways. Specifically, B7-H3 knockdown activated the AKT signaling pathway and upregulated sterol regulatory element-binding protein 1 (SREBP1), which in turn elevated FASN expression. The simultaneous inhibition of both B7-H3 and FASN more effectively attenuated the malignant progression of TNBC. CONCLUSIONS Our findings propose an "immune attack-metabolic compensation" dynamic model and suggest the feasibility of a dual-targeting strategy that concurrently inhibits both B7-H3 and FASN to enhance therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Danping Wu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lu Liu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Ning
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yilan You
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Breast Surgery, Women's Hospital of Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Zhao LL, Liu YJ, Guo QJ, Yan N, Yang J, Han JQ, Xie XH, Luo YS. TPM4 influences the initiation and progression of gastric cancer by modulating ferroptosis via SCD1. Clin Exp Med 2025; 25:115. [PMID: 40214825 PMCID: PMC11991984 DOI: 10.1007/s10238-025-01629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Gastric cancer (GC) is a deadly disease with poor prognosis and few treatment options. Tropomyosin 4 (TPM4) is an actin-binding protein that stabilizes the cytoskeleton of cells and has an unclear role in GC. This study aimed to elucidate the role and underlying mechanisms of TPM4 in GC pathogenesis. The expression and diagnostic and prognostic value of TPM4 in GC were analyzed using bioinformatics. A nomogram based on TPM4 expression was created and validated with an external cohort. TPM4-knockdown GC cells and xenograft models in nude mice were used to study the function of TPM4 in vitro and in vivo. Proteomic and rescue experiments confirmed the regulatory effect of TPM4 on stearoyl-CoA desaturase 1 (SCD1) in GC. Immunohistochemistry verified the expression and correlation of the TPM4 and SCD1 proteins in GC tissues. Our study identified TPM4 as an oncogene in GC, suggesting its potential diagnostic and prognostic value. The TPM4-based nomogram showed potential prognostic value for clinical use. TPM4 knockdown inhibited GC cell proliferation, induced ferroptosis, and slowed tumor growth in vivo, which is achieved by inhibiting SCD1 expression. Immunohistochemical analysis of GC tissues revealed elevated expression levels of both TPM4 and SCD1 proteins, with a positive correlation observed between their expression. TPM4 is a promising target for new diagnostic, prognostic, and therapeutic strategies for GC. Downregulation of TPM4 inhibits GC cell growth and induces ferroptosis by suppressing SCD1 expression.
Collapse
Affiliation(s)
- Ling-Lin Zhao
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Jun Liu
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Qi-Jing Guo
- Department of Oncology, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Nan Yan
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jie Yang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Jing-Qi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, 810001, China
| | - Xiao-Hong Xie
- Qinghai Provincial People's Hospital, Xining, 810000, China
| | - Yu-Shuang Luo
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, 810001, China.
| |
Collapse
|
39
|
Liu S, Liao S, He J, Zhou Y, He Q. IGF2BP2: an m 6A reader that affects cellular function and disease progression. Cell Mol Biol Lett 2025; 30:43. [PMID: 40205577 PMCID: PMC11983839 DOI: 10.1186/s11658-025-00723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 2 (IGF2BP2) is a widely studied N6-methyladenosine (m6A) modification reader, primarily functioning to recognize and bind to m6A modification sites on the mRNA of downstream target genes, thereby enhancing their stability. Previous studies have suggested that the IGF2BP2-m6A modification plays an essential role in cellular functions and the progression of various diseases. In this review, we focus on summarizing the molecular mechanisms by which IGF2BP2 enhances the mRNA stability of downstream target genes through m6A modification, thereby regulating cell ferroptosis, epithelial-mesenchymal transition (EMT), stemness, angiogenesis, inflammatory responses, and lipid metabolism, ultimately affecting disease progression. Additionally, we update the related research progress on IGF2BP2. This article aims to elucidate the effects of IGF2BP2 on cell ferroptosis, EMT, stemness, angiogenesis, inflammatory responses, and lipid metabolism, providing a new perspective for a comprehensive understanding of the relationship between IGF2BP2 and cell functions such as ferroptosis and EMT, as well as the potential for targeted IGF2BP2 therapy for tumors and other diseases.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Department of Clinical Laboratory, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province), Changsha, 410007, Hunan, People's Republic of China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410011, Hunan, China.
| | - Qian He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
| |
Collapse
|
40
|
Cheng W, Liang K, Huang A. An updated systematic review and meta-analysis of pomegranate consumption on lipid profile. Prostaglandins Other Lipid Mediat 2025; 178:106992. [PMID: 40216355 DOI: 10.1016/j.prostaglandins.2025.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Pomegranate, rich in bioactive compounds such as polyphenols and flavonoids, has been studied for its potential lipid-modulating effects, yet evidence remains inconsistent. This systematic review and meta-analysis aimed to evaluate the impact of pomegranate consumption on plasma lipid profiles by synthesizing data from randomized controlled trials (RCTs). Following PRISMA guidelines, 37 RCTs (n = 2695 participants) were included after searching Scopus and MEDLINE databases. Studies assessed pomegranate products (juice, extract, seed oil) administered orally for ≥ 7 days, with lipid parameters, including total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) as outcomes. Data were pooled using RevMan 5.3 with random-effects models. Results indicated that pomegranate intake significantly increased HDL-C levels (mean difference: 2.50 mg/dL, 95 % CI: 1.00-4.00, p < 0.05), while no significant changes were observed in TC, LDL-C, or TG. Subgroup analyses revealed pronounced HDL-C elevation in non-alcoholic fatty liver disease (NAFLD) patients, health participants and interventions lasting ≥ 8 weeks. Heterogeneity across studies was attributed to variations in intervention duration, dosage forms, and participant characteristics. Publication bias was nonsignificant (Egger's test, p > 0.05). These findings suggest that pomegranate supplementation may improve HDL-C, potentially through modulation of HDL-associated enzymes like paraoxonase. However, further large-scale, long-term RCTs are warranted to confirm these effects and explore synergistic benefits with standard lipid-lowering therapies.
Collapse
Affiliation(s)
- Wengong Cheng
- Department of Cardiology,Nanyang Second People's Hospital, Nanyang, Henan 473000, China
| | - Kaiqin Liang
- School of Nursing, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Aiqiong Huang
- School of Foreign Languages, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
41
|
Liang R, Zhang X, Wu S, Liu J, Zhai Y, Lin C, Wang Z, Zhang Y, Chen H, Zhu R. Deubiquitination of DNM1L by USP3 triggers the development and metastasis of gallbladder carcinoma. Biol Direct 2025; 20:47. [PMID: 40197257 PMCID: PMC11974142 DOI: 10.1186/s13062-025-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/17/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Patients diagnosed with gallbladder carcinoma (GBC) accompanied by hepatic metastasis exhibit unfavorable prognoses generally. Mitochondrial dysfunction promotes cellular transformation and cancer cell survival implicating its importance in cancer development. Previous studies have indicated that dynamin 1 like (DNM1L) is a key mediator of mitochondrial fission. However, whether DNM1L regulates mitochondrial homeostasis in GBC remains unknown. METHODS The morphological changes of mitochondria were investigated by transmission electron microscopy and mitoTracker red staining. Co-immunoprecipitation assay was performed to detect the interaction of ubiquitin-specific protease-3 (USP3) and DNM1L. The cell-derived xenograft and liver metastasis tumor models were established to validate the function of DNM1L in vivo. The metabolomics data from transcriptomics/metabolomics were analyzed to identify the differentially expressed genes/metabolites of DNM1L in GBC. RESULTS DNM1L exhibited a marked upregulation in clinical GBC tissues compared to the adjacent tissues, and it promoted proliferation, invasiveness, and migration capability of GBC cells by inducing mitochondrial dysfunction. Mice subcutaneously injected with DNM1L overexpression cells exhibited elevated intrahepatic metastatic nodules within their livers. USP3, a deubiquitinating enzyme, was demonstrated to directly interact with DNM1L and it specifically cleaved the K48-linked polyubiquitin chains to deubiquitinate and stabilize DNM1L. By integrating two omics, we found several altered pathways and speculated that DNM1L disturbed DNA synthesis and glycine, serine, threonine, and pyrimidine metabolism pathways. CONCLUSION Our findings suggest that DNM1L is a promising clinical target for GBC treatment and that focusing on DNM1L may provide new insights into GBC strategy.
Collapse
Affiliation(s)
- Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shitao Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunpeng Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenya Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Chen
- Department of Lung Transplantation and Thoracic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
42
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
43
|
Soni S, Makwana SH, Bansal S, Kumari M, Mandal CC. Lipid metabolism associated PLPP4 gene drives oncogenic and adipogenic potential in breast cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159609. [PMID: 40187483 DOI: 10.1016/j.bbalip.2025.159609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/16/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Lipid metabolic reprogramming plays a pivotal role in cancer cell evolution and causing subsequent cancer growth, metastasis and therapy resistance. Cancer associated adipocyte and/or cancer derived adipocyte-like cells often supply fuels and various factors to fulfill the cells bioenergetics to enhance oncogenic potential. This study intends to find out a set of dysregulated genes involved in lipid metabolism in breast cancer studies and uncovers the role of unexplored dysregulated gene in cancer potential. Cancer database analysis determines seven seed signature genes (PLPP2, PLPP4, CDS1, ASAH2, LCLAT1, LPCAT1 and LASS6/CERS6) concluded from relative expression and survival analysis. Furthermore, experimental analysis unveils the gene PLPP4 (Phospholipid Phosphatase 4) as oncogene confirmed by knockdown and overexpression studies in MDA-MB 231 and MCF-7 breast cancer cells. PLPP4 enzyme is involved in regulation of triacyl glycerol metabolism. Lipid accumulation along with other studies documented enhanced lipid droplets, TAG formation and glycerol release with concomitant increased expressions of various adipogenic markers (e.g., PPARγ, perilipin 1 and leptin) in breast cancer cells transfected with PLPP4 gene expressing plasmid whereas downregulation of PLPP4 gene diminished lipid accumulation and adipocyte marker gene expressions. Our findings also revealed that BMP2 induced adipogenic potential in breast cancer cells was mitigated in response to downregulation of PLPP4 gene expression. All these findings together, for first time, demonstrated that BMP2 drives PLPP4 to enhance both oncogenic and adipogenic potential in breast cancer cells. This article uncovers the perturbed lipid metabolism associated PLPP4 acts as oncogene presumably by modulating adipogenic activity in cancer cells.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Sweta H Makwana
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Shivani Bansal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Monika Kumari
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
44
|
Zhao P, Zhu Z, Zheng X, Song Y, Chen C, Xu G, Ke X. Effects of circulating RNAs on tumor metabolism in lung cancer (Review). Oncol Lett 2025; 29:204. [PMID: 40070786 PMCID: PMC11894507 DOI: 10.3892/ol.2025.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
During the development and progression of lung cancer, cell metabolism function is altered. Thus, cells rely on aerobic glycolysis and abnormal lipid and amino acid metabolism to obtain energy and nutrients for growth, proliferation and drug resistance. Circular RNAs (circRNAs), a class of non-coding RNAs, serve important biological roles in the growth and development of tumors. Functionally, circRNAs act as molecular sponges that absorb microRNAs (miRNAs) and RNA-binding proteins and as protein scaffolds that regulate gene transcription and translation through the maintenance of mRNA stability. In addition, circRNAs are important regulators of tumor metabolism and promote tumor progression through mediating tumor cell proliferation, metastasis and the induction of chemoresistance. Results of previous studies reveal that circRNAs may serve a key role in regulating tumor metabolic processes in lung cancer, through miRNA sponging and alternative mechanisms. Thus, circRNAs demonstrate potential as therapeutic targets for lung cancer. The present study aimed to review the effects of circRNAs on lung cancer cell metabolism and provide novel insights into the clinical treatment of lung cancer. The present review may also provide a novel theoretical basis for the development of lung cancer drug targets.
Collapse
Affiliation(s)
- Pengfei Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Zhengfeng Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xinzhe Zheng
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Cheng Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Gang Xu
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xixian Ke
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
45
|
Malon D, Molto C, Prasla S, Cuthbert D, Pathak N, Berner-Wygoda Y, Di Lorio M, Li M, Savill J, Mittal A, Amir E, Jhaveri K, Nadler MB. Steatotic liver disease in metastatic breast cancer treated with endocrine therapy and CDK4/6 inhibitor. Breast Cancer Res Treat 2025; 210:405-416. [PMID: 39720971 DOI: 10.1007/s10549-024-07578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
PURPOSE In early-stage breast cancer, steatotic liver disease (SLD) is associated with increased recurrence, cardiovascular events, and non-cancer death. Endocrine therapy (ET) increases the risk of SLD. The impact of cyclin-dependent kinases 4/6 inhibitors (CDK4/6i) on SLD and prognostic association in metastatic breast cancer is unknown. We characterized the presence of SLD, risk factors, and treatment outcomes of SLD in metastatic HR+/HER2- breast cancer receiving CDK4/6i. METHODS This single institution, retrospective, cohort study included patients with metastatic HR+/HER2- breast cancer receiving first-line ET and CDK4/6i from January 2018 to June 2022. SLD was defined as a Liver Attenuation Index (LAI) > 25 HU on contrast-enhanced CT scans and/or > 10 HU on plain CT scans. Univariable binary-logistic regression was used to assess associations with SLD. Time to treatment failure (TTF) and overall survival (OS) were analyzed using Cox proportional hazards modeling. RESULTS Among 87 patients with a median age of 58 years and 65.5% postmenopausal, 50 (57.5%) had SLD at anytime (24 at baseline, 26 acquired). SLD at baseline was statistically associated with post-menopausal status. It was quantitatively but not statistically associated with age > 65, diabetes, smoking, and HER2-low. SLD at anytime was statistically significantly associated with longer TTF (median 470 vs 830.5 days, HR = 0.38, p < 0.001). No significant differences in OS or grade 3/4 adverse events were observed between groups. CONCLUSION This study demonstrated a high prevalence of SLD in this population, with SLD presence correlated with longer TTF. SLD may be an indicator of better outcomes in metastatic HR+/HER2- breast cancer patients treated with CDK4/6i.
Collapse
Affiliation(s)
- Diego Malon
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada.
- University of Toronto, Toronto, ON, Canada.
| | - Consolacion Molto
- Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Queen's Cancer Research Institute, Kingston, ON, Canada
- R.S. McLaughlin Durham Regional Cancer Centre, Oshawa, ON, Canada
| | - Shopnil Prasla
- Joint Department of Medical Imaging (JDMI), University Health Network, Toronto, ON, Canada
| | - Danielle Cuthbert
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Neha Pathak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Yael Berner-Wygoda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Massimo Di Lorio
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Meredith Li
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Jacqueline Savill
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Abhenil Mittal
- Department of Oncology, Health Sciences North, Sudbury, ON, Canada
- Division of Clinical Sciences, The Northern Ontario School of Medicine (NOSMU), Sudbury, Canada
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| | - Kartik Jhaveri
- Joint Department of Medical Imaging (JDMI), University Health Network, Toronto, ON, Canada
| | - Michelle B Nadler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre University Health Network, 700 University Ave, Toronto, ON, M5G 1Z5, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
46
|
Wan S, Zhou X, Xie F, Zhou F, Zhang L. Ketogenic diet and cancer: multidimensional exploration and research. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1010-1024. [PMID: 39821829 DOI: 10.1007/s11427-023-2637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/29/2024] [Indexed: 01/19/2025]
Abstract
The ketogenic diet (KD) has attracted attention in recent years for its potential anticancer effects. KD is a dietary structure of high fat, moderate protein, and extremely low carbohydrate content. Originally introduced as a treatment for epilepsy, KD has been widely applied in weight loss programs and the management of metabolic diseases. Previous studies have shown that KD can potentially inhibit the growth and spread of cancer by limiting energy supply to tumor cells, thereby inhibiting tumor angiogenesis, reducing oxidative stress in normal cells, and affecting cancer cell signaling and other processes. Moreover, KD has been shown to influence T-cell-mediated immune responses and inflammation by modulating the gut microbiota, enhance the efficacy of standard cancer treatments, and mitigate the complications of chemotherapy. However, controversies and uncertainties remain regarding the specific mechanisms and clinical effects of KD as an adjunctive therapy for cancer. Therefore, this review summarizes the existing research and explores the intricate relationships between KD and cancer treatment.
Collapse
Affiliation(s)
- Shiyun Wan
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| | - Long Zhang
- Life Sciences Institute and State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
47
|
Guo Z, Li K, Ren X, Wang X, Yang D, Ma S, Zeng X, Zhang P. The role of the tumor microenvironment in HNSCC resistance and targeted therapy. Front Immunol 2025; 16:1554835. [PMID: 40236700 PMCID: PMC11996806 DOI: 10.3389/fimmu.2025.1554835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
The prognosis for head and neck squamous cell carcinoma (HNSCC) remains unfavorable, primarily due to significant therapeutic resistance and the absence effective interventions. A major obstacle in cancer treatment is the persistent resistance of cancer cells to a variety of therapeutic modalities. The tumor microenvironment (TME) which includes encompasses all non-malignant components and their metabolites within the tumor tissue, plays a crucial role in this context. The distinct characteristics of the HNSCC TME facilitate tumor growth, invasion, metastasis, and resistance to treatment. This review provides a comprehensive overview of the HNSCC TME components, with a particular focus on tumor-associated macrophages (TAMs), regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), the extracellular matrix, reprogrammed metabolic processes, and metabolic products. It elucidates their contributions to modulating resistance to chemotherapy, radiotherapy, targeted therapy, and immunotherapy in HNSCC, and explores novel therapeutic strategies targeting the TME for HNSCC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zhang
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China
| |
Collapse
|
48
|
Yin Z, Shen G, Fan M, Zheng P. Lipid metabolic reprogramming and associated ferroptosis in osteosarcoma: From molecular mechanisms to potential targets. J Bone Oncol 2025; 51:100660. [PMID: 39958756 PMCID: PMC11830322 DOI: 10.1016/j.jbo.2025.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Osteosarcoma is a common bone tumor in adolescents, which is characterized by lipid metabolism disorders and plays a key role in tumorigenesis and disease progression. Ferroptosis is an iron-dependent form of programmed cell death associated with lipid peroxidation. This review provides an in-depth analysis of the complex relationship between lipid metabolic reprogramming and associated ferroptosis in OS from the perspective of metabolic enzymes and metabolites. We discussed the molecular basis of lipid uptake, synthesis, storage, lipolysis, and the tumor microenvironment, as well as their significance in OS development. Key enzymes such as adenosine triphosphate-citrate lyase (ACLY), acetyl-CoA synthetase 2 (ACSS2), fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1) are overexpressed in OS and associated with poor prognosis. Based on specific changes in metabolic processes, this review highlights potential therapeutic targets in the lipid metabolism and ferroptosis pathways, and in particular the HMG-CoA reductase inhibitor simvastatin has shown potential in inducing apoptosis and inhibiting OS metastasis. Targeting these pathways provides new strategies for the treatment of OS. However, challenges such as the complexity of drug development and metabolic interactions must be overcome. A comprehensive understanding of the interplay between dysregulation of lipid metabolism and ferroptosis is essential for the development of innovative and effective therapies for OS, with the ultimate goal of improving patient outcomes.
Collapse
Affiliation(s)
- Zhiyang Yin
- Department of Orthopaedics Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210000 Jiangsu Province, China
| | - Guanlu Shen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, Jiangsu, China
| | - Minjie Fan
- Department of Orthopaedics Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210000 Jiangsu Province, China
| | - Pengfei Zheng
- Department of Orthopaedics Surgery, Children’s Hospital of Nanjing Medical University, Nanjing 210000 Jiangsu Province, China
| |
Collapse
|
49
|
Chen Z, Hong W, Li B, He D, Ren Z, Cai M, Cheng Y, Liu J, Xu E, Du Y, Dong Y, Cai S, Shi Q, Qi Z, Zhong Y. HDAC2 promotes colorectal tumorigenesis by triggering dysregulation of lipid metabolism through YAP1. Cell Signal 2025; 128:111627. [PMID: 39875048 DOI: 10.1016/j.cellsig.2025.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Dysfunction of lipid metabolism is important for the development and progression of colorectal cancer, but the underlying mechanisms remain unclear. Here, HDAC2 was identified as highly expressed in both adenoma and colorectal cancer. We aimed to explore the roles and mechanisms of HDAC2 in lipid metabolism in colorectal cancer. HDAC2 expression in adenoma and colorectal cancer tissues was measured using tissue arrays. The function of HDAC2/YAP1 was identified using in vitro and in vivo experiments. Coimmunoprecipitation experiments, DNA pull-down assays, luciferase analyses, and ChIP-qPCR (Chromatin Immunoprecipitation-quantitative real-time polymerase chain reaction) assays were used to identify the potential mechanisms of HDAC2. We found that HDAC2 can disrupt lipid metabolism in colorectal cancer by mediating the deacetylation of YAP1. Mechanistically, HDAC2 can bind to YAP1 and mediate deacetylation of the K280 site of YAP1. Furthermore, the deacetylation of YAP1 reduces the efficiency of its binding to the ZMYND11 promoter region, exacerbating lipid metabolism disorders, which in turn reduce lipid accumulation and increase lipid catabolism in colorectal cancer cells. Our study identified a novel regulatory mechanism of lipid metabolism in colorectal cancer in which HDAC2 increases lipid catabolism by regulating the deacetylation of the K280 site of YAP1, revealing that HDAC2 promotes tumor progression through the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Zhanghan Chen
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Weifeng Hong
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310005, China; Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Dongli He
- Department of internal medicine of Xuhui Hospital, Affiliated Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Mingyan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Yirong Cheng
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Jingyi Liu
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Enpan Xu
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Yanyun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Yuelun Dong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Shilun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China
| | - Zhipeng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China.
| | - Yunshi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Endoscopy Research Institute of Fudan University, Shanghai 200032, China.
| |
Collapse
|
50
|
Luo F, Chen T, Chen S, Bai D, Li X. Regulation of osteoclast-mediated bone resorption by lipids. Bone 2025; 193:117423. [PMID: 39933643 DOI: 10.1016/j.bone.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Hyperactivation of osteoclasts has been identified as a significant etiological factor in several bone resorption-related disorders, including osteoporosis, periodontitis, arthritis, and bone metastasis of tumors. It has been demonstrated that the severity of these diseases is influenced by lipids that regulate osteoclast differentiation and activity through specific signaling pathways and cytokine levels. The regulatory mechanisms of different types of lipids on osteoclastogenesis vary across diverse disease contexts in bone resorption regulated by osteoclasts. This review presents an overview of the mechanisms underlying osteoclast formation and summarizes the pathways through which various lipids regulate osteoclastogenesis in different pathological contexts. We also discuss effective therapeutic strategies for osteolytic diseases based on modulation of lipid metabolism.
Collapse
Affiliation(s)
- Fang Luo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tianyi Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|