1
|
Xi H, Shan W, Li M, Wang Z, Li Y. Trehalose attenuates testicular aging by activating autophagy and improving mitochondrial quality. Andrology 2025; 13:911-920. [PMID: 39195433 DOI: 10.1111/andr.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Reproductive aging can adversely affect male fertility and the health of offspring. The aging process is accompanied by impaired autophagy. Recent studies have shown that Trehalose plays an important role in the prevention of various diseases by regulating autophagy. However, the roles of Trehalose in testicular aging and reproductive decline remain to be clarified. OBJECTIVE The present study aimed to evaluate the protective effects of Trehalose on testes in an aging mouse model. MATERIALS AND METHODS In this study, an in vivo aging model in mice by administering D-galactose was established to explore the protective effect of Trehalose on testicular aging. We examined histological changes and related indicators of apoptosis, autophagy, mitochondrial biogenesis, and sperm quality. RESULTS D-galactose treatment induced oxidative stress, apoptosis, and impairment of autophagy of testicular cells in mouse testes. Trehalose administration significantly reduced germ cell apoptosis and DNA damage caused by D-galactose-induced oxidative stress. Notably, Trehalose activated autophagy activity and improved mitochondrial function in testicular cells. Furthermore, Trehalose treatment increased the expression level of the tight junction protein ZO-1, and accelerated clearance of damaged mitochondria in Sertoli cells, indicating that Trehalose ameliorated Sertoli cell function in D-galactose-induced aging testes. DISCUSSION AND CONCLUSION These findings suggest that Trehalose administration activated the autophagy activity in testicular cells and improved mitochondrial function, thereby effectively preventing testicular aging. Trehalose and its activated autophagy are crucial for preventing testicular aging, thus restoring autophagy activity by administering Trehalose could be a promising means to delay aging.
Collapse
Affiliation(s)
- Huaming Xi
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Wenjing Shan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Minghui Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Ziqian Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Bui V, Liang X, Ye Y, Giang W, Tian F, Takahashi Y, Wang HG. Blocking autophagosome closure manifests the roles of mammalian Atg8-family proteins in phagophore formation and expansion during nutrient starvation. Autophagy 2025; 21:1059-1074. [PMID: 39694607 PMCID: PMC12013414 DOI: 10.1080/15548627.2024.2443300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved cellular degradation pathway, involves phagophores that sequester cytoplasmic constituents and mature into autophagosomes for subsequent lysosomal delivery. The ATG8 gene family, comprising the MAP1LC3/LC3 and GABARAP/GBR subfamilies in mammals, encodes ubiquitin-like proteins that are conjugated to phagophore membranes during autophagosome biogenesis. A central question in the field is how Atg8-family proteins are precisely involved in autophagosome formation, which remains controversial and challenging, at least in part due to the short lifespan of phagophores. In this study, we depleted the autophagosome closure regulator VPS37A to arrest autophagy at the vesicle completion step and determined the roles of mammalian Atg8-family proteins (mATG8s) in nutrient starvation-induced autophagosome biogenesis. Our investigation revealed that LC3 loss hinders phagophore formation, while GBR loss impedes both phagophore formation and expansion. The defect in membrane expansion by GBR loss appears to be attributed to compromised recruitment of ATG proteins containing an LC3-interacting region (LIR), including ULK1 and ATG3. Moreover, a combined deficiency of both LC3 and GBR subfamilies nearly completely inhibits phagophore formation, highlighting their redundant regulation of this process. Consequently, cells lacking all mATG8 members exhibit defects in downstream events such as ESCRT recruitment and autophagic flux. Collectively, these findings underscore the critical roles of mammalian Atg8-family proteins in phagophore formation and expansion during autophagy.Abbreviation: AIM: Atg8-family interacting motif; ADS: Atg8-interacting motif docking site; ATG: autophagy related; BafA1: bafilomycin A1; CL: control; ESCRT: endosomal sorting complex required for transport; FACS: fluorescence activated cell sorting; GBR: GABARAP; GBRL1: GABARAPL1; GBRL2: GABARAPL2; GBRL3: GABARAPL3; HKO: hexa-knockout; IP: immunoprecipitation; KO: knockout; LDS: LC3-interacting-region docking site; LIR: LC3-interacting region; mATG8: mammalian Atg8-family protein; MIL: membrane-impermeable ligands; MPL: membrane-permeable ligands; RT: room temperature; Stv: starved; TKO: triple-knockout; TMR: tetramethylrhodamine; UEVL: ubiquitin E2 variant-like; WCLs: whole cell lysates; WT: wild-type.
Collapse
Affiliation(s)
- Van Bui
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xinwen Liang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yansheng Ye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - William Giang
- Advanced Light Microscopy Core Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yoshinori Takahashi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hong-Gang Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
3
|
Song JZ, Li H, Yang H, Liu R, Zhang W, He T, Xie MX, Chen C, Cui L, Wu S, Rong Y, Pan LF, Zhu J, Gong Q, Wang J, Qin Z, Xie Z. Recruitment of Atg1 to the phagophore by Atg8 orchestrates autophagy machineries. Nat Struct Mol Biol 2025:10.1038/s41594-025-01546-0. [PMID: 40295771 DOI: 10.1038/s41594-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Autophagy-related (Atg) proteins catalyze autophagosome formation at the phagophore assembly site (PAS). The assembly of Atg proteins at the PAS follows a semihierarchical order, in which Atg8 is thought to be quite downstream but still able to control the size of autophagosomes. Yet, how Atg8 coordinates multiple branches of autophagy machinery to regulate autophagosomal size is not clear. Here, we show that, in yeast, Atg8 positively regulates the autophagy-specific phosphatidylinositol 3-OH kinase complex and the retrograde trafficking of Atg9 vesicles through interaction with Atg1. Mechanistically, Atg8 does not enhance the kinase activity of Atg1; instead, it recruits Atg1 to the surface of the phagophore likely to orient Atg1's activity toward select substrates, leading to efficient phagophore expansion. Artificial tethering of Atg1 kinase domains to Atg8s enhanced autophagy in yeast, human and plant cells and improved muscle performance in worms. We propose that Atg8-mediated relocation of Atg1 from the PAS scaffold to the phagophore is a critical step in positive autophagy regulation.
Collapse
Affiliation(s)
- Jing-Zhen Song
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Meng-Xi Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shian Wu
- School of Life Sciences, Nankai University, Tianjin, China
| | - Yueguang Rong
- School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Feng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| | - Zhao Qin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
5
|
Rahim MA, Seo H, Barman I, Hossain MS, Shuvo MSH, Song HY. Insights into Autophagy in Microbiome Therapeutic Approaches for Drug-Resistant Tuberculosis. Cells 2025; 14:540. [PMID: 40214493 PMCID: PMC11989032 DOI: 10.3390/cells14070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Tuberculosis, primarily caused by Mycobacterium tuberculosis, is an airborne lung disease and continues to pose a significant global health threat, resulting in millions of deaths annually. The current treatment for tuberculosis involves a prolonged regimen of antibiotics, which leads to complications such as recurrence, drug resistance, reinfection, and a range of side effects. This scenario underscores the urgent need for novel therapeutic strategies to combat this lethal pathogen. Over the last two decades, microbiome therapeutics have emerged as promising next-generation drug candidates, offering advantages over traditional medications. In 2022, the Food and Drug Administration approved the first microbiome therapeutic for recurrent Clostridium infections, and extensive research is underway on microbiome treatments for various challenging diseases, including metabolic disorders and cancer. Research on microbiomes concerning tuberculosis commenced roughly a decade ago, and the scope of this research has broadened considerably over the last five years, with microbiome therapeutics now viewed as viable options for managing drug-resistant tuberculosis. Nevertheless, the understanding of their mechanisms is still in its infancy. Although autophagy has been extensively studied in other diseases, research into its role in tuberculosis is just beginning, with preliminary developments in progress. Against this backdrop, this comprehensive review begins by succinctly outlining tuberculosis' characteristics and assessing existing treatments' strengths and weaknesses, followed by a detailed examination of microbiome-based therapeutic approaches for drug-resistant tuberculosis. Additionally, this review focuses on establishing a basic understanding of microbiome treatments for tuberculosis, mainly through the lens of autophagy as a mechanism of action. Ultimately, this review aims to contribute to the foundational comprehension of microbiome-based therapies for tuberculosis, thereby setting the stage for the further advancement of microbiome therapeutics for drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Md Abdur Rahim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
- Probiotics Microbiome Commercialization Research Center (PMC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Indrajeet Barman
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Mohammed Solayman Hossain
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
- Human Microbiome Medical Research Center (HM·MRC), School of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
- Probiotics Microbiome Commercialization Research Center (PMC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Republic of Korea
| |
Collapse
|
6
|
Tutas J, Tolve M, Özer-Yildiz E, Ickert L, Klein I, Silverman Q, Liebsch F, Dethloff F, Giavalisco P, Endepols H, Georgomanolis T, Neumaier B, Drzezga A, Schwarz G, Thorens B, Gatto G, Frezza C, Kononenko NL. Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity. Nat Metab 2025; 7:297-320. [PMID: 39815080 PMCID: PMC11860254 DOI: 10.1038/s42255-024-01196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/29/2024] [Indexed: 01/18/2025]
Abstract
Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
Collapse
Affiliation(s)
- Janine Tutas
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marianna Tolve
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lotte Ickert
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Ines Klein
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Quinn Silverman
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | | | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | | | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Jülich, Germany
| | - Alexander Drzezga
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Molecular Organization of the Brain (INM-2), Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Graziana Gatto
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Christian Frezza
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany.
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
7
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Ahn J, Jang SH, Jang S, Yoon JH, Lee MG, Chi SG. XAF1 is secreted from stressed tumor cells to activate T cell-mediated tumor surveillance via Lck-ERK signaling. Neoplasia 2025; 59:101094. [PMID: 39615106 DOI: 10.1016/j.neo.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
X-linked inhibitor of apoptosis-associated factor 1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in multiple types of human malignancies. Nevertheless, the molecular basis for the XAF1-mediated tumor suppression remains largely undefined. Here, we report that XAF1 is secreted from cells under various cytotoxic stress conditions and activates T cell-mediated tumor surveillance. In cancer cells exposed to interferon -γ, tumor necrosis factor -α, and etoposide, XAF1 is elevated and actively secreted through the unconventional endo-lysosomal trafficking pathway and the zinc finger 4 domain of XAF1 plays an essential for this secretion. Secreted XAF1 is internalized into nearby T cells through clathrin-mediated endocytosis and stimulates proliferation, migration, and tumor infiltration of T cells. Internalized XAF1 activates RAF-MEK-ERK signaling through the direct interaction with and phosphorylation of lymphocyte-specific protein tyrosine kinase. In response to interferon -γ injection, Xaf1+/+ tumors display significantly higher regression rate and T cell infiltration compared to Xaf1-/- tumors while Xaf1-/- tumors are markedly reduced by injection of recombinant Xaf1. XAF1 expression is associated with overall survival in T cell-enriched cancer patients and also correlates with prognosis in T cell-based immunotherapies. Together, our study identifies XAF1 as a novel secretory immune-modulatory tumor suppressor, illuminating the mechanistic consequence of its inactivation in tumorigenesis.
Collapse
Affiliation(s)
- Jieun Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seung-Hun Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sungchan Jang
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Hye Yoon
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
10
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
11
|
Qi LFR, Liu Y, Liu S, Xiang L, Liu Z, Liu Q, Zhao JQ, Xu X. Phillyrin promotes autophagosome formation in A53T-αSyn-induced Parkinson's disease model via modulation of REEP1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155952. [PMID: 39178680 DOI: 10.1016/j.phymed.2024.155952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The preservation of autophagosome formation presents a promising strategy for tackling neurological disorders, such as Parkinson's disease (PD). Mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) serve not only as a focal point linked to various neurological disorders but also play a crucial role in supporting the biogenesis of autophagosomes. PURPOSE This investigation aimed to elucidate the neuroprotective properties of phillyrin against PD and its underlying mechanisms in promoting autophagosome formation. METHODS ER and mitochondria co-localization was assessed via fluorescent staining. Annexin V-fluorescein isothiocyanate (FITC) fluorescence was employed to quantify accessible cardiolipin (CL) on mitochondrial surfaces. The levels of CL within the MAM fraction of SH-SY5Y cells were evaluated using a CL probe assay kit. Monodansylcadaverine staining was utilized to detect autophagosome formation in SH-SY5Y cells. In an A53T-alpha-synuclein (αSyn)-induced PD mouse model, the anti-PD properties of phillyrin were assessed using open field, pole climbing, and rotarod tests, as well as immunohistochemistry staining of TH+ neurons in the brain sections. RESULTS In A53T-αSyn-treated SH-SY5Y cells, phillyrin facilitated autophagosome formation by suppressing CL externalization and restoring MAM integrity. Phillyrin enhanced the localization of receptor expression-enhancing protein 1 (REEP1) within MAM and mitochondria, bolstering MAM formation. Increased REEP1 levels in mitochondria, attributed to phillyrin, enhanced the interaction between REEP1 and NDPK-D, thereby reducing CL externalization. Furthermore, phillyrin exhibited a dose-dependent enhancement of motor function in mice, accompanied by an increase in the abundance of dopaminergic neurons within the substantia nigra. CONCLUSIONS These findings illuminate phillyrin's ability to enhance MAM formation through upregulation of REEP1 expression within MAM, while concurrently attenuating CL externalization via the REEP1-NDPK-D interaction. These mechanisms bolster autophagosome biogenesis, offering resilience against A53T-αSyn-induced PD. Thus, our study advances the understanding of phillyrin's complex mechanisms and underscores its potential as a therapeutic approach for PD, opening new avenues in natural product pharmacology.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Yuci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Xiang
- Department of Translational Medicine Research Institute, Jiangsu Yifengrong Biotechnology Co., Ltd., Nanjing, Jiangsu, China
| | - Zhiyuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
12
|
Groopman E, Mohan S, Waddell A, Wilke M, Fernandez R, Weaver M, Chen H, Liu H, Bali D, Baudet H, Clarke L, Hung C, Mao R, Pinto E Vairo F, Racacho L, Yuzyuk T, Craigen WJ, Goldstein J. Assessment of genes involved in lysosomal diseases using the ClinGen clinical validity framework. Mol Genet Metab 2024; 143:108593. [PMID: 39426251 PMCID: PMC11560485 DOI: 10.1016/j.ymgme.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Lysosomal diseases (LDs) are a heterogeneous group of rare genetic disorders that result in impaired lysosomal function, leading to progressive multiorgan system dysfunction. Accurate diagnosis is paramount to initiating targeted therapies early in the disease process in addition to providing prognostic information and appropriate support for families. In recent years, genomic sequencing technologies have become the first-line approach in the diagnosis of LDs. Understanding the clinical validity of the role of a gene in a disease is critical for the development of genomic technologies, such as which genes to include on next generation sequencing panels, and the interpretation of results from exome and genome sequencing. To this aim, the ClinGen Lysosomal Diseases Gene Curation Expert Panel utilized a semi-quantitative framework incorporating genetic and experimental evidence to assess the clinical validity of the 56 LD-associated genes on the Lysosomal Disease Network's list. Here, we describe the results, and the key themes and challenges encountered.
Collapse
Affiliation(s)
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amber Waddell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Meredith Weaver
- American College of Genetics and Genomics, Bethesda, MD, USA
| | - Hongjie Chen
- PreventionGenetics/Exact Sciences, Marshfield, WI, USA
| | | | | | - Heather Baudet
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorne Clarke
- University of British Columbia, Vancouver, Canada
| | | | - Rong Mao
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | | | - Tatiana Yuzyuk
- ARUP, Salt Lake City, UT, USA; University of Utah, Salt Lake City, UT, USA
| | | | - Jennifer Goldstein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Matboli M, Diab GI, Saad M, Khaled A, Roushdy M, Ali M, ELsawi HA, Aboughaleb IH. Machine-Learning-Based Identification of Key Feature RNA-Signature Linked to Diagnosis of Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101456. [PMID: 39055616 PMCID: PMC11268357 DOI: 10.1016/j.jceh.2024.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third prime cause of malignancy-related mortality worldwide. Early and accurate identification of HCC is crucial for good prognosis, efficacy of therapy, and survival rates of the patients. We aimed to develop a machine-learning model incorporating differentially expressed RNA signatures with laboratory parameters to construct an RNA signature-based diagnostic model for HCC. Methods We have used five classifiers (KNN, RF, SVM, LGBM, and DNNs) to predict the liver disease (HCC). The classifiers were trained on 187 samples and then tested on 80 samples. The model included 22 features (age, sex, smoking, cirrhosis, non-cirrhosis, albumin, ALT, AST bilirubin (total and direct), INR, AFP, HBV Ag, HCV Abs, RQmiR-1298, RQmiR-1262, RQmiR-106b-3p, RQmRNARAB11A, and RQSTAT1, RQmRNAATG12, RQLnc-WRAP53, RQLncRNA- RP11-513I15.6). Results LGBM achieved the highest accuracy of 98.75% in predicting HCC among all models surpassing Random Forest (96.25%), DNN (91.25%), SVC (88.75%), and KNN (87.50%). Conclusion Our machine-learning model incorporating the expression data of RAB11A/STAT1/ATG12/miR-1262/miR-1298/miR-106b-3p/lncRNA-RP11-513I15.6/lncRNA-WRAP53 signature and clinical data represents a potential novel diagnostic model for HCC.
Collapse
Affiliation(s)
- Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Gouda I. Diab
- Biomedical Engineering Department, Egyptian Armed Forces, Cairo, Egypt
| | - Maha Saad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Marian Roushdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Marwa Ali
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt
| | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr City, Egypt
| | | |
Collapse
|
14
|
Norell PN, Campisi D, Mohan J, Wollert T. Biogenesis of omegasomes and autophagosomes in mammalian autophagy. Biochem Soc Trans 2024; 52:2145-2155. [PMID: 39392358 PMCID: PMC11555699 DOI: 10.1042/bst20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that maintains cellular homeostasis by promoting the degradation of damaged or superfluous cytoplasmic material. A hallmark of autophagy is the generation of membrane cisternae that sequester autophagic cargo. Expansion of these structures allows cargo to be engulfed in a highly selective and exclusive manner. Cytotoxic stress or starvation induces the formation of autophagosomes that sequester bulk cytoplasm instead of selected cargo. This rather nonselective pathway is essential for maintaining vital cellular functions during adverse conditions and is thus a major stress response pathway. Both selective and nonselective autophagy rely on the same molecular machinery. However, due to the different nature of cargo to be sequestered, the involved molecular mechanisms are fundamentally different. Although intense research over the past decades has advanced our understanding of autophagy, fundamental questions remain to be addressed. This review will focus on molecular principles and open questions regarding the formation of omegasomes and phagophores in nonselective mammalian autophagy.
Collapse
Affiliation(s)
- Puck N. Norell
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| |
Collapse
|
15
|
Zhao Y, Wang Q, Zhu J, Cai J, Feng X, Song Q, Jiang H, Ren W, He Y, Wang P, Feng D, Yu J, Liu Y, Wu Q, Jitkaew S, Cai Z. Identification of KW-2449 as a dual inhibitor of ferroptosis and necroptosis reveals that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Cell Death Dis 2024; 15:764. [PMID: 39433736 PMCID: PMC11493980 DOI: 10.1038/s41419-024-07157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Necroptosis and ferroptosis are two distinct forms of necrotic-like cell death in terms of their morphological features and regulatory mechanisms. These two types of cell death can coexist in disease and contribute to pathological processes. Inhibition of both necroptosis and ferroptosis has been shown to enhance therapeutic effects in treating complex necrosis-related diseases. However, targeting both necroptosis and ferroptosis by a single compound can be challenging, as these two forms of cell death involve distinct molecular pathways. In this study, we discovered that KW-2449, a previously described necroptosis inhibitor, also prevented ferroptosis both in vitro and in vivo. Mechanistically, KW-2449 inhibited ferroptosis by targeting the autophagy pathway. We further identified that KW-2449 functioned as a ULK1 (Unc-51-like kinase 1) inhibitor to block ULK1 kinase activity in autophagy. Remarkably, we found that Necrostatin-1, a classic necroptosis inhibitor that has been shown to prevent ferroptosis, also targets the autophagy pathway to suppress ferroptosis. This study provides the first understanding of how necroptosis inhibitors can prevent ferroptosis and suggests that autophagy is a targetable pathway for necroptosis inhibitors to prevent ferroptosis. Therefore, the identification and design of pharmaceutical molecules that target the autophagy pathway from necroptosis inhibitors is a promising strategy to develop dual inhibitors of necroptosis and ferroptosis in clinical application.
Collapse
Affiliation(s)
- Yaxing Zhao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingsong Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jing Zhu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jin Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Xiaona Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qianqian Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Hui Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Wenqing Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan He
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Du Feng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qihui Wu
- Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Siriporn Jitkaew
- Center of Excellence for Cancer and Inflammation, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, Yinchuan, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
16
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
17
|
Montes ID, Amirthagunanathan S, Joshi AS, Raman M. The p97-UBXD8 complex maintains peroxisome abundance by suppressing pexophagy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614749. [PMID: 39386596 PMCID: PMC11463529 DOI: 10.1101/2024.09.24.614749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Peroxisomes are vital organelles involved in key metabolic functions in eukaryotic cells. Their significance is highlighted by peroxisome biogenesis disorders; severe childhood diseases marked by disrupted lipid metabolism. One mechanism regulating peroxisome abundance is through selective ubiquitylation of peroxisomal membrane proteins that triggers peroxisome degradation via selective autophagy (pexophagy). However, the mechanisms regulating pexophagy remain poorly understood in mammalian cells. Here we show that the evolutionarily conserved AAA-ATPase p97 and its membrane embedded adaptor UBXD8 are essential for maintaining peroxisome abundance. From quantitative proteomic studies we reveal that loss of UBXD8 affects many peroxisomal proteins. We find depletion of UBXD8 results in a loss of peroxisomes in a manner that is independent of the known role of UBXD8 in ER associated degradation (ERAD). Loss of UBXD8 or inhibition of p97 increases peroxisomal turnover through autophagy and can be rescued by depleting key autophagy proteins or overexpressing the deubiquitylating enzyme USP30. Furthermore, we find increased ubiquitylation of the peroxisomal membrane protein PMP70 in cells lacking UBXD8 or p97. Collectively, our findings identify a new role for the p97-UBXD8 complex in regulating peroxisome abundance by suppressing pexophagy.
Collapse
Affiliation(s)
- Iris D. Montes
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| | | | - Amit S. Joshi
- Department of Biochemistry & Cell and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston MA
| |
Collapse
|
18
|
Mohan J, Moparthi SB, Girard-Blanc C, Campisi D, Blanchard S, Nugues C, Rama S, Salles A, Pénard E, Vassilopoulos S, Wollert T. ATG16L1 induces the formation of phagophore-like membrane cups. Nat Struct Mol Biol 2024; 31:1448-1459. [PMID: 38834913 DOI: 10.1038/s41594-024-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/28/2024] [Indexed: 06/06/2024]
Abstract
The hallmark of non-selective autophagy is the formation of cup-shaped phagophores that capture bulk cytoplasm. The process is accompanied by the conjugation of LC3B to phagophores by an E3 ligase complex comprising ATG12-ATG5 and ATG16L1. Here we combined two complementary reconstitution approaches to reveal the function of LC3B and its ligase complex during phagophore expansion. We found that LC3B forms together with ATG12-ATG5-ATG16L1 a membrane coat that remodels flat membranes into cups that closely resemble phagophores. Mechanistically, we revealed that cup formation strictly depends on a close collaboration between LC3B and ATG16L1. Moreover, only LC3B, but no other member of the ATG8 protein family, promotes cup formation. ATG16L1 truncates that lacked the C-terminal membrane binding domain catalyzed LC3B lipidation but failed to assemble coats, did not promote cup formation and inhibited the biogenesis of non-selective autophagosomes. Our results thus demonstrate that ATG16L1 and LC3B induce and stabilize the characteristic cup-like shape of phagophores.
Collapse
Affiliation(s)
- Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Satish B Moparthi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Christine Girard-Blanc
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Stéphane Blanchard
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Charlotte Nugues
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Sowmya Rama
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France
| | - Audrey Salles
- Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Esthel Pénard
- Ultrastructural BioImaging Core Facility (UBI), C2RT, Institut Pasteur, Université Paris Cité, Paris, France
| | - Stéphane Vassilopoulos
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, Paris, France.
| |
Collapse
|
19
|
Kilinç G, Boland R, Heemskerk MT, Spaink HP, Haks MC, van der Vaart M, Ottenhoff THM, Meijer AH, Saris A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol Spectr 2024; 12:e0016724. [PMID: 38916320 PMCID: PMC11302041 DOI: 10.1128/spectrum.00167-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) as well as nontuberculous mycobacteria are intracellular pathogens whose treatment is extensive and increasingly impaired due to the rise of mycobacterial drug resistance. The loss of antibiotic efficacy has raised interest in the identification of host-directed therapeutics (HDT) to develop novel treatment strategies for mycobacterial infections. In this study, we identified amiodarone as a potential HDT candidate that inhibited both intracellular Mtb and Mycobacterium avium in primary human macrophages without directly impairing bacterial growth, thereby confirming that amiodarone acts in a host-mediated manner. Moreover, amiodarone induced the formation of (auto)phagosomes and enhanced autophagic targeting of mycobacteria in macrophages. The induction of autophagy by amiodarone is likely due to enhanced transcriptional regulation, as the nuclear intensity of the transcription factor EB, the master regulator of autophagy and lysosomal biogenesis, was strongly increased. Furthermore, blocking lysosomal degradation with bafilomycin impaired the host-beneficial effect of amiodarone. Finally, amiodarone induced autophagy and reduced bacterial burden in a zebrafish embryo model of tuberculosis, thereby confirming the HDT activity of amiodarone in vivo. In conclusion, we have identified amiodarone as an autophagy-inducing antimycobacterial HDT that improves host control of mycobacterial infections. IMPORTANCE Due to the global rise in antibiotic resistance, there is a strong need for alternative treatment strategies against intracellular bacterial infections, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria. Stimulating host defense mechanisms by host-directed therapy (HDT) is a promising approach for treating mycobacterial infections. This study identified amiodarone, an antiarrhythmic agent, as a potential HDT candidate that inhibits the survival of Mtb and Mycobacterium avium in primary human macrophages. The antimycobacterial effect of amiodarone was confirmed in an in vivo tuberculosis model based on Mycobacterium marinum infection of zebrafish embryos. Furthermore, amiodarone induced autophagy and inhibition of the autophagic flux effectively impaired the host-protective effect of amiodarone, supporting that activation of the host (auto)phagolysosomal pathway is essential for the mechanism of action of amiodarone. In conclusion, we have identified amiodarone as an autophagy-inducing HDT that improves host control of a wide range of mycobacteria.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ralf Boland
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Matthias T. Heemskerk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Nakamura Y, Sawai T, Kakiuchi K, Arawaka S. Neuronal activity promotes secretory autophagy for the extracellular release of α-synuclein. J Biol Chem 2024; 300:107419. [PMID: 38815862 PMCID: PMC11253543 DOI: 10.1016/j.jbc.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Extracellular secretion is an essential mechanism for α-synuclein (α-syn) proteostasis. Although it has been reported that neuronal activity affects α-syn secretion, the underlying mechanisms remain unclear. Here, we investigated the autophagic processes that regulate the physiological release of α-syn in mouse primary cortical neurons and SH-SY5Y cells. Stimulating neuronal activity with glutamate or depolarization with high KCl enhanced α-syn secretion. This glutamate-induced α-syn secretion was blocked by a mixture of NMDA receptor antagonist AP5 and AMPA receptor antagonist NBQX, as well as by cytosolic Ca2+ chelator BAPTA-AM. Additionally, mTOR inhibitor rapamycin increased α-syn and p62/SQSTM1 (p62) secretion, and this effect of rapamycin was reduced in primary cortical neurons deficient in the autophagy regulator beclin 1 (derived from BECN1+/- mice). Glutamate-induced α-syn and p62 secretion was suppressed by the knockdown of ATG5, which is required for autophagosome formation. Glutamate increased LC3-II generation and decreased intracellular p62 levels, and the increase in LC3-II levels was blocked by BAPTA-AM. Moreover, glutamate promoted co-localization of α-syn with LC3-positive puncta, but not with LAMP1-positive structures in the neuronal somas. Glutamate-induced α-syn and p62 secretion were also reduced by the knockdown of RAB8A, which is required for autophagosome fusion with the plasma membrane. Collectively, these findings suggest that stimulating neuronal activity mediates autophagic α-syn secretion in a cytosolic Ca2+-dependent manner, and autophagosomes may participate in autophagic secretion by functioning as α-syn carriers.
Collapse
Affiliation(s)
- Yoshitsugu Nakamura
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Taiki Sawai
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Kensuke Kakiuchi
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan.
| |
Collapse
|
21
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
22
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
23
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
24
|
Feng L, Wang H, Chen C, Fu J, Zhao L, Zhao X, Geng M, Ren M, Tong L, Li Y, Gu J, Wang C. MKP1 may be involved in the occurrence of depression by regulating hippocampal autophagy in rats. Behav Brain Res 2024; 465:114962. [PMID: 38499157 DOI: 10.1016/j.bbr.2024.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP1) is upregulated in the hippocampus of patients with depression, while pharmacological inhibition of hippocampal MKP1 can mitigate depression-like behaviors in rodents. In addition, MAPK signaling regulates autophagy, and antidepressants were recently shown to target autophagic signaling pathways. We speculated that MKP1 contributes to depression by enhancing hippocampal autophagy through dephosphorylation of the MAPK isoform ERK1/2. METHODS We established a rat depression model by exposure to chronic unpredictable mild stress (CUMS), and then examined depression-like behaviors in the sucrose preference test (SPT) and forced swimming test (FST) as well as expression changes in hippocampal MKP1, ERK1/2, phosphorylated ERK1/2, and autophagy-related proteins LC3II by Western blotting and immunostaining. These same measurements were repeated in rats exposed to CUMS following hippocampal infusion of a MKP1-targeted shRNA. Finally, the effects of MKP1 expression level on autophagy we examined in rat GMI-R1 microglia. RESULTS CUMS-exposed rats demonstrated anhedonia in the SPT and helplessness in the FST, two core depression-like behaviors. Expression levels of MKP1 and LC3II were upregulated in the hippocampus of CUMS rats, suggesting enhanced autophagy, while pERK/ERK was downregulated. Knockdown of hippocampal MKP1 mitigated depression-like behaviors, downregulated hippocampal LC3II expression, and upregulated hippocampal pERK/ERK. Similarly, MKP1 knockdown in GMI-R1 cells upregulated pERK/ERK and reduced the number of LC3II autophagosomes, while MKP1 overexpression had the opposite effects. CONCLUSION Enhanced hippocampal autophagy via MKP1-mediated ERK dephosphorylation may contribute to the development of depression.
Collapse
Affiliation(s)
- Laipeng Feng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Huiying Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Chen Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiacheng Fu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Liqin Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xia Zhao
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Mengjun Geng
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mengdi Ren
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Lidan Tong
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China
| | - Yan Li
- Zhengzhou University, Zhengzhou, China
| | - Jingyang Gu
- Chaohu Hospital of Anhui Medical University, Hefei, China.
| | - Changhong Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
25
|
Jia X, Chai Y, Zhu J, Zhang X, Jiang C, Yin N, Li F. Enhancing Fat Graft Survival via Upregulating Autophagy of Adipocytes. Aesthetic Plast Surg 2024; 48:1807-1816. [PMID: 38347131 DOI: 10.1007/s00266-023-03797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 05/16/2024]
Abstract
BACKGROUND Autophagy is a cellular self-protection mechanism. The upregulation of adipose-derived stem cells' (ADSCs) autophagy can promote fat graft survival. However, the effect of interfering with adipocyte autophagy on graft survival is still unknown. In addition, autophagy is involved in adipocyte dedifferentiation. We investigated the effect of autophagy on adipocyte dedifferentiation and fat graft survival. METHODS The classic autophagy regulatory drugs rapamycin (100 nM) and 3-methyladenine (3-MA; 10 mM) were used to treat adipocytes, adipocyte dedifferentiation was observed, and their effects on ADSCs were detected. In our experiments, 100 nM rapamycin, 10 mM 3-MA and saline were mixed with human adipose tissue and transplanted into nude mice. At 2, 4, 8 and 12 weeks postoperatively, the grafts were harvested for histological and immunohistochemical analysis. RESULTS Rapamycin and 3-MA can promote and inhibit adipocyte dedifferentiation by regulating autophagy. Both drugs can inhibit ADSC proliferation, and 10 mM 3-MA can inhibit ADSC adipogenesis. At weeks 8 and 12, the volume retention rate of the rapamycin group (8 weeks, 64.77% ± 6.36%; 12 weeks, 56.13% ± 4.73%) was higher than the control group (8 weeks, 52.62% ± 4.04%; P < 0.05; 12 weeks, 43.17% ± 6.02%; P < 0.05) and the rapamycin group had more viable adipocytes and better vascularization. Compared with the control group, the volume retention rate, viable adipocytes and vascularization of the 3-MA group decreased. CONCLUSIONS Rapamycin can promote adipocyte dedifferentiation by upregulating autophagy to promote fat graft survival. 3-MA can inhibit graft survival, but its mechanism includes the inhibition of adipocyte dedifferentiation and ADSC proliferation and adipogenesis. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xinyu Jia
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Yimeng Chai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Jinglin Zhu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Xinyu Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Chanyuan Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Ningbei Yin
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Facheng Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
26
|
Guo J, Shi Y, Jiang G, Zeng P, Wu Z, Wang D, Cui Y, Yang X, Zhou J, Feng X, Hou L, Liu J. SQSTM1 downregulates avian metapneumovirus subgroup C replication via mediating selective autophagic degradation of viral M2-2 protein. J Virol 2024; 98:e0005124. [PMID: 38466095 PMCID: PMC11019959 DOI: 10.1128/jvi.00051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.
Collapse
Affiliation(s)
- Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Genghong Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
27
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
28
|
Zhu Z, Ren W, Li S, Gao L, Zhi K. Functional significance of O-linked N-acetylglucosamine protein modification in regulating autophagy. Pharmacol Res 2024; 202:107120. [PMID: 38417774 DOI: 10.1016/j.phrs.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
29
|
Sun D, Zhang Z, Yu X, Li H, Wang X, Chen L. The mechanism of UNC-51-like kinase 1 and the applications of small molecule modulators in cancer treatment. Eur J Med Chem 2024; 268:116273. [PMID: 38432059 DOI: 10.1016/j.ejmech.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.
Collapse
Affiliation(s)
- Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China
| | - Zhiqi Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinbo Yu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Xiaobo Wang
- Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
30
|
Li J, Wang H, Chen H, Li X, Liu Y, Hou H, Hu Q. Cell death induced by nicotine in human neuroblastoma SH-SY5Y cells is mainly attributed to cytoplasmic vacuolation originating from the trans-Golgi network. Food Chem Toxicol 2024; 185:114431. [PMID: 38176581 DOI: 10.1016/j.fct.2023.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Humans are usually exposed to nicotine through the use of tobacco products. Although it is generally believed that nicotine is relatively harmless in tobacco consumption, it is, in fact, a toxic substance that warrants careful consideration of its potential toxicity. However, the current understanding of the neurotoxicity of nicotine is still very limited. In this study, we aim to reveal the toxic risk of nicotine to key target neuronal cells and its potential toxic mechanisms. The results showed that nicotine induced cell death, ROS increase, mitochondrial membrane potential decrease, and DNA damage in SH-SY5Y human neuroblastoma cells at millimolar concentrations, but did not cause toxic effects at the physiological concentration. These toxic effects were accompanied by cytoplasmic vacuolation. The inhibition of cytoplasmic vacuolation by bafilomycin A1 greatly reduced nicotine-induced cell death, indicating that cytoplasmic vacuolation is the key driving factor of cell death. These cytoplasmic vacuoles originated from the trans-Golgi network (TGN) and expressed microtubule-associated protein 1 light chain 3-II (LC3-II) and lysosomal associated membrane protein 1(LAMP1). The presence of LC3-II and LAMP1 within these vacuoles serves as evidence of compromised TGN structure and function. These findings provide valuable new insights into the potential neurotoxic risk and mechanisms of nicotine.
Collapse
Affiliation(s)
- Jun Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Hongjuan Wang
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Xiao Li
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| | - Qingyuan Hu
- Beijing Life Science Academy, Beijing, 100000, China; China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450000, China; Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; University of Science and Technology of China, Hefei, 230000, China; Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing, 100000, China; Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450000, China.
| |
Collapse
|
31
|
Zhao Y, Huang J, Zhao K, Li M, Wang S. Ubiquitination and deubiquitination in the regulation of N 6-methyladenosine functional molecules. J Mol Med (Berl) 2024; 102:337-351. [PMID: 38289385 DOI: 10.1007/s00109-024-02417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
N6 methyladenosine (m6A) is the most prevalent RNA epigenetic modification, regulated by methyltransferases and demethyltransferases and recognized by methylation-related reading proteins to impact mRNA splicing, translocation, stability, and translation efficiency. It significantly affects a variety of activities, including stem cell maintenance and differentiation, tumor formation, immune regulation, and metabolic disorders. Ubiquitination refers to the specific modification of target proteins by ubiquitin molecule in response to a series of enzymes. E3 ligases connect ubiquitin to target proteins and usually lead to protein degradation. On the contrary, deubiquitination induced by deubiquitinating enzymes (DUBs) can separate ubiquitin and regulate the stability of protein. Recent studies have emphasized the potential importance of ubiquitination and deubiquitination in controlling the function of m6A modification. In this review, we discuss the impact of ubiquitination and deubiquitination on m6A functional molecules in diseases, such as metabolism, cellular stress, and tumor growth.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiaojiao Huang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kexin Zhao
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Li
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital, Jiangsu University, Jiefang Road No 438, Zhenjiang, 212002, China.
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
32
|
Dong Y, Quan C. NPFs-mediated actin cytoskeleton: a new viewpoint on autophagy regulation. Cell Commun Signal 2024; 22:111. [PMID: 38347641 PMCID: PMC10860245 DOI: 10.1186/s12964-023-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Macroautophagy/autophagy is a lysosome-dependent catabolic process induced by various cellular stress conditions, maintaining the homeostasis of cells, tissues and organs. Autophagy is a series of membrane-related events involving multiple autophagy-related (ATG) proteins. Most studies to date have focused on various signaling pathways affecting ATG proteins to control autophagy. However, mounting evidence reveals that the actin cytoskeleton acts on autophagy-associated membranes to regulate different events of autophagy. The actin cytoskeleton assists in vesicle formation and provides the mechanical forces for cellular activities that involve membrane deformation. Although the interaction between the actin cytoskeleton and membrane makes the role of actin in autophagy recognized, how the actin cytoskeleton is recruited and assembles on membranes during autophagy needs to be detailed. Nucleation-promoting factors (NPFs) activate the Arp2/3 complex to produce actin cytoskeleton. In this review, we summarize the important roles of the actin cytoskeleton in autophagy regulation and focus on the effect of NPFs on actin cytoskeleton assembly during autophagy, providing new insights into the occurrence and regulatory mechanisms of autophagy. Video Abstract.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, ChangchunJilin, 130021, China.
| |
Collapse
|
33
|
Han FY, Wu RX, Miao BB, Niu SF, Wang QH, Liang ZB. Whole-Genome Sequencing Analyses Reveal the Whip-like Tail Formation, Innate Immune Evolution, and DNA Repair Mechanisms of Eupleurogrammus muticus. Animals (Basel) 2024; 14:434. [PMID: 38338077 PMCID: PMC10854985 DOI: 10.3390/ani14030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Smallhead hairtail (Eupleurogrammus muticus) is an important marine economic fish distributed along the northern Indian Ocean and the northwest Pacific coast; however, little is known about the mechanism of its genetic evolution. This study generated the first genome assembly of E. muticus at the chromosomal level using a combination of PacBio SMRT, Illumina Nova-Seq, and Hi-C technologies. The final assembled genome size was 709.27 Mb, with a contig N50 of 25.07 Mb, GC content of 40.81%, heterozygosity rate of 1.18%, and repetitive sequence rate of 35.43%. E. muticus genome contained 21,949 protein-coding genes (97.92% of the genes were functionally annotated) and 24 chromosomes. There were 143 expansion gene families, 708 contraction gene families, and 4888 positively selected genes in the genome. Based on the comparative genomic analyses, we screened several candidate genes and pathways related to whip-like tail formation, innate immunity, and DNA repair in E. muticus. These findings preliminarily reveal some molecular evolutionary mechanisms of E. muticus at the genomic level and provide important reference genomic data for the genetic studies of other trichiurids.
Collapse
Affiliation(s)
- Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Ben-Ben Miao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| | - Qing-Hua Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China;
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; (F.-Y.H.); (S.-F.N.); (Z.-B.L.)
| |
Collapse
|
34
|
Wang X, Hu M, Chen J, Lou X, Zhang H, Li M, Cheng J, Ma T, Xiong J, Gao R, Chen X, Wang J. Key roles of autophagosome/endosome maturation mediated by Syntaxin17 in methamphetamine-induced neuronal damage in mice. Mol Med 2024; 30:4. [PMID: 38172666 PMCID: PMC10765725 DOI: 10.1186/s10020-023-00765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood. METHODS To address the mechanism of Meth-induced cognitive impairment, the adenovirus (AV) and adeno-associated virus (AAV) were injected into the hippocampus for stereotaxis to overexpress Stx17 in vivo to examine the cognitive ability via morris water maze and novel object recognition. In molecular level, the synaptic injury and autophagic defects were evaluated. To address the Meth induced neuronal damage, the epidermal growth factor receptor (EGFR) degradation assay was performed to evaluate the degradability of the "cargos" mediated by Meth, and mechanistically, the maturation of the vesicles, including autophagosomes and endosomes, were validated by the Co-IP and the GTP-agarose affinity isolation assays. RESULTS Overexpression of Stx17 in the hippocampus markedly rescued the Meth-induced cognitive impairment and synaptic loss. For endosomes, Meth exposure upregulated Rab5 expression and its guanine-nucleotide exchange factor (GEF) (immature endosome), with a commensurate decreased active form of Rab7 (Rab7-GTP) and impeded the binding of Rab7 to CCZ1 (mature endosome); for autophagosomes, Meth treatment elicited a dramatic reduction in the overlap between Stx17 and autophagosomes but increased the colocalization of ATG5 and autophagosomes (immature autophagosomes). After Stx17 overexpression, the Rab7-GTP levels in purified late endosomes were substantially increased in parallel with the elevated mature autophagosomes, facilitating cargo (Aβ42, p-tau, and EGFR) degradation in the vesicles, which finally ameliorated Meth-induced synaptic loss and memory deficits in mice. CONCLUSION Stx17 decrease mediated by Meth contributes to vesicle fusion defects which may ascribe to the immature autophagosomes and endosomes, leading to autophagic dysfunction and finalizes neuronal damage and cognitive impairments. Therefore, targeting Stx17 may be a novel therapeutic strategy for Meth-induced neuronal injury.
Collapse
Affiliation(s)
- Xi Wang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Miaoyang Hu
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jingrong Chen
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Xinyu Lou
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Hongchao Zhang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Muhan Li
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jie Cheng
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Tengfei Ma
- School of Pharmacy, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Jianping Xiong
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Xufeng Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Department of Toxicology, School of Public Health, Ministry of Education, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China.
- China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Street, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
35
|
Alam JM, Maruyama T, Noshiro D, Kakuta C, Kotani T, Nakatogawa H, Noda NN. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat Struct Mol Biol 2024; 31:170-178. [PMID: 38057553 DOI: 10.1038/s41594-023-01132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/20/2023] [Indexed: 12/08/2023]
Abstract
Atg8, a ubiquitin-like protein, is conjugated with phosphatidylethanolamine (PE) via Atg7 (E1), Atg3 (E2) and Atg12-Atg5-Atg16 (E3) enzymatic cascade and mediates autophagy. However, its molecular roles in autophagosome formation are still unclear. Here we show that Saccharomyces cerevisiae Atg8-PE and E1-E2-E3 enzymes together construct a stable, mobile membrane scaffold. The complete scaffold formation induces an in-bud in prolate-shaped giant liposomes, transforming their morphology into one reminiscent of isolation membranes before sealing. In addition to their enzymatic roles in Atg8 lipidation, all three proteins contribute nonenzymatically to membrane scaffolding and shaping. Nuclear magnetic resonance analyses revealed that Atg8, E1, E2 and E3 together form an interaction web through multivalent weak interactions, where the intrinsically disordered regions in Atg3 play a central role. These data suggest that all six Atg proteins in the Atg8 conjugation machinery control membrane shaping during autophagosome formation.
Collapse
Affiliation(s)
| | | | - Daisuke Noshiro
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Chika Kakuta
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsuya Kotani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hitoshi Nakatogawa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
36
|
Ma H, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. RABGGTB plays a critical role in ALS pathogenesis. Brain Res Bull 2024; 206:110833. [PMID: 38042502 DOI: 10.1016/j.brainresbull.2023.110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with unknown causes, which mainly affects motor neurons in the anterior horn of the spinal cord, brain stem, and cerebral cortex, also known as motor neuron disease. An important pathological feature of ALS is the formation of aggregates of mutant SOD1 protein, CTF25 of TDP-43, or other abnormal proteins in motor neurons, which require autophagy for degradation. Protein prenylation is known to participate in membrane association and proper localization of proteins. RABGGTB is the β subunit of GGTase II (one of the prenyltransferases) that can regulate autophagy via Rab7 geranylgeranylation. In this study, we overexpressed RABGGTB via lentiviral transfection in NSC34-hSOD1G93A and TDP-43 cells. Overexpression of RABGGTB improved ALS cell proliferation by facilitating autophagosome-lysosome fusion. Furthermore, the abnormal aggregation of SOD1 protein was reduced. This indicates that protein prenylation is important for the proliferation and autophagy of cells autophagy. Enhanced autophagy has been observed in two of the most widely used ALS cell models. These findings indicate the widespread applicability of prenylation in ALS. In summary, overexpression of RABGGTB improved the geranylgeranylation of the Rab7 protein and had a positive effect on cells. These findings provide insights into the development of a novel therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Haiyang Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China.
| |
Collapse
|
37
|
Nguyen A, Faesen AC. The role of the HORMA domain proteins ATG13 and ATG101 in initiating autophagosome biogenesis. FEBS Lett 2024; 598:114-126. [PMID: 37567770 DOI: 10.1002/1873-3468.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Autophagy is a process of regulated degradation. It eliminates damaged and unnecessary cellular components by engulfing them with a de novo-generated organelle: the double-membrane autophagosome. The past three decades have provided us with a detailed parts list of the autophagy initiation machinery, have developed important insights into how these processes function and have identified regulatory proteins. It is now clear that autophagosome biogenesis requires the timely assembly of a complex machinery. However, it is unclear how a putative stable machine is assembled and disassembled and how the different parts cooperate to perform its overall function. Although they have long been somewhat enigmatic in their precise role, HORMA domain proteins (first identified in Hop1p, Rev7p and MAD2 proteins) autophagy-related protein 13 (ATG13) and ATG101 of the ULK-kinase complex have emerged as important coordinators of the autophagy-initiating subcomplexes. Here, we will particularly focus on ATG13 and ATG101 and the role of their unusual metamorphosis in initiating autophagosome biogenesis. We will also explore how this metamorphosis could potentially be purposefully rate-limiting and speculate on how it could regulate the spontaneous self-assembly of the autophagy-initiating machinery.
Collapse
Affiliation(s)
- Anh Nguyen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alex C Faesen
- Laboratory of Biochemistry of Signal Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
38
|
Tan S, Wang D, Fu Y, Zheng H, Liu Y, Lu B. Targeted clearance of mitochondria by an autophagy-tethering compound (ATTEC) and its potential therapeutic effects. Sci Bull (Beijing) 2023; 68:3013-3026. [PMID: 37940449 DOI: 10.1016/j.scib.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/19/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Increased mitochondrial damage plays a critical role in many neurodegeneration-related diseases such as Parkinson's disease (PD) and Down syndrome (DS). Thus, enhancement of mitochondrial degradation by small molecule compounds may provide promising new strategies to tackle these diseases. Here, we explored the strategy to induce clearance of mitochondria by targeting them to the autophagy machinery by autophagy-tethering compounds (ATTECs). We provided the proof-of-concept evidence demonstrating that the bifunctional compound (mT1) binding to both the outer mitochondrial membrane protein TSPO and the autophagosome protein LC3B simultaneously may enhance the engulfment of damaged mitochondria by autophagosomes and subsequent autophagic degradation of them. In addition, preliminary experiments suggest that mT1 attenuated disease-relevant phenotypes in both a PD cellular model and a DS organoid model. Taken together, we demonstrate the possibility of degrading mitochondria by bifunctional ATTECs, which confirms the capability of degrading organelles by ATTECs and provides potential new strategies in the intervention of mitochondria-related disorders.
Collapse
Affiliation(s)
- Shuixia Tan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Da Wang
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhua Fu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huiwen Zheng
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
39
|
Bao Y, Qiao Y, Choi JE, Zhang Y, Mannan R, Cheng C, He T, Zheng Y, Yu J, Gondal M, Cruz G, Grove S, Cao X, Su F, Wang R, Chang Y, Kryczek I, Cieslik M, Green MD, Zou W, Chinnaiyan AM. Targeting the lipid kinase PIKfyve upregulates surface expression of MHC class I to augment cancer immunotherapy. Proc Natl Acad Sci U S A 2023; 120:e2314416120. [PMID: 38011559 PMCID: PMC10710078 DOI: 10.1073/pnas.2314416120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Despite the remarkable clinical success of immunotherapies in a subset of cancer patients, many fail to respond to treatment and exhibit resistance. Here, we found that genetic or pharmacologic inhibition of the lipid kinase PIKfyve, a regulator of autophagic flux and lysosomal biogenesis, upregulated surface expression of major histocompatibility complex class I (MHC-I) in cancer cells via impairing autophagic flux, resulting in enhanced cancer cell killing mediated by CD8+ T cells. Genetic depletion or pharmacologic inhibition of PIKfyve elevated tumor-specific MHC-I surface expression, increased intratumoral functional CD8+ T cells, and slowed tumor progression in multiple syngeneic mouse models. Importantly, enhanced antitumor responses by Pikfyve-depletion were CD8+ T cell- and MHC-I-dependent, as CD8+ T cell depletion or B2m knockout rescued tumor growth. Furthermore, PIKfyve inhibition improved response to immune checkpoint blockade (ICB), adoptive cell therapy, and a therapeutic vaccine. High expression of PIKFYVE was also predictive of poor response to ICB and prognostic of poor survival in ICB-treated cohorts. Collectively, our findings show that targeting PIKfyve enhances immunotherapies by elevating surface expression of MHC-I in cancer cells, and PIKfyve inhibitors have potential as agents to increase immunotherapy response in cancer patients.
Collapse
Affiliation(s)
- Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
| | - Jae Eun Choi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Jiali Yu
- Department of Surgery, University of Michigan, Ann Arbor, MI48109
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI48109
| | - Mahnoor Gondal
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Gabriel Cruz
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
| | - Sara Grove
- Department of Surgery, University of Michigan, Ann Arbor, MI48109
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI48109
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI48109
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI48109
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI48109
| | - Michael D. Green
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI48109
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI48109
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI48109
| | - Weiping Zou
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- Department of Surgery, University of Michigan, Ann Arbor, MI48109
- Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI48109
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI48109
- Department of Pathology, University of Michigan, Ann Arbor, MI48109
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI48109
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Urology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
40
|
Jiang Z, Kuo YH, Arkin MR. Autophagy Receptor-Inspired Antibody-Fusion Proteins for Targeted Intracellular Degradation. J Am Chem Soc 2023; 145:23939-23947. [PMID: 37748140 PMCID: PMC10636752 DOI: 10.1021/jacs.3c05199] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 09/27/2023]
Abstract
Autophagy is responsible for the degradation of large intracellular contents, such as unwanted protein aggregates and organelles. Impaired autophagy can therefore lead to the accumulation of pathological aggregates, correlating with aging and neurodegenerative diseases. However, a broadly applicable methodology is not available for the targeted degradation of protein aggregates or organelles in mammalian cells. Herein, we developed a series of autophagy receptor-inspired targeting chimeras (AceTACs) that can induce the targeted degradation of aggregation-prone proteins and protein aggregates (e.g., huntingtin, TDP-43, and FUS mutants), as well as organelles (e.g., mitochondria, peroxisomes, and endoplasmic reticulum). These antibody-fusion-based AceTAC degraders were designed to mimic the function of autophagy receptors, simultaneously binding with the cellular targets and the LC3 proteins on the autophagosomal membrane, eventually transporting the target to the autophagy-lysosomal process for degradation. The AceTAC degradation system provides design principles for antibody-based degradation through autophagy, largely expanding the scope of intracellular targeted degradation technologies.
Collapse
Affiliation(s)
- Ziwen Jiang
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Yu-Hsuan Kuo
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry, and Small Molecule Discovery Center, University of California, San Francisco, California 94158, United States
| |
Collapse
|
41
|
Wang HL, Li JN, Kan WJ, Xu GY, Luo GH, Song N, Wu WB, Feng B, Fu JF, Tu YT, Liu MM, Xu R, Zhou YB, Wei G, Li J. Chloroquine enhances the efficacy of chemotherapy drugs against acute myeloid leukemia by inactivating the autophagy pathway. Acta Pharmacol Sin 2023; 44:2296-2306. [PMID: 37316630 PMCID: PMC10618541 DOI: 10.1038/s41401-023-01112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Current therapy for acute myeloid leukemia (AML) is largely hindered by the development of drug resistance of commonly used chemotherapy drugs, including cytarabine, daunorubicin, and idarubicin. In this study, we investigated the molecular mechanisms underlying the chemotherapy drug resistance and potential strategy to improve the efficacy of these drugs against AML. By analyzing data from ex vivo drug-response and multi-omics profiling public data for AML, we identified autophagy activation as a potential target in chemotherapy-resistant patients. In THP-1 and MV-4-11 cell lines, knockdown of autophagy-regulated genes ATG5 or MAP1LC3B significantly enhanced AML cell sensitivity to the chemotherapy drugs cytarabine, daunorubicin, and idarubicin. In silico screening, we found that chloroquine phosphate mimicked autophagy inactivation. We showed that chloroquine phosphate dose-dependently down-regulated the autophagy pathway in MV-4-11 cells. Furthermore, chloroquine phosphate exerted a synergistic antitumor effect with the chemotherapy drugs in vitro and in vivo. These results highlight autophagy activation as a drug resistance mechanism and the combination therapy of chloroquine phosphate and chemotherapy drugs can enhance anti-AML efficacy.
Collapse
Affiliation(s)
- Han-Lin Wang
- School of Pharmacy, Fudan University, Shanghai, 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Nan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei-Juan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Gao-Ya Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guang-Hao Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Biao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Bo Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing-Feng Fu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Tong Tu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min-Min Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Ran Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Gang Wei
- School of Pharmacy, Fudan University, Shanghai, 210023, China.
| | - Jia Li
- School of Pharmacy, Fudan University, Shanghai, 210023, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
42
|
Xu JY, Fan JX, Hu M, Zeng J. Microorganism-regulated autophagy in gastrointestinal cancer. PeerJ 2023; 11:e16130. [PMID: 37786582 PMCID: PMC10541808 DOI: 10.7717/peerj.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Gastrointestinal cancer has always been one of the most urgent problems to be solved, and it has become a major global health issue. Microorganisms in the gastrointestinal tract regulate normal physiological and pathological processes. Accumulating evidence reveals the role of the imbalance in the microbial community during tumorigenesis. Autophagy is an important intracellular homeostatic process, where defective proteins and organelles are degraded and recycled under stress. Autophagy plays a dual role in tumors as both tumor suppressor and tumor promoter. Many studies have shown that autophagy plays an important role in response to microbial infection. Here, we provide an overview on the regulation of the autophagy signaling pathway by microorganisms in gastrointestinal cancer.
Collapse
Affiliation(s)
- Jun-Yu Xu
- Chongqing Normal University, Chongqing, China
| | | | - Min Hu
- Chongqing Normal University, Chongqing, China
| | - Jun Zeng
- Chongqing Normal University, Chongqing, China
| |
Collapse
|
43
|
Daneshpazhouh H, Hayati Roodbari N, Tahamtani Y, Khodabandeh Z, Dianatpour M. Protective Effect of Docetaxel Against Autophagy-Related Genes in Vitrification of Mouse Metaphase II Oocytes. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:501-509. [PMID: 37786462 PMCID: PMC10541544 DOI: 10.30476/ijms.2023.88390.2811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/10/2023] [Accepted: 01/21/2023] [Indexed: 10/04/2023]
Abstract
Background Autophagy is a conservative mechanism for cell survival as the main response of cells to stress conditions. The present study aimed to assess the effect of docetaxel on the survival, fertilization, and expression of autophagy-related genes in vitrified oocytes. Methods The study was conducted in 2018 at the Stem Cells Technology Research Center, Shiraz University of Medical Sciences (Shiraz, Iran). Denuded oocytes were randomly selected and assigned to five groups, namely control (n=133), docetaxel (n=136), docetaxel+cryoprotectants (n=146), docetaxel+vitrification (n=138), and vitrification (n=145). The effect of vitrification on the expression of autophagy-related gene 5 (ATG5) and Beclin-1 was determined using a real-time polymerase chain reaction. Data were analyzed using SPSS software (version 26.0) and GraphPad Prism 9. Results Survival and fertilization rates in each experimental group were significantly reduced compared to the control group (P=0.001). After in vitro fertilization of oocytes, the 2-cell formation rate was significantly reduced in the docetaxel+vitrification and vitrification groups compared to the control and docetaxel groups (P=0.001 and P=0.001, respectively). Pre-incubation of oocytes with docetaxel reduced gene expression levels of Beclin-1 and ATG5 in the docetaxel+cryoprotectants and docetaxel+vitrification groups (P=0.001 and P=0.019, respectively). The expression level of these genes was also reduced in the docetaxel group compared to the control group (P=0.001). Conclusion Incubation of mouse metaphase II oocytes with docetaxel prior to vitrification reduced the expression of autophagy-related genes and increased survival and fertilization rates compared to untreated oocytes.
Collapse
Affiliation(s)
- Hamed Daneshpazhouh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Liang Y. Phagophore-lysosome/vacuole fusion in mutant yeast and mammalian cells. Autophagy 2023; 19:2595-2600. [PMID: 37083184 PMCID: PMC10392725 DOI: 10.1080/15548627.2023.2205272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Macroautophagy/autophagy is a process through which the phagophores engulf non-essential or damaged cellular materials, forming double-membrane autophagosomes (APs) and fusing with lysosomes/vacuoles, after which the materials are degraded for recycling purposes. Autophagy is associated with increased cell survival under different stress conditions. AP-lysosome/vacuole fusion is a critical step in autophagy. Some mutant cells can accumulate phagophores under autophagy-induction conditions. Autophagy is interrupted when accumulated phagophores cannot fuse with lysosomes/vacuoles, resulting in a significant decrease in cell survivability. However, phagophore-lysosome/vacuole fusion has been reported in related mammalian cells and yeast mutant cells. This observation indicates that it is possible to restore a partial autophagy process after interruption. Furthermore, these findings indicate that phagophore closure is not a prerequisite for its fusion with the lysosome/vacuole in the mutant cells. The phagophore-lysosome/vacuole fusion strategy can significantly rescue defective autophagy due to failed phagophore closure. This commentary discusses the fusion of phagophores and lysosomes/vacuoles and implications of such fusion events.Abbreviations: AB: autophagic body; AL: autolysosome; AP: autophagosome; ATG: autophagy related; EM: electron microscopy; ESCRT: endosomal sorting complex required for transport; ET: electron tomography; FIB: focus ion beam; IM: inner membrane; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; OM; outer membrane; STX17: syntaxin 17; TEM: transmission electron microscopy; TM: transmembrane domain; Vps: vacuolar protein sorting; WT: wild-type.
Collapse
Affiliation(s)
- Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Nieto-Torres JL, Zaretski S, Liu T, Adams PD, Hansen M. Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control. J Cell Sci 2023; 136:jcs259725. [PMID: 37589340 PMCID: PMC10445744 DOI: 10.1242/jcs.259725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Autophagy is a recycling mechanism involved in cellular homeostasis with key implications for health and disease. The conjugation of the ATG8 family proteins, which includes LC3B (also known as MAP1LC3B), to autophagosome membranes, constitutes a hallmark of the canonical autophagy process. After ATG8 proteins are conjugated to the autophagosome membranes via lipidation, they orchestrate a plethora of protein-protein interactions that support key steps of the autophagy process. These include binding to cargo receptors to allow cargo recruitment, association with proteins implicated in autophagosome transport and autophagosome-lysosome fusion. How these diverse and critical protein-protein interactions are regulated is still not well understood. Recent reports have highlighted crucial roles for post-translational modifications of ATG8 proteins in the regulation of ATG8 functions and the autophagy process. This Review summarizes the main post-translational regulatory events discovered to date to influence the autophagy process, mostly described in mammalian cells, including ubiquitylation, acetylation, lipidation and phosphorylation, as well as their known contributions to the autophagy process, physiology and disease.
Collapse
Affiliation(s)
- Jose L. Nieto-Torres
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA 92037, USA
- Department of Biomedical Sciences, School of Health Sciences and Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Moncada, Spain
| | - Sviatlana Zaretski
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA 92037, USA
| | - Peter D. Adams
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA 92037, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging, and Regeneration, La Jolla, CA 92037, USA
- The Buck Institute for Aging Research, Novato, CA 94945, USA
| |
Collapse
|
46
|
Komarla A, Dufresne S, Towers CG. Recent Advances in the Role of Autophagy in Endocrine-Dependent Tumors. Endocr Rev 2023; 44:629-646. [PMID: 36631217 PMCID: PMC10335171 DOI: 10.1210/endrev/bnad001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Autophagy plays a complex role in several cancer types, including endocrine-dependent cancers, by fueling cellular metabolism and clearing damaged substrates. This conserved recycling process has a dual function across tumor types where it can be tumor suppressive at early stages but tumor promotional in established disease. This review highlights the controversial roles of autophagy in endocrine-dependent tumors regarding cancer initiation, tumorigenesis, metastasis, and treatment response. We summarize clinical trial results thus far and highlight the need for additional mechanistic, preclinical, and clinical studies in endocrine-dependent tumors, particularly in breast cancer and prostate cancer.
Collapse
Affiliation(s)
- Anvita Komarla
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Suzanne Dufresne
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Christina G Towers
- The Cell and Molecular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Pan Y, Qiu D, Chen S, Han X, Li R. High glucose inhibits neural differentiation by excessive autophagy <em>via</em> peroxisome proliferator-activated receptor gamma. Eur J Histochem 2023; 67. [PMID: 37170914 DOI: 10.4081/ejh.2023.3691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The high prevalence of prediabetes and diabetes globally has led to the widespread occurrence of severe complications, such as diabetic neuropathy, which is a result of chronic hyperglycemia. Studies have demonstrated that maternal diabetes can lead to neural tube defects by suppressing neurogenesis during neuroepithelium development. While aberrant autophagy has been associated with abnormal neuronal differentiation, the mechanism by which high glucose suppresses neural differentiation in stem cells remains unclear. Therefore, we developed a neuronal cell differentiation model of retinoic acid induced P19 cells to investigate the impact of high glucose on neuronal differentiation in vitro. Our findings indicate that high glucose (HG) hinders neuronal differentiation and triggers excessive. Furthermore, HG treatment significantly reduces the expression of markers for neurons (Tuj1) and glia (GFAP), while enhancing autophagic activity mediated by peroxisome proliferator-activated receptor gamma (PPARγ). By manipulating PPARγ activity through pharmacological approaches and genetically knocking it down using shRNA, we discovered that altering PPARγ activity affects the differentiation of neural stem cells exposed to HG. Our study reveals that PPARγ acts as a downstream mediator in high glucose-suppressed neural stem cell differentiation and that refining autophagic activity via PPARγ at an appropriate level could improve neuronal differentiation efficiency. Our data provide novel insights and potential therapeutic targets for the clinical management of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Yin Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Di Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Shu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Xiaoxue Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan, Guangzhou.
| |
Collapse
|
48
|
Wagh AR, Sulakshane P, Glickman MH. Alzheimer's disease-associated mutant ubiquitin (UBB +1) is secreted through an autophagosome-like vesicle-mediated unconventional pathway. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194936. [PMID: 37075976 DOI: 10.1016/j.bbagrm.2023.194936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Misfolded protein aggregation at both intracellular and extracellular milieus is thought to be the major etiology of Alzheimer's disease (AD). UBB+1, a frameshift variant of the ubiquitin B gene (UBB) results in a folded ubiquitin domain fused to a flexible unstructured extension. Accumulation of UBB+1 in extracellular plaques in the brains of AD patients undoubtedly suggests a role of the ubiquitin-proteasome system in AD. However, the exact mechanism of extracellular secretion of UBB+1 remains unknown. In an attempt to understand the molecular mechanism of UBB+1 secretion, we performed a survey of secretory pathways and identified the involvement of unconventional autophagosome-mediated UBB+1 secretion. Expression of UBB+1 was sufficient to stimulate LC3B/Atg8 conversion from LC3B-I to LC3B-II, which indicates initiation of the autophagy pathway. Furthermore, deficiency of ATG5 - a key player in autophagosome formation - inhibited UBB+1 secretion. Based on immunofluorescence 3D structured illumination (SIM) microscopy and co-immunoprecipitation, we provide evidence that UBB+1 is associated with the secretory autophagosome marker, SEC22B, while HSP90 possibly acts as a carrier. Using LC-MS/MS and mutagenesis we found that in cells, UBB+1 is ubiquitinated on lysine 11, 29, and 48, however, this ubiquitination does not contribute to its secretion. By contrast, proteasome or lysosome inhibition slightly enhanced secretion. Taken together, this study suggests that by ridding cells of UBB+1, secretory autophagosomes may alleviate the cellular stress associated with UBB+1, yet simultaneously mediate the spreading of a mutant specie with disordered characteristics to the extracellular milieu.
Collapse
Affiliation(s)
- Ajay R Wagh
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Prasad Sulakshane
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Michael H Glickman
- The Faculty of Biology, Technion Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
49
|
Krzystek TJ, White JA, Rathnayake R, Thurston L, Hoffmar-Glennon H, Li Y, Gunawardena S. HTT (huntingtin) and RAB7 co-migrate retrogradely on a signaling LAMP1-containing late endosome during axonal injury. Autophagy 2023; 19:1199-1220. [PMID: 36048753 PMCID: PMC10012955 DOI: 10.1080/15548627.2022.2119351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/09/2022] Open
Abstract
ABBREVIATIONS Atg5: Autophagy-related 5; Atg8a: Autophagy-related 8a; AL: autolysosome; AP: autophagosome; BAF1: bafilomycin A1; BDNF: brain derived neurotrophic factor; BMP: bone morphogenetic protein; Cyt-c-p: Cytochrome c proximal; CQ: chloroquine; DCTN1: dynactin 1; Dhc: dynein heavy chain; EE: early endosome; DYNC1I1: dynein cytoplasmic 1 intermediate chain 1; HD: Huntington disease; HIP1/Hip1: huntingtin interacting protein 1; HTT/htt: huntingtin; iNeuron: iPSC-derived human neurons; IP: immunoprecipitation; Khc: kinesin heavy chain; KIF5C: kinesin family member 5C; LAMP1/Lamp1: lysosomal associated membrane protein 1; LE: late endosome; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAP3K12/DLK: mitogen-activated protein kinase kinase kinase 12; MAPK8/JNK/bsk: mitogen-activated protein kinase 8/basket; MAPK8IP3/JIP3: mitogen-activated protein kinase 8 interacting protein 3; NGF: nerve growth factor; NMJ: neuromuscular junction; NTRK1/TRKA: neurotrophic receptor tyrosine kinase 1; NRTK2/TRKB: neurotrophic receptor tyrosine kinase 2; nuf: nuclear fallout; PG: phagophore; PtdIns3P: phosphatidylinositol-3-phosphate; puc: puckered; ref(2)P: refractory to sigma P; Rilpl: Rab interacting lysosomal protein like; Rip11: Rab11 interacting protein; RTN1: reticulon 1; syd: sunday driver; SYP: synaptophysin; SYT1/Syt1: synaptotagmin 1; STX17/Syx17: syntaxin 17; tkv: thickveins; VF: vesicle fraction; wit: wishful thinking; wnd: wallenda.
Collapse
Affiliation(s)
- Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rasika Rathnayake
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Yichen Li
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
50
|
Ishii S, Chino H, Ode KL, Kurikawa Y, Ueda HR, Matsuura A, Mizushima N, Itakura E. CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy. Mol Biol Cell 2023; 34:ar29. [PMID: 36735498 PMCID: PMC10092646 DOI: 10.1091/mbc.e22-09-0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endoplasmic reticulum (ER) is a major cell compartment where protein synthesis, folding, and posttranslational modifications occur with assistance from a wide variety of chaperones and enzymes. Quality control systems selectively eliminate abnormal proteins that accumulate inside the ER due to cellular stresses. ER-phagy, that is, selective autophagy of the ER, is a mechanism that maintains or reestablishes cellular and ER-specific homeostasis through removal of abnormal proteins. However, how ER luminal proteins are recognized by the ER-phagy machinery remains unclear. Here, we applied the aggregation-prone protein, six-repeated islet amyloid polypeptide (6xIAPP), as a model ER-phagy substrate and found that cell cycle progression 1 (CCPG1), which is an ER-phagy receptor, efficiently mediates its degradation via ER-phagy. We also identified prolyl 3-hydroxylase family member 4 (P3H4) as an endogenous cargo of CCPG1-dependent ER-phagy. The ER luminal region of CCPG1 contains several highly conserved regions that we refer to as cargo-interacting regions (CIRs); these interact directly with specific luminal cargos for ER-phagy. Notably, 6xIAPP and P3H4 interact directly with different CIRs. These findings indicate that CCPG1 is a bispecific ER-phagy receptor for ER luminal proteins and the autophagosomal membrane that contributes to the efficient removal of aberrant ER-resident proteins through ER-phagy.
Collapse
Affiliation(s)
- Shunsuke Ishii
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan
| | - Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kurikawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka 565-0871, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, 263-8522, Japan
| |
Collapse
|