1
|
Dong Z, Chen Z, Yu K, Zhao D, Jia J, Gao X, Wang D. Roles of plasma proteins in mediating the causal effect of the lipid species on gastric cancer: Insights from proteomic and two-step Mendelian randomization. Medicine (Baltimore) 2025; 104:e42485. [PMID: 40388730 PMCID: PMC12091653 DOI: 10.1097/md.0000000000042485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
The change of plasma lipid species has close contacts with gastric cancer (GC). However, the specific mechanism still needs to be explored further. We aim to utilize plasma proteins to decipher the association between lipid species and GC, and seek possible drug targets for GC. We performed a two-step Mendelian randomization (MR) analysis to investigate causal relationships among 179 lipid species, 4907 plasma proteins, and GC. Using summary-data-based MR and colocalization, we first examined protein-GC associations in discovery (N = 35,559) and validation (N = 54,219) cohorts. Subsequent MR analyses assessed lipid-GC and lipid-protein relationships, followed by mediation analysis using error propagation methods. Finally, macromolecular docking of prioritized proteins identified potential therapeutic ligands. Our MR analysis revealed causal relationships between 12 lipid species and GC, as well as 3 plasma proteins and GC. Importantly, mediation analysis demonstrated that CCDC80 protein mediates 2.90% (95% CI: 0.30-5.5%) of the protective effect of diacylglycerol (16:1_18:1) against GC. Based on these findings, we identified valproic acid as a promising therapeutic candidate targeting CCDC80 for GC treatment. Our study demonstrates that reduced CCDC80 expression mediates the tumor-promoting effects of diacylglycerol (16:1_18:1) in GC pathogenesis. Molecular docking confirms valproic acid binds stably to CCDC80, suggesting its therapeutic potential. These findings advance GC etiology understanding and provide a new drug development direction.
Collapse
Affiliation(s)
- Zhenhua Dong
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Yu
- Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dingliang Zhao
- Second Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianling Jia
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xulei Gao
- Second Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Daguang Wang
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Yan Z, Wang C, Wu J, Wang J, Ma T. TIM-3 teams up with PD-1 in cancer immunotherapy: mechanisms and perspectives. MOLECULAR BIOMEDICINE 2025; 6:27. [PMID: 40332725 PMCID: PMC12058639 DOI: 10.1186/s43556-025-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) has become a prominent strategy for cancer treatment over the past ten years. However, the efficacy of ICIs remains limited, with certain cancers exhibiting resistance to these therapeutic approaches. Consequently, several immune checkpoint proteins are presently being thoroughly screened and assessed in both preclinical and clinical studies. Among these candidates, T cell immunoglobulin and mucin-domain containing-3 (TIM-3) is considered a promising target. TIM-3 exhibits multiple immunosuppressive effects on various types of immune cells. Given its differential expression levels at distinct stages of T cell dysfunction in the tumor microenvironment (TME), TIM-3, along with programmed cell death protein 1 (PD-1), serves as indicators of T cell exhaustion. Moreover, it is crucial to carefully evaluate the impact of TIM-3 and PD-1 expression in cancer cells on the efficacy of immunotherapy. To increase the effectiveness of anti-TIM-3 and anti-PD-1 therapies, it is proposed to combine the inhibition of TIM-3, PD-1, and programmed death-ligand 1 (PD-L1). The efficacy of TIM-3 inhibition in conjunction with PD-1/PD-L1 inhibitors is being evaluated in a number of ongoing clinical trials for patients with various cancers. This study systematically investigates the fundamental biology of TIM-3 and PD-1, as well as the detailed mechanisms through which TIM-3 and PD-1/PD-L1 axis contribute to cancer immune evasion. Additionally, this article provides a thorough analysis of ongoing clinical trials evaluating the synergistic effects of combining PD-1/PD-L1 and TIM-3 inhibitors in anti-cancer treatment, along with an overview of the current status of TIM-3 and PD-1 antibodies.
Collapse
Affiliation(s)
- Zhuohong Yan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Chunmao Wang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghong Wu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jinghui Wang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Teng Ma
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
3
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
4
|
Liu R, Jiang X, Dong R, Zhang Y, Gai C, Wei P. Revealing the mechanisms and therapeutic potential of immune checkpoint proteins across diverse protein families. Front Immunol 2025; 16:1499663. [PMID: 40356928 PMCID: PMC12066663 DOI: 10.3389/fimmu.2025.1499663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Host immune responses to antigens are tightly regulated through the activation and inhibition of synergistic signaling networks that maintain homeostasis. Stimulatory checkpoint molecules initiate attacks on infected or tumor cells, while inhibitory molecules halt the immune response to prevent overreaction and self-injury. Multiple immune checkpoint proteins are grouped into families based on common structural domains or origins, yet the variability within and between these families remains largely unexplored. In this review, we discuss the current understanding of the mechanisms underlying the co-suppressive functions of CTLA-4, PD-1, and other prominent immune checkpoint pathways. Additionally, we examine the IgSF, PVR, TIM, SIRP, and TNF families, including key members such as TIGIT, LAG-3, VISTA, TIM-3, SIRPα, and OX40. We also highlight the unique dual role of VISTA and SIRPα in modulating immune responses under specific conditions, and explore potential immunotherapeutic pathways tailored to the distinct characteristics of different immune checkpoint proteins. These insights into the unique advantages of checkpoint proteins provide new directions for drug discovery, emphasizing that emerging immune checkpoint molecules could serve as targets for novel therapies in cancer, autoimmune diseases, infectious diseases, and transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Liu S, Liu J, Mei Y, Zhang W. Gut microbiota affects PD-L1 therapy and its mechanism in melanoma. Cancer Immunol Immunother 2025; 74:169. [PMID: 40214675 PMCID: PMC11992302 DOI: 10.1007/s00262-025-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have shown great success in treating melanoma. PD-L1 (B7-H1, CD274), a ligand of PD-1, binds to PD-1 on T cells, inhibiting their activation and proliferation through multiple pathways, thus dampening tumor-reactive T cell activity. Studies have linked PD-L1 expression in melanoma with tumor growth, invasion, and metastasis, making the PD-1/PD-L1 pathway a critical target in melanoma therapy. However, immune-related adverse events are common, reducing the effectiveness of anti-PD-L1 treatments. Recent evidence suggests that the gut microbiome significantly influences anti-tumor immunity, with the microbiome potentially reprogramming the tumor microenvironment and overcoming resistance to anti-PD-1 therapies in melanoma patients. This review explores the mechanisms of PD-1/PD-L1 in melanoma and examines how gut microbiota and its metabolites may help address resistance to anti-PD-1 therapy, offering new insights for improving melanoma treatment strategies.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jiahui Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingwu Mei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wenjuan Zhang
- Beijing Life Science Academy (BLSA), Beijing, China.
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Granica M, Laskowski G, Link-Lenczowski P, Graczyk-Jarzynka A. Modulation of N-glycosylation in the PD-1: PD-L1 axis as a strategy to enhance cancer immunotherapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189274. [PMID: 39875060 DOI: 10.1016/j.bbcan.2025.189274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The modulation of the N-glycosylation status in immune checkpoints, particularly the PD-1/PD-L1 axis, has emerged as a promising approach to enhance cancer immunotherapies. While immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 have achieved significant clinical success, recent studies highlight the critical role of N-glycosylation in regulating their expression, stability, and function. Alterations in N-glycosylation might affect the efficacy of ICIs by modulating the interactions between immune checkpoints and antibodies used in therapy. This review focuses on the glycosylation of PD-1 and its ligands PD-L1 and PD-L2, examining how N-glycans influence immune responses and contribute to immune evasion by tumors. It explores innovative strategies to modulate glycosylation in tumor and immune cells, including the use of N-glycosylation inhibitors and novel genetic manipulation techniques. Understanding the interplay between N-glycosylation and immune checkpoint functions is essential for optimizing immunotherapy outcomes and overcoming therapeutic resistance in cancer patients.
Collapse
Affiliation(s)
- Monika Granica
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gustaw Laskowski
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
7
|
Özdemir BH, Baştürk B, Sayın CB, Haberal M. Programmed Death-Ligand 1 in Renal Allografts With Antibody-Mediated Rejection. EXP CLIN TRANSPLANT 2025; 23:192-201. [PMID: 40223384 DOI: 10.6002/ect.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Despite its known role in promoting tolerance, the function of programmed cell death protein 1/programmed death ligand 1 in antibody-mediated rejection is less clear. We aimed to clarify this role by examining expression of programmed cell death protein 1/programmed death ligand 1 in renal allografts diagnosed with antibody-mediated rejection. MATERIALS AND METHODS We examined 110 patients: 68 with pure antibody-mediated rejection (group 1) and 42 with both antibody-mediated rejection and T-cell mediated rejection (group 2). Renal immune cell infiltration, cytokine expression, and programmed cell death protein 1/programmed death ligand 1 expres-sion were examined immunohistochemically. RESULTS Expression of programmed cell death protein 1/programmed death ligand 1 in endothelial and inflammatory cells was higher in group 2 versus in group 1 (P < .001). Expression of programmed cell death protein 1/programmed death ligand 1 increased with immune cell infiltration. An inverse relationship existed between peritubular capillary DR expression and programmed cell death protein 1/programmed death ligand 1 interaction, with a positive correlation with tubular HLA-DR. Development of interstitial fibrosis was shown in 52.3% of patients with endothelial programmed cell death protein 1/programmed death ligand 1 interaction compared with 12.1% without this interaction (P < .001). Ten-year survival rate was 27.3% in patients with versus 66.7% in patients without endothelial programmed cell death protein 1/programmed death ligand 1 (P < .001) and 31.3% in patients with and 66.1% in patients without inflammatory cell programmed cell death protein 1/programmed death ligand 1 expression (P < .001). CONCLUSIONS Heightened immunological nature in antibody-mediated rejection may influence the unexpected functions of programmed death ligand 1. Inhibitory functions of the programmed cell death protein 1/programmed death ligand 1 pathway may be less effective under strong T-cell activation with high immunological costimulation in antibody-mediated rejection.
Collapse
Affiliation(s)
- Binnaz Handan Özdemir
- From the Pathology Department, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
8
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
9
|
Valério-Bolas A, Meunier M, Rodrigues A, Palma-Marques J, Ferreira R, Cardoso I, Lobo L, Monteiro M, Nunes T, Armada A, Antunes WT, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Unveiling the Interplay Between Dendritic Cells and Natural Killer Cells as Key Players in Leishmania Infection. J Immunol Res 2025; 2025:3176927. [PMID: 39963187 PMCID: PMC11832263 DOI: 10.1155/jimr/3176927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
Leishmaniasis is a group of parasitic diseases whose etiological agent is the protozoa Leishmania. These diseases afflict impoverished populations in tropical and subtropical regions and affect wild and domestic animals. Canine leishmaniasis is a global disease mostly caused by L. infantum. Dogs are recognized as a good reservoir since harbor the infection long before developing the disease, facilitating parasite transmission. Furthermore, there is growing evidence that dogs may also be the reservoir of the American Leishmania spp. as L. amazonensis. The innate immune response is the first defense line against pathogens, which includes natural killer (NK) and dendritic cells (DCs). By recognizing and ultimately destroying infected cells, and by secreting immune mediators that favor inflammatory microenvironments, NK cells take the lead in the infectious process. When interacting with Leishmania parasites, DCs become activated and play a key role in driving the host immune response. While activated DCs can modulate NK cell activity, Leishmania parasites can directly activate NK cells by interacting with innate immune receptors. Once activated, NK cells can engage in a bidirectional interplay with DCs. However, the complexity of these interactions during Leishmania infection makes it challenging to fully understand the underlying processes. To further explore this, the present study investigated the dynamic interplay established between monocyte-derived DCs (moDCs) and putative NK (pNK) cells of dogs during Leishmania infection. Findings indicate that the crosstalk between moDCs exposed to L. infantum or L. amazonensis and pNK cells enhances chemokine upregulation, potentially attracting other leukocytes to the site of infection. pNK cells activated by L. infantum infected DCs upregulate IL-10, which can lead to a regulatory immune response while moDCs exposed to L. amazonensis induced pNK cells to overexpress IFN-γ and IL-13, favoring a mix of pro- and anti-inflammatory response. In addition, parasite-derived extracellular vesicles (EVs) can modulate the host immune response by stimulating the upregulation of anti-inflammatory cytokines and perforin release, which may impact infection outcomes. Thus, Leishmania and parasitic EVs can influence the bidirectional interplay between canine NK cells and DCs.
Collapse
Affiliation(s)
- Ana Valério-Bolas
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Mafalda Meunier
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Armanda Rodrigues
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Joana Palma-Marques
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Rui Ferreira
- BSA, Banco de Sangue Animal, Porto 4100-462, Portugal
| | - Inês Cardoso
- BSA, Banco de Sangue Animal, Porto 4100-462, Portugal
| | - Lis Lobo
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Marta Monteiro
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences of the University of Lisbon-FCUL—BioISI Ce3CE, Lisboa, Portugal
| | - Ana Armada
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| | - Wilson T. Antunes
- Instituto Universitário Militar (IUM), Centro de Investigação, Desenvolvimento e Inovação da Academia Militar (CINAMIL), Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Lisboa 1849-012, Portugal
| | - Graça Alexandre-Pires
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Faculty of Veterinary Medicine, Centre for Interdisciplinary Research in Animal Health, CIISA, University of Lisbon, Av. Universidade Técnica, Lisbon 1300-477, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Unit for Teaching and Research in Medical Parasitology, Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon 1349-008, Portugal
| |
Collapse
|
10
|
Rico LG, Salvia R, Bradford JA, Ward MD, Petriz J. PD-L1 expression in multiple myeloma myeloid derived suppressor cells. Methods Cell Biol 2025; 195:115-141. [PMID: 40180451 DOI: 10.1016/bs.mcb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The Programmed Cell Death Protein 1/Programmed Cell Death Protein Ligand 1 (PD-1/PD-L1) axis stands as one of the most widely acknowledged targets for cancer immunotherapy. This ligand is considered a therapeutic target for this disease as it might play an important role in tumor immune evasion and drug resistance. In multiple myeloma (MM), PD-L1 is overexpressed in abnormal plasma cells and Myeloid-Derived Suppressor Cells (MDSCs). In MDSCs, unlike tumoral cells or derived cell lines, the PD-L1 protein is presented in a conformation not recognized by the monoclonal antibody. In contrast, when stimulating the sample with PMA, the PD-L1 molecule undergoes a conformational change that enables its recognition. Hence, we have developed a flow cytometric screening assay to determine PD-L1 conformational changes in MDSCs based on a minimal manipulation of the sample, to preserve the structure and functionality of the ligand. In this chapter, we provide detailed protocols to assess PD-L1 levels in MDSCs together with the representative results obtained in multiple myeloma patients. The obtained results enable the classification of MM patients based on the different PD-L1 detection after stimulation, which increases compared with unstimulated samples. We also provide protocols to assess kinetic analysis of PD-L1 expression over time and to compare PD-L1 cell surface expression with cytoplasmic expression. Finally, competitive experiments in the presence of durvalumab are also described to study its interaction with PD-L1. This approach can also be used to study the contribution of potential conformational changes in other proteins.
Collapse
Affiliation(s)
- Laura G Rico
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Roser Salvia
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | | - Michael D Ward
- Thermo Fisher Scientific, Fort Collins, CO, United States
| | - Jordi Petriz
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain.
| |
Collapse
|
11
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Aymoz-Bressot T, Canis M, Meurisse F, Wijkhuisen A, Favier B, Mousseau G, Dupressoir A, Heidmann T, Bacquin A. Cell-Int: a cell-cell interaction assay to identify native membrane protein interactions. Life Sci Alliance 2024; 7:e202402844. [PMID: 39237366 PMCID: PMC11377309 DOI: 10.26508/lsa.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Intercellular protein-protein interactions (PPIs) have pivotal roles in biological functions and diseases. Membrane proteins are therefore a major class of drug targets. However, studying such intercellular PPIs is challenging because of the properties of membrane proteins. Current methods commonly use purified or modified proteins that are not physiologically relevant and hence might mischaracterize interactions occurring in vivo. Here, we describe Cell-Int: a cell interaction assay for studying plasma membrane PPIs. The interaction signal is measured through conjugate formation between two populations of cells each expressing either a ligand or a receptor. In these settings, membrane proteins are in their native environment thus being physiologically relevant. Cell-Int has been applied to the study of diverse protein partners, and enables to investigate the inhibitory potential of blocking antibodies, as well as the retargeting of fusion proteins for therapeutic development. The assay was also validated for screening applications and could serve as a platform for identifying new protein interactors.
Collapse
Affiliation(s)
- Thibaud Aymoz-Bressot
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marie Canis
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | - Anne Wijkhuisen
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Paris, France
| | | | - Anne Dupressoir
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thierry Heidmann
- CNRS UMR9196, Laboratory of Molecular Physiology and Pathology of Endogenous and Infectious Retroviruses, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- VIROXIS, Gustave Roussy, Villejuif, France
| | | |
Collapse
|
13
|
Wu Y, Mohd Sani SB, Peng K, Lin T, Tan C, Huang X, Li Z. Research progress of the Otubains subfamily in hepatocellular carcinoma. Biomed Pharmacother 2024; 179:117348. [PMID: 39208669 DOI: 10.1016/j.biopha.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
In cancer research, oncogenesis can be affected by modulating the deubiquitination pathway. Ubiquitination regulates proteins post-translationally in variety of physiological processes. The Otubain Subfamily includes OTUB1 (ovarian tumor-associated proteinase B1) and OTUB2(ovarian tumor-associated proteinase B2). They are deubiquitinating enzymes, which are research hotspots in tumor immunotherapy, with their implications extending across the spectrum of tumor development. Understanding their important role in tumorigenesis, includ-ing hepatocellular carcinoma (HCC) is crucial. HCC has alarming global incidence rates and mortality statistics, ranking among the top five prevalent cancers in Malaysia1. Numerous studies have consistently indicated significant expression of OTUB1 and OTUB2 in HCC cells. In addition, OTUB1 has important biological functions in cancer, suggesting its important role in tumorigenesis. However, the mechanism underlying the action of OTUB1 and OTUB2 in liver cancer remains inadequately explored. Therefore, Otubain Subfamily, as potential molecular target, holds promise for advancing HCC treatments. However, further clinical studies are required to verify its efficacy and application prospects.
Collapse
Affiliation(s)
- Yanming Wu
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Sa'udah Badriah Mohd Sani
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Penang 13200, Malaysia.
| | - Ke Peng
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, China.
| | - Tao Lin
- Department of General Surgery, Anyang People's Hospital, Anyang, Henan 450000, China.
| | - Chenghao Tan
- Department of Social Science, Universiti Sain Malaysia, Gelugor, Penang 11700, Malaysia.
| | | | - Zhengrui Li
- Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China.
| |
Collapse
|
14
|
Zhao G, Li P, Suo Y, Li C, Yang S, Zhang Z, Wu Z, Shen C, Hu H. An integrated pan-cancer assessment of prognosis, immune infiltration, and immunotherapy response for B7 family using multi-omics data. Life Sci 2024; 353:122919. [PMID: 39034028 DOI: 10.1016/j.lfs.2024.122919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
AIMS B7 molecules (B7s) are crucial synergistic signals for effective immune surveillance against tumor cells. While previous studies have explored the association between the B7 family and cancer, most have been limited to specific genes or cancer subtypes. MAIN METHODS Our study utilized multi-omics data to investigate potential correlations between B7s expression (B7s exp.) and prognosis, clinicopathological features, somatic mutations (SMs), copy number variations (CNVs), immune characteristics, tumor microenvironment (TME), microsatellite instability, tumor mutation burden, immune checkpoint gene (ICG), and drug responsiveness in TCGA tumors. Furthermore, the connection between B7s exp. and immunotherapy (IT) performance assessed in various validated datasets. Following this, immune infiltration analysis (IIA) was conducted based on B7s exp., CNVs, or SMs in bladder cancer (BLCA), complemented by real-time PCR (RT-PCR) and protein confirmation of B7-H3. KEY FINDINGS Across most cancer types, B7s exp. was related to prognosis, clinicopathological characteristics, mutations, CNVs, ICG, TMB, TME. The examination of sensitivity to anticancer drugs unveiled correlations between B7 molecules and different drug sensitivities. Specific B7s exp. patterns were linked to the clinical effectiveness of IT. Using GSEA, several enriched immune-related functions and pathways were identified. Particularly in BLCA, IIA revealed significant connections between B7 CNVs, mutation status, and various immune cell infiltrates. RT-PCR confirmed elevated B7-H3 gene levels in BLCA tumor tissues. SIGNIFICANCE This study confirmed the significance of B7s exp. and genomic changes in predicting outcomes and treatment across different cancer types. Moreover, they indicate a critical function of B7s in BLCA and their potential as IT biomarkers.
Collapse
Affiliation(s)
- Gangjian Zhao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Suo
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chenyun Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shaobo Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhe Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Chong Shen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
15
|
Jia J, Wang Y, Li M, Wang F, Peng Y, Hu J, Li Z, Bian Z, Yang S. Neutrophils in the premetastatic niche: key functions and therapeutic directions. Mol Cancer 2024; 23:200. [PMID: 39277750 PMCID: PMC11401288 DOI: 10.1186/s12943-024-02107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Metastasis has been one of the primary reasons for the high mortality rates associated with tumours in recent years, rendering the treatment of current malignancies challenging and representing a significant cause of recurrence in patients who have undergone surgical tumour resection. Halting tumour metastasis has become an essential goal for achieving favourable prognoses following cancer treatment. In recent years, increasing clarity in understanding the mechanisms underlying metastasis has been achieved. The concept of premetastatic niches has gained widespread acceptance, which posits that tumour cells establish a unique microenvironment at distant sites prior to their migration, facilitating their settlement and growth at those locations. Neutrophils serve as crucial constituents of the premetastatic niche, actively shaping its microenvironmental characteristics, which include immunosuppression, inflammation, angiogenesis and extracellular matrix remodelling. These characteristics are intimately associated with the successful engraftment and subsequent progression of tumour cells. As our understanding of the role and significance of neutrophils in the premetastatic niche deepens, leveraging the presence of neutrophils within the premetastatic niche has gradually attracted the interest of researchers as a potential therapeutic target. The focal point of this review revolves around elucidating the involvement of neutrophils in the formation and shaping of the premetastatic niche (PMN), alongside the introduction of emerging therapeutic approaches aimed at impeding cancer metastasis.
Collapse
Affiliation(s)
- Jiachi Jia
- Zhengzhou University, Zhengzhou, 450000, China
| | - Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Mengjia Li
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yingnan Peng
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zhen Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Zhilei Bian
- Department of Haematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
16
|
Mima Y, Ohtsuka T, Ebato I, Nakata Y, Tsujita A, Nakazato Y, Norimatsu Y. Review of T Helper 2-Type Inflammatory Diseases Following Immune Checkpoint Inhibitor Treatment. Biomedicines 2024; 12:1886. [PMID: 39200350 PMCID: PMC11352049 DOI: 10.3390/biomedicines12081886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Immune checkpoints are mechanisms that allow cancer cells to evade immune surveillance and avoid destruction by the body's immune system. Tumor cells exploit immune checkpoint proteins to inhibit T cell activation, thus enhancing their resistance to immune attacks. Immune checkpoint inhibitors, like nivolumab, work by reactivating these suppressed T cells to target cancer cells. However, this reactivation can disrupt immune balance and cause immune-related adverse events. This report presents a rare case of prurigo nodularis that developed six months after administering nivolumab for lung adenocarcinoma. While immune-related adverse events are commonly linked to T helper-1- or T helper-17-type inflammations, T helper-2-type inflammatory reactions, as observed in our case, are unusual. The PD-1-PD-L1 pathway is typically associated with T helper-1 and 17 responses, whereas the PD-1-PD-L2 pathway is linked to T helper-2 responses. Inhibition of PD-1 can enhance PD-L1 functions, potentially shifting the immune response towards T helper-1 and 17 types, but it may also influence T helper-2-type inflammation. This study reviews T helper-2-type inflammatory diseases emerging from immune checkpoint inhibitor treatment, highlighting the novelty of our findings.
Collapse
Affiliation(s)
- Yoshihito Mima
- Department of Dermatology, Tokyo Metropolitan Police Hospital, Tokyo 164-8541, Japan
| | - Tsutomu Ohtsuka
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Ippei Ebato
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yukihiro Nakata
- Department of Dermatology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Akihiro Tsujita
- Department of Respiratory Medicine, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yoshimasa Nakazato
- Department of Diagnostic Pathology, International University of Health and Welfare Hospital, Tochigi 324-8501, Japan
| | - Yuta Norimatsu
- Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-0124, Japan;
| |
Collapse
|
17
|
Davar D, Cavalcante L, Lakhani N, Moser J, Millward M, McKean M, Voskoboynik M, Sanborn RE, Grewal JS, Narayan A, Patnaik A, Gainor JF, Sznol M, Enstrom A, Blanchfield L, LeBlanc H, Thomas H, Chisamore MJ, Peng SL, Naumovski A. Phase I studies of davoceticept (ALPN-202), a PD-L1-dependent CD28 co-stimulator and dual PD-L1/CTLA-4 inhibitor, as monotherapy and in combination with pembrolizumab in advanced solid tumors (NEON-1 and NEON-2). J Immunother Cancer 2024; 12:e009474. [PMID: 39097413 PMCID: PMC11344531 DOI: 10.1136/jitc-2024-009474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Davoceticept (ALPN-202) is an Fc fusion of a CD80 variant immunoglobulin domain designed to mediate programmed death-ligand 1 (PD-L1)-dependent CD28 co-stimulation while inhibiting the PD-L1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) checkpoints. The safety and efficacy of davoceticept monotherapy and davoceticept and pembrolizumab combination therapy in adult patients with advanced solid tumors were explored in NEON-1 and NEON-2, respectively. METHODS In NEON-1 (n=58), davoceticept 0.001-10 mg/kg was administered intravenous either once weekly (Q1W) or once every 3 weeks (Q3W). In NEON-2 (n=29), davoceticept was administered intravenously at 2 dose levels (0.1 or 0.3 mg/kg) Q1W or Q3W with pembrolizumab (400 mg once every 6 weeks). In both studies, primary endpoints included incidence of dose-limiting toxicities (DLT); type, incidence, and severity of adverse events (AEs) and laboratory abnormalities; and seriousness of AEs. Secondary endpoints included antitumor efficacy assessed using RECIST v1.1, pharmacokinetics, anti-drug antibodies, and pharmacodynamic biomarkers. RESULTS The incidence of treatment-related AEs (TRAEs) and immune-related adverse events (irAEs) was 67% (39/58) and 36% (21/58) with davoceticept monotherapy, and 62% (18/29) and 31% (9/29) with davoceticept and pembrolizumab combination, respectively. The incidence of ≥grade (Gr)3 TRAEs and ≥Gr3 irAEs was 12% (7/58) and 5% (3/58) with davoceticept monotherapy, and 24% (7/29) and 10% (3/29) with davoceticept and pembrolizumab combination, respectively. One DLT of Gr3 immune-related gastritis occurred during davoceticept monotherapy 3 mg/kg Q3W. During davoceticept combination with pembrolizumab, two Gr5 cardiac DLTs occurred; one instance each of cardiogenic shock (0.3 mg/kg Q3W, choroidal melanoma metastatic to the liver) and immune-mediated myocarditis (0.1 mg/kg Q3W, microsatellite stable metastatic colorectal adenocarcinoma), prompting early termination of both studies. Across both studies, five patients with renal cell carcinoma (RCC) exhibited evidence of clinical benefit (two partial response, three stable disease). CONCLUSIONS Davoceticept was generally well tolerated as monotherapy at intravenous doses up to 10 mg/kg. Evidence of clinical activity was observed with davoceticept monotherapy and davoceticept in combination with pembrolizumab, notably in RCC. However, two fatal cardiac events occurred with the combination of low-dose davoceticept and pembrolizumab. Future clinical investigation with davoceticept should not consider combination with programmed death-1-inhibitor anticancer mechanisms, until its safety profile is more fully elucidated. TRIAL REGISTRATION NUMBER NEON-1 (NCT04186637) and NEON-2 (NCT04920383).
Collapse
Affiliation(s)
- Diwakar Davar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Justin Moser
- HonorHealth Research and Innovation Institute, Scottsdale, Arizona, USA
| | - Michael Millward
- Linear Clinical Research, Nedlands, Western Australia, Australia
- The University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Mark Voskoboynik
- Nucleus Network Ltd, Melbourne, Victoria, Australia
- The Alfred, Melbourne, Victoria, Australia
| | - Rachel E Sanborn
- Earle A Chiles Research Institute, Portland, Oregon, USA
- Providence Cancer Center, Portland, Oregon, USA
| | | | - Ajita Narayan
- Franciscan Physician Network with Franciscan Alliance, Lafayette, Indiana, USA
| | | | | | - Mario Sznol
- Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | | | | | - Heidi LeBlanc
- Alpine Immune Sciences Inc, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
18
|
Ma X, Chen J, Chen S, Lan X, Wei Z, Gao H, Hou E. Immunotherapy for renal cell carcinoma: New therapeutic combinations and adverse event management strategies: A review. Medicine (Baltimore) 2024; 103:e38991. [PMID: 39058879 PMCID: PMC11272340 DOI: 10.1097/md.0000000000038991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) combinations, as well as ICIs combined with tyrosine kinase inhibitors, have considerable potential for renal cell carcinoma (RCC) treatment. Newer targeted medications, gut microbiome, nanomedicines, and cyclin-dependent kinase (CDK) inhibitors demonstrate significant potential in preventing side effects and resistance associated with RCC treatment. Most patients, including those demonstrating long-term treatment effects, eventually demonstrate cancer progression. Nevertheless, recent studies have further revealed RCC pathogenesis and many acquired drug resistance mechanisms, which together have led to the identification of promising therapeutic targets. In addition to having roles in metabolism, immunogenicity, and the immune response to tumors, CDK4 and CDK6 regulate the cell cycle. Targeting CDK4 and CDK6, either separately or in combination with already approved treatments, may improve therapeutic outcomes in patients with kidney cancer. Other novel drugs, including pegylated interleukin 10, colony-stimulating factor 1 receptor inhibitors, CD40 agonists, and C-X-C receptor 4 inhibitors affect the tumor microenvironment and cancer cell metabolism. Moreover, a triple ICI combination has been noted to be efficacious. In general, compared with sunitinib as a single-drug treatment, newer ICI combinations improve overall survival in patients with RCC. Future research on the prevention of adverse events and medication resistance related to newer therapies may aid in ensuring effective treatment outcomes among patients with RCC. This article aims to summarize innovative immunotherapy drug combinations for RCC treatment and the mechanisms of action, drug resistance, and treatment of adverse events associated with these combinations.
Collapse
Affiliation(s)
- Xiaohan Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Lan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zengzhao Wei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
19
|
Jaing TH, Wang YL, Chiu CC. Immune Checkpoint Inhibitors for Pediatric Cancers: Is It Still a Stalemate? Pharmaceuticals (Basel) 2024; 17:991. [PMID: 39204096 PMCID: PMC11357301 DOI: 10.3390/ph17080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
The knowledge surrounding the application of immune checkpoint inhibitors (ICIs) in the treatment of pediatric cancers is continuously expanding and evolving. These therapies work by enhancing the body's natural immune response against tumors, which may have been suppressed by certain pathways. The effectiveness of ICIs in treating adult cancers has been widely acknowledged. However, the results of early phase I/II clinical trials that exclusively targeted the use of ICIs for treating different pediatric cancers have been underwhelming. The response rates to ICIs have generally been modest, except for cases of pediatric classic Hodgkin lymphoma. There seems to be a notable disparity in the immunogenicity of childhood cancers compared to adult cancers, potentially accounting for this phenomenon. On average, childhood cancers tend to have significantly fewer neoantigens. In recent times, there has been a renewed sense of optimism regarding the potential benefits of ICI therapies for specific groups of children with cancer. In initial research, individuals diagnosed with pediatric hypermutated and SMARCB1-deficient cancers have shown remarkable positive outcomes when treated with ICI therapies. This is likely due to the underlying biological factors that promote the expression of neoantigens and inflammation within the tumor. Ongoing trials are diligently assessing the effectiveness of ICIs for pediatric cancer patients in these specific subsets. This review aimed to analyze the safety and effectiveness of ICIs in pediatric patients with different types of highly advanced malignancies.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan, China;
| |
Collapse
|
20
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
21
|
Sun Y, Yang J, Chen Y, Guo Y, Xiong J, Guo X, Zhang Y, Gu L, Tong M, Wang W, Sun J. PD-L2 Expression in Breast Cancer Promotes Tumor Development and Progression. J Immunol Res 2024; 2024:3145695. [PMID: 38983273 PMCID: PMC11233179 DOI: 10.1155/2024/3145695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Background This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.
Collapse
Affiliation(s)
- Yuling Sun
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Jie Yang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Yachun Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Yundi Guo
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Jian Xiong
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Xuqin Guo
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Li Gu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Min Tong
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| | - Weipeng Wang
- Center for Drug Metabolism and PharmacokineticsCollege of Pharmaceutical SciencesSoochow University, Suzhou 215123, China
| | - Jing Sun
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in OncologySuzhou Vocational Health College, Suzhou 215009, China
| |
Collapse
|
22
|
Knutson KL. Regulation of Tumor Dendritic Cells by Programmed Cell Death 1 Pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1397-1405. [PMID: 38621195 PMCID: PMC11027937 DOI: 10.4049/jimmunol.2300674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/18/2024] [Indexed: 04/17/2024]
Abstract
The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.
Collapse
|
23
|
Javed SA, Najmi A, Ahsan W, Zoghebi K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: success and challenges. Front Immunol 2024; 15:1383456. [PMID: 38660299 PMCID: PMC11039846 DOI: 10.3389/fimmu.2024.1383456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The programmed death-1 receptor (PD-1) acts as a T-cell brake, and its interaction with ligand-1 (PD-L-1) interferes with signal transduction of the T-cell receptor. This leads to suppression of T-cell survival, proliferation, and activity in the tumor microenvironment resulting in compromised anticancer immunity. PD-1/PD-L-1 interaction blockade shown remarkable clinical success in various cancer immunotherapies. To date, most PD-1/PD-L-1 blockers approved for clinical use are monoclonal antibodies (mAbs); however, their therapeutic use are limited owing to poor clinical responses in a proportion of patients. mAbs also displayed low tumor penetration, steep production costs, and incidences of immune-related side effects. This strongly indicates the importance of developing novel inhibitors as cancer immunotherapeutic agents. Recently, advancements in the small molecule-based inhibitors (SMIs) that directly block the PD-1/PD-L-1 axis gained attention from the scientific community involved in cancer research. SMIs demonstrated certain advantages over mAbs, including longer half-lives, low cost, greater cell penetration, and possibility of oral administration. Currently, several SMIs are in development pipeline as potential therapeutics for cancer immunotherapy. To develop new SMIs, a wide range of structural scaffolds have been explored with excellent outcomes; biphenyl-based scaffolds are most studied. In this review, we analyzed the development of mAbs and SMIs targeting PD-1/PD-L-1 axis for cancer treatment. Altogether, the present review delves into the problems related to mAbs use and a detailed discussion on the development and current status of SMIs. This article may provide a comprehensive guide to medicinal chemists regarding the potential structural scaffolds required for PD-1/PD-L-1 interaction inhibition.
Collapse
Affiliation(s)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | | |
Collapse
|
24
|
Biemond M, Vremec D, Gray DHD, Hodgkin PD, Heinzel S. Programmed death receptor 1 (PD-1) ligand Fc fusion proteins reduce T-cell proliferation in vitro independently of PD-1. Immunol Cell Biol 2024; 102:117-130. [PMID: 38069638 PMCID: PMC10952853 DOI: 10.1111/imcb.12714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 02/02/2024]
Abstract
Programmed death receptor 1 (PD-1) is an inhibitory receptor on T cells shown to restrain T-cell proliferation. PD-1 immune checkpoint blockade has emerged as a highly promising approach in cancer treatment. Much of our understanding of the function of PD-1 is derived from in vitro T-cell activation assays. Here we set out to further investigate how T cells integrate inhibitory signals such as PD-1 in vitro using the PD-1 agonist, PD-1 ligand 1 (PD-L1) fusion protein (PD-L1.Fc), coimmobilized alongside anti-CD3 agonist monoclonal antibody (mAb) on plates to deliver PD-1 signals to wild-type and PD-1-/- CD8+ T cells. Surprisingly, we found that the PD-L1.Fc fusion protein inhibited T-cell proliferation independently of PD-1. This PD-L1.Fc inhibition was observed in the presence and absence of CD28 and interleukin-2 signaling. Binding of PD-L1.Fc was restricted to PD-1-expressing T cells and thus inhibition was not mediated by the interaction of PD-L1.Fc with CD80 or other yet unknown binding partners. Furthermore, a similar PD-1-independent reduction of T-cell proliferation was observed with plate-bound PD-L2.Fc. Hence, our results suggest that the coimmobilization of PD-1 ligand fusion proteins with anti-CD3 mAb leads to a reduction of T-cell engagement with plate-bound anti-CD3 mAb. This study demonstrates a nonspecific mechanism of T-cell inhibition when PD-L1.Fc or PD-L2.Fc fusion proteins are delivered in a plate-bound coimmobilization assay and highlights the importance of careful optimization of assay systems and reagents when interpreting their influence on T-cell proliferation.
Collapse
Affiliation(s)
- Melissa Biemond
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
- Present address:
Department of ImmunologyLeiden University Medical CenterLeidenThe Netherlands
| | - David Vremec
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
| | - Daniel HD Gray
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Philip D Hodgkin
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| | - Susanne Heinzel
- Immunology DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVICAustralia
- Department of Medical BiologyThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
25
|
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Yoshida Y, Nishikawa T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Suzuki M, Yokosuka T. Molecular Imaging of PD-1 Unveils Unknown Characteristics of PD-1 Itself by Visualizing "PD-1 Microclusters". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:197-205. [PMID: 38467981 DOI: 10.1007/978-981-99-9781-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Programmed cell death-1 (PD-1) is one of the most famous coinhibitory receptors that are expressed on effector T cells to regulate their function. The PD-1 ligands, PD-L1 and PD-L2, are expressed by various cells throughout the body at steady state and their expression was further regulated within different pathological conditions such as tumor-bearing and chronic inflammatory diseases. In recent years, immune checkpoint inhibitor (ICI) therapies with anti-PD-1 or anti-PD-L1 has become a standard treatment for various malignancies and has shown remarkable antitumor effects. Since the discovery of PD-1 in 1992, a huge number of studies have been conducted to elucidate the function of PD-1. Herein, this paper provides an overview of PD-1 biological findings and sheds some light on the current technology for molecular imaging of PD-1.
Collapse
Affiliation(s)
- Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | | | - Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | | | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
26
|
Liu R, Zeng LW, Li HF, Shi JG, Zhong B, Shu HB, Li S. PD-1 signaling negatively regulates the common cytokine receptor γ chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res 2023; 33:923-939. [PMID: 37932447 PMCID: PMC10709454 DOI: 10.1038/s41422-023-00890-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Combination therapy with PD-1 blockade and IL-2 substantially improves anti-tumor efficacy comparing to monotherapy. The underlying mechanisms responsible for the synergistic effects of the combination therapy remain enigmatic. Here we show that PD-1 ligation results in BATF-dependent transcriptional induction of the membrane-associated E3 ubiquitin ligase MARCH5, which mediates K27-linked polyubiquitination and lysosomal degradation of the common cytokine receptor γ chain (γc). PD-1 ligation also activates SHP2, which dephosphorylates γcY357, leading to impairment of γc family cytokine-triggered signaling. Conversely, PD-1 blockade restores γc level and activity, thereby sensitizing CD8+ T cells to IL-2. We also identified Pitavastatin Calcium as an inhibitor of MARCH5, which combined with PD-1 blockade and IL-2 significantly improves the efficacy of anti-tumor immunotherapy in mice. Our findings uncover the mechanisms by which PD-1 signaling antagonizes γc family cytokine-triggered immune activation and demonstrate that the underlying mechanisms can be exploited for increased efficacy of combination immunotherapy of cancer.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lin-Wen Zeng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Jun-Ge Shi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Huang KW, Huang TL. Association between programmed death-1 pathway and major depression. World J Biol Psychiatry 2023; 24:822-828. [PMID: 37139744 DOI: 10.1080/15622975.2023.2209876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/30/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVES Major depression (MD) may be associated with inflammation and immunity. PD-1 (programmed death-1), PD-L1 (programmed death-ligand 1) and PD-L2 (programmed death-ligand 2) are among the inhibitory immune mediators on the PD-1 pathway. However, previous data regarding the association between MD and PD-1 pathway were still scarce; therefore, we investigated the association of PD-1 pathway with MD. METHODS During a period of 2 years, patients with MD and healthy controls were recruited from a medical centre in this study. The diagnosis of MD was established according to the DSM-5 criteria. The severity of MD was assessed with 17-item Hamilton Depression Rating Scale. PD-1, PD-L1 and PD-L2 were detected in peripheral blood from MD patients after 4 weeks of treatment with antidepressant drugs. RESULTS A total of 54 patients with MD and 38 healthy controls were recruited. According to the analyses, there is a significantly higher PD-L2 level in MD than in healthy controls and lower PD-1 level after age and BMI adjustment. Besides, moderately positive correlation between HAM-D scores and PD-L2 level was found. CONCLUSIONS It was found that PD-1 pathway might play an important role in MD. We need a large sample to prove these results in the future.
Collapse
Affiliation(s)
- Kuan-Wei Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Wieland A, Rubinstein MP, Li Z. PD-1-Targeted Immunotherapy: The Ligand Matters. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1065-1066. [PMID: 37722094 DOI: 10.4049/jimmunol.2300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 09/20/2023]
Abstract
This Pillars of Immunology article is a commentary on “PD-L2 is a second ligand for PD-1 and inhibits T cell activation,” a pivotal article written by Y. Latchman, C. R. Wood, T. Chernova, D. Chaudhary, M. Borde, I. Chernova, Y. Iwai, A. J. Long, J. A. Brown, R. Nunes, E. A. Greenfield, K. Bourque, V. A. Boussiotis, L. L. Carter, B. M. Carreno, N. Malenkovich, H. Nishimura, T. Okazaki, T. Honjo, A. H. Sharpe, and G. J. Freeman, and published in Nature Immunology, in 2001. https://www.nature.com/articles/ni0301_261.
Collapse
Affiliation(s)
- Andreas Wieland
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH
- Department of Otolaryngology, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Mark P Rubinstein
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
29
|
Fortman DD, Hurd D, Davar D. The Microbiome in Advanced Melanoma: Where Are We Now? Curr Oncol Rep 2023; 25:997-1016. [PMID: 37269504 PMCID: PMC11090495 DOI: 10.1007/s11912-023-01431-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent data linking gut microbiota composition to ICI outcomes and gut microbiota-specific interventional clinical trials in melanoma. RECENT FINDINGS Preclinical and clinical studies have demonstrated the effects of the gut microbiome modulation upon ICI response in advanced melanoma, with growing evidence supporting the ability of the gut microbiome to restore or improve ICI response in advanced melanoma through dietary fiber, probiotics, and FMT. Immune checkpoint inhibitors (ICI) targeting the PD-1, CTLA-4, and LAG-3 negative regulatory checkpoints have transformed the management of melanoma. ICIs are FDA-approved in advanced metastatic disease, stage III resected melanoma, and high-risk stage II melanoma and are being investigated more recently in the management of high-risk resectable melanoma in the peri-operative setting. The gut microbiome has emerged as an important tumor-extrinsic modulator of both response and immune-related adverse event (irAE) development in ICI-treated cancer in general, and melanoma in particular.
Collapse
Affiliation(s)
- Dylan D Fortman
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center (UPMC) and University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Drew Hurd
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA
| | - Diwakar Davar
- UPMC Hillman Cancer Center, Department of Medicine, University of Pittsburgh, Pavilion, Suite 1.32d, 5115, Center Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
30
|
Ohkawa Y, Kanto N, Nakano M, Fujinawa R, Kizuka Y, Johnson EL, Harada Y, Tamura JI, Taniguchi N. Involvement of langerin in the protective function of a keratan sulfate-based disaccharide in an emphysema mouse model. J Biol Chem 2023; 299:105052. [PMID: 37454739 PMCID: PMC10448169 DOI: 10.1016/j.jbc.2023.105052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), which includes emphysema and chronic bronchitis, is now the third cause of death worldwide, and COVID-19 infection has been reported as an exacerbation factor of them. In this study, we report that the intratracheal administration of the keratan sulfate-based disaccharide L4 mitigates the symptoms of elastase-induced emphysema in a mouse model. To know the molecular mechanisms, we performed a functional analysis of a C-type lectin receptor, langerin, a molecule that binds L4. Using mouse BMDCs (bone marrow-derived dendritic cells) as langerin-expressing cells, we observed the downregulation of IL-6 and TNFa and the upregulation of IL-10 after incubation with L4. We also identified CapG (a macrophage-capping protein) as a possible molecule that binds langerin by immunoprecipitation combined with a mass spectrometry analysis. We identified a portion of the CapG that was localized in the nucleus and binds to the promoter region of IL-6 and the TNFa gene in BMDCs, suggesting that CapG suppresses the gene expression of IL-6 and TNFa as an inhibitory transcriptional factor. To examine the effects of L4 in vivo, we also generated langerin-knockout mice by means of genome editing technology. In an emphysema mouse model, the administration of L4 did not mitigate the symptoms of emphysema as well as the inflammatory state of the lung in the langerin-knockout mice. These data suggest that the anti-inflammatory effect of L4 through the langerin-CapG axis represents a potential therapeutic target for the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Noriko Kanto
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Reiko Fujinawa
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Emma Lee Johnson
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan; Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Jun-Ichi Tamura
- Department of Life and Environmental Agricultural Sciences, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, Osaka, Japan.
| |
Collapse
|
31
|
Lee J, Kim EH. Mechanisms underlying response and resistance to immune checkpoint blockade in cancer immunotherapy. Front Oncol 2023; 13:1233376. [PMID: 37614504 PMCID: PMC10443702 DOI: 10.3389/fonc.2023.1233376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Cancer immunotherapies targeting immune checkpoint pathways, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), have achieved unprecedented therapeutic success in treating various types of cancer. The prominent and persistent clinical responses to immune checkpoint blockade (ICB) therapy are currently constrained to a subset of patients. Owing to discrete individual tumor and immune heterogeneity, most patients fail to benefit from ICB treatment, demonstrating either primary or acquired resistance. A thorough comprehension of the mechanisms restricting the efficacy of immune checkpoint inhibitors (ICIs) is required to extend their clinical applicability to a broader spectrum of patients and cancer types. Numerous studies are presently investigating potential prognostic markers of responsiveness, the complex dynamics underlying the therapeutic and adverse effects of ICB, and tumor immune evasion throughout the course of immunotherapy. In this article, we have reviewed the extant literature elucidating the mechanisms underlying the response and resistance to ICB, with a particular emphasis on PD-1 and CTLA-4 pathway blockade in the context of anti-tumor immunity. Furthermore, we aimed to explore potential approaches to overcome cancer therapeutic resistance and develop a rational design for more personalized ICB-based combinational regimens.
Collapse
Affiliation(s)
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| |
Collapse
|
32
|
Tit-Oon P, Wonglangka A, Boonkanta K, Ruchirawat M, Fuangthong M, Sasisekharan R, Khongmanee A. Intact mass analysis reveals the novel O-linked glycosylation on the stalk region of PD-1 protein. Sci Rep 2023; 13:9631. [PMID: 37316505 DOI: 10.1038/s41598-023-36203-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Programmed cell death protein 1 (PD-1) is a key receptor in the immune checkpoint pathway and has emerged to be a promising target for cancer therapy. PD-1 consists of an intracellular domain followed by a transmembrane domain that is connected to the extracellular domain by the stalk region. Although the PD-1 structure has been studied for more than two decades, the posttranslational modification of this protein has been incompletely characterized. In this study, we identified the previously undescribed modification sites of O-linked glycan on the stalk region of PD-1 protein using O-protease digestion coupling with intact mass analysis. The result indicates that T153, S157, S159, and T168 are modified by sialylated mucin-type O-glycan with core 1- and core 2-based structures. This study provides both information on potential novel modification sites on the PD-1 protein and an attractive method for identifying O-linked glycosylation using a specific enzyme and intact mass analysis.
Collapse
Affiliation(s)
- Phanthakarn Tit-Oon
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Arisa Wonglangka
- Center for Biologics Research and Development, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Klaichan Boonkanta
- Center for Biologics Research and Development, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Mathuros Ruchirawat
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amnart Khongmanee
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
33
|
Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol Cancer 2023; 22:93. [PMID: 37291608 DOI: 10.1186/s12943-023-01800-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
| |
Collapse
|
34
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Cellular and Molecular Players in the Tumor Microenvironment of Renal Cell Carcinoma. J Clin Med 2023; 12:3888. [PMID: 37373581 DOI: 10.3390/jcm12123888] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Globally, clear-cell renal cell carcinoma (ccRCC) represents the most prevalent type of kidney cancer. Surgery plays a key role in the treatment of this cancer, although one third of patients are diagnosed with metastatic ccRCC and about 25% of patients will develop a recurrence after nephrectomy with curative intent. Molecular-target-based agents, such as tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs), are recommended for advanced cancers. In addition to cancer cells, the tumor microenvironment (TME) includes non-malignant cell types embedded in an altered extracellular matrix (ECM). The evidence confirms that interactions among cancer cells and TME elements exist and are thought to play crucial roles in the development of cancer, making them promising therapeutic targets. In the TME, an unfavorable pH, waste product accumulation, and competition for nutrients between cancer and immune cells may be regarded as further possible mechanisms of immune escape. To enhance immunotherapies and reduce resistance, it is crucial first to understand how the immune cells work and interact with cancer and other cancer-associated cells in such a complex tumor microenvironment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples "Federico II", 80131 Naples, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
35
|
Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Saito K, Yoshida Y, Nishikawa T, Takehara T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Azuma M, Suzuki M, Yokosuka T. Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters. Nat Commun 2023; 14:3157. [PMID: 37280233 PMCID: PMC10244369 DOI: 10.1038/s41467-023-38512-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
With recent advances in immune checkpoint inhibitors (ICIs), immunotherapy has become the standard treatment for various malignant tumors. Their indications and dosages have been determined empirically, taking individually conducted clinical trials into consideration, but without a standard method to evaluate them. Here we establish an advanced imaging system to visualize human PD-1 microclusters, in which a minimal T cell receptor (TCR) signaling unit co-localizes with the inhibitory co-receptor PD-1 in vitro. In these microclusters PD-1 dephosphorylates both the TCR/CD3 complex and its downstream signaling molecules via the recruitment of a phosphatase, SHP2, upon stimulation with the ligand hPD-L1. In this system, blocking antibodies for hPD-1-hPD-L1 binding inhibits hPD-1 microcluster formation, and each therapeutic antibody (pembrolizumab, nivolumab, durvalumab and atezolizumab) is characterized by a proprietary optimal concentration and combinatorial efficiency enhancement. We propose that our imaging system could digitally evaluate PD-1-mediated T cell suppression to evaluate their clinical usefulness and to develop the most suitable combinations among ICIs or between ICIs and conventional cancer treatments.
Collapse
Affiliation(s)
- Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kensho Saito
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Tomohiro Takehara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hitoshi Nishijima
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8549, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo, 160-8402, Japan.
| |
Collapse
|
36
|
Tadepalli S, Clements DR, Saravanan S, Hornero RA, Lüdtke A, Blackmore B, Paulo JA, Gottfried-Blackmore A, Seong D, Park S, Chan L, Kopecky BJ, Liu Z, Ginhoux F, Lavine KJ, Murphy JP, Mack M, Graves EE, Idoyaga J. Rapid recruitment and IFN-I-mediated activation of monocytes dictate focal radiotherapy efficacy. Sci Immunol 2023; 8:eadd7446. [PMID: 37294749 PMCID: PMC10340791 DOI: 10.1126/sciimmunol.add7446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/18/2023] [Indexed: 06/11/2023]
Abstract
The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Beau Blackmore
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA 94063, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Soyoon Park
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Leslie Chan
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Benjamin J. Kopecky
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire, Villejuif 94800, France
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Republic of Singapore
| | - Kory J. Lavine
- Center for Cardiovascular Research, Departmental of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
37
|
Greco L, Rubbino F, Dal Buono A, Laghi L. Microsatellite Instability and Immune Response: From Microenvironment Features to Therapeutic Actionability-Lessons from Colorectal Cancer. Genes (Basel) 2023; 14:1169. [PMID: 37372349 DOI: 10.3390/genes14061169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Microsatellite instability (MSI) can be found in 15-20% of all colorectal cancers (CRC) and is the key feature of a defective DNA mismatch repair (MMR) system. Currently, MSI has been established as a unique and pivotal biomarker in the diagnosis, prognosis, and treatment of CRC. MSI tumors display a strong lymphocytic activation and a shift toward a tumoral microenvironment restraining metastatic potential and ensuing in a high responsiveness to immunotherapy of MSI CRC. Indeed, neoplastic cells with an MMR defect overexpress several immune checkpoint proteins, such as programmed death-1 (PD-1) and programmed death-ligand 1(PD-L1), that can be pharmacologically targeted, allowing for the revival the cytotoxic immune response toward the tumor. This review aims to illustrate the role of MSI in the tumor biology of colorectal cancer, focusing on the immune interactions with the microenvironment and their therapeutic implications.
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Arianna Dal Buono
- Division of Gastroenterology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
38
|
Fitzel R, Secker-Grob KA, Keppeler H, Korkmaz F, Schairer R, Erkner E, Schneidawind D, Lengerke C, Hentrich T, Schulze-Hentrich JM, Schneidawind C. Targeting MYC in combination with epigenetic regulators induces synergistic anti-leukemic effects in MLLr leukemia and simultaneously improves immunity. Neoplasia 2023; 41:100902. [PMID: 37148657 DOI: 10.1016/j.neo.2023.100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
MLL rearranged (MLLr) leukemias are associated with a poor prognosis and a limited response to conventional therapies. Moreover, chemotherapies result in severe side effects with significant impairment of the immune system. Therefore, the identification of novel treatment strategies is mandatory. Recently, we developed a human MLLr leukemia model by inducing chromosomal rearrangements in CD34+ cells using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. This MLLr model authentically mimics patient leukemic cells and can be used as a platform for novel treatment strategies. RNA sequencing of our model revealed MYC as one of the most important key drivers to promote oncogenesis. However, in clinical trials the BRD4 inhibitor JQ-1 leading to indirect blocking of the MYC pathway shows only modest activity. We and others previously reported that epigenetic drugs targeting MAT2A or PRMT5 promote cell death in MLLr cells. Therefore, we use these drugs in combination with JQ-1 leading to augmented anti-leukemic effects. Moreover, we found activation of T, NK and iNKT cells, release of immunomodulatory cytokines and downregulation of the PD-1/PD-L1 axis upon inhibitor treatment leading to improved cytotoxicity. In summary, the inhibition of MYC and MAT2A or PRMT5 drives robust synergistic anti-leukemic activity in MLLr leukemia. Moreover, the immune system is concomitantly activated upon combinatorial inhibitor treatment, hereby further augmenting the therapeutic efficiency.
Collapse
Affiliation(s)
- Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Kathy-Ann Secker-Grob
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Hildegard Keppeler
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Rebekka Schairer
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, Saarbrücken, Germany
| | | | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Sharma P, Goswami S, Raychaudhuri D, Siddiqui BA, Singh P, Nagarajan A, Liu J, Subudhi SK, Poon C, Gant KL, Herbrich SM, Anandhan S, Islam S, Amit M, Anandappa G, Allison JP. Immune checkpoint therapy-current perspectives and future directions. Cell 2023; 186:1652-1669. [PMID: 37059068 DOI: 10.1016/j.cell.2023.03.006] [Citation(s) in RCA: 431] [Impact Index Per Article: 215.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
Immune checkpoint therapy (ICT) has dramatically altered clinical outcomes for cancer patients and conferred durable clinical benefits, including cure in a subset of patients. Varying response rates across tumor types and the need for predictive biomarkers to optimize patient selection to maximize efficacy and minimize toxicities prompted efforts to unravel immune and non-immune factors regulating the responses to ICT. This review highlights the biology of anti-tumor immunity underlying response and resistance to ICT, discusses efforts to address the current challenges with ICT, and outlines strategies to guide the development of subsequent clinical trials and combinatorial efforts with ICT.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bilal A Siddiqui
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pratishtha Singh
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashwat Nagarajan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sumit K Subudhi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candice Poon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristal L Gant
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shelley M Herbrich
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shajedul Islam
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Moran Amit
- Department of Head & Neck Surgery Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Immunotherapy Platform, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Lasorsa F, di Meo NA, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Tataru OS, Autorino R, Battaglia M, Ditonno P, Lucarelli G. Immune Checkpoint Inhibitors in Renal Cell Carcinoma: Molecular Basis and Rationale for Their Use in Clinical Practice. Biomedicines 2023; 11:biomedicines11041071. [PMID: 37189689 DOI: 10.3390/biomedicines11041071] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Renal cell carcinoma (RCC) is the seventh most common cancer in men and the ninth most common cancer in women worldwide. There is plenty of evidence about the role of the immune system in surveillance against tumors. Thanks to a better understanding of immunosurveillance mechanisms, immunotherapy has been introduced as a promising cancer treatment in recent years. Renal cell carcinoma (RCC) has long been thought chemoresistant but highly immunogenic. Considering that up to 30% of the patients present metastatic disease at diagnosis, and around 20–30% of patients undergoing surgery will suffer recurrence, we need to identify novel therapeutic targets. The introduction of immune checkpoint inhibitors (ICIs) in the clinical management of RCC has revolutionized the therapeutic approach against this tumor. Several clinical trials have shown that therapy with ICIs in combination or ICIs and the tyrosine kinase inhibitor has a very good response rate. In this review article we summarize the mechanisms of immunity modulation and immune checkpoints in RCC and discuss the potential therapeutic strategies in renal cancer treatment.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Nicola Antonio di Meo
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Octavian Sabin Tataru
- The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, 540139 Târgu Mureș, Romania
| | - Riccardo Autorino
- Department of Urology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
41
|
Lv J, Jiang Z, Yuan J, Zhuang M, Guan X, Liu H, Yin Y, Ma Y, Liu Z, Wang H, Wang X. Pan-cancer analysis identifies PD-L2 as a tumor promotor in the tumor microenvironment. Front Immunol 2023; 14:1093716. [PMID: 37006239 PMCID: PMC10060638 DOI: 10.3389/fimmu.2023.1093716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/19/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Programmed cell death protein 1 (PD-1) receptor has two ligands,programmed death-ligand 1 (PD-L1) and PD-L2. When compared with PD-L1, PD-L2 has not received much attention, and its role remains unclear. METHODS The expression profiles of pdcd1lg2 (PD-L2-encoding gene) mRNA and PD-L2 protein were analyzed using TCGA, ICGC, and HPA databases. Kaplan-Meier and Cox regression analyses were used to assess the prognostic significance of PD-L2. We used GSEA, Spearman's correlation analysis and PPI network to explore the biological functions of PD-L2. PD-L2-associated immune cell infiltration was evaluated using the ESTIMATE algorithm and TIMER 2.0. The expressions of PD-L2 in tumor-associated macrophages (TAMs) in human colon cancer samples, and in mice in an immunocompetent syngeneic setting were verified using scRNA-seq datasets, multiplex immunofluorescence staining, and flow cytometry. After fluorescence-activated cell sorting, flow cytometry and qRT-PCR and transwell and colony formation assays were used to evaluate the phenotype and functions of PD-L2+TAMs. Immune checkpoint inhibitors (ICIs) therapy prediction analysis was performed using TIDE and TISMO. Last, a series of targeted small-molecule drugs with promising therapeutic effects were predicted using the GSCA platform. RESULTS PD-L2 was expressed in all the common human cancer types and deteriorated outcomes in multiple cancers. PPI network and Spearman's correlation analysis revealed that PD-L2 was closely associated with many immune molecules. Moreover, both GSEA results of KEGG pathways and GSEA results for Reactome analysis indicated that PD-L2 expression played an important role in cancer immune response. Further analysis showed that PD-L2 expression was strongly associated with the infiltration of immune cells in tumor tissue in almost all cancer types, among which macrophages were the most positively associated with PD-L2 in colon cancer. According to the results mentioned above, we verified the expression of PD-L2 in TAMs in colon cancer and found that PD-L2+TAMs population was not static. Additionally, PD-L2+TAMs exhibited protumor M2 phenotype and increased the migration, invasion, and proliferative capacity of colon cancer cells. Furthermore, PD-L2 had a substantial predictive value for ICIs therapy cohorts. CONCLUSION PD-L2 in the TME, especially expressed on TAMs, could be applied as a potential therapeutic target.
Collapse
Affiliation(s)
- Jingfang Lv
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junhu Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Zhuang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yefeng Yin
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiming Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongying Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xishan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
42
|
Johnson J, Kim SY, Sam PK, Asokan R, Cari EL, Bales ES, Luu TH, Perez L, Kallen AN, Nel-Themaat L, Polotsky AJ, Post MD, Orlicky DJ, Jordan KR, Bitler BG. Expression and T cell regulatory action of the PD-1 immune checkpoint in the ovary and fallopian tube. Am J Reprod Immunol 2023; 89:e13649. [PMID: 36394352 PMCID: PMC10559227 DOI: 10.1111/aji.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
PROBLEM Immune cell trafficking and surveillance within the ovary and fallopian tube are thought to impact fertility and also tumorigenesis in those organs. However, little is known of how native cells of the ovary and fallopian tube interact with resident immune cells. Interaction of the Programmed Cell Death Protein-1 (PD-1/PDCD-1/CD279) checkpoint with PD-L1 is associated with downregulated immune response. We have begun to address the question of whether PD-1 ligand or its receptors (PD-L1/-L2) can regulate immune cell function in these tissues of the female reproductive tract. METHOD OF STUDY PD-1 and ligand protein expression was evaluated in human ovary and fallopian tube specimens, the latter of which included stages of tubal cell transformation and early tumorigenesis. Ovarian expression analysis included the determination of the proteins in human follicular fluid (HFF) specimens collected during in vitro fertilization procedures. Finally, checkpoint bioactivity of HFF was determined by treatment of separately-isolated human T cells and the measurement of interferon gamma (IFNγ). RESULTS We show that membrane bound and soluble variants of PD-1 and ligands are expressed by permanent constituent cell types of the human ovary and fallopian tube, including granulosa cells and oocytes. PD-1 and soluble ligands were present in HFF at bioactive levels that control T cell PD-1 activation and IFNγ production; full-length checkpoint proteins were found to be highly enriched in HFF exosome fractions. CONCLUSION The detection of PD-1 checkpoint proteins in the human ovary and fallopian tube suggests that the pathway is involved in immunomodulation during folliculogenesis, the window of ovulation, and subsequent egg and embryo immune-privilege. Immunomodulatory action of receptor and ligands in HFF exosomes is suggestive of an acute checkpoint role during ovulation. This is the first study in the role of PD-1 checkpoint proteins in human tubo-ovarian specimens and the first examination of its potential regulatory action in the contexts of normal and assisted reproduction.
Collapse
Affiliation(s)
- Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - So-Youn Kim
- Olson Center for Women’s Health, Department of Obstetrics and Gynecology, College of Medicine, University of Nebraska Medical Center, 985860 Nebraska Medical Center, Omaha, Nebraska 68198
| | | | - Rengasamy Asokan
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Evelyn Llerena Cari
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | - Elise S. Bales
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| | - Thanh-Ha Luu
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
| | | | | | - Liesl Nel-Themaat
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Alex J. Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, 12631 East 17th Avenue, Room 4409, B198-3 Aurora, Colorado 80045
- Shady Grove Fertility – Colorado, Denver, CO
| | - Miriam D. Post
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - David J. Orlicky
- University of Colorado Anschutz Medical Campus, Department of Pathology, Mailstop F768, 12605 East 16th Avenue, Aurora, Colorado 80045
| | - Kimberly R. Jordan
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Human Immunology and Immunotherapy Initiative, Human Immune Monitoring Shared Resource, RC1-North, 8113, Aurora, Colorado 80045
| | - Benjamin G. Bitler
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Building RC2, Room P15 3103, Mail Stop 8613, Aurora, Colorado 80045
| |
Collapse
|
43
|
Kotsafti A, Fassan M, Cavallin F, Angerilli V, Saadeh L, Cagol M, Alfieri R, Pilati P, Castoro C, Castagliuolo I, Scarpa M, Scarpa M. Tumor immune microenvironment in therapy-naive esophageal adenocarcinoma could predict the nodal status. Cancer Med 2023; 12:5526-5535. [PMID: 36281585 PMCID: PMC10028023 DOI: 10.1002/cam4.5386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Currently, preoperative staging of esophageal adenocarcinoma (EAC) has modest reliability and accuracy for pT and pN stages prediction, which heavily affects overall survival. The interplay among immune checkpoints, oncogenes, and intratumoral and peritumoral immune infiltrating cells could be used to predict loco-regional metastatic disease in early EAC. METHODS We prospectively evaluated immune markers expression and oncogenes status as well as intratumoral and peritumoral immune infiltrating cells populations in esophageal mucosa samples obtained from neoadjuvant therapy-naïve patients who had esophagectomy for EAC. RESULTS Vascular invasion and high infiltration of lamina propria mononuclear cells resulted associated with nodal metastasis. Low infiltration of activated CD8+ CD28+ T cells was observed in both intratumoral and peritumoral mucosa of patients with nodal metastasis. Low levels of CD69, MYD88, and TLR4 transcripts were detected in the intratumoral specimen of patients with lymph node involvement. Receiver operating characteristic curve analysis showed good accuracy for detecting nodal metastasis for all the markers tested. Significant lower infiltration of CD8 T cells and M1 macrophages and a lower expression of CD8A, CD8B, and TBX21 were found also in Esophageal Adenocarcinoma TCGA panCancer Atlas in the normal tissue of patients with nodal metastasis. CONCLUSIONS Our data suggest that immune surveillance failure is the main driver of nodal metastasis onset. Moreover, nodal metastasis containment also involves the immune microenvironment of the peritumoral healthy tissue.
Collapse
Affiliation(s)
- Andromachi Kotsafti
- Laboratory of Advanced Translational ResearchVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | | | | | - Luca Saadeh
- Chirurgia Generale 3University Hospital of PaduaPaduaItaly
| | - Matteo Cagol
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Rita Alfieri
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Pierluigi Pilati
- Oncological Surgery UnitVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Carlo Castoro
- Department of Upper GI SurgeryHumanitas Research Hospital‐Humanitas UniversityRozzanoItaly
| | | | - Melania Scarpa
- Laboratory of Advanced Translational ResearchVeneto Institute of Oncology, IOV – IRCCSPaduaItaly
| | - Marco Scarpa
- Chirurgia Generale 3University Hospital of PaduaPaduaItaly
| |
Collapse
|
44
|
Ugalde L, Fañanas S, Torres R, Quintana-Bustamante O, Río P. CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy 2023; 25:277-285. [PMID: 36610813 DOI: 10.1016/j.jcyt.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has revolutionized the gene editing field, making it possible to interrupt, insert or replace a sequence of interest with high precision in the human genome. Its easy design and wide applicability open up a variety of therapeutic alternatives for the treatment of genetic diseases. Indeed, very promising approaches for the correction of hematological disorders have been developed in the recent years, based on the self-renewal and multipotent differentiation properties of hematopoietic stem and progenitor cells, which make this cell subset the ideal target for gene therapy purposes. This technology has been applied in different congenital blood disorders, such as primary immunodeficiencies, X-linked severe combined immunodeficiency, X-linked chronic granulomatous disease or Wiskott-Aldrich syndrome, and inherited bone marrow failure syndromes, such as Fanconi anemia, congenital amegakaryocytic thrombocytopenia or severe congenital neutropenia. Furthermore, CRISPR/Cas9-based gene editing has been implemented successfully as a novel therapy for cancer immunotherapy, by the development of promising strategies such as the use of oncolytic viruses or adoptive cellular therapy to the chimeric antigen receptor-T-cell therapy. Therefore, considering the variety of genes and mutations affected, we can take advantage of the different DNA repair mechanisms by CRISPR/Cas9 in different manners, from homology-directed repair to non-homologous-end-joining to the latest emerging technologies such as base and prime editing. Although the delivery systems into hematopoietic stem and progenitor cells are still the bottleneck of this technology, some of the advances in genome editing shown in this review have already reached a clinical stage and show very promising preliminary results.
Collapse
Affiliation(s)
- Laura Ugalde
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sara Fañanas
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Raúl Torres
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain; Molecular Cytogenetics Group, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain; Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain.
| |
Collapse
|
45
|
Truxova I, Cibula D, Spisek R, Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J Immunother Cancer 2023; 11:jitc-2022-005968. [PMID: 36822672 PMCID: PMC9950980 DOI: 10.1136/jitc-2022-005968] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is among the top five causes of cancer-related death in women, largely reflecting early, prediagnosis dissemination of malignant cells to the peritoneum. Despite improvements in medical therapies, particularly with the implementation of novel drugs targeting homologous recombination deficiency, the survival rates of patients with EOC remain low. Unlike other neoplasms, EOC remains relatively insensitive to immune checkpoint inhibitors, which is correlated with a tumor microenvironment (TME) characterized by poor infiltration by immune cells and active immunosuppression dominated by immune components with tumor-promoting properties, especially tumor-associated macrophages (TAMs). In recent years, TAMs have attracted interest as potential therapeutic targets by seeking to reverse the immunosuppression in the TME and enhance the clinical efficacy of immunotherapy. Here, we review the key biological features of TAMs that affect tumor progression and their relevance as potential targets for treating EOC. We especially focus on the therapies that might modulate the recruitment, polarization, survival, and functional properties of TAMs in the TME of EOC that can be harnessed to develop superior combinatorial regimens with immunotherapy for the clinical care of patients with EOC.
Collapse
Affiliation(s)
| | - David Cibula
- Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Radek Spisek
- Sotio Biotech, Prague, Czech Republic,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Fucikova
- Sotio Biotech, Prague, Czech Republic .,Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
46
|
Immunotherapeutic Approaches in Ovarian Cancer. Curr Issues Mol Biol 2023; 45:1233-1249. [PMID: 36826026 PMCID: PMC9955550 DOI: 10.3390/cimb45020081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer (OC) is gynecological cancer, and diagnosis and treatment are continuously advancing. Next-generation sequencing (NGS)-based diagnoses have emerged as novel methods for identifying molecules and pathways in cancer research. The NGS-based applications have expanded in OC research for early detection and identification of aberrant genes and dysregulation pathways, demonstrating comprehensive views of the entire transcriptome, such as fusion genes, genetic mutations, and gene expression profiling. Coinciding with advances in NGS-based diagnosis, treatment strategies for OC, such as molecular targeted therapy and immunotherapy, have also advanced. Immunotherapy is effective against many other cancers, and its efficacy against OC has also been demonstrated at the clinical phase. In this review, we describe several NGS-based applications for therapeutic targets of OC, and introduce current immunotherapeutic strategies, including vaccines, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cell transplantation, for effective diagnosis and treatment of OC.
Collapse
|
47
|
Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci 2022; 310:121138. [DOI: 10.1016/j.lfs.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
48
|
Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 2022; 112:1591-1603. [PMID: 35501298 DOI: 10.1002/jlb.5ma0322-746r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
IL-33, an epithelial-derived cytokine, functions as an alarmin for the immune system in the tumor microenvironment (TME). However, the expression and role of IL-33 on cervical cancer remain unclear. The aim of this study was to investigate the expression of IL-33 and its relationship with clinicopathologic features, tertiary lymphoid structures (TLS), and programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) immune checkpoints by immunohistochemistry in 93 cervical cancer patient specimens. Down-regulation of IL-33 expression was observed in tumor tissues compared with adjacent tissues. More importantly, IL-33 was detected in the cytoplasm of tumor fraction. IL-33 expression in tumor cytoplasm was associated with tumor size and the invasive depth of tumors (p < 0.05). Meanwhile, IL-33 expression in tumor cytoplasm was positively correlated with infiltration of CD3+ T cells, CD8+ T cells, and PD-L1 expression in tumor tissues (p < 0.05). The number of TLS strongly correlated with the depth of tumor invasion, preoperative chemotherapy, human papillomavirus infection, and high level of PD-1 (p < 0.05). However, there was no significant relationship between IL-33 and TLS. Kaplan-Meier survival curves showed that the formation of TLS was associated with a better prognosis (p = 0.008). In multivariable Cox regression modeling, high expression of PD-L1 in tumor tissues was correlated with poor prognosis (HR = 0.128; 95% CI: 0.026-0.646; p = 0.013), whereas the high expression of IL-33 in tumor tissues was associated with better prognosis (HR = 5.097; 95% CI:1.050-24.755; p = 0.043). These results indicate that IL-33, TLS, and PD-L1 are potentially valuable prognostic predictor for cervical cancer. IL-33 has potential for combination with PD-L1-related antitumor therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Pediatrics, Union Hospital, Tongji medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
49
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
50
|
Dumitru A, Dobrica EC, Croitoru A, Cretoiu SM, Gaspar BS. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232012067. [PMID: 36292922 PMCID: PMC9603705 DOI: 10.3390/ijms232012067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is considered one of the most aggressive and deadliest gynecological malignancies worldwide. Unfortunately, the therapeutic methods that are considered the gold standard at this moment are associated with frequent recurrences. Survival in ovarian cancer is associated with the presence of a high number of intra tumor infiltrating lymphocytes (TILs). Therefore, immunomodulation is considered to have an important role in cancer treatment, and immune checkpoint inhibitors may be useful for restoring T cell-mediated antitumor immunity. However, the data presented in the literature until now are not sufficient to allow for the identification and selection of patients who really respond to immunotherapy among those with ovarian cancer. Although there are some studies with favorable results, more prospective trials are needed in this sense. This review focuses on the current and future perspectives of PD-1/L1 blockade in ovarian cancer and analyzes the most important immune checkpoint inhibitors used, with the aim of achieving optimal clinical outcomes. Future studies and trials are needed to maximize the efficacy of immune checkpoint blockade therapy in ovarian cancer, as well as in all cancers, in general.
Collapse
Affiliation(s)
- Adrian Dumitru
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Pathology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Elena-Codruta Dobrica
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Dermatology, Elias University Hospital, 011461 Bucharest, Romania
| | - Adina Croitoru
- Department of Medical Oncology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Department of Oncology, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence:
| | - Bogdan Severus Gaspar
- Surgery Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|