1
|
Sakamaki K, Sakamoto N, Tsujimura Y, Iwasaki T, Kawamura T, Nakabayashi J, D'Souza RS, Jannat A, Takeshima KI, Takeda H, Koyamada K, Yokota H. Caspase-mediated cleavage of a scaffold protein, MPRIP, yields a truncated form that is involved in repetitive bleb formation. FEBS J 2025; 292:2287-2305. [PMID: 40344468 DOI: 10.1111/febs.17422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 01/20/2025] [Indexed: 05/11/2025]
Abstract
Membrane blebbing is a hallmark of apoptotic cell death. However, the molecular mechanism that regulates this event has not been fully elucidated. To understand this underlying mechanism, we developed visualization systems suitable for spatiotemporal analysis. By monitoring the plasma membrane labeled with a fluorescent protein and reconstructing the image data as three-dimensional (3D) volumes based on the rendering technique, we observed that dying cells exhibit cycles of bleb formation at the same region of the cell surface. In addition, a Förster Resonance Energy Transfer (FRET)-based biosensor incorporating a regulatory myosin light chain (RMLC) displayed phosphorylation at the base of the retracting bleb, and dephosphorylation before re-expansion, implying the involvement of not only a kinase but also a phosphatase in the regulation of RMLC. To extend these observations, we focused on a scaffold protein, myosin phosphatase Rho interacting protein (MPRIP), which interacts with RhoA and myosin phosphatase targeting subunit 1 (MYPT1), involved in activation of Rho-associated coiled-coil kinase-I (ROCK-I) or protein phosphatase 1 (PP1), respectively. We found that MPRIP is cleaved both in dying cells and in an in vitro cleavage assay in a caspase-dependent manner. A cleaved C-terminal peptide fragment maintains the interaction with MYPT1. Cytological analysis showed that this fragment forms a complex with MYPT1 and myosin after translocating to the cytoplasm. These results suggest that this complex formation promotes the dephosphorylation of RMLC. Collectively, our study indicates that repetitive bleb formation, which is unique to apoptosis, is regulated by both phosphorylation and dephosphorylation of RMLC through MPRIP in a coordinated manner.
Collapse
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Naohisa Sakamoto
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Yuki Tsujimura
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| | | | - Takuma Kawamura
- Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Japan
| | - Jun Nakabayashi
- Liberal Arts and Sciences, Mathematics, Tokyo Medical and Dental University, Ichikawa, Japan
| | - Rhea S D'Souza
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Arooma Jannat
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | - Ken-Ichiro Takeshima
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Japan
| | | | - Koji Koyamada
- Center for Promotion of Excellence in High Education, Kyoto University, Japan
| | - Hideo Yokota
- Image Processing Research Team, Center for Advanced Photonics, Riken, Wako, Japan
| |
Collapse
|
2
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
3
|
Shimada H, Powell TL, Jansson T. Regulation of placental amino acid transport in health and disease. Acta Physiol (Oxf) 2024; 240:e14157. [PMID: 38711335 PMCID: PMC11162343 DOI: 10.1111/apha.14157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
Abnormal fetal growth, i.e., intrauterine growth restriction (IUGR) or fetal growth restriction (FGR) and fetal overgrowth, is associated with increased perinatal morbidity and mortality and is strongly linked to the development of metabolic and cardiovascular disease in childhood and later in life. Emerging evidence suggests that changes in placental amino acid transport may contribute to abnormal fetal growth. This review is focused on amino acid transport in the human placenta, however, relevant animal models will be discussed to add mechanistic insights. At least 25 distinct amino acid transporters with different characteristics and substrate preferences have been identified in the human placenta. Of these, System A, transporting neutral nonessential amino acids, and System L, mediating the transport of essential amino acids, have been studied in some detail. Importantly, decreased placental Systems A and L transporter activity is strongly associated with IUGR and increased placental activity of these two amino acid transporters has been linked to fetal overgrowth in human pregnancy. An array of factors in the maternal circulation, including insulin, IGF-1, and adiponectin, and placental signaling pathways such as mTOR, have been identified as key regulators of placental Systems A and L. Studies using trophoblast-specific gene targeting in mice have provided compelling evidence that changes in placental Systems A and L are mechanistically linked to altered fetal growth. It is possible that targeting specific placental amino acid transporters or their upstream regulators represents a novel intervention to alleviate the short- and long-term consequences of abnormal fetal growth in the future.
Collapse
Affiliation(s)
- Hiroshi Shimada
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Departments of Obstetrics & Gynecology, Sapporo Medical University, Sapporo, Japan
| | - Theresa L Powell
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| | - Thomas Jansson
- Department of Obstetrics and Gynecology University of Colorado, Anschutz Medical Campus, Aurora, CO, US
| |
Collapse
|
4
|
Schmid A, Bello C, Becker CFW. Synthesis of N-Glycosylated Soluble Fas Ligand. Chemistry 2024; 30:e202400120. [PMID: 38363216 DOI: 10.1002/chem.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.
Collapse
Affiliation(s)
- Alanca Schmid
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Claudia Bello
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino FI, Italy
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
5
|
Crescenzi E, Mellone S, Gragnano G, Iaccarino A, Leonardi A, Pacifico F. NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival Through FAS/CD95 Inhibition. Endocrinology 2023; 165:bqad190. [PMID: 38091978 DOI: 10.1210/endocr/bqad190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 12/27/2023]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL), a siderophore-mediated iron binding protein, is highly expressed in human anaplastic thyroid carcinomas (ATCs) where it plays pleiotropic protumorigenic roles including that of a prosurvival protein. Here we show that NGAL inhibits FAS/CD95 death receptor to control ATC cell survival. FAS/CD95 expression in human specimens from patients with ATC and in ATC-derived cell lines negatively correlate with NGAL expression. Silencing of NGAL in ATC cells leads to FAS/CD95 upregulation, whereas NGAL overexpression determines the opposite effect. As a result, an agonist anti-FAS/CD95 antibody induces cell death in NGAL-silenced cells while it is ineffective on NGAL-overexpressing cells. Interestingly, the inhibitory activity of NGAL on FAS/CD95 is due to its iron carrier property given that perturbing iron homeostasis of NGAL-proficient and -deficient ATC cells directly influences FAS/CD95 expression. Accordingly, conditioned media containing a mutant form of NGAL unable to bind siderophores cannot rescue cells from FAS/CD95-dependent death, whereas NGAL wild type-containing conditioned media abolish the effects of the agonist antibody. We also find that downregulation of FAS/CD95 expression is mediated by iron-dependent NGAL suppression of p53 transcriptional activity. Our results indicate that NGAL contributes to ATC cell survival by iron-mediated inhibition of p53-dependent FAS/CD95 expression and suggest that restoring FAS/CD95 by NGAL suppression could be a helpful strategy to kill ATC cells.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| | - Gianluca Gragnano
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Salute Pubblica, "Federico II" University of Naples, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto di Endocrinologia ed Oncologia Sperimentale, CNR, 80131 Naples, Italy
| |
Collapse
|
6
|
Lu Y, Liang X, Wu Y, Wang R, Liu T, Yi H, Yu Z, Zhang Z, Gong P, Zhang L. Bifidobacterium animalis sup F1-7 Acts as an Effective Activator to Regulate Immune Response Via Casepase-3 and Bak of FAS/CD95 Pathway. Probiotics Antimicrob Proteins 2023; 15:1234-1249. [PMID: 35995910 DOI: 10.1007/s12602-022-09975-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Intestinal microecology was closely related to immune regulation, but the related mechanism was still unclear. This study aimed to reveal how microorganisms improved immune response via casepase-3 and Bak of FAS/CD95 pathway. Bifidobacterium animalis F1-7 inhibited the melanoma B16-F10 cells in vitro effectively; had a potent anticancer effect of lung cancer mice; effectively improved the spleen immune index and CD3+ (75.8%) and CD8+ (19.8%) expression level; strengthened the phagocytosis of macrophages; inhibited the overexpression of inflammatory factors IL-6 (319.10 ± 2.46 pg/mL), IL-8 (383.05 ± 9.87 pg/mL), and TNF-α (2003.40 ± 11.42 pg/mL); and promoted the expression of anti-inflammatory factor IL-10 (406.00 ± 3.59 pg/mL). This process was achieved by promoting caspase-8/3 and BH3-interacting domain death agonist (Bid), Bak genes, and protein expression. This study confirmed the B. animalis F1-7 could act as an effective activator to regulate immune response by promoting the expression of caspase-8/3, Bid and Bak genes, and proteins and by activating the FAS/CD95 pathway. Our study provided a data support for the application of potentially beneficial microorganisms of B. animalis F1-7 as an effective activator to improve immunity.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Yeting Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Ruiqi Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Zhuang Yu
- Affiliated Hospital of Qingdao University, Qingdao, 266042, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China.
| |
Collapse
|
7
|
Kaunitz JD, Bejjani A. Very Unstable Genetics: How the Confluence of Microsatellite Instability and Immunotherapy Revolutionized the Treatment of Colon Cancer. Dig Dis Sci 2023; 68:3494-3503. [PMID: 37402981 DOI: 10.1007/s10620-023-08007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Affiliation(s)
- Jonathan D Kaunitz
- Medical Service, Section of Gastroenterology, Greater Los Angeles VAMC, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Anthony Bejjani
- Medical Service, Section of Hematology Oncology, Greater Los Angeles VAMC, Los Angeles, CA, USA
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Haluck-Kangas A, Peter ME. CD95/Fas ligand induced toxicity. Biochem Soc Trans 2023; 51:21-29. [PMID: 36629505 PMCID: PMC10149114 DOI: 10.1042/bst20211187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
The role of CD95/Fas ligand (CD95L/FasL) in the induction of CD95-mediated extrinsic apoptosis is well characterized. Trimerized, membrane-bound CD95L ligates the CD95 receptor activating downstream signaling resulting in the execution of cells by caspase proteins. However, the expression of CD95L has been reported to induce cell death in contexts in which this pathway is unlikely to be activated, such as in cell autonomous activation induced cell death (AICD) and in CD95-resistant cancer cell lines. Recent data suggests that the CD95L mRNA exerts toxicity through death induced by survival gene elimination (DISE). DISE results from the targeting of networks of survival genes by toxic short RNA (sRNA)s in the RNA-induced silencing complex (RISC). CD95L mRNA contributes to this death directly, through the processing of its mRNA into toxic sRNAs that are loaded into the RISC, and indirectly, by promoting the loading of other toxic sRNAs. Interestingly, CD95L is not the only mRNA that is processed and loaded into the RISC. Protein-coding mRNAs involved in protein translation are also selectively loaded. We propose a model in which networks of mRNA-derived sRNAs modulate DISE, with networks of genes providing non-toxic RISC substrate sRNAs that protect against DISE, and opposing networks of stress-activated genes that produce toxic RISC substrate sRNAs that promote DISE.
Collapse
Affiliation(s)
- Ashley Haluck-Kangas
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Marcus E. Peter
- Department of Medicine, Division Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Yu B, Shi Q, Belk JA, Yost KE, Parker KR, Li R, Liu BB, Huang H, Lingwood D, Greenleaf WJ, Davis MM, Satpathy AT, Chang HY. Engineered cell entry links receptor biology with single-cell genomics. Cell 2022; 185:4904-4920.e22. [PMID: 36516854 PMCID: PMC9789208 DOI: 10.1016/j.cell.2022.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/31/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Cells communicate with each other via receptor-ligand interactions. Here, we describe lentiviral-mediated cell entry by engineered receptor-ligand interaction (ENTER) to display ligand proteins, deliver payloads, and record receptor specificity. We optimize ENTER to decode interactions between T cell receptor (TCR)-MHC peptides, antibody-antigen, and other receptor-ligand pairs. A viral presentation strategy allows ENTER to capture interactions between B cell receptor and any antigen. We engineer ENTER to deliver genetic payloads to antigen-specific T or B cells to selectively modulate cellular behavior in mixed populations. Single-cell readout of ENTER by RNA sequencing (ENTER-seq) enables multiplexed enumeration of antigen specificities, TCR clonality, cell type, and states of individual T cells. ENTER-seq of CMV-seropositive patient blood samples reveals the viral epitopes that drive effector memory T cell differentiation and inter-clonal vs. intra-clonal phenotypic diversity targeting the same epitope. ENTER technology enables systematic discovery of receptor specificity, linkage to cell fates, and antigen-specific cargo delivery.
Collapse
Affiliation(s)
- Bingfei Yu
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Quanming Shi
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Betty B Liu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Huang Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Quijano-Rubio C, Silginer M, Weller M. CRISPR/Cas9-mediated abrogation of CD95L/CD95 signaling-induced glioma cell growth and immunosuppression increases survival in murine glioma models. J Neurooncol 2022; 160:299-310. [PMID: 36355258 PMCID: PMC9722998 DOI: 10.1007/s11060-022-04137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/17/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Glioblastoma is the most common brain tumor in adults and is virtually incurable. Therefore, new therapeutic strategies are urgently needed. Over the last decade, multiple growth-promoting functions have been attributed to CD95, a prototypic death receptor well characterized as an apoptosis mediator upon CD95L engagement. Strategic targeting of non-apoptotic or apoptotic CD95 signaling may hold anti-glioblastoma potential. Due to its antithetic nature, understanding the constitutive role of CD95 signaling in glioblastoma is indispensable. METHODS We abrogated constitutive Cd95 and Cd95l gene expression by CRISPR/Cas9 in murine glioma models and characterized the consequences of gene deletion in vitro and in vivo. RESULTS Expression of canonical CD95 but not CD95L was identified in mouse glioma cells in vitro. Instead, a soluble isoform-encoding non-canonical Cd95l transcript variant was detected. In vivo, an upregulation of the membrane-bound canonical CD95L form was revealed. Cd95 or Cd95l gene deletion decreased cell growth in vitro. The growth-supporting role of constitutive CD95 signaling was validated by Cd95 re-transfection, which rescued growth. In vivo, Cd95 or Cd95l gene deletion prolonged survival involving tumor-intrinsic and immunological mechanisms in the SMA-497 model. In the GL-261 model, that expresses no CD95, only CD95L gene deletion prolonged survival, involving a tumor-intrinsic mechanism. CONCLUSION Non-canonical CD95L/CD95 interactions are growth-promoting in murine glioma models, and glioma growth and immunosuppression may be simultaneously counteracted by Cd95l gene silencing.
Collapse
Affiliation(s)
- Clara Quijano-Rubio
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
12
|
Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif 2022; 55:e13167. [PMID: 34939255 PMCID: PMC8780926 DOI: 10.1111/cpr.13167] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid rafts are cholesterol- and sphingolipid-enriched specialized membrane domains within the plasma membrane. Lipid rafts regulate the density and activity of signal receptors by compartmentalizing them, promoting signalling cascades that play important roles in the survival, death and metastasis of cancer cells. In this review, we emphasize the current concept initially postulated by F. Mollinedo and C. Gajate on the importance of lipid rafts in cancer survival, death and metastasis by describing representative signalling pathways, including the IGF system and the PI3K/AKT, Fas/CD95, VEGF/VEGFR2 and CD44 signalling pathways, and we also discuss the concept of CASMER (cluster of apoptotic signalling molecule-enriched rafts), coined, originally introduced and further advanced by F. Mollinedo and C. Gajate in the period 2005-2010. Then, we summarize relevant research progress and suggest that lipid rafts play important roles in the survival, death and metastasis of cancer cells, making them promising targets for cancer therapy.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wenyan Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Screening of host genes regulated by ID1 and ID3 proteins during foot-and-mouth disease virus infection. Virus Res 2021; 306:198597. [PMID: 34648884 DOI: 10.1016/j.virusres.2021.198597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/28/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is an important pathogen that harms cloven-hoofed animals and has caused serious losses to livestock production since its discovery. Furthermore, inhibitor of DNA binding (ID) proteins have been thoroughly studied in tumorigenesis, differentiation and metastasis, but its role in viral infection is rarely known. In this study, three gene knockout cell lines ID1 KO, ID3 KO, ID1/3 KO were obtained based on BHK-21 cells. We found that ID1 and ID3 genes single or double knockout promote the replication of FMDV. Moreover, compared with negative control cells during virus infection, there were 551 up-regulated genes and 1222 down-regulated genes in the ID1 KO cell line; 916 up-regulated genes and 1845 down-regulated genes in the ID3 KO cell line; 810 up-regulated genes and 1566 down-regulated genes in ID1/3 KO cell line. Further genes expression patterns verification results also showed a good correlation between the data of RT-qRCR and RNA-seq. These findings provide a basis for studying the relevant mechanisms between host genes and ID genes during FMDV infection.
Collapse
|
14
|
Worrell JC, MacLeod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult. Immunology 2021; 163:239-249. [PMID: 33556186 PMCID: PMC8014587 DOI: 10.1111/imm.13319] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Communication between stromal and immune cells is essential to maintain tissue homeostasis, mount an effective immune response and promote tissue repair. This 'crosstalk' occurs in both the steady state and following a variety of insults, for example, in response to local injury, at sites of infection or cancer. What do we mean by crosstalk between cells? Reciprocal activation and/or regulation occurs between immune and stromal cells, by direct cell contact and indirect mechanisms, including the release of soluble cytokines. Moving beyond cell-to-cell contact, this review investigates the complexity of 'cross-space' cellular communication. We highlight different examples of cellular communication by a variety of lung stromal and immune cells following tissue insults. This review examines how the 'geography of the lung microenvironment' is altered in various disease states; more specifically, we investigate how this influences lung epithelial cells and fibroblasts via their communication with immune cells and each other.
Collapse
Affiliation(s)
- Julie C. Worrell
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Megan K. L. MacLeod
- Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| |
Collapse
|
15
|
Cheng L. Current Pharmacogenetic Perspective on Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Front Pharmacol 2021; 12:588063. [PMID: 33981213 PMCID: PMC8107822 DOI: 10.3389/fphar.2021.588063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions are a public health issue that draws widespread attention, especially for Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune response has been extensively studied, our understanding of the mechanism is far from satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized. Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation test has been exploited to aid in identifying the causative drugs. Critical questions on the pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN? What makes the skin and mucous membrane so special to be targeted? Do they relate to skin/mucous expression of transporters? What is the common machinery underlying different HLA-B alleles associated with SJS/TEN and common metabolites?
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Annuar AA, Ankathil R, Mohd Yunus N, Husin A, Ab Rajab NS, Abdul Aziz AA, Ibrahim MI, Sulong S. Impact of Fas/Fasl Gene Polymorphisms on Susceptibility Risk and Imatinib Mesylate Treatment Response in Chronic Myeloid Leukaemia Patients. Asian Pac J Cancer Prev 2021; 22:565-571. [PMID: 33639675 PMCID: PMC8190357 DOI: 10.31557/apjcp.2021.22.2.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 12/03/2022] Open
Abstract
Background: The FAS mediated apoptosis pathway involving the FAS and FASL genes plays a crucial role in the regulation of apoptotic cell death and imatinib mesylate (IM) mechanism of action. Promoter polymorphisms FAS-670 A>G and FAS-844 T>C which alter the transcriptional activity of these genes may grant a risk to develop cancer and revamp the drug activities towards the cancer cell. We investigated the association of these two polymorphisms with the susceptibility risk and IM treatment response in Malaysian chronic myeloid leukaemia (CML) patients. Methods: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI. Results: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response. Conclusion: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.
Collapse
Affiliation(s)
- Aziati Azwari Annuar
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nazihah Mohd Yunus
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan Malaysia
| | - Nur Shafawati Ab Rajab
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Ismail Ibrahim
- Department of Community Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
17
|
Bastos Ferreira AP, Cassilhas APP, Moura P, Sampaio Rocha-Filho PA. Intrinsic and Extrinsic Cell Apoptotic Pathways in Patients with HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis: A Systematic Review. Viral Immunol 2021; 34:380-391. [PMID: 33470891 DOI: 10.1089/vim.2020.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We aimed to verify the influence of intrinsic and extrinsic cell apoptotic pathways on the inhibition of cellular apoptosis in patients with tropical spastic paralysis/myelopathy related to human T cell lymphotropic virus type 1. The databases accessed were PubMed, Scopus, Science Direct, and Web of Science. Neither the time of publishing nor the language of the articles was limited. The descriptors used for this systematic literature review were: Tropical Paraparesis, Proto-Oncogenic Protein C, Bcl-2, Bcl-X Protein, Bax protein, Fas ligand (FasL) protein, Fas receptor, TNF-related apoptosis-inducing ligand and Fas-associated protein with death domain (FADD)-like apoptosis regulating. The search resulted in 546 articles from which 9 articles were selected for analysis; ranging from serum levels of Bcl-2, Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) measured by enzyme-linked immunosorbent assay and the levels of cellular expression of Bcl-2 and Bcl-xL the TCD4+ lymphocytes accessed by western blot. Most studies accessed either gene expression or polymorphism of Fas, FasL, and TRAIL in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), whereas one study used flow cytometry and fluorescence to determine Fas expression. Increased Bcl-xL expression inhibited T lymphocyte apoptosis, whereas Bcl-2, serum levels, and cellular expression did not influence T lymphocyte apoptosis and serum levels of Fas were significantly higher and associated with markers of leukocyte activation in patients with HAM/TSP. In addition, Fas polymorphism (FAS-670AA) was associated with higher proviral load. There is a need for additional research on this issue since the number of patients was small and the studies presented higher heterogeneity.
Collapse
Affiliation(s)
- Ana Patrícia Bastos Ferreira
- Post-graduation Program in Neuropsychiatry and Behavioral Sciences (POSNEURO), Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | | | - Pedro Augusto Sampaio Rocha-Filho
- Post-graduation Program in Neuropsychiatry and Behavioral Sciences (POSNEURO), Federal University of Pernambuco (UFPE), Recife, Brazil.,Division of Neuropsychiatry, Centro de Ciências Médicas, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
18
|
Elevated Concentrations of Soluble Fas and FasL in Multiple Sclerosis Patients with Antinuclear Antibodies. J Clin Med 2020; 9:jcm9123845. [PMID: 33256256 PMCID: PMC7761165 DOI: 10.3390/jcm9123845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Antinuclear antibodies (ANA) are currently considered as an epiphenomenon of apoptotic processes, possibly in control of autoreactivity in patients with multiple sclerosis (MS). Apoptosis of reactive lymphocytes by the Fas/FasL system is described as an effective control mechanism for autoreactivity in MS. We aimed to provide a context to the potential link between ANA and peripheral lymphocyte apoptosis in MS. The presence of ANA was detected in sera by immunofluorescence assay, and concentrations of sFas and sFasL were determined in the sera of 44 and cerebrospinal fluid (CSF) of 11 relapsing-remitting (RR) MS patients using cytometric bead-based array, and their association with the disease characteristics was determined. ANA were detected in the sera of 43.2% of RRMS patients, and their frequency was the highest in patients with disease duration of less than one year (88,89%). In addition, the number of experienced relapses was lower in ANA-positive patients. Concentrations of sFasL were inversely associated with patients' expanded disability status scale (EDSS) scores. Low concentrations of both soluble factors strongly discriminated patients with moderate to severe disability, from patients with mild or absent disability only in a group of patients with prolonged disease duration (>10 years). Both soluble mediators were significantly higher in ANA-positive patients. FasL concentrations were inversely associated with the number of relapses. There is a potential link between the presence of ANA and peripheral lymphocyte apoptosis mediated by Fas/FasL system in MS, whose precise role and significance needs to be determined by future mechanistic studies.
Collapse
|
19
|
Annibaldi A, Walczak H. Death Receptors and Their Ligands in Inflammatory Disease and Cancer. Cold Spring Harb Perspect Biol 2020; 12:a036384. [PMID: 31988141 PMCID: PMC7461759 DOI: 10.1101/cshperspect.a036384] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
On binding to their cognate ligands, death receptors can initiate a cascade of events that can result in two distinct outcomes: gene expression and cell death. The study of three different death receptor-ligand systems, the tumor necrosis factor (TNF)-TNF receptor 1 (TNFR1), the CD95L-CD95, and the TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL-R1/2 system, has drawn the attention of generations of scientists over the past 50 years. This scientific journey, as often happens in science, has been anything but a straight line to success and discoveries in this field were often made by serendipity, catching the scientists by surprise. However, as Louis Pasteur pointed out, luck prefers the prepared mind. It is therefore not surprising that the most impactful discovery of the field to date, the fact that TNF inhibition serves as an effective treatment for several inflammatory and autoimmune diseases, has been like this. Luckily, the scientists who made this discovery were prepared and, most importantly, determined to harness their discovery for therapeutic benefit. Today's research on these death receptor-ligand systems has led to the discovery of a causal link between cell death induced by a variety of these systems and inflammation. In this review, we explain why we predict that therapeutic exploitation of this discovery may profoundly impact the future treatment of inflammatory disease and cancer.
Collapse
Affiliation(s)
- Alessandro Annibaldi
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Walczak
- Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Shao X, Liu L, Wei F, Liu Y, Wang F, Yi J, Sun L, Huang Y, Song Z, Yin W, Zhao H, Li Y. Fas and GIT1 signalling in the prefrontal cortex mediate behavioural sensitization to methamphetamine in mice. Brain Res Bull 2020; 164:361-371. [PMID: 32777257 DOI: 10.1016/j.brainresbull.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Repeated methamphetamine (METH) administration in mice readily produces behavioural sensitization, but the underlying mechanisms remain elusive. The present research aimed to identify new targets affecting METH-induced behavioural sensitization. METHODS We first established a mouse model of METH-induced behavioural sensitization. To characterize the animal model, we performed behavioural tests at different stages of behavioural sensitization and simultaneously detected changes in several neurotransmitters in the prefrontal cortex (PFC). Next, we perfromed RNA sequencing (RNA-seq) to screen new targets, which were subsequently and verified by RT-PCR and western blot. Finally, we confirmed the roles of the new targets in METH-induced behavioural sensitization by injection of overexpressed lentiviruses and further detected related protein levels by western blot and histological changes by haematoxylin and eosin (HE) staining. RESULTS We successfully established a mouse model of METH-induced behavioural sensitization. The locomotor activities of the mice changed at different stages of sensitization, accompanied by changes in the levels of DA, 5-HT, GABA and glutamate. For RNA-seq analysis, we chose Fas as target, meanwhile, we chose GIT1 as target through literature. The detection of gene expression by RT-PCR indicated that METH-sensitized mice exhibited decreased levels of Fas, MEK1 and CREB and increased levels of Erk1/2 in the PFC. Western blot analysis revealed decreased Fas, GIT1, MEK1 and phosphorylated CREB levels and increased phosphorylated Erk1/2 levels in METH-sensitized mice. Injection of Fas and GIT1 injection showed that overexpression of Fas and GIT1 inhibited the induction of METH sensitization and reversed the changes in neurotransmitter levels and related protein levels, including MEK1, phosphorylated CREB and phosphorylated Erk1/2, in METH-sensitized mice. Overexpression of Fas and GIT1 also reduced histological lesions induced by METH. CONCLUSION The findings indicated that the development of behavioural sensitization to METH may be mediated by Fas and GIT1 through the MEK1-Erk1/2-CREB pathway.
Collapse
Affiliation(s)
- Xiaotong Shao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Fuyao Wei
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yucui Liu
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Fei Wang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Luguo Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhenbo Song
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Wu Yin
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yunxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
21
|
Jandu H, Nielsen A, Brunner N, Hansen A, Knudsen S, Stenvang J, Jensen PB. Characterization of resistance to a recombinant hexameric Fas-ligand (APO010) in human cancer cell lines. Exp Hematol 2020; 87:33-41.e4. [PMID: 32619459 DOI: 10.1016/j.exphem.2020.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/26/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Multiple myeloma remains a hard-to-treat cancer as all patients eventually progress because of drug resistance. Thus, there is a need for novel and non-cross-resistant treatment options, and we aimed to address this issue by introducing a new immuno-oncology drug (APO010) in multiple myeloma treatment. APO010 is a hexameric Fas-ligand that mimics cytotoxic T-lymphocyte signaling through the Fas-receptor to induce apoptosis. APO010 is currently in clinical trials with multiple myeloma patients. Thus, an understanding of the mechanisms contributing to resistance to APO010 will be essential for future clinical studies with APO010, and it might be possible to develop strategies to circumvent this resistance. We developed APO010-resistant variants of human multiple myeloma cell lines (LP1, MOLP-8, and KMS-12-BM) and a human Burkitt's lymphoma cell line (Raji) by exposing the cells to gradually increasing concentrations of APO010 over a period of 6-12 months. The resistant cell lines were characterized on the basis of immunocytochemistry, Fas-receptor protein expression, mRNA expression analysis, and pathway analysis. APO010-resistant cell lines exhibited a 4- to 520-fold increase in resistance to APO010 and still remained sensitive to other chemotherapeutics. Downregulation of the Fas-receptor protein expression was observed in all resistant cell lines. mRNA expression analysis of the resistant versus parental cell lines confirmed a significant alteration in FAS expression between sensitive and resistant cell lines (p = 0.03), while pathway analysis revealed alterations in mRNA signaling pathways of Fas. On the basis of the pre-clinical data obtained, it can be concluded that downregulation of Fas-receptor can mediate resistance to APO010.
Collapse
Affiliation(s)
- Haatisha Jandu
- Department for Drug Design and Pharmacology, Oncology Venture, Horsholm, Denmark.
| | - Annette Nielsen
- Department for Drug Design and Pharmacology, Oncology Venture, Horsholm, Denmark
| | - Nils Brunner
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anker Hansen
- Department for Drug Design and Pharmacology, Oncology Venture, Horsholm, Denmark
| | - Steen Knudsen
- Department for Drug Design and Pharmacology, Oncology Venture, Horsholm, Denmark
| | - Jan Stenvang
- Department for Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter B Jensen
- Department for Drug Design and Pharmacology, Oncology Venture, Horsholm, Denmark
| |
Collapse
|
22
|
The Recombinant Fragment of Human κ-Casein Induces Cell Death by Targeting the Proteins of Mitochondrial Import in Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12061427. [PMID: 32486420 PMCID: PMC7352597 DOI: 10.3390/cancers12061427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is still one of the most common cancers for women. Specified therapeutics are indispensable for optimal treatment. In previous studies, it has been shown that RL2, the recombinant fragment of human κ-Casein, induces cell death in breast cancer cells. However, the molecular mechanisms of RL2-induced cell death remain largely unknown. In this study, mechanisms of RL2-induced cell death in breast cancer cells were systematically investigated. In particular, we demonstrate that RL2 induces loss of mitochondrial membrane potential and cellular ATP loss followed by cell death in breast cancer cells. The mass spectrometry-based screen for RL2 interaction partners identified mitochondrial import protein TOM70 as a target of RL2, which was subsequently validated. Further to this, we show that RL2 is targeted to mitochondria after internalization into the cells, where it can also be found in the dimeric form. The importance of TOM70 and RL2 interaction in RL2-induced reduction in ATP levels was validated by siRNA-induced downregulation of TOM70, resulting in the partial rescue of ATP production. Taken together, this study demonstrates that RL2–TOM70 interaction plays a key role in RL2-mediated cell death and targeting this pathway may provide new therapeutic options for treating breast cancer.
Collapse
|
23
|
Takada E, Okubo K, Yano Y, Iida K, Someda M, Hirasawa A, Yonehara S, Matsuzaki K. Molecular Mechanism of Apoptosis by Amyloid β-Protein Fibrils Formed on Neuronal Cells. ACS Chem Neurosci 2020; 11:796-805. [PMID: 32056421 DOI: 10.1021/acschemneuro.0c00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aggregational states of amyloid β-protein (Aβ) are critical for its neurotoxicity, although they are not well-characterized, particularly after binding to the cell membranes. This is one reason why the mechanisms of Aβ neurotoxicity are controversial and elusive. In this study, the effects of toxic Aβ-(1-42) fibrils formed in the membrane on cellular processes were investigated using human neuroblastoma SH-SY5Y cells. Consistent with previous observations, fibrillar Aβs formed on the membranes induced activation of caspase-3, the effector caspase for apoptosis. Knockdown analyses of the initiator caspases, caspase-8 and caspase-9, indicated that the apoptosis was induced via activation of caspase-8, followed by activation of caspase-9 and caspase-3. We also found that inflammation signaling pathways including Toll-like receptors and inflammasomes NOD-, LRR-, and pyrin domain-containing protein 3 are involved in the initiation of apoptosis by the Aβ fibrils. These inflammation-related molecules are promising targets for the prevention of apoptotic cell death induced by Aβ.
Collapse
Affiliation(s)
- Eri Takada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Kaori Okubo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Keiko Iida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Someda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Shin Yonehara
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard JF, Vacher P, Legembre P. CD95/Fas and metastatic disease: What does not kill you makes you stronger. Semin Cancer Biol 2020; 60:121-131. [PMID: 31176682 DOI: 10.1016/j.semcancer.2019.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
Abstract
CD95 (also known as Fas) is the prototype of death receptors; however, evidence suggests that this receptor mainly implements non-apoptotic signaling pathways such as NF-κB, MAPK, and PI3K that are involved in cell migration, differentiation, survival, and cytokine secretion. At least two different forms of CD95 L exist. The multi-aggregated transmembrane ligand (m-CD95 L) is cleaved by metalloproteases to release a homotrimeric soluble ligand (s-CD95 L). Unlike m-CD95 L, the interaction between s-CD95 L and its receptor CD95 fails to trigger apoptosis, but instead promotes calcium-dependent cell migration, which contributes to the accumulation of inflammatory Th17 cells in damaged organs of lupus patients and favors cancer cell invasiveness. Novel inhibitors targeting the pro-inflammatory roles of CD95/CD95 L may provide attractive therapeutic options for patients with chronic inflammatory disorders or cancer. This review discusses the roles of the CD95/CD95 L pair in cell migration and metastasis.
Collapse
Affiliation(s)
- Jean Philippe Guégan
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, Marseille, France
| | - Thomas Ducret
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-François Quignard
- Université de Bordeaux, Bordeaux, France; Centre de Recherche Cardio Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Pierre Vacher
- Université de Bordeaux, Bordeaux, France; INSERM U1218, Bordeaux, France
| | - Patrick Legembre
- CLCC Eugène Marquis, Équipe Ligue Contre Le Cancer, Rennes, France; Université Rennes, INSERM U1242, Rennes, France.
| |
Collapse
|
25
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Meynier S, Rieux-Laucat F. FAS and RAS related Apoptosis defects: From autoimmunity to leukemia. Immunol Rev 2019; 287:50-61. [PMID: 30565243 DOI: 10.1111/imr.12720] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
The human adaptive immune system recognizes almost all the pathogens that we encounter and all the tumor antigens that may arise during our lifetime. Primary immunodeficiencies affecting lymphocyte development or function therefore lead to severe infections and tumor susceptibility. Furthermore, the fact that autoimmunity is a frequent feature of primary immunodeficiencies reveals a third function of the adaptive immune system: its self-regulation. Indeed, the generation of a broad repertoire of antigen receptors (via a unique strategy of random somatic rearrangements of gene segments in T cell and B cell receptor loci) inevitably creates receptors with specificity for self-antigens and thus leads to the presence of autoreactive lymphocytes. There are many different mechanisms for controlling the emergence or action of autoreactive lymphocytes, including clonal deletion in the primary lymphoid organs, receptor editing, anergy, suppression of effector lymphocytes by regulatory lymphocytes, and programmed cell death. Here, we review the genetic defects affecting lymphocyte apoptosis and that are associated with lymphoproliferation and autoimmunity, together with the role of somatic mutations and their potential involvement in more common autoimmune diseases.
Collapse
Affiliation(s)
- Sonia Meynier
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
27
|
Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ 2019; 27:1539-1553. [PMID: 31659279 PMCID: PMC7206185 DOI: 10.1038/s41418-019-0434-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
Among caspase family members, Caspase-8 is unique, with associated critical activities to induce and suppress death receptor-mediated apoptosis and necroptosis, respectively. Caspase-8 inhibits necroptosis by suppressing the function of receptor-interacting protein kinase 1 (RIPK1 or RIP1) and RIPK3 to activate mixed lineage kinase domain-like (MLKL). Disruption of Caspase-8 expression causes embryonic lethality in mice, which is rescued by depletion of either Ripk3 or Mlkl, indicating that the embryonic lethality is caused by activation of necroptosis. Here, we show that knockdown of Caspase-8 expression in embryoid bodies derived from ES cells markedly enhances retinoic acid (RA)-induced cell differentiation and necroptosis, both of which are dependent on Ripk1 and Ripk3; however, the enhancement of RA-induced cell differentiation is independent of Mlkl and necrosome formation. RA treatment obviously enhanced the expression of RA-specific target genes having the retinoic acid response element (RARE) in their promoter regions to induce cell differentiation, and induced marked expression of RIPK1, RIPK3, and MLKL to stimulate necroptosis. Caspase-8 knockdown induced RIPK1 and RIPK3 to translocate into the nucleus and to form a complex with RA receptor (RAR), and RAR interacting with RIPK1 and RIPK3 showed much stronger binding activity to RARE than RAR without RIPK1 or RIPK3. In Caspase-8-deficient as well as Caspase-8- and Mlkl-deficient mouse embryos, the expression of RA-specific target genes was obviously enhanced. Thus, Caspase-8, RIPK1, and RIPK3 regulate RA-induced cell differentiation and necroptosis both in vitro and in vivo.
Collapse
|
28
|
Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A, Gjerstorff M, Baradaran B. MicroRNAs in cancer cell death pathways: Apoptosis and necroptosis. Free Radic Biol Med 2019; 139:1-15. [PMID: 31102709 DOI: 10.1016/j.freeradbiomed.2019.05.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
To protect tissues and the organism from disease, potentially harmful cells are removed through programmed cell death processes, including apoptosis and necroptosis. These types of cell death are critically controlled by microRNAs (miRNAs). MiRNAs are short RNA molecules that target and inhibit expression of many cellular regulators, including those controlling programmed cell death via the intrinsic (Bcl-2 and Mcl-1), extrinsic (TRAIL and Fas), p53-and endoplasmic reticulum (ER) stress-induced apoptotic pathways, as well as the necroptosis cell death pathway. In this review, we discuss the current knowledge of apoptosis and necroptosis pathways and how these are impaired in cancer cells. We focus on how miRNAs disrupt apoptosis and necroptosis, thereby critically contributing to malignancy. Understanding which and how miRNAs and their targets affect cell death pathways could open up novel therapeutic opportunities for cancer patients. Indeed, restoration of pro-apoptotic tumor suppressor miRNAs (apoptomiRs) or inhibition of oncogenic miRNAs (oncomiRs) represent strategies that are currently being trialed or are already applied as miRNA-based cancer therapies. Therefore, better understanding the cancer type-specific expression of apoptomiRs and oncomiRs and their underlying mechanisms in cell death pathways will not only advance our knowledge, but also continue to provide new opportunities to treat cancer.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Samira Asghari
- Department of Medical Biotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Morten Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Lee WH, Seo D, Lim SG, Suk K. Reverse Signaling of Tumor Necrosis Factor Superfamily Proteins in Macrophages and Microglia: Superfamily Portrait in the Neuroimmune Interface. Front Immunol 2019; 10:262. [PMID: 30838001 PMCID: PMC6389649 DOI: 10.3389/fimmu.2019.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily (TNFSF) is a protein superfamily of type II transmembrane proteins commonly containing the TNF homology domain. The superfamily contains more than 20 protein members, which can be released from the cell membrane by proteolytic cleavage. Members of the TNFSF function as cytokines and regulate diverse biological processes, including immune responses, proliferation, differentiation, apoptosis, and embryogenesis, by binding to TNFSF receptors. Many TNFSF proteins are also known to be responsible for the regulation of innate immunity and inflammation. Both receptor-mediated forward signaling and ligand-mediated reverse signaling play important roles in these processes. In this review, we discuss the functional expression and roles of various reverse signaling molecules and pathways of TNFSF members in macrophages and microglia in the central nervous system (CNS). A thorough understanding of the roles of TNFSF ligands and receptors in the activation of macrophages and microglia may improve the treatment of inflammatory diseases in the brain and periphery. In particular, TNFSF reverse signaling in microglia can be exploited to gain further insights into the functions of the neuroimmune interface in physiological and pathological processes in the CNS.
Collapse
Affiliation(s)
- Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Donggun Seo
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Su-Geun Lim
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Brain Science & Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
30
|
Ke Q, Li C, Wu M, Ge L, Yao C, Yao C, Mi Y. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production. Bioelectrochemistry 2019; 127:171-179. [PMID: 30831355 DOI: 10.1016/j.bioelechem.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
The excessive cell death rate caused by electrofusion with unipolar pulses (UPs) has been a bottleneck to increasing cell fusion efficiency in monoclonal antibody technology. Several studies have confirmed that compared with UPs, bipolar pulses (BPs) with microsecond pulse widths can increase electropermeabilization while reducing cell death. Given these characteristics, BPs were used to increase cell fusion efficiency in this study. Cell staining and hybridoma culture experiments were performed using SP2/0 mouse myeloma cells and lymphocytes. Based on the equal energy principle, UPs and BPs were delivered to electrodes at a distance of 3.81 mm, with electric field intensities ranging from 2 kV/cm to 3 kV/cm and pulse duration of 40 μs for the UPs and 20-20 μs for the BPs. The results of cell staining experiments showed that cell fusion efficiency was 3-fold greater with BPs than with UPs. Similarly, the results of the hybridoma culture experiments showed that the hybridoma yields were 0.26‰ and 0.23‰ (2.5 kV/cm and 3 kV/cm, respectively) in the UP groups and increased to 0.46‰ and 0.35‰ in the BP groups. Taken together, the results show that the efficiency of heterologous cell fusion can be greatly increased if BPs are used instead of the commonly applied UPs. This study may provide a promising method for monoclonal antibody technology.
Collapse
Affiliation(s)
- Qiang Ke
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chengxiang Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Cheng Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
31
|
Li X, Shang B, Li YN, Shi Y, Shao C. IFNγ and TNFα synergistically induce apoptosis of mesenchymal stem/stromal cells via the induction of nitric oxide. Stem Cell Res Ther 2019; 10:18. [PMID: 30635041 PMCID: PMC6330503 DOI: 10.1186/s13287-018-1102-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Mesenchymal stem/stromal cells (MSCs) have been widely used to treat various inflammatory diseases. The immunomodulatory capabilities of MSCs are usually licensed by inflammatory cytokines and may vary depending on the levels and the types of inflammatory cytokines. However, how the inflammatory microenvironment affects the fate of MSCs remains elusive. Here we characterized the molecular mechanism underlying the apoptosis of mouse MSCs triggered by the synergistic action of IFNγ and TNFα. METHODS We isolated and expanded MSCs by flushing the femoral and tibial bone marrow of wild-type, iNOS-/-, and Fas-/- mice. BM-MSCs were treated with IFNγ and TNFα in vitro, and cell viability was evaluated by a CCK-8 kit. Apoptosis was assessed by Annexin V/propidium iodide-stained flow cytometry. Expression of genes related to apoptosis and endoplasmic reticulum (ER) stress was measured by reverse transcription-polymerase chain reaction (RT-PCR). Apoptosis and autophagy-related proteins were examined by Western blot analysis. RESULTS IFNγ and TNFα synergistically trigger apoptosis of mouse BM-MSCs. The two cytokines were shown to stimulate the expression of inducible nitric oxide synthase (iNOS) and consequently the generation of nitric oxide (NO), which is required for the apoptosis of mouse BM-MSCs. The two cytokines similarly induced apoptosis in Fas-/- BM-MSCs. iNOS and NO were shown to upregulate Fas in mouse MSCs and sensitize them to Fas agonist-induced apoptosis. Moreover, NO stimulated by IFNγ/TNFα impairs autophagy, which aggravates ER stress and promotes apoptosis. CONCLUSIONS IFNγ/TNFα-induced apoptosis in mouse MSCs is mediated by NO. Our findings shed new light on cytokine-induced apoptosis of MSCs and have implications in MSC-based therapy of inflammatory diseases.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Bingxue Shang
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ya-Nan Li
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
32
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
33
|
Dai L, He J, Chen J, Wang T, Liu L, Shen Y, Chen L, Wen F. The association of elevated circulating endocan levels with lung function decline in COPD patients. Int J Chron Obstruct Pulmon Dis 2018; 13:3699-3706. [PMID: 30519013 PMCID: PMC6233695 DOI: 10.2147/copd.s175461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background Endocan is thought to be a novel inflammatory marker that is associated with a variety of inflammatory diseases. However, its role in the pathogenesis of COPD remains unclear. This study aims to explore the potential role of endocan in COPD. Methods In total, 27 healthy volunteers, 55 COPD patients and 36 acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients were included in the study. Basic demographic characteristics, clinical features and blood samples were collected. Magnetic luminex screening assays were used to detect the concentration of endocan, Fas and Fas ligand (Fas-L) in plasma. Differences between groups were compared using an Independent sample t-test, Welch’s t-test, chi-squared test and Wilcoxon rank sum test. The correlations of plasma endocan with lung function parameters, Fas and Fas-L were analyzed by Pearson’s partial correlation test (adjusted for age, gender, body mass index and smoking history) and multiple linear regression. Results Plasma endocan levels in COPD patients were significantly higher than those in healthy volunteers (509.7±18.25 pg/mL vs 434.8±18.98 pg/mL (P=0.0124)), and AECOPD patients had the highest levels of endocan (524.7±27.18 pg/mL). Correlation analysis showed that circulating endocan had a negative correlation to FEV1/FVC, FEV1/predictive and FVC (adjusted r=−0.213, P=0.03; adjusted r=−0.209, P=0.034; and adjusted r=−0.300, P=0.002, respectively), and had a positive correlation to Fas (adjusted r=0.280, P=0.004). Conclusion Our study shows that elevated circulating endocan levels are associated with reduced lung ventilation function in COPD and AECOPD patients. In addition, endocan may influence apoptosis in COPD, suggesting that endocan may play a role in COPD pathogenesis.
Collapse
Affiliation(s)
- Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, .,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region of China, Chengdu, Sichuan 610041, China
| | - Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, .,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, .,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, .,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, .,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China, ;
| |
Collapse
|
34
|
Spetz J, Presser AG, Sarosiek KA. T Cells and Regulated Cell Death: Kill or Be Killed. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:27-71. [PMID: 30635093 DOI: 10.1016/bs.ircmb.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell death plays two major complementary roles in T cell biology: mediating the removal of cells that are targeted by T cells and the removal of T cells themselves. T cells serve as major actors in the adaptive immune response and function by selectively killing cells which are infected or dysfunctional. This feature is highly involved during homeostatic maintenance, and is relied upon and modulated in the context of cancer immunotherapy. The vital recognition and elimination of both autoreactive T cells and cells which are unable to recognize threats is a highly selective and regulated process. Moreover, detection of potential threats will result in the activation and expansion of T cells, which on resolution of the immune response will need to be eliminated. The culling of these T cells can be executed via a multitude of cell death pathways which are used in context-specific manners. Failure of these processes may result in an accumulation of misdirected or dysfunctional T cells, leading to complications such as autoimmunity or cancer. This review will focus on the role of cell death regulation in the maintenance of T cell homeostasis, as well as T cell-mediated elimination of infected or dysfunctional cells, and will summarize and discuss the current knowledge of the cellular mechanisms which are implicated in these processes.
Collapse
Affiliation(s)
- Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Adam G Presser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Zhao X, Yu XH, Zhang GY, Zhang HY, Liu WW, Zhang CK, Sun YJ, Ling JY. Aqueous Extracts of Cordyceps kyushuensis Kob Induce Apoptosis to Exert Anticancer Activity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8412098. [PMID: 30175146 PMCID: PMC6106948 DOI: 10.1155/2018/8412098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022]
Abstract
Cancer has become the leading cause of mortality since 2010 in China. Despite the remarkable advances in cancer therapy, a low survival rate is still a burden to the society. The antineoplastic activity of aqueous extracts of Cordyceps kyushuensis Kob (AECK) was measured in this study. Results showed that AECK can significantly inhibit the proliferation and viability of U937 and K562 when treated with different concentrations of AECK, and the IC50 values of U937 and K562 were 31.23 μg/ml and 62.5 μg/ml, respectively. Hoechst 33258 staining showed that AECK could cause cell shrinkage, chromatin, condensation, and cytoplasmic blebbing, and DNA ladder experiment revealed the evident feature of DNA fragmentation which showed that AECK could induce cell apoptosis. Moreover, AECK gave rise to intrinsic apoptosis through increasing the amount of Ca2+ and downregulating the expression of Bcl-2. Meanwhile, the level of Fas death receptor was elevated which indicated that AECK could lead to exogenous apoptosis in U937. The expressions of oncogene c-Myc and c-Fos were suppressed which manifested that AECK could negatively regulate the growth, proliferation, and tumorigenesis of U937 cells. This research presented the primary antitumor activity of AECK which would contribute to the widely use of Cordyceps kyushuensis Kob as a functional food and medicine.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xing-hui Yu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Guo-ying Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | | | - Wei-wei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Chang-kai Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Ying-jie Sun
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jian-ya Ling
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
36
|
The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 2018; 38:558-568. [PMID: 29911256 DOI: 10.1007/s10875-018-0523-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
The autoimmune lymphoproliferative syndrome (ALPS) is a non-malignant and non-infectious uncontrolled proliferation of lymphocytes accompanied by autoimmune cytopenia. The genetic etiology of the ALPS was described in 1995 by the discovery of the FAS gene mutations. The related apoptosis defect accounts for the accumulation of autoreactive lymphocytes as well as for specific clinical and biological features that distinguish the ALPS-FAS from other monogenic defects of this apoptosis pathway, such as FADD and CASPASE 8 deficiencies. The ALPS-FAS was the first description of a monogenic cause of autoimmunity, but its non-Mendelian expression remained elusive until the description of somatic and germline mutations in ALPS patients. The recognition of these genetic diseases brought new information on the role of this apoptotic pathway in controlling the adaptive immune response in humans.
Collapse
|
37
|
|
38
|
Should We Keep Walking along the Trail for Pancreatic Cancer Treatment? Revisiting TNF-Related Apoptosis-Inducing Ligand for Anticancer Therapy. Cancers (Basel) 2018; 10:cancers10030077. [PMID: 29562636 PMCID: PMC5876652 DOI: 10.3390/cancers10030077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2) also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex (DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review, we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for successful treatment.
Collapse
|
39
|
McArthur K, Kile BT. Apoptotic Caspases: Multiple or Mistaken Identities? Trends Cell Biol 2018; 28:475-493. [PMID: 29551258 DOI: 10.1016/j.tcb.2018.02.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/22/2022]
Abstract
The mitochondrial caspase cascade was originally thought to be required for apoptotic death driven by Bak/Bax-mediated intrinsic apoptosis. It has also been ascribed several 'non-apoptotic' functions, including differentiation, proliferation, and cellular reprogramming. Recent work has demonstrated that, during apoptosis, the caspase cascade suppresses damage-associated molecular pattern (DAMP)-initiated production of cytokines such as type I interferon by the dying cell. The caspase cascade is not required for death to occur; instead, it shapes the immunogenic properties of the apoptotic cell. This raises questions about the role of apoptotic caspases in regulating DAMP signaling more generally, puts a new perspective on their non-apoptotic functions, and suggests that pharmacological caspase inhibitors might find new applications as antiviral or anticancer agents.
Collapse
Affiliation(s)
- Kate McArthur
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Benjamin T Kile
- Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
40
|
Chen S, Tisch N, Kegel M, Yerbes R, Hermann R, Hudalla H, Zuliani C, Gülcüler GS, Zwadlo K, von Engelhardt J, Ruiz de Almodóvar C, Martin-Villalba A. CNS Macrophages Control Neurovascular Development via CD95L. Cell Rep 2018; 19:1378-1393. [PMID: 28514658 DOI: 10.1016/j.celrep.2017.04.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/12/2022] Open
Abstract
The development of neurons and vessels shares striking anatomical and molecular features, and it is presumably orchestrated by an overlapping repertoire of extracellular signals. CNS macrophages have been implicated in various developmental functions, including the morphogenesis of neurons and vessels. However, whether CNS macrophages can coordinately influence neurovascular development and the identity of the signals involved therein is unclear. Here, we demonstrate that activity of the cell surface receptor CD95 regulates neuronal and vascular morphogenesis in the post-natal brain and retina. Furthermore, we identify CNS macrophages as the main source of CD95L, and macrophage-specific deletion thereof reduces both neurovascular complexity and synaptic activity in the brain. CD95L-induced neuronal and vascular growth is mediated through src-family kinase (SFK) and PI3K signaling. Together, our study highlights a coordinated neurovascular development instructed by CNS macrophage-derived CD95L, and it underlines the importance of macrophages for the establishment of the neurovascular network during CNS development.
Collapse
Affiliation(s)
- Si Chen
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Nathalie Tisch
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Marcel Kegel
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Rosario Yerbes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Robert Hermann
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Hannes Hudalla
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Cecilia Zuliani
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Gülce Sila Gülcüler
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Klara Zwadlo
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Ana Martin-Villalba
- Department of Molecular Neurobiology, German Cancer Research Center (DFKZ), 69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Zheng L, Li J, Lenardo M. Restimulation-induced cell death: new medical and research perspectives. Immunol Rev 2018; 277:44-60. [PMID: 28462523 DOI: 10.1111/imr.12535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the periphery, homeostasis of the immune system depends on the equilibrium of expanding and contracting T lymphocytes during immune response. An important mechanism of lymphocyte contraction is clonal depletion of activated T cells by cytokine withdrawal induced death (CWID) and TCR restimulation induced cell death (RICD). Deficiencies in signaling components for CWID and RICD leads to autoimmunune lymphoproliferative disorders in mouse and human. The most important feature of CWID and RICD is clonal specificity, which lends great appeal as a strategy for targeted tolerance induction and treatment of autoimmune diseases, allergic disorders, and graft rejection by depleting undesired disease-causing T cells while keeping the overall host immunity intact.
Collapse
Affiliation(s)
- Lixin Zheng
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jian Li
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Michael Lenardo
- Laboratory of Immunology and Clinical Genomics Program, Molecular Development of the Immune System Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Lee H, Pike R, Chong M, Vossenkamper A, Warnes G. Simultaneous flow cytometric immunophenotyping of necroptosis, apoptosis and RIP1-dependent apoptosis. Methods 2018; 134-135:56-66. [DOI: 10.1016/j.ymeth.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
|
43
|
Muraki M. Development of expression systems for the production of recombinant human Fas ligand extracellular domain derivatives using <em>Pichia pastoris</em> and preparation of the conjugates by site-specific chemical modifications: A review. AIMS BIOENGINEERING 2018. [DOI: 10.3934/bioeng.2018.1.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
Villamizar O, Chambers CB, Riberdy JM, Persons DA, Wilber A. Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis. Oncotarget 2017; 7:13810-26. [PMID: 26885613 PMCID: PMC4924680 DOI: 10.18632/oncotarget.7329] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
In multicellular organisms, cell growth and differentiation is controlled in part by programmed cell death or apoptosis. One major apoptotic pathway is triggered by Fas receptor (Fas)-Fas ligand (FasL) interaction. Neoplastic cells are frequently resistant to Fas-mediated apoptosis, evade Fas signals through down regulation of Fas and produce soluble Fas proteins that bind FasL thereby blocking apoptosis. Soluble Fas (sFas) is an alternative splice product of Fas pre-mRNA, commonly created by exclusion of transmembrane spanning sequences encoded within exon 6 (FasΔEx6). Long non-coding RNAs (lncRNAs) interact with other RNAs, DNA, and proteins to regulate gene expression. One lncRNA, Fas-antisense or Saf, was shown to participate in alternative splicing of Fas pre-mRNA through unknown mechanisms. We show that Saf is localized in the nucleus where it interacts with Fas receptor pre-mRNA and human splicing factor 45 (SPF45) to facilitate alternative splicing and exclusion of exon 6. The product is a soluble Fas protein that protects cells against FasL-induced apoptosis. Collectively, these studies reveal a novel mechanism to modulate this critical cell death program by an lncRNA and its protein partner.
Collapse
Affiliation(s)
- Olga Villamizar
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA.,Department of Microbiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Christopher B Chambers
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Janice M Riberdy
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Derek A Persons
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
45
|
Riwaldt S, Monici M, Graver Petersen A, Birk Jensen U, Evert K, Pantalone D, Utpatel K, Evert M, Wehland M, Krüger M, Kopp S, Frandsen S, Corydon T, Sahana J, Bauer J, Lützenberg R, Infanger M, Grimm D. Preparation of A Spaceflight: Apoptosis Search in Sutured Wound Healing Models. Int J Mol Sci 2017; 18:2604. [PMID: 29207508 PMCID: PMC5751207 DOI: 10.3390/ijms18122604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/23/2017] [Accepted: 12/01/2017] [Indexed: 12/25/2022] Open
Abstract
To prepare the ESA (European Space Agency) spaceflight project "Wound healing and Sutures in Unloading Conditions", we studied mechanisms of apoptosis in wound healing models based on ex vivo skin tissue cultures, kept for 10 days alive in serum-free DMEM/F12 medium supplemented with bovine serum albumin, hydrocortisone, insulin, ascorbic acid and antibiotics at 32 °C. The overall goal is to test: (i) the viability of tissue specimens; (ii) the gene expression of activators and inhibitors of apoptosis and extracellular matrix components in wound and suture models; and (iii) to design analytical protocols for future tissue specimens after post-spaceflight download. Hematoxylin-Eosin and Elastica-van-Gieson staining showed a normal skin histology with no signs of necrosis in controls and showed a normal wound suture. TdT-mediated dUTP-biotin nick end labeling for detecting DNA fragmentation revealed no significant apoptosis. No activation of caspase-3 protein was detectable. FASL, FADD, CASP3, CASP8, CASP10, BAX, BCL2, CYC1, APAF1, LAMA3 and SPP1 mRNAs were not altered in epidermis and dermis samples with and without a wound compared to 0 day samples (specimens investigated directly post-surgery). BIRC5, CASP9, and FN1 mRNAs were downregulated in epidermis/dermis samples with and/or without a wound compared to 0 day samples. BIRC2, BIRC3 were upregulated in 10 day wound samples compared to 0 day samples in epidermis/dermis. RELA/FAS mRNAs were elevated in 10 day wound and no wound samples compared to 0 day samples in dermis. In conclusion, we demonstrate that it is possible to maintain live skin tissue cultures for 10 days. The viability analysis showed no significant signs of cell death in wound and suture models. The gene expression analysis demonstrated the interplay of activators and inhibitors of apoptosis and extracellular matrix components, thereby describing important features in ex vivo sutured wound healing models. Collectively, the performed methods defining analytical protocols proved to be applicable for post-flight analyzes of tissue specimens after sample return.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Monica Monici
- ASA Campus Joint Laboratory, ASA Research Division, Department. of Experimental and Clinical Biomedical Sciences, University of Florence, 50121 Florence, Italy.
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, 8000 Aarhus C, Denmark.
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Katja Evert
- Institute for Pathology, University of Regensburg, 95053 Regensburg, Germany.
| | - Desiré Pantalone
- Department of Critical Medicine and Surgery, University of Florence, 50134 Florence, Italy.
| | - Kirsten Utpatel
- Institute for Pathology, University of Regensburg, 95053 Regensburg, Germany.
| | - Matthias Evert
- Institute for Pathology, University of Regensburg, 95053 Regensburg, Germany.
| | - Markus Wehland
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Marcus Krüger
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Sascha Kopp
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Sofie Frandsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Thomas Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| | - Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Johann Bauer
- Max-Planck-Institute for Biochemistry Martinsried, 82152 Planegg, Germany.
| | - Ronald Lützenberg
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Manfred Infanger
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
- University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, 39120 Magdeburg, Germany.
| |
Collapse
|
46
|
Rieux-Laucat F. What's up in the ALPS. Curr Opin Immunol 2017; 49:79-86. [DOI: 10.1016/j.coi.2017.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
47
|
Dubuisson A, Micheau O. Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies (Basel) 2017; 6:E16. [PMID: 31548531 PMCID: PMC6698863 DOI: 10.3390/antib6040016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Developing therapeutics that induce apoptosis in cancer cells has become an increasingly attractive approach for the past 30 years. The discovery of tumor necrosis factor (TNF) superfamily members and more specifically TNF-related apoptosis-inducing ligand (TRAIL), the only cytokine of the family capable of eradicating selectively cancer cells, led to the development of numerous TRAIL derivatives targeting death receptor 4 (DR4) and death receptor 5 (DR5) for cancer therapy. With a few exceptions, preliminary attempts to use recombinant TRAIL, agonistic antibodies, or derivatives to target TRAIL agonist receptors in the clinic have been fairly disappointing. Nonetheless, a tremendous effort, worldwide, is being put into the development of novel strategic options to target TRAIL receptors. Antibodies and derivatives allow for the design of novel and efficient agonists. We summarize and discuss here the advantages and drawbacks of the soar of TRAIL therapeutics, from the first developments to the next generation of agonistic products, with a particular insight on new concepts.
Collapse
Affiliation(s)
- Agathe Dubuisson
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| | - Olivier Micheau
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| |
Collapse
|
48
|
Gupta KH, Goldufsky JW, Wood SJ, Tardi NJ, Moorthy GS, Gilbert DZ, Zayas JP, Hahm E, Altintas MM, Reiser J, Shafikhani SH. Apoptosis and Compensatory Proliferation Signaling Are Coupled by CrkI-Containing Microvesicles. Dev Cell 2017. [PMID: 28633020 DOI: 10.1016/j.devcel.2017.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Apoptosis has been implicated in compensatory proliferation signaling (CPS), whereby dying cells induce proliferation in neighboring cells as a means to restore homeostasis. The nature of signaling between apoptotic cells and their neighboring cells remains largely unknown. Here we show that a fraction of apoptotic cells produce and release CrkI-containing microvesicles (distinct from exosomes and apoptotic bodies), which induce proliferation in neighboring cells upon contact. We provide visual evidence of CPS by videomicroscopy. We show that purified vesicles in vitro and in vivo are sufficient to stimulate proliferation in other cells. Our data demonstrate that CrkI inactivation by ExoT bacterial toxin or by mutagenesis blocks vesicle formation in apoptotic cells and inhibits CPS, thus uncoupling apoptosis from CPS. We further show that c-Jun amino-terminal kinase (JNK) plays a pivotal role in mediating vesicle-induced CPS in recipient cells. CPS could have important ramifications in diseases that involve apoptotic cell death.
Collapse
Affiliation(s)
- Kajal H Gupta
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W Goldufsky
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Stephen J Wood
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas J Tardi
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gayathri S Moorthy
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Douglas Z Gilbert
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janet P Zayas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Eunsil Hahm
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA; Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
49
|
Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur J Med Chem 2017; 135:424-433. [PMID: 28463785 DOI: 10.1016/j.ejmech.2017.04.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 02/04/2023]
Abstract
Several novel thiazolidinone and fused thiazolidinone derivatives bearing benzenesulfonamide moiety were synthesized and confirmed via spectral and elemental analyses. The newly synthesized compounds were evaluated for their cytotoxic activity on colorectal cancer cell line (Caco-2). All the synthesized compounds showed better activity than the reference standards (Doxorubicin and 5-FU). Investigation of the apoptotic activity of the most active compounds revealed that compounds 3a, 5a, 5c and 6c activate both caspase-3 and Fas-ligand in Caco-2 cell line. Compound 3a was the most active compound with caspase-3 concentration of 0.43 nmol/mL and Fas-ligand concentration of 775.2 pg/mL in treated Caco-2 cells. Compound 3a was radiolabeled with 99mTc and its biodistribution pattern was evaluated in vivo using normal Swiss Albino mice. 99mTc-compound 3a complex didn't exhibit any accumulation in any body organs except for its accumulation in the colon; target organ; where it showed 8.97 ± 1.35 %ID/g at 15min p. i. that elevated till 16.02 ± 2.43 %ID/g at 120min p. i.
Collapse
|
50
|
A Potential of sFasL in Preventing Gland Injury in Sjogren's Syndrome. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5981432. [PMID: 28326325 PMCID: PMC5343225 DOI: 10.1155/2017/5981432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/31/2022]
Abstract
Fas and its ligand FasL, members of tumor necrosis factor receptor superfamily, have been implicated in the process of cell apoptosis. FasL consists of two forms, membrane FasL (mFasL) and soluble FasL (sFasL). sFasL can be produced by mFasL cleaved by matrix metalloproteinases (MMP) and also reveals a role for binding to Fas which is expressed on cell surface. Although Fas/FasL axis has been implicated in a variety of diseases, its role in Sjogren's syndrome still remains ill defined. In this study, we investigated the potential of sFasL in the pathogenesis of Sjogren's syndrome (SS). We found that the serum levels of sFasL in SS patients were significantly lower than healthy subjects. Moreover, serum levels of sFasL in patients with mild disease activity were higher than patients with severe disease activity. There is a positive correlation of the serum level of sFasL with uptake index of parotid gland in our expectation. In addition, liver injury involvement in SS patients showed decreased level of sFasL. Furthermore, we here also observed that the protective cytokine IL-10 expression was positively correlated with sFasL expression. Thus, our results here suggest a potential of sFasL in maintaining gland organ homeostasis.
Collapse
|