1
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Jin M, Shen Y, Monroig Ó, Zhao W, Bao Y, Zhu T, Tocher DR, Zhou Q. Sirt1 Mitigates Hepatic Lipotoxic Injury Induced by High-Fat-Diet in Fish Through Ire1α Deacetylation. J Nutr 2024; 154:3210-3224. [PMID: 39303797 DOI: 10.1016/j.tjnut.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Silent information regulator protein 1 (Sirt1) is crucial in regulating lipid metabolism, but its specific role and mechanism in fish hepatic lipotoxic injury remain undefined. OBJECTIVES This study aimed to elucidate the regulatory role of Sirt1 and the underlying mechanisms in dietary lipid-induced hepatic lipotoxic injury in a marine teleost black seabream. METHODS Black seabream were fed a control diet (12% lipid level), high-fat diet (HFD) [18% lipid level, oleic acid (OA)-rich], or HFD supplemented with 0.25%, 0.50%, or 1.00% resveratrol (RSV) for 8 wk. The cultured hepatocytes were stimulated by OA (200 μM), OA supplemented with RSV (20 μM), or transfection with sirt1-small interfering RNA (sisirt1). Biochemical indices, gene expression (qPCR), histology, transmission electron microscope, immunofluorescence, Western blot, flow cytometry, and immunoprecipitation assays were conducted to evaluate hepatic lipid deposition, lipid metabolism, endoplasmic reticulum stress, inflammation and apoptosis, and determine protein interactions between Sirt1 and Ire1α. RESULTS In vivo, RSV supplementation increased mRNA and protein expression levels of sirt1 (236.2% ± 16.1% and 53.1% ± 14.3%) and downregulated the mRNA and phosphorylated protein expression levels of ire1α/Ire1α (46.0% ± 7.6% and 38.6% ± 7.0%), jnk/Jnk (57.6% ± 7.3% and 122.1%), and nuclear factor κ B (nf-κb/Nf-κb) p65 (41.7% ± 7.1% and 24.6% ± 0.8%) compared with the HFD group. Similar patterns were found in the in vitro experiments; however, after knockdown of sirt1, although the cells were incubated with RSV, the expression levels of ire1α/ Ire1α, jnk/Jnk, and nf-κb/Nf-κb p65 showed no significant differences compared with the OA treatment. Moreover, we found that mutation of K61 to arginine to mimic Ire1α deacetylation confers protection against Ire1α-mediated OA-rich HFD-induced inflammation and apoptosis. CONCLUSIONS The findings revealed that Sirt1 protects against OA-rich HFD-induced hepatic lipotoxic injury via the deacetylation of Ire1α on K61, hence reducing Ire1α autophosphorylation level, and suppressing Jnk and Nf-κb p65 activation. This mechanism is elucidated for the first time in fish.
Collapse
Affiliation(s)
- Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC, 12595 Ribera de Cabanes, Castellon, Spain
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Yangguang Bao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo, China.
| |
Collapse
|
3
|
Kettel P, Marosits L, Spinetti E, Rechberger M, Giannini C, Radler P, Niedermoser I, Fischer I, Versteeg GA, Loose M, Covino R, Karagöz GE. Disordered regions in the IRE1α ER lumenal domain mediate its stress-induced clustering. EMBO J 2024; 43:4668-4698. [PMID: 39232130 PMCID: PMC11480506 DOI: 10.1038/s44318-024-00207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Laura Marosits
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Elena Spinetti
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- Institute of Biophysics, Goethe University, Frankfurt, Germany
| | | | - Caterina Giannini
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Isabell Niedermoser
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria
- Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roberto Covino
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
- IMPRS on Cellular Biophysics, Frankfurt, Germany
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria.
- Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
5
|
Chao W, Qiu L, Gao L, Feng J, Liu Y, Yan L, Jiang Y, Lv Q. Antifungal Tetrahydrocarbazole Compound CAR-8 Induces Endoplasmic Reticulum Stress in Candida albicans. ACS Infect Dis 2024; 10:2705-2716. [PMID: 38989983 DOI: 10.1021/acsinfecdis.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The development of new effective antifungal agents is essential to combat fungal infections. Tetrahydrocarbazole has been exploited as a promising skeleton against various pathogenic microorganisms and is used to search for novel active antifungal compounds. In this study, a library composed of small tetrahydrocarbazole compounds was screened, and a potent antifungal agent, CAR-8, was identified with a minimum inhibitory concentration of 2-4 μg/mL against Candida albicans. CAR-8 showed strong fungicidal activities and killed almost all C. albicans within 3 h at a concentration of 16 μg/mL. At concentrations of 2 and 8 μg/mL, CAR-8 significantly inhibited the formation of hyphae and biofilms. Moreover, CAR-8 at 10 and 20 mg/kg reduced the fungal load and improved the survival in the C. albicans infection model in the invertebrate Galleria mellonella. Transcriptome analysis revealed significant changes in the expression of genes associated with protein processing in the endoplasmic reticulum (ER), ER-associated degradation, and unfolded protein response (UPR), which suggested that CAR-8 treatment induced ER stress. Moreover, CAR-8 treatment resulted in various phenotypes similar to tunicamycin, a classical ER stress inducer. These included nonconventional splicing of HAC1 mRNA, the fragmented morphology of ER, the distribution changes of GFP-Snc1 in Saccharomyces cerevisiae, and cell apoptosis probably caused by ER stress. More importantly, the disruption of IRE1 or HAC1 increased the sensitivity of C. albicans to CAR-8, confirming that the UPR signaling pathway was critical for CAR-8 resistance. Overall, our study identifies a potent ER stress-induced antifungal compound that will help the discovery of new antifungal drugs.
Collapse
Affiliation(s)
- Wen Chao
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lijuan Qiu
- College of Basic Medical Sciences, Naval Medical University, Shanghai 200433, China
| | - Lu Gao
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia Feng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Quanzhen Lv
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
6
|
Adhikari B, Gayral M, Herath V, Bedsole CO, Kumar S, Ball H, Atallah O, Shaw B, Pajerowska-Mukhtar KM, Verchot J. bZIP60 and Bax inhibitor 1 contribute IRE1-dependent and independent roles to potexvirus infection. THE NEW PHYTOLOGIST 2024; 243:1172-1189. [PMID: 38853429 DOI: 10.1111/nph.19882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
IRE1, BI-1, and bZIP60 monitor compatible plant-potexvirus interactions though recognition of the viral TGB3 protein. This study was undertaken to elucidate the roles of three IRE1 isoforms, the bZIP60U and bZIP60S, and BI-1 roles in genetic reprogramming of cells during potexvirus infection. Experiments were performed using Arabidopsis thaliana knockout lines and Plantago asiatica mosaic virus infectious clone tagged with the green fluorescent protein gene (PlAMV-GFP). There were more PlAMV-GFP infection foci in ire1a/b, ire1c, bzip60, and bi-1 knockout than wild-type (WT) plants. Cell-to-cell movement and systemic RNA levels were greater bzip60 and bi-1 than in WT plants. Overall, these data indicate an increased susceptibility to virus infection. Transgenic overexpression of AtIRE1b or StbZIP60 in ire1a/b or bzip60 mutant background reduced virus infection foci, while StbZIP60 expression influences virus movement. Transgenic overexpression of StbZIP60 also confers endoplasmic reticulum (ER) stress resistance following tunicamycin treatment. We also show bZIP60U and TGB3 interact at the ER. This is the first demonstration of a potato bZIP transcription factor complementing genetic defects in Arabidopsis. Evidence indicates that the three IRE1 isoforms regulate the initial stages of virus replication and gene expression, while bZIP60 and BI-1 contribute separately to virus cell-to-cell and systemic movement.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Mathieu Gayral
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Agroécologie, INRAE, Institut Agro Dijon, Université de Bourgogne, 26, bd Docteur Petitjean-BP 87999, Dijon, Cedex, 21079, France
| | - Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Caleb Oliver Bedsole
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Sandeep Kumar
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, 751003, India
| | - Haden Ball
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Osama Atallah
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | - Brian Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| | | | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, 496 Olsen Blvd, College Station, TX, 77845, USA
| |
Collapse
|
7
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
8
|
Kettel P, Karagöz GE. Endoplasmic reticulum: Monitoring and maintaining protein and membrane homeostasis in the endoplasmic reticulum by the unfolded protein response. Int J Biochem Cell Biol 2024; 172:106598. [PMID: 38768891 DOI: 10.1016/j.biocel.2024.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
The endoplasmic reticulum (ER) regulates essential cellular processes, including protein folding, lipid synthesis, and calcium homeostasis. The ER homeostasis is maintained by a conserved set of signaling cascades called the Unfolded Protein Response (UPR). How the UPR senses perturbations in ER homeostasis has been the subject of active research for decades. In metazoans, the UPR consists of three ER-membrane embedded sensors: IRE1, PERK and ATF6. These sensors detect the accumulation of misfolded proteins in the ER lumen and adjust protein folding capacity according to cellular needs. Early work revealed that the ER-resident chaperone BiP binds to all three UPR sensors in higher eukaryotes and BiP binding was suggested to regulate their activity. More recent data have shown that in higher eukaryotes the interaction of the UPR sensors with a complex network of chaperones and misfolded proteins modulates their activation and deactivation dynamics. Furthermore, emerging evidence suggests that the UPR monitors ER membrane integrity beyond protein folding defects. However, the mechanistic and structural basis of UPR activation by proteotoxic and lipid bilayer stress in higher eukaryotes remains only partially understood. Here, we review the current understanding of novel protein interaction networks and the contribution of the lipid membrane environment to UPR activation.
Collapse
Affiliation(s)
- Paulina Kettel
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - G Elif Karagöz
- Max Perutz Laboratories Vienna, Vienna BioCenter, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Liu S, Zhang X, Yao X, Wang G, Huang S, Chen P, Tang M, Cai J, Wu Z, Zhang Y, Xu R, Liu K, He K, Wang Y, Jiang L, Wang QA, Rui L, Liu J, Liu Y. Mammalian IRE1α dynamically and functionally coalesces with stress granules. Nat Cell Biol 2024; 26:917-931. [PMID: 38714852 DOI: 10.1038/s41556-024-01418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/03/2024] [Indexed: 05/31/2024]
Abstract
Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.
Collapse
Affiliation(s)
- Songzi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoge Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xin Yao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Guan Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Peng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Clinical Research Center, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhuyin Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yiliang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Rongzhi Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Jiang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Qiong A Wang
- Comprehensive Cancer Center, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
- Department of Molecular & Cellular Endocrinology, Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Liangyou Rui
- Department of Molecular and Integrative Physiology, the University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; TaiKang Center for Life and Medical Sciences; the Institute for Advanced Studies; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
10
|
Rahman MK, Umashankar B, Choucair H, Bourget K, Rawling T, Murray M. The inositol-requiring enzyme 1 (IRE1) endoplasmic reticulum stress pathway promotes MDA-MB-231 cell survival and renewal in response to the aryl-ureido fatty acid CTU. Int J Biochem Cell Biol 2024; 171:106571. [PMID: 38608921 DOI: 10.1016/j.biocel.2024.106571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Current treatment options for triple-negative breast cancer (TNBC) are limited to toxic drug combinations of low efficacy. We recently identified an aryl-substituted fatty acid analogue, termed CTU, that effectively killed TNBC cells in vitro and in mouse xenograft models in vivo without producing toxicity. However, there was a residual cell population that survived treatment. The present study evaluated the mechanisms that underlie survival and renewal in CTU-treated MDA-MB-231 TNBC cells. RNA-seq profiling identified several pro-inflammatory signaling pathways that were activated in treated cells. Increased expression of cyclooxygenase-2 and the cytokines IL-6, IL-8 and GM-CSF was confirmed by real-time RT-PCR, ELISA and Western blot analysis. Increased self-renewal was confirmed using the non-adherent, in vitro colony-forming mammosphere assay. Neutralizing antibodies to IL-6, IL-8 and GM-CSF, as well as cyclooxygenase-2 inhibition suppressed the self-renewal of MDA-MB-231 cells post-CTU treatment. IPA network analysis identified major NF-κB and XBP1 gene networks that were activated by CTU; chemical inhibitors of these pathways and esiRNA knock-down decreased the production of pro-inflammatory mediators. NF-κB and XBP1 signaling was in turn activated by the endoplasmic reticulum (ER)-stress sensor inositol-requiring enzyme 1 (IRE1), which mediates the unfolded protein response. Co-treatment with an inhibitor of IRE1 kinase and RNase activities, decreased phospho-NF-κB and XBP1s expression and the production of pro-inflammatory mediators. Further, IRE1 inhibition also enhanced apoptotic cell death and prevented the activation of self-renewal by CTU. Taken together, the present findings indicate that the IRE1 ER-stress pathway is activated by the anti-cancer lipid analogue CTU, which then activates secondary self-renewal in TNBC cells.
Collapse
Affiliation(s)
- Md Khalilur Rahman
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Balasubrahmanyam Umashankar
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Hassan Choucair
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Kirsi Bourget
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, and School of Pharmacy, Faculty of Medicine and Health, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Niemelä LRK, Koskela EV, Frey AD. Modification of the endoplasmic reticulum morphology enables improved recombinant antibody expression in Saccharomyces cerevisiae. J Biotechnol 2024; 387:1-11. [PMID: 38555020 DOI: 10.1016/j.jbiotec.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The yeast Saccharomyces cerevisiae is a versatile cell factory used for manufacturing of a wide range of products, among them recombinant proteins. Protein folding is one of the rate-limiting processes and this shortcoming is often overcome by the expression of folding catalysts and chaperones in the endoplasmic reticulum (ER). In this work, we aimed to establish the impact of ER structure on cellular productivity. The reticulon proteins Rtn1p and Rtn2p, and Yop1p are membrane curvature inducing proteins that define the morphology of the ER and depletion of these proteins creates yeast cells with a higher ER sheet-to-tubule ratio. We created yeast strains with different combinations of deletions of Rtn1p, Rtn2p, and Yop1p coding genes in cells with a normal or expanded ER lumen. We identified strains that reached up to 2.2-fold higher antibody titres compared to the control strain. The expanded ER membrane reached by deletion of the lipid biosynthesis repressor OPI1 was essential for the increased productivity. The improved specific productivity was accompanied by an up to 2-fold enlarged ER surface area and a 1.5-fold increased cross-sectional cell area. Furthermore, the strains with enlarged ER displayed an attenuated unfolded protein response. These results underline the impact that ER structures have on productivity and support the notion that reprogramming subcellular structures belongs into the toolbox of synthetic biology.
Collapse
Affiliation(s)
- Laura R K Niemelä
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland
| | - Essi V Koskela
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland
| | - Alexander D Frey
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland.
| |
Collapse
|
12
|
Ishiwata-Kimata Y, Kimata Y. Fundamental and Applicative Aspects of the Unfolded Protein Response in Yeasts. J Fungi (Basel) 2023; 9:989. [PMID: 37888245 PMCID: PMC10608004 DOI: 10.3390/jof9100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Upon the dysfunction or functional shortage of the endoplasmic reticulum (ER), namely, ER stress, eukaryotic cells commonly provoke a protective gene expression program called the unfolded protein response (UPR). The molecular mechanism of UPR has been uncovered through frontier genetic studies using Saccharomyces cerevisiae as a model organism. Ire1 is an ER-located transmembrane protein that directly senses ER stress and is activated as an RNase. During ER stress, Ire1 promotes the splicing of HAC1 mRNA, which is then translated into a transcription factor that induces the expression of various genes, including those encoding ER-located molecular chaperones and protein modification enzymes. While this mainstream intracellular UPR signaling pathway was elucidated in the 1990s, new intriguing insights have been gained up to now. For instance, various additional factors allow UPR evocation strictly in response to ER stress. The UPR machineries in other yeasts and fungi, including pathogenic species, are another important research topic. Moreover, industrially beneficial yeast strains carrying an enforced and enlarged ER have been produced through the artificial and constitutive induction of the UPR. In this article, we review canonical and up-to-date insights concerning the yeast UPR, mainly from the viewpoint of the functions and regulation of Ire1 and HAC1.
Collapse
Affiliation(s)
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
13
|
Zhao Y, Liu Y, Deng J, Zhu C, Ma X, Jiang M, Fan D. Ginsenoside F4 Alleviates Skeletal Muscle Insulin Resistance by Regulating PTP1B in Type II Diabetes Mellitus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14263-14275. [PMID: 37726223 DOI: 10.1021/acs.jafc.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with increasing morbidity. Protein tyrosine phosphatase 1B (PTP1B) is a major negative regulator of the insulin signaling cascade and has attracted intensive investigation in the T2DM study. Ginseng is widely used to treat metabolic diseases, while the effects of ginsenoside F4 (F4) on T2DM have remained unknown. Here, we identify F4 as an inhibitor of skeletal muscle insulin resistance. The results showed that F4 significantly improved the hyperglycemic state of db/db mice, alleviated dyslipidemia, and promoted skeletal muscle glucose uptake. This phenomenon was closely related to the inhibition of the PTP1B activity. On the one hand, the inhibition of PTP1B activity by F4 resulted in increased insulin receptor (INSR) and insulin receptor substrate 1 tyrosine phosphorylation and enhanced insulin sensitivity. On the other hand, F4 as a PTP1B inhibitor inhibited the inositol-requiring enzyme 1 (IRE-1)/recombinant TNF receptor associated factor 2 (TRAF2)/c-Jun N-terminal kinase signaling pathway and alleviated skeletal muscle endoplasmic reticulum (ER) stress, thereby reducing IRS-1 serine phosphorylation. Both finally activated the PI3K/AKT signaling pathway and promoted glucose transporter protein 4 translocation to the cell membrane for glucose uptake. Taken together, our experiments demonstrate that F4 activates the insulin signaling pathway by inhibiting the activity of PTP1B while inhibiting the IRE-1/TRAF2/JNK signaling pathway, enhancing insulin sensitivity, and alleviating ER stress in the skeletal muscle of db/db mice. Our results indicate that F4 can be used as a PTP1B inhibitor for the treatment of T2DM.
Collapse
Affiliation(s)
- Yujie Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yao Liu
- Shaanxi Institute of Microbiology, Xiying Road 76, Xi'an, Shaanxi 710043, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| |
Collapse
|
14
|
Kischuck LT, Brown AI. Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface. SOFT MATTER 2023; 19:6771-6783. [PMID: 37642520 DOI: 10.1039/d3sm00694h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The endoplasmic reticulum (ER), a cellular organelle that forms a cell-spanning network of tubes and sheets, is an important location of protein synthesis and folding. When the ER experiences sustained unfolded protein stress, IRE1 proteins embedded in the ER membrane activate and assemble into clusters as part of the unfolded protein response (UPR). We use kinetic Monte Carlo simulations to explore IRE1 clustering dynamics on the surface of ER tubes. While initially growing clusters are approximately round, once a cluster is sufficiently large a shorter interface length can be achieved by 'wrapping' around the ER tube. A wrapped cluster can grow without further interface length increases. Relative to wide tubes, narrower tubes enable cluster wrapping at smaller cluster sizes. Our simulations show that wrapped clusters on narrower tubes grow more rapidly, evaporate more slowly, and require a lower protein concentration to grow compared to equal-area round clusters on wider tubes. These results suggest that cluster wrapping, facilitated by narrower tubes, could be an important factor in the growth and stability of IRE1 clusters and thus impact the persistence of the UPR, connecting geometry to signaling behavior. This work is consistent with recent experimental observations of IRE1 clusters wrapped around narrow tubes in the ER network.
Collapse
Affiliation(s)
- Liam T Kischuck
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
15
|
Mingjie Y, Yair A, Tali G. The RIDD activity of C. elegans IRE1 modifies neuroendocrine signaling in anticipation of environment stress to ensure survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552841. [PMID: 37609168 PMCID: PMC10441387 DOI: 10.1101/2023.08.10.552841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Xbp1 splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While Xbp1 splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in C. elegans connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown. We show that cytosolic kinase/RNase domain of C. elegans IRE1 is indeed capable of RIDD in human cells, and that sensory neurons use RIDD to signal environmental stress, by degrading mRNA of TGFβ-like growth factor DAF-7. daf-7 was degraded in human cells by both human and worm IRE1 RNAse activity with same efficiency and specificity as Blos1, confirming daf-7 as RIDD substrate. Surprisingly, daf-7 degradation in vivo was triggered by concentrations of ER stressor tunicamycin too low for xbp-1 splicing. Decrease in DAF-7 normally signals food limitation and harsh environment, triggering adaptive changes to promote population survival. Because C. elegans is a bacteriovore, and tunicamycin, like other common ER stressors, is an antibiotic secreted by Streptomyces spp., we asked whether daf-7 degradation by RIDD could signal pending food deprivation. Indeed, pre-emptive tunicamycin exposure increased survival of C. elegans populations under food limiting/high temperature stress, and this protection was abrogated by overexpression of DAF-7. Thus, C. elegans uses stress-inducing metabolites in its environment as danger signals, and employs IRE1's RIDD activity to modulate the neuroendocrine signaling for survival of upcoming environmental challenge.
Collapse
Affiliation(s)
- Ying Mingjie
- Department of Biology, Drexel University, Philadelphia, PA
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Argon Yair
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
17
|
Hrach VL, King WR, Nelson LD, Conklin S, Pollock JA, Patton-Vogt J. The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2023; 299:104884. [PMID: 37269946 PMCID: PMC10331479 DOI: 10.1016/j.jbc.2023.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The unfolded protein response (UPR) is sensitive to proteotoxic and membrane bilayer stress, both of which are sensed by the ER protein Ire1. When activated, Ire1 splices HAC1 mRNA, producing a transcription factor that targets genes involved in proteostasis and lipid metabolism, among others. The major membrane lipid phosphatidylcholine (PC) is subject to phospholipase-mediated deacylation, producing glycerophosphocholine (GPC), followed by reacylation of GPC through the PC deacylation/reacylation pathway (PC-DRP). The reacylation events occur via a two-step process catalyzed first by the GPC acyltransferase Gpc1, followed by acylation of the lyso-PC molecule by Ale1. However, whether Gpc1 is critical for ER bilayer homeostasis is unclear. Using an improved method for C14-choline-GPC radiolabeling, we first show that loss of Gpc1 results in abrogation of PC synthesis through PC-DRP and that Gpc1 colocalizes with the ER. We then probe the role of Gpc1 as both a target and an effector of the UPR. Exposure to the UPR-inducing compounds tunicamycin, DTT, and canavanine results in a Hac1-dependent increase in GPC1 message. Further, cells lacking Gpc1 exhibit increased sensitivity to those proteotoxic stressors. Inositol limitation, known to induce the UPR via bilayer stress, also induces GPC1 expression. Finally, we show that loss of GPC1 induces the UPR. A gpc1Δ mutant displays upregulation of the UPR in strains expressing a mutant form of Ire1 that is unresponsive to unfolded proteins, indicating that bilayer stress is responsible for the observed upregulation. Collectively, our data indicate an important role for Gpc1 in yeast ER bilayer homeostasis.
Collapse
Affiliation(s)
- Victoria Lee Hrach
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - William R King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Laura D Nelson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Shane Conklin
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - John A Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Popova LG, Khramov DE, Nedelyaeva OI, Volkov VS. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int J Mol Sci 2023; 24:10768. [PMID: 37445944 DOI: 10.3390/ijms241310768] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Collapse
Affiliation(s)
- Larissa G Popova
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Dmitrii E Khramov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Olga I Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Vadim S Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
19
|
Phuong HT, Ishiwata-Kimata Y, Kimata Y. An ER-accumulated mutant of yeast Pma1 causes membrane-related stress to induce the unfolded protein response. Biochem Biophys Res Commun 2023; 667:58-63. [PMID: 37209563 DOI: 10.1016/j.bbrc.2023.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Upon dysfunction of the endoplasmic reticulum (ER), namely ER stress, eukaryotic cells provoke the unfolded protein response (UPR), which is triggered by ER stress sensors including Ire1. While the ER luminal domain of Ire1 is known to directly recognize misfolded soluble proteins accumulated in the ER, the transmembrane domain of Ire1 is involved in its self-association and activation upon membrane lipid-related abnormalities, which are so-called lipid bilayer stress (LBS). Here we inquired how the ER accumulation of misfolded transmembrane proteins induces the UPR. In yeast Saccharomyces cerevisiae cells, a multi-transmembrane protein, Pma1, is not transported to the cell surface but aggregates on the ER membrane when carrying a point mutation (Pma1-2308). Here, we show that GFP-tagged Ire1 co-localized with the Pma1-2308-mCherry puncta. This co-localization and the UPR induced by Pma1-2308-mCherry were compromised by a point mutation in Ire1 that specifically impairs its activation upon LBS. We presume that Pma1-2308-mCherry locally affects the properties (probably the thickness) of the ER membrane at its aggregation sites, where Ire1 is then recruited, self-associated, and then activated.
Collapse
Affiliation(s)
- Huong Thi Phuong
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan; Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet road, Cau Giay, Ha Noi, Viet Nam
| | - Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
20
|
Groenendyk J, Michalak M. Interplay between calcium and endoplasmic reticulum stress. Cell Calcium 2023; 113:102753. [PMID: 37209448 DOI: 10.1016/j.ceca.2023.102753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6. Ca2+ signaling plays an important role in stress responses including the UPR and the ER is the main Ca2+ storage organelle and a source of Ca2+ for cell signaling. The ER contains many proteins involved in Ca2+ import/export/ storage, Ca2+ movement between different cellular organelles and ER Ca2+ stores refilling. Here we focus on selected aspects of ER Ca2+ homeostasis and its role in activation of the ER stress coping responses.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
21
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
22
|
Pontisso I, Ornelas-Guevara R, Combettes L, Dupont G. A journey in UPR modelling. Biol Cell 2023; 115:e2200111. [PMID: 36751133 DOI: 10.1111/boc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.
Collapse
Affiliation(s)
- Ilaria Pontisso
- Institut de Biologie Intégrative de la Cellule (I2BC) - CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France.,"Calcium signaling and microbial infections", Inserm U1280, Gif-sur-Yvette, France
| | | | - Laurent Combettes
- Institut de Biologie Intégrative de la Cellule (I2BC) - CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France.,"Calcium signaling and microbial infections", Inserm U1280, Gif-sur-Yvette, France
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
23
|
Bose A, Kasle G, Jana R, Maulik M, Thomas D, Mulchandani V, Mukherjee P, Koval M, Das Sarma J. Regulatory role of endoplasmic reticulum resident chaperone protein ERp29 in anti-murine β-coronavirus host cell response. J Biol Chem 2023; 299:102836. [PMID: 36572185 PMCID: PMC9788854 DOI: 10.1016/j.jbc.2022.102836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/25/2022] Open
Abstract
Gap junctional intercellular communication (GJIC) involving astrocytes is important for proper CNS homeostasis. As determined in our previous studies, trafficking of the predominant astrocyte GJ protein, Connexin43 (Cx43), is disrupted in response to infection with a neurotropic murine β-coronavirus (MHV-A59). However, how host factors are involved in Cx43 trafficking and the infection response is not clear. Here, we show that Cx43 retention due to MHV-A59 infection was associated with increased ER stress and reduced expression of chaperone protein ERp29. Treatment of MHV-A59-infected astrocytes with the chemical chaperone 4-sodium phenylbutyrate increased ERp29 expression, rescued Cx43 transport to the cell surface, increased GJIC, and reduced ER stress. We obtained similar results using an astrocytoma cell line (delayed brain tumor) upon MHV-A59 infection. Critically, delayed brain tumor cells transfected to express exogenous ERp29 were less susceptible to MHV-A59 infection and showed increased Cx43-mediated GJIC. Treatment with Cx43 mimetic peptides inhibited GJIC and increased viral susceptibility, demonstrating a role for intercellular communication in reducing MHV-A59 infectivity. Taken together, these results support a therapeutically targetable ERp29-dependent mechanism where β-coronavirus infectivity is modulated by reducing ER stress and rescuing Cx43 trafficking and function.
Collapse
Affiliation(s)
- Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Grishma Kasle
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Rishika Jana
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Mahua Maulik
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Deepthi Thomas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Vaishali Mulchandani
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Michael Koval
- Departments of Medicine and Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
24
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|
25
|
Chen L, Bi M, Zhang Z, Du X, Chen X, Jiao Q, Jiang H. The functions of IRE1α in neurodegenerative diseases: Beyond ER stress. Ageing Res Rev 2022; 82:101774. [PMID: 36332756 DOI: 10.1016/j.arr.2022.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/19/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Inositol-requiring enzyme 1 α (IRE1α) is a type I transmembrane protein that resides in the endoplasmic reticulum (ER). IRE1α, which is the primary sensor of ER stress, has been proven to maintain intracellular protein homeostasis by activating X-box binding protein 1 (XBP1). Further studies have revealed novel physiological functions of the IRE1α, such as its roles in mRNA and protein degradation, inflammation, immunity, cell proliferation and cell death. Therefore, the function of IRE1α is not limited to its role in ER stress; IRE1α is also important for regulating other processes related to cellular physiology. Furthermore, IRE1α plays a key role in neurodegenerative diseases that are caused by the phosphorylation of Tau protein, the accumulation of α-synuclein (α-syn) and the toxic effects of mutant Huntingtin (mHtt). Therefore, targeting IRE1α is a valuable approach for treating neurodegenerative diseases and regulating cell functions. This review discusses the role of IRE1α in different cellular processes, and emphasizes the importance of IRE1α in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
26
|
Matabishi-Bibi L, Challal D, Barucco M, Libri D, Babour A. Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 2022; 13:6331. [PMID: 36284099 PMCID: PMC9596429 DOI: 10.1038/s41467-022-34133-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Cellular homeostasis is maintained by surveillance mechanisms that intervene at virtually every step of gene expression. In the nucleus, the yeast chromatin remodeler Isw1 holds back maturing mRNA ribonucleoparticles to prevent their untimely export, but whether this activity operates beyond quality control of mRNA biogenesis to regulate gene expression is unknown. Here, we identify the mRNA encoding the central effector of the unfolded protein response (UPR) HAC1, as an Isw1 RNA target. The direct binding of Isw1 to the 3' untranslated region of HAC1 mRNA restricts its nuclear export and is required for accurate UPR abatement. Accordingly, ISW1 inactivation sensitizes cells to endoplasmic reticulum (ER) stress while its overexpression reduces UPR induction. Our results reveal an unsuspected mechanism, in which binding of ER-stress induced Isw1 to HAC1 mRNA limits its nuclear export, providing a feedback loop that fine-tunes UPR attenuation to guarantee homeostatic adaptation to ER stress.
Collapse
Affiliation(s)
- Laura Matabishi-Bibi
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Drice Challal
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mara Barucco
- grid.461913.80000 0001 0676 2143Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Domenico Libri
- grid.429192.50000 0004 0599 0285Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anna Babour
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
27
|
Bieniawski MA, Stevens KLP, Witham CM, Steuart RFL, Bankaitis VA, Mousley CJ. Diverse Sphingolipid Species Harbor Different Effects on Ire1 Clustering. Int J Mol Sci 2022; 23:ijms232012130. [PMID: 36293008 PMCID: PMC9602660 DOI: 10.3390/ijms232012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Endoplasmic reticulum (ER) function is dedicated to multiple essential processes in eukaryotes, including the processing of secretory proteins and the biogenesis of most membrane lipids. These roles implicate a heavy burden to the organelle, and it is thus prone to fluctuations in the homeostasis of molecules which govern these processes. The unfolded protein response (UPR) is a general ER stress response tasked with maintaining the ER for optimal function, mediated by the master activator Ire1. Ire1 is an ER transmembrane protein that initiates the UPR, forming characteristic oligomers in response to irregularities in luminal protein folding and in the membrane lipid environment. The role of lipids in regulating the UPR remains relatively obscure; however, recent research has revealed a potent role for sphingolipids in its activity. Here, we identify a major role for the oxysterol-binding protein Kes1, whose activity is of consequence to the sphingolipid profile in cells resulting in an inhibition of UPR activity. Using an mCherry-tagged derivative of Ire1, we observe that this occurs due to inhibition of Ire1 to form oligomers. Furthermore, we identify that a sphingolipid presence is required for Ire1 activity, and that specific sphingolipid profiles are of major consequence to Ire1 function. In addition, we highlight cases where Ire1 oligomerization is absent despite an active UPR, revealing a potential mechanism for UPR induction where Ire1 oligomerization is not necessary. This work provides a basis for the role of sphingolipids in controlling the UPR, where their metabolism harbors a crucial role in regulating its onset.
Collapse
Affiliation(s)
- Mark A. Bieniawski
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kofi L. P. Stevens
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Christopher M. Witham
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Robert F. L. Steuart
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Vytas A. Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, Texas A&M University, College Station, TX 77843-1114, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-1114, USA
- Department of Chemistry, Texas A&M University, College Station, TX 77843-1114, USA
| | - Carl J. Mousley
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Correspondence:
| |
Collapse
|
28
|
Belyy V, Zuazo-Gaztelu I, Alamban A, Ashkenazi A, Walter P. Endoplasmic reticulum stress activates human IRE1α through reversible assembly of inactive dimers into small oligomers. eLife 2022; 11:e74342. [PMID: 35730415 PMCID: PMC9217129 DOI: 10.7554/elife.74342] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/19/2022] [Indexed: 01/24/2023] Open
Abstract
Protein folding homeostasis in the endoplasmic reticulum (ER) is regulated by a signaling network, termed the unfolded protein response (UPR). Inositol-requiring enzyme 1 (IRE1) is an ER membrane-resident kinase/RNase that mediates signal transmission in the most evolutionarily conserved branch of the UPR. Dimerization and/or higher-order oligomerization of IRE1 are thought to be important for its activation mechanism, yet the actual oligomeric states of inactive, active, and attenuated mammalian IRE1 complexes remain unknown. We developed an automated two-color single-molecule tracking approach to dissect the oligomerization of tagged endogenous human IRE1 in live cells. In contrast to previous models, our data indicate that IRE1 exists as a constitutive homodimer at baseline and assembles into small oligomers upon ER stress. We demonstrate that the formation of inactive dimers and stress-dependent oligomers is fully governed by IRE1's lumenal domain. Phosphorylation of IRE1's kinase domain occurs more slowly than oligomerization and is retained after oligomers disassemble back into dimers. Our findings suggest that assembly of IRE1 dimers into larger oligomers specifically enables trans-autophosphorylation, which in turn drives IRE1's RNase activity.
Collapse
Affiliation(s)
- Vladislav Belyy
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | | | - Andrew Alamban
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, IncSouth San FranciscoUnited States
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
29
|
Gómez-Puerta S, Ferrero R, Hochstoeger T, Zubiri I, Chao J, Aragón T, Voigt F. Live imaging of the co-translational recruitment of XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE1α. eLife 2022; 11:e75580. [PMID: 35730412 PMCID: PMC9217131 DOI: 10.7554/elife.75580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) to nucleus homeostatic signaling, known as the unfolded protein response (UPR), relies on the non-canonical splicing of XBP1 mRNA. The molecular switch that initiates splicing is the oligomerization of the ER stress sensor and UPR endonuclease IRE1α (inositol-requiring enzyme 1 alpha). While IRE1α can form large clusters that have been proposed to function as XBP1 processing centers on the ER, the actual oligomeric state of active IRE1α complexes as well as the targeting mechanism that recruits XBP1 to IRE1α oligomers remains unknown. Here, we have developed a single-molecule imaging approach to monitor the recruitment of individual XBP1 transcripts to the ER surface. Using this methodology, we confirmed that stable ER association of unspliced XBP1 mRNA is established through HR2 (hydrophobic region 2)-dependent targeting and relies on active translation. In addition, we show that IRE1α-catalyzed splicing mobilizes XBP1 mRNA from the ER membrane in response to ER stress. Surprisingly, we find that XBP1 transcripts are not recruited into large IRE1α clusters, which are only observed upon overexpression of fluorescently tagged IRE1α during ER stress. Our findings support a model where ribosome-engaged, immobilized XBP1 mRNA is processed by small IRE1α assemblies that could be dynamically recruited for processing of mRNA transcripts on the ER.
Collapse
Affiliation(s)
- Silvia Gómez-Puerta
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Roberto Ferrero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Ivan Zubiri
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Jeffrey Chao
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
30
|
Ranganathan PR, Narayanan AK, Nawada N, Rao MJ, Reju KS, Priya SC, Gujarathi T, Manjithaya R, Venkata Rao DK. Diacylglycerol kinase alleviates autophagic degradation of the endoplasmic reticulum in SPT10-deficient yeast to enhance triterpene biosynthesis. FEBS Lett 2022; 596:1778-1794. [PMID: 35661158 DOI: 10.1002/1873-3468.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
A recent study showed that deletion of the gene encoding the transcription regulator SuPpressor of Ty10 (SPT10) increases total phospholipids, and our previous study established a critical link between phospholipids and the mevalonate/ergosterol (MEV/ERG) pathway, which synthesizes triterpenes. This study aims to use spt10Δ yeast to improve triterpene production. Though MEV/ERG pathway was highly expressed in spt10Δ yeast, results showed insufficient accumulation of key metabolites and also revealed massive endoplasmic reticulum (ER) degradation. We found a stable, massive ER structure when we overexpressed diacylglycerol kinase1 (DGK1OE ) in spt10Δ yeast. Analyses of ER-stress and autophagy suggest that DGK1OE in the spt10Δ strain decreased autophagy, resulting in increased MEV/ERG pathway activity. Heterologous expression of β-amyrin synthase showed significant production of the triterpene β-amyrin in DGK1OE spt10Δ yeast. Overall, our study provides a strategic approach to improve triterpene production by increasing ER biogenesis while limiting ER degradation.
Collapse
Affiliation(s)
- Poornima Ramani Ranganathan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Ananth Krishna Narayanan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Niveditha Nawada
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Monala Jayaprakash Rao
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Kalyani Sai Reju
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - S Chaithra Priya
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - Tejal Gujarathi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - D K Venkata Rao
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
31
|
Ishiwata-Kimata Y, Hata T, Kimata Y. Self-association status-dependent inactivation of the endoplasmic reticulum stress sensor Ire1 by C-terminal tagging with artificial peptides. Biosci Biotechnol Biochem 2022; 86:739-746. [PMID: 35285870 DOI: 10.1093/bbb/zbac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/08/2022] [Indexed: 11/14/2022]
Abstract
Upon endoplasmic reticulum (ER) stress, eukaryotic cells commonly induce unfolded protein response (UPR), which is triggered, at least partly, by the ER stress sensor Ire1. Upon ER stress, Ire1 is dimerized or forms oligomeric clusters, resulting in the activation of Ire1 as an endoribonuclease. In ER-stressed Saccharomyces cerevisiae cells, HAC1 mRNA is spliced by Ire1 and then translated into a transcription factor that promotes the UPR. Herein, we report that Ire1 tagged artificially with irrelevant peptides at the C terminus is almost completely inactive when only dimerized, while it induced the UPR as well as untagged Ire1 when clustered. This finding suggests a fundamental difference between the dimeric and clustered forms of Ire1. By comparing UPR levels in S. cerevisiae cells carrying artificially peptide-tagged Ire1 to that in cells carrying untagged Ire1, we estimated the self-association status of Ire1 under various ER stress conditions.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Tatsuya Hata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| |
Collapse
|
32
|
Mercier R, LaPointe P. The role of cellular proteostasis in anti-tumor immunity. J Biol Chem 2022; 298:101930. [PMID: 35421375 PMCID: PMC9108985 DOI: 10.1016/j.jbc.2022.101930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint blockade therapy is perhaps the most important development in cancer treatment in recent memory. It is based on decades of investigation into the biology of immune cells and the role of the immune system in controlling cancer growth. While the molecular circuitry that governs the immune system in general - and anti-tumor immunity in particular - is intensely studied, far less attention has been paid to the role of cellular stress in this process. Proteostasis, intimately linked to cell stress responses, refers to the dynamic regulation of the cellular proteome and is maintained through a complex network of systems that govern the synthesis, folding, and degradation of proteins in the cell. Disruption of these systems can result in the loss of protein function, altered protein function, the formation of toxic aggregates, or pathologies associated with cell stress. However, the importance of proteostasis extends beyond its role in maintaining proper protein function; proteostasis governs how tolerant cells may be to mutations in protein coding genes and the overall half-life of proteins. Such gene expression changes may be associated with human diseases including neurodegenerative diseases, metabolic disease, and cancer and manifest at the protein level against the backdrop of the proteostasis network in any given cellular environment. In this review, we focus on the role of proteostasis in regulating immune responses against cancer as well the role of proteostasis in determining immunogenicity of cancer cells.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
33
|
Pimentel FSA, Machado CM, De-Souza EA, Fernandes CM, De-Queiroz ALFV, Silva GFS, Del Poeta M, Montero-Lomeli M, Masuda CA. Sphingolipid depletion suppresses UPR activation and promotes galactose hypersensitivity in yeast models of classic galactosemia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166389. [PMID: 35301088 DOI: 10.1016/j.bbadis.2022.166389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
Abstract
Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Felipe S A Pimentel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio M Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Evandro A De-Souza
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Luiza F V De-Queiroz
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme F S Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Division of Infectious Diseases, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, New York, USA
| | - Monica Montero-Lomeli
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Induction of the Unfolded Protein Response at High Temperature in Saccharomyces cerevisiae. Int J Mol Sci 2022; 23:ijms23031669. [PMID: 35163590 PMCID: PMC8836091 DOI: 10.3390/ijms23031669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/10/2023] Open
Abstract
Ire1 is an endoplasmic reticulum (ER)-located endoribonuclease that is activated in response to ER stress. In yeast Saccharomyces cerevisiae cells, Ire1 promotes HAC1-mRNA splicing to remove the intron sequence from the HAC1u mRNA (“u” stands for “uninduced”). The resulting mRNA, which is named HAC1i mRNA (“i” stands for “induced”), is then translated into a transcription factor that is involved in the unfolded protein response (UPR). In this study, we designed an oligonucleotide primer that specifically hybridizes to the exon-joint site of the HAC1i cDNA. This primer allowed us to perform real-time reverse transcription-PCR to quantify HAC1i mRNA abundance with high sensitivity. Using this method, we detected a minor induction of HAC1-mRNA splicing in yeast cells cultured at their maximum growth temperature of 39 °C. Based on our analyses of IRE1-gene mutant strains, we propose that when yeast cells are cultured at or near their maximum growth temperature, protein folding in the ER is disturbed, leading to a minor UPR induction that supports cellular growth.
Collapse
|
35
|
Ishiwata-Kimata Y, Le QG, Kimata Y. Induction and Aggravation of the Endoplasmic-Reticulum Stress by Membrane-Lipid Metabolic Intermediate Phosphatidyl- N-Monomethylethanolamine. Front Cell Dev Biol 2022; 9:743018. [PMID: 35071223 PMCID: PMC8770322 DOI: 10.3389/fcell.2021.743018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Quynh Giang Le
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
36
|
Zhou Z, Wang Q, Michalak M. Inositol Requiring Enzyme (IRE), a multiplayer in sensing endoplasmic reticulum stress. Anim Cells Syst (Seoul) 2022; 25:347-357. [PMID: 35059134 PMCID: PMC8765250 DOI: 10.1080/19768354.2021.2020901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Zhixin Zhou
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Qian Wang
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
37
|
Rehni AK, Cho S, Dave KR. Ischemic brain injury in diabetes and endoplasmic reticulum stress. Neurochem Int 2022; 152:105219. [PMID: 34736936 PMCID: PMC8918032 DOI: 10.1016/j.neuint.2021.105219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
Diabetes is a widespread disease characterized by high blood glucose levels due to abnormal insulin activity, production, or both. Chronic diabetes causes many secondary complications including cardiovascular disease: a life-threatening complication. Cerebral ischemia-related mortality, morbidity, and the extent of brain injury are high in diabetes. However, the mechanism of increase in ischemic brain injury during diabetes is not well understood. Multiple mechanisms mediate diabetic hyperglycemia and hypoglycemia-induced increase in ischemic brain injury. Endoplasmic reticulum (ER) stress mediates both brain injury as well as brain protection after ischemia-reperfusion injury. The pathways of ER stress are modulated during diabetes. Free radical generation and mitochondrial dysfunction, two of the prominent mechanisms that mediate diabetic increase in ischemic brain injury, are known to stimulate the pathways of ER stress. Increased ischemic brain injury in diabetes is accompanied by a further increase in the activation of ER stress. As there are many metabolic changes associated with diabetes, differential activation of the pathways of ER stress may mediate pronounced ischemic brain injury in subjects suffering from diabetes. We presently discuss the literature on the significance of ER stress in mediating increased ischemia-reperfusion injury in diabetes.
Collapse
Affiliation(s)
- Ashish K Rehni
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sunjoo Cho
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
38
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
39
|
Han M, Wang W, Gong X, Zhou J, Xu C, Li Y. Increased expression of recombinant chitosanase by co-expression of Hac1p in the yeast Pichia pastoris. Protein Pept Lett 2021; 28:1434-1441. [PMID: 34749599 DOI: 10.2174/0929866528666211105111155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pichia pastoris is one of the most popular eukaryotic hosts for producing heterologous proteins, while increasing secretion of target proteins is still a top priority for their application in industrial fields. Recently, the research effort to enhance protein production therein has focused on up-regulating the unfolded protein response (UPR). OBJECTIVE We evaluated the effects of activated UPR via Hac1p co-expression with the promoter AOX1 (PAOX1) or GAP (PGAP) on expression of recombinant chitosanase (rCBS) in P. pastoris. METHOD The DNA sequence encoding the chitosanase was chemically synthesized and cloned into pPICZαA and the resulted pPICZαA/rCBS was transformed into P. pastoris for expressing rCBS. The P. pastoris HAC1i cDNA was chemically synthesized and cloned into pPIC3.5K to give pPIC3.5K/Hac1p. The HAC1i cDNA was cloned into pGAPZB and then inserted with HIS4 gene from pAO815 to construct the vector pGAPZB/Hac1p/HIS4. For co-expression of Hac1p, the two plasmids pPIC3.5K/Hac1p and pGAPZB/Hac1p/HIS4 were transformed into P. pastoris harboring the CBS gene. The rCBS was assessed based on chitosanase activity and analyzed by SDS-PAGE. The enhanced Kar2p was detected with western blotting to evaluate UPR. RESULTS Hac1p co-expression with PAOX1 enhanced rCBS secretion by 41% at 28°C. Although the level of UPR resulted from Hac1p co-expression with PAOX1 was equivalent to that with PGAP in terms of the quantity of Kar2p (a hallmark of the UPR), substitution of PGAP for PAOX1 further increased rCBS production by 21%. The methanol-utilizing phenotype of P. pastoris did not affect rCBS secretion with co-expression of Hac1p or not. Finally, Hac1p co-expression with PAOX1 or PGAP promoted rCBS secretion from 22 to 30°C and raised the optimum induction temperature. CONCLUSION The study indicated that Hac1p co-expression with PAOX1 or PGAP is an effective strategy to trigger UPR of P. pastoris and a feasible means for improving production of rCBS therein.
Collapse
Affiliation(s)
- Minghai Han
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Weixian Wang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Xun Gong
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Jianli Zhou
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Cunbin Xu
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| | - Yinfeng Li
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang. China
| |
Collapse
|
40
|
The Unfolded Protein Response as a Guardian of the Secretory Pathway. Cells 2021; 10:cells10112965. [PMID: 34831188 PMCID: PMC8616143 DOI: 10.3390/cells10112965] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is the major site of membrane biogenesis in most eukaryotic cells. As the entry point to the secretory pathway, it handles more than 10,000 different secretory and membrane proteins. The insertion of proteins into the membrane, their folding, and ER exit are affected by the lipid composition of the ER membrane and its collective membrane stiffness. The ER is also a hotspot of lipid biosynthesis including sterols, glycerophospholipids, ceramides and neural storage lipids. The unfolded protein response (UPR) bears an evolutionary conserved, dual sensitivity to both protein-folding imbalances in the ER lumen and aberrant compositions of the ER membrane, referred to as lipid bilayer stress (LBS). Through transcriptional and non-transcriptional mechanisms, the UPR upregulates the protein folding capacity of the ER and balances the production of proteins and lipids to maintain a functional secretory pathway. In this review, we discuss how UPR transducers sense unfolded proteins and LBS with a particular focus on their role as guardians of the secretory pathway.
Collapse
|
41
|
Candida albicans Sfp1 Is Involved in the Cell Wall and Endoplasmic Reticulum Stress Responses Induced by Human Antimicrobial Peptide LL-37. Int J Mol Sci 2021; 22:ijms221910633. [PMID: 34638975 PMCID: PMC8508991 DOI: 10.3390/ijms221910633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a commensal fungus of humans but can cause infections, particularly in immunocompromised individuals, ranging from superficial to life-threatening systemic infections. The cell wall is the outermost layer of C. albicans that interacts with the host environment. Moreover, antimicrobial peptides (AMPs) are important components in innate immunity and play crucial roles in host defense. Our previous studies showed that the human AMP LL-37 binds to the cell wall of C. albicans, alters the cell wall integrity (CWI) and affects cell adhesion of this pathogen. In this study, we aimed to further investigate the molecular mechanisms underlying the C. albicans response to LL-37. We found that LL-37 causes cell wall stress, activates unfolded protein response (UPR) signaling related to the endoplasmic reticulum (ER), induces ER-derived reactive oxygen species and affects protein secretion. Interestingly, the deletion of the SFP1 gene encoding a transcription factor reduced C. albicans susceptibility to LL-37, which is cell wall-associated. Moreover, in the presence of LL-37, deletion of SFP1 attenuated the UPR pathway, upregulated oxidative stress responsive (OSR) genes and affected bovine serum albumin (BSA) degradation by secreted proteases. Therefore, these findings suggested that Sfp1 positively regulates cell wall integrity and ER homeostasis upon treatment with LL-37 and shed light on pathogen-host interactions.
Collapse
|
42
|
Levi-Ferber M, Shalash R, Le-Thomas A, Salzberg Y, Shurgi M, Benichou JI, Ashkenazi A, Henis-Korenblit S. Neuronal regulated ire- 1-dependent mRNA decay controls germline differentiation in Caenorhabditis elegans. eLife 2021; 10:65644. [PMID: 34477553 PMCID: PMC8416019 DOI: 10.7554/elife.65644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular events that regulate cell pluripotency versus acquisition of differentiated somatic cell fate is fundamentally important. Studies in Caenorhabditis elegans demonstrate that knockout of the germline-specific translation repressor gld-1 causes germ cells within tumorous gonads to form germline-derived teratoma. Previously we demonstrated that endoplasmic reticulum (ER) stress enhances this phenotype to suppress germline tumor progression(Levi-Ferber et al., 2015). Here, we identify a neuronal circuit that non-autonomously suppresses germline differentiation and show that it communicates with the gonad via the neurotransmitter serotonin to limit somatic differentiation of the tumorous germline. ER stress controls this circuit through regulated inositol requiring enzyme-1 (IRE-1)-dependent mRNA decay of transcripts encoding the neuropeptide FLP-6. Depletion of FLP-6 disrupts the circuit’s integrity and hence its ability to prevent somatic-fate acquisition by germline tumor cells. Our findings reveal mechanistically how ER stress enhances ectopic germline differentiation and demonstrate that regulated Ire1-dependent decay can affect animal physiology by controlling a specific neuronal circuit.
Collapse
Affiliation(s)
- Mor Levi-Ferber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rewayd Shalash
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Adrien Le-Thomas
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Yehuda Salzberg
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Maor Shurgi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jennifer Ic Benichou
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, South San Francisco, United States
| | - Sivan Henis-Korenblit
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
43
|
Zhao Y, Su R, Li S, Mao Y. Mechanistic analysis of cadmium toxicity in Saccharomyces cerevisiae. FEMS Microbiol Lett 2021; 368:6346568. [PMID: 34370016 DOI: 10.1093/femsle/fnab095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
As a potentially toxic heavy metal, Cadmium (Cd) can cause endoplasmic reticulum and oxidative stress, and thus lead to cell death. To explore the mechanisms of Cd toxicity, we investigated the UPRE-lacZ expression, the intracellular reactive oxygen species (ROS) and cell death in the 151 Cd-sensitive mutants of Saccharomyces cerevisiae in response to Cd stress. We identified 101 genes regulating UPRE-lacZ expression were involved in preventing ROS production and/or cell death from increasing to high levels, while mutants for 72 genes caused both elevated ROS production and cell death, indicating the Cd-induced ROS production and cell death are mediated by UPR. Genes involved in cell wall integrity (CWI) pathway, vacuolar protein sorting (VPS) and vacuolar transport, calcium/calcineurin pathway and PHO pathways were all required for the Cd-induced UPR, intracellular ROS and cell death. To conclude, this study highlights the importance of Cd-induced UPR, intracellular ROS levels and cell death that may play crucial roles in Cd-induced toxicity.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruifang Su
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yin Mao
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
44
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Väth K, Mattes C, Reinhard J, Covino R, Stumpf H, Hummer G, Ernst R. Cysteine cross-linking in native membranes establishes the transmembrane architecture of Ire1. J Cell Biol 2021; 220:212449. [PMID: 34196665 PMCID: PMC8256922 DOI: 10.1083/jcb.202011078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
The ER is a key organelle of membrane biogenesis and crucial for the folding of both membrane and secretory proteins. Sensors of the unfolded protein response (UPR) monitor the unfolded protein load in the ER and convey effector functions for maintaining ER homeostasis. Aberrant compositions of the ER membrane, referred to as lipid bilayer stress, are equally potent activators of the UPR. How the distinct signals from lipid bilayer stress and unfolded proteins are processed by the conserved UPR transducer Ire1 remains unknown. Here, we have generated a functional, cysteine-less variant of Ire1 and performed systematic cysteine cross-linking experiments in native membranes to establish its transmembrane architecture in signaling-active clusters. We show that the transmembrane helices of two neighboring Ire1 molecules adopt an X-shaped configuration independent of the primary cause for ER stress. This suggests that different forms of stress converge in a common, signaling-active transmembrane architecture of Ire1.
Collapse
Affiliation(s)
- Kristina Väth
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Roberto Covino
- Frankfurt Institute of Advanced Sciences, Goethe-University, Frankfurt, Germany
| | - Heike Stumpf
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany.,Institute of Biophysics, Goethe-University, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany.,Preclinical Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
46
|
Farhadi Z, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Esmailidehaj M, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Rezvani ME, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Shahbazian M, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Jafary F, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Ghafari MA, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Alizade J, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran, Azizian H, Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. A review of the Effects of 17 β-Estradiol on Endoplasmic Reticulum Stress: Mechanisms and Pathway. PHYSIOLOGY AND PHARMACOLOGY 2021; 0:0-0. [DOI: 10.52547/phypha.26.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
47
|
Zhao Y, Li S, Wang J, Liu Y, Deng Y. Roles of High Osmolarity Glycerol and Cell Wall Integrity Pathways in Cadmium Toxicity in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22126169. [PMID: 34201004 PMCID: PMC8226467 DOI: 10.3390/ijms22126169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a carcinogen that can induce ER stress, DNA damage, oxidative stress and cell death. The yeast mitogen-activated protein kinase (MAPK) signalling pathways paly crucial roles in response to various stresses. Here, we demonstrate that the unfolded protein response (UPR) pathway, the high osmolarity glycerol (HOG) pathway and the cell wall integrity (CWI) pathway are all essential for yeast cells to defend against the cadmium-induced toxicity, including the elevated ROS and cell death levels induced by cadmium. We show that the UPR pathway is required for the cadmium-induced phosphorylation of HOG_MAPK Hog1 but not for CWI_MAPK Slt2, while Slt2 but not Hog1 is required for the activation of the UPR pathway through the transcription factors of Swi6 and Rlm1. Moreover, deletion of HAC1 and IRE1 could promote the nuclear accumulation of Hog1, and increase the cytosolic and bud neck localisation of Slt2, indicating crucial roles of Hog1 and Slt2 in regulating the cellular process in the absence of UPR pathway. Altogether, our findings highlight the significance of these two MAPK pathways of HOG and CWI and their interrelationship with the UPR pathway in responding to cadmium-induced toxicity in budding yeast.
Collapse
Affiliation(s)
- Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Shiyun Li
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
| | - Jing Wang
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yingli Liu
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology and Business University, Beijing 100048, China; (J.W.); (Y.L.)
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China;
- Correspondence:
| |
Collapse
|
48
|
A role for the ribosome-associated complex in activation of the IRE1 branch of UPR. Cell Rep 2021; 35:109217. [PMID: 34107246 DOI: 10.1016/j.celrep.2021.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The ubiquitous ribosome-associated complex (RAC) is a chaperone that spans ribosomes, making contacts near both the polypeptide exit tunnel and the decoding center, a position prime for sensing and coordinating translation and folding. Loss of RAC is known to result in growth defects and sensitization to translational and osmotic stresses. However, the physiological substrates of RAC and the mechanism(s) by which RAC is involved in responding to specific stresses in higher eukaryotes remain obscure. The data presented here uncover an essential function of mammalian RAC in the unfolded protein response (UPR). Knockdown of RAC sensitizes mammalian cells to endoplasmic reticulum (ER) stress and selectively interferes with IRE1 branch activation. Higher-order oligomerization of the inositol-requiring enzyme 1α (IRE1α) kinase/endoribonuclease depends upon RAC. These results reveal a surveillance function for RAC in the UPR, as follows: modulating IRE1α clustering as required for endonuclease activation and splicing of the substrate Xbp1 mRNA.
Collapse
|
49
|
Raschmanová H, Weninger A, Knejzlík Z, Melzoch K, Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol 2021; 105:4397-4414. [PMID: 34037840 PMCID: PMC8195892 DOI: 10.1007/s00253-021-11336-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
- daspool Association, Wädenswil, Switzerland
| |
Collapse
|
50
|
Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:1-20. [PMID: 34392927 DOI: 10.1016/bs.ircmb.2021.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular homeostasis is essential for healthy functioning of cells and tissues as well as proper organ development and maintenance. A disruption in cellular homeostasis triggers stress responses including the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress coping response. There is increasing evidence that Ca2+ signaling plays a pivotal role in stress responses, as Ca2+ is involved many cellular activities. The ER is the main Ca2+ storage organelle and the source of Ca2+ for intracellular signaling. The ER is equipped with a variety of stress sensors and contains many Ca2+ handling proteins that support a role for Ca2+ in stress sensing and in coordinating strategies required to cope with cellular stress. Maintenance of ER Ca2+ homeostasis is therefore vital in sustaining cellular functions especially during times of cellular stress. Here we focus on selected aspects of ER Ca2+ homeostasis, its links to ER stress, and activation of the ER stress coping response.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|