1
|
Liu CK, He YY, Chen ST, Shi WW, Wang Y, Luo HN, Yang ZM. Histamine promotes mouse decidualization through stimulating epithelial amphiregulin release. FEBS J 2024; 291:3924-3937. [PMID: 38973142 DOI: 10.1111/febs.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.
Collapse
Affiliation(s)
- Cheng-Kan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Navasatli SA, Vahdati SN, Arjmand TF, Mohammadi far M, Behboudi H. New insight into the role of the ADAM protease family in breast carcinoma progression. Heliyon 2024; 10:e24805. [PMID: 38317965 PMCID: PMC10839977 DOI: 10.1016/j.heliyon.2024.e24805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
Protease and adhesion molecules play a very emphasized role in the occurrence or progression of metastasis in many types of cancers. In this context, a molecule that contains both protease and adhesion functions play a crucial role in metastasis. ADAMs (a disintegrin and metalloprotease) are molecules with this special characteristic. Recently, a lot of attention has been attracted to various ADAM molecules and researchers have tried to elucidate the role of ADAMs in breast cancer occurrence and progression. Disrupting ADAMs protease and adhesion capabilities can lead to the discovery of worthy therapeutic targets in breast cancer treatment. In this review, we intend to discuss the mechanism of action of various ADAM molecules, their relation to pathogenic processes of breast cancer, and their potential as possible targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Tahura Fayeghi Arjmand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Mohammadi far
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Saad MI, Jenkins BJ. The protease ADAM17 at the crossroads of disease: revisiting its significance in inflammation, cancer, and beyond. FEBS J 2024; 291:10-24. [PMID: 37540030 DOI: 10.1111/febs.16923] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
The protease A Disintegrin And Metalloproteinase 17 (ADAM17) plays a central role in the pathophysiology of several diseases. ADAM17 is involved in the cleavage and shedding of at least 80 known membrane-tethered proteins, which subsequently modulate several intracellular signaling pathways, and therefore alter cell behavior. Dysregulated expression and/or activation of ADAM17 has been linked to a wide range of autoimmune and inflammatory diseases, cancer, and cardiovascular disease. In this review, we provide an overview of the current state of knowledge from preclinical models and clinical data on the diverse pathophysiological roles of ADAM17, and discuss the mechanisms underlying ADAM17-mediated protein shedding and the potential therapeutic implications of targeting ADAM17 in these diseases.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Vic., Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic., Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, SA, Australia
| |
Collapse
|
4
|
Pinto BF, Lopes PH, Trufen CEM, Ching ATC, De Azevedo IDLMJ, Nishiyama MY, Pohl PC, Tambourgi DV. Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D. Arch Toxicol 2023; 97:3285-3301. [PMID: 37707622 DOI: 10.1007/s00204-023-03602-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.
Collapse
|
5
|
Rabinowitsch AI, Maretzky T, Weskamp G, Haxaire C, Tueshaus J, Lichtenthaler SF, Monette S, Blobel CP. Analysis of the function of ADAM17 in iRhom2 curly-bare and tylosis with esophageal cancer mutant mice. J Cell Sci 2023; 136:jcs260910. [PMID: 37282854 PMCID: PMC10357010 DOI: 10.1242/jcs.260910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Tylosis with oesophageal cancer (TOC) is a rare familial disorder caused by cytoplasmic mutations in inactive rhomboid 2 (iRhom2 or iR2, encoded by Rhbdf2). iR2 and the related iRhom1 (or iR1, encoded by Rhbdf1) are key regulators of the membrane-anchored metalloprotease ADAM17, which is required for activating EGFR ligands and for releasing pro-inflammatory cytokines such as TNFα (or TNF). A cytoplasmic deletion in iR2, including the TOC site, leads to curly coat or bare skin (cub) in mice, whereas a knock-in TOC mutation (toc) causes less severe alopecia and wavy fur. The abnormal skin and hair phenotypes of iR2cub/cub and iR2toc/toc mice depend on amphiregulin (Areg) and Adam17, as loss of one allele of either gene rescues the fur phenotypes. Remarkably, we found that iR1-/- iR2cub/cub mice survived, despite a lack of mature ADAM17, whereas iR2cub/cub Adam17-/- mice died perinatally, suggesting that the iR2cub gain-of-function mutation requires the presence of ADAM17, but not its catalytic activity. The iR2toc mutation did not substantially reduce the levels of mature ADAM17, but instead affected its function in a substrate-selective manner. Our findings provide new insights into the role of the cytoplasmic domain of iR2 in vivo, with implications for the treatment of TOC patients.
Collapse
Affiliation(s)
- Ariana I. Rabinowitsch
- Tri-Institutional MD/PhD Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY 10021, USA
- Program in Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Coline Haxaire
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Johanna Tueshaus
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Hospital for Special Surgery, Memorial Sloan Kettering Cancer Center, The Rockefeller University, Weill Cornell Medicine, New York, NY 10021, USA
| | - Carl P. Blobel
- Tri-Institutional MD/PhD Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
6
|
Grannemann C, Pabst A, Honert A, Schieren J, Martin C, Hank S, Böll S, Bläsius K, Düsterhöft S, Jahr H, Merkel R, Leube R, Babendreyer A, Ludwig A. Mechanical activation of lung epithelial cells through the ion channel Piezo1 activates the metalloproteinases ADAM10 and ADAM17 and promotes growth factor and adhesion molecule release. BIOMATERIALS ADVANCES 2023; 152:213516. [PMID: 37348330 DOI: 10.1016/j.bioadv.2023.213516] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
In the lung, pulmonary epithelial cells undergo mechanical stretching during ventilation. The associated cellular mechanoresponse is still poorly understood at the molecular level. Here, we demonstrate that activation of the mechanosensitive cation channel Piezo1 in a human epithelial cell line (H441) and in primary human lung epithelial cells induces the proteolytic activity of the metalloproteinases ADAM10 and ADAM17 at the plasma membrane. These ADAMs are known to convert cell surface expressed proteins into soluble and thereby play major roles in proliferation, barrier regulation and inflammation. We observed that chemical activation of Piezo1 promotes cleavage of substrates that are specific for either ADAM10 or ADAM17. Activation of Piezo1 also induced the synthesis and ADAM10/17-dependent release of the growth factor amphiregulin (AREG). In addition, junctional adhesion molecule A (JAM-A) was shed in an ADAM10/17-dependent manner resulting in a reduction of cell contacts. Stretching experiments combined with Piezo1 knockdown further demonstrated that mechanical activation promotes shedding via Piezo1. Most importantly, high pressure ventilation of murine lungs increased AREG and JAM-A release into the alveolar space, which was reduced by a Piezo1 inhibitor. Our study provides a novel link between stretch-induced Piezo1 activation and the activation of ADAM10 and ADAM17 in lung epithelium. This may help to understand acute respiratory distress syndrome (ARDS) which is induced by ventilation stress and goes along with perturbed epithelial permeability and release of growth factors.
Collapse
Affiliation(s)
- Caroline Grannemann
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Alessa Pabst
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Annika Honert
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Jana Schieren
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sophia Hank
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Svenja Böll
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Katharina Bläsius
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Stefan Düsterhöft
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Holger Jahr
- Institute of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Research Centre Juelich, Juelich, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Dixit G, Gonzalez‐Bosquet J, Skurski J, Devor EJ, Dickerson EB, Nothnick WB, Issuree PD, Leslie KK, Maretzky T. FGFR2 mutations promote endometrial cancer progression through dual engagement of EGFR and Notch signalling pathways. Clin Transl Med 2023; 13:e1223. [PMID: 37165578 PMCID: PMC10172618 DOI: 10.1002/ctm2.1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Mutations in the receptor tyrosine kinase gene fibroblast growth factor receptor 2 (FGFR2) occur at a high frequency in endometrial cancer (EC) and have been linked to advanced and recurrent disease. However, little is known about how these mutations drive carcinogenesis. METHODS Differential transcriptomic analysis and two-step quantitative real-time PCR (qRT-PCR) assays were applied to identify genes differentially expressed in two cohorts of EC patients carrying mutations in the FGFR2 gene as well as in EC cells harbouring mutations in the FGFR2. Candidate genes and target signalling pathways were investigated by qRT-PCR assays, immunohistochemistry and bioinformatics analysis. The functional roles of differently regulated genes were analysed using in vitro and in vivo experiments, including 3D-orthotypic co-culture systems, cell proliferation and migration protocols, as well as colony and focus formation assays together with murine xenograft tumour models. The molecular mechanisms were examined using CRISPR/Cas9-based loss-of-function and pharmacological approaches as well as luciferase reporter techniques, cell-based ectodomain shedding assays and bioinformatics analysis. RESULTS We show that common FGFR2 mutations significantly enhance the sensitivity to FGF7-mediated activation of a disintegrin and metalloprotease (ADAM)17 and subsequent transactivation of the epidermal growth factor receptor (EGFR). We further show that FGFR2 mutants trigger the activation of ADAM10-mediated Notch signalling in an ADAM17-dependent manner, highlighting for the first time an intimate cooperation between EGFR and Notch pathways in EC. Differential transcriptomic analysis in EC cells in a cohort of patients carrying mutations in the FGFR2 gene identified a strong association between FGFR2 mutations and increased expression of members of the Notch pathway and ErbB receptor family. Notably, FGFR2 mutants are not constitutively active but require FGF7 stimulation to reprogram Notch and EGFR pathway components, resulting in ADAM17-dependent oncogenic growth. CONCLUSIONS These findings highlight a pivotal role of ADAM17 in the pathogenesis of EC and provide a compelling rationale for targeting ADAM17 protease activity in FGFR2-driven cancers.
Collapse
Affiliation(s)
- Garima Dixit
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Jesus Gonzalez‐Bosquet
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Joseph Skurski
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| | - Eric J. Devor
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
| | - Erin B. Dickerson
- Department of Veterinary Clinical SciencesCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Animal Cancer Care and Research ProgramUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Warren B. Nothnick
- Cell Biology and PhysiologyCenter for Reproductive SciencesUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Priya D. Issuree
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kimberly K. Leslie
- Department of Obstetrics and GynecologyUniversity of IowaIowa CityIowaUSA
- Division of Molecular MedicineDepartments of Internal Medicine and Obstetrics and GynecologyThe University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Thorsten Maretzky
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterRoy J. and Lucille A. Carver College of Medicine, University of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
8
|
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease. Cell Mol Life Sci 2023; 80:60. [PMID: 36749397 PMCID: PMC11071807 DOI: 10.1007/s00018-023-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
9
|
Nango H, Ohtani M. S-1-propenyl-L-cysteine suppresses lipopolysaccharide-induced expression of matrix metalloproteinase-1 through inhibition of tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in human gingival fibroblasts. PLoS One 2023; 18:e0284713. [PMID: 37083725 PMCID: PMC10121056 DOI: 10.1371/journal.pone.0284713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Periodontal disease is the most common dental health problem characterized by the destruction of connective tissue and the resorption of alveolar bone resulting from a chronic infection associated with pathogenic bacteria in the gingiva. Aged garlic extract has been reported to improve gingival bleeding index and probing pocket depth score in patients with mild to moderate periodontitis. Although our previous study found that aged garlic extract and its constituents suppressed the tumor necrosis factor-α-induced inflammatory responses in a human gingival epithelial cell line, the mechanism underlying the effect of aged garlic extract on the destruction of the gingiva remains unclear. The present study investigated the effect of S-1-propenyl-L-cysteine, one of the major sulfur bioactive compounds in aged garlic extract, on the lipopolysaccharide-induced expression of matrix metalloproteinases in human gingival fibroblasts HGF-1 cells. Matrix metalloproteinases are well known to be closely related to the destruction of the gingiva. We found that S-1-propenyl-L-cysteine suppressed the lipopolysaccharide-induced expression and secretion of matrix metalloproteinase-1 in HGF-1 cells. In addition, S-1-propenyl-L-cysteine inhibited the lipopolysaccharide-induced phosphorylation of epidermal growth factor receptor and expression of the active form of tumor necrosis factor-α converting enzyme. Furthermore, the inhibitors of epidermal growth factor receptor tyrosine kinase and tumor necrosis factor-α converting enzyme, AG-1478 and TAPI-1, respectively, reduced the lipopolysaccharide-induced protein level of matrix metalloproteinase-1, as did S-1-propenyl-L-cysteine. Taken together, these results suggested that S-1-propenyl-L-cysteine suppresses the lipopolysaccharide-induced expression of matrix metalloproteinase-1 through the blockade of the tumor necrosis factor-α converting enzyme-epidermal growth factor receptor axis in gingival fibroblasts.
Collapse
Affiliation(s)
- Hiroshi Nango
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| |
Collapse
|
10
|
Zhao Y, Dávila EM, Li X, Tang B, Rabinowitsch AI, Perez-Aguilar JM, Blobel CP. Identification of Molecular Determinants in iRhoms1 and 2 That Contribute to the Substrate Selectivity of Stimulated ADAM17. Int J Mol Sci 2022; 23:12796. [PMID: 36361585 PMCID: PMC9654401 DOI: 10.3390/ijms232112796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
The metalloprotease ADAM17 is a key regulator of the TNFα, IL-6R and EGFR signaling pathways. The maturation and function of ADAM17 is controlled by the seven-membrane-spanning proteins iRhoms1 and 2. The functional properties of the ADAM17/iRhom1 and ADAM17/iRhom2 complexes differ, in that stimulated shedding of most ADAM17 substrates tested to date can be supported by iRhom2, whereas iRhom1 can only support stimulated shedding of very few ADAM17 substrates, such as TGFα. The first transmembrane domain (TMD1) of iRhom2 and the sole TMD of ADAM17 are important for the stimulated shedding of ADAM17 substrates by iRhom2. However, little is currently known about how the iRhoms interact with different substrates to control their stimulated shedding by ADAM17. To provide new insights into this topic, we tested how various chimeras between iRhom1 and iRhom2 affect the stimulated processing of the EGFR-ligands TGFα (iRhom1- or 2-dependent) and EREG (iRhom2-selective) by ADAM17. This uncovered an important role for the TMD7 of the iRhoms in determining their substrate selectivity. Computational methods utilized to characterize the iRhom1/2/substrate interactions suggest that the substrate selectivity is determined, at least in part, by a distinct accessibility of the substrate cleavage site to stimulated ADAM17. These studies not only provide new insights into why the substrate selectivity of stimulated iRhom2/ADAM17 differs from that of iRhom1/ADAM17, but also suggest new approaches for targeting the release of specific ADAM17 substrates.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Eliud Morales Dávila
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Xue Li
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Beiyu Tang
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ariana I. Rabinowitsch
- Department of Biochemistry, Cellular and Molecular Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Jose Manuel Perez-Aguilar
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Carl P. Blobel
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
11
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
12
|
Gnosa S, Puig-Blasco L, Piotrowski KB, Freiberg ML, Savickas S, Madsen DH, Auf dem Keller U, Kronqvist P, Kveiborg M. ADAM17-mediated EGFR ligand shedding directs macrophage promoted cancer cell invasion. JCI Insight 2022; 7:155296. [PMID: 35998057 DOI: 10.1172/jci.insight.155296] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages in the tumor microenvironment have a significant impact on tumor progression. Depending on the signaling environment in the tumor, macrophages can either support or constrain tumor progression. It is therefore of therapeutic interest to identify the tumor-derived factors that control macrophage education. With this aim, we correlated the expression of ADAM proteases, which are key mediators of cell-cell signaling, to the expression of pro-tumorigenic macrophage markers in human cancer cohorts. We identified ADAM17, a sheddase upregulated in many cancer types, as a protein of interest. Depletion of ADAM17 in cancer cell lines reduced the expression of several pro-tumorigenic markers in neighboring macrophages in vitro as well as in mouse models. Moreover, ADAM17-/- educated macrophages demonstrated a reduced ability to induce cancer cell invasion. Using mass spectrometry-based proteomics and ELISA, we identified HB-EGF and AREG, shed by ADAM17 in the cancer cells, as the implicated molecular mediators of macrophage education. Additionally, RNA-seq and ELISA experiments revealed that ADAM17-dependent HB-EGF-ligand release induces the expression and secretion of CXCL chemokines in macrophages, which in turn stimulates cancer cell invasion.In conclusion, we provide evidence that ADAM17 mediates a paracrine EGFR-ligand-chemokine feedback loop, whereby cancer cells hijack macrophages to promote tumor progression.
Collapse
Affiliation(s)
| | - Laia Puig-Blasco
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | | | - Marie L Freiberg
- Biotech Research and Innovation Centre, Copenhagen University, Copenhagen, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy (CCIT), Department of Haematology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
13
|
Zhang JJ, Cao CX, Wan LL, Zhang W, Liu ZJ, Wang JL, Guo Q, Tang H. Forkhead Box q1 promotes invasion and metastasis in colorectal cancer by activating the epidermal growth factor receptor pathway. World J Gastroenterol 2022; 28:1781-1797. [PMID: 35633908 PMCID: PMC9099194 DOI: 10.3748/wjg.v28.i17.1781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is an extremely malignant tumor with a high mortality rate. Little is known about the mechanism by which forkhead Box q1 (FOXQ1) causes CRC invasion and metastasis through the epidermal growth factor receptor (EGFR) pathway.
AIM To illuminate the mechanism by which FOXQ1 promotes the invasion and metastasis of CRC by activating the heparin binding epidermal growth factor (HB-EGF)/EGFR pathway.
METHODS We investigated the differential expression and prognosis of FOXQ1 and HB-EGF in CRC using the Gene Expression Profiling Interactive Analysis (GEPIA) website (http://gepia.cancer-pku.cn/index.html). Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to detect the expression of FOXQ1 and HB-EGF in cell lines and tissues, and we constructed a stable low-expressing FOXQ1 cell line and verified it with the above method. The expression changes of membrane-bound HB-EGF (proHB-EGF) and soluble HB-EGF (sHB-EGF) in the low-expressing FOXQ1 cell line were detected by flow cytometry and ELISA. Western blotting was used to detect changes in the expression levels of HB-EGF and EGFR pathway-related downstream genes when exogenous recombinant human HB-EGF was added to FOXQ1 knockdown cells. Proliferation experiments, transwell migration experiments, and scratch experiments were carried out to determine the mechanism by which FOXQ1 activates the EGFR signaling pathway through HB-EGF, and then to evaluate the clinical relevance of FOXQ1 and HB-EGF.
RESULTS GEPIA showed that the expression of FOXQ1 in CRC tissues was relatively high and was related to a lower overall survival rate. PCR array results showed that FOXQ1 is related to the HB-EGF and EGFR pathways. Knockdown of FOXQ1 suppressed the expression of HB-EGF, and led to a decrease in EGFR and its downstream genes AKT, RAF, KRAS expression levels. After knockdown of FOXQ1 in CRC cell lines, cell proliferation, migration and invasion were attenuated. Adding HB-EGF restored the migration and invasion ability of CRC, but not the cell proliferation ability. Kaplan–Meier survival analysis results showed that the combination of FOXQ1 and HB-EGF may serve to predict CRC survival.
CONCLUSION Based on these collective data, we propose that FOXQ1 promotes the invasion and metastasis of CRC via the HB-EGF/EGFR pathway.
Collapse
Affiliation(s)
- Jin-Jin Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan Province, China
| | - Chang-Xiong Cao
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Li-Lan Wan
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Wen Zhang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Zhong-Jiang Liu
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Jin-Li Wang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Qiang Guo
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| | - Hui Tang
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, the First People’s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
- Department of Medical Faculty, Kunming University of Science and Technology, Kunming 650504, Yunnan Province, China
| |
Collapse
|
14
|
Koo CZ, Matthews AL, Harrison N, Szyroka J, Nieswandt B, Gardiner EE, Poulter NS, Tomlinson MG. The Platelet Collagen Receptor GPVI Is Cleaved by Tspan15/ADAM10 and Tspan33/ADAM10 Molecular Scissors. Int J Mol Sci 2022; 23:2440. [PMID: 35269584 PMCID: PMC8910667 DOI: 10.3390/ijms23052440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The platelet-activating collagen receptor GPVI represents the focus of clinical trials as an antiplatelet target for arterial thrombosis, and soluble GPVI is a plasma biomarker for several human diseases. A disintegrin and metalloproteinase 10 (ADAM10) acts as a 'molecular scissor' that cleaves the extracellular region from GPVI and many other substrates. ADAM10 interacts with six regulatory tetraspanin membrane proteins, Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33, which are collectively termed the TspanC8s. These are emerging as regulators of ADAM10 substrate specificity. Human platelets express Tspan14, Tspan15 and Tspan33, but which of these regulates GPVI cleavage remains unknown. To address this, CRISPR/Cas9 knockout human cell lines were generated to show that Tspan15 and Tspan33 enact compensatory roles in GPVI cleavage, with Tspan15 bearing the more important role. To investigate this mechanism, a series of Tspan15 and GPVI mutant expression constructs were designed. The Tspan15 extracellular region was found to be critical in promoting GPVI cleavage, and appeared to achieve this by enabling ADAM10 to access the cleavage site at a particular distance above the membrane. These findings bear implications for the regulation of cleavage of other ADAM10 substrates, and provide new insights into post-translational regulation of the clinically relevant GPVI protein.
Collapse
Affiliation(s)
- Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (C.Z.K.); (A.L.M.); (N.H.); (J.S.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK;
| | - Alexandra L. Matthews
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (C.Z.K.); (A.L.M.); (N.H.); (J.S.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK;
| | - Neale Harrison
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (C.Z.K.); (A.L.M.); (N.H.); (J.S.)
| | - Justyna Szyroka
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (C.Z.K.); (A.L.M.); (N.H.); (J.S.)
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center Würzburg, University of Würzburg, D-97080 Würzburg, Germany;
| | - Elizabeth E. Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia;
| | - Natalie S. Poulter
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK;
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (C.Z.K.); (A.L.M.); (N.H.); (J.S.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands B15 2TT, UK;
| |
Collapse
|
15
|
Xu J, Yu X, Ye H, Gao S, Deng N, Lu Y, Lin H, Zhang Y, Lu D. Comparative Metabolomics and Proteomics Reveal Vibrio parahaemolyticus Targets Hypoxia-Related Signaling Pathways of Takifugu obscurus. Front Immunol 2022; 12:825358. [PMID: 35095928 PMCID: PMC8793131 DOI: 10.3389/fimmu.2021.825358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) raises the issue of how hypoxia destroys normal physiological function and host immunity against pathogens. However, there are few or no comprehensive omics studies on this effect. From an evolutionary perspective, animals living in complex and changeable marine environments might develop signaling pathways to address bacterial threats under hypoxia. In this study, the ancient genomic model animal Takifugu obscurus and widespread Vibrio parahaemolyticus were utilized to study the effect. T. obscurus was challenged by V. parahaemolyticus or (and) exposed to hypoxia. The effects of hypoxia and infection were identified, and a theoretical model of the host critical signaling pathway in response to hypoxia and infection was defined by methods of comparative metabolomics and proteomics on the entire liver. The changing trends of some differential metabolites and proteins under hypoxia, infection or double stressors were consistent. The model includes transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor-1α (HIF-1α), and epidermal growth factor (EGF) signaling pathways, and the consistent changing trends indicated that the host liver tended toward cell proliferation. Hypoxia and infection caused tissue damage and fibrosis in the portal area of the liver, which may be related to TGF-β1 signal transduction. We propose that LRG (leucine-rich alpha-2-glycoprotein) is widely involved in the transition of the TGF-β1/Smad signaling pathway in response to hypoxia and pathogenic infection in vertebrates as a conserved molecule.
Collapse
Affiliation(s)
- Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Xue Yu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Hangyu Ye
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Songze Gao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Ocean, Hainan University, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Tschanz F, Bender S, Telarovic I, Waller V, Speck RF, Pruschy M. The ADAM17-directed Inhibitory Antibody MEDI3622 Antagonizes Radiotherapy-induced VEGF Release and Sensitizes Non-Small Cell Lung Cancer for Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2021; 1:164-177. [PMID: 36860547 PMCID: PMC9973400 DOI: 10.1158/2767-9764.crc-21-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
The cellular response to ionizing radiation (IR) depends on tumor cell and microenvironmental factors. Here, we investigated the role of IR-induced ADAM17 matrix metalloproteinase activity for the intercellular communication between tumor cells and the tumor vasculature in non-small cell lung cancer (NSCLC) tumor models. Factors shed by ADAM17 from NSCLC tumor cells (A549, H358) and relevant for endothelial cell migration were investigated using transwell migration assays, ELISA, and flow cytometry. Tumor angiogenesis-related endpoints were analyzed with the chorio-allantoic membrane assay and in murine NSCLC tumor models. Efficacy-oriented experiments were performed in a murine orthotopic NSCLC tumor model using irradiation with an image-guided small-animal radiotherapy platform alone and in combination with the novel ADAM17-directed antibody MEDI3622. In vitro, VEGF was identified as the major factor responsible for IR-induced and ADAM17-dependent endothelial cell migration toward attracting tumor cells. IR strongly enhanced tumor cell-associated ADAM17 activity, released VEGF in an ADAM17-dependent manner, and thereby coordinated the communication between tumor and endothelial cells. In vivo, tumor growth and microvessel size and density were strongly decreased in response to the combined treatment modality of IR and MEDI3622 but not by either treatment modality alone and thus suggest that the supra-additive effect of the combined treatment modality is in part due to abrogation of the ADAM17-mediated IR-induced protective effect on the tumor vasculature. Furthermore, we demonstrate that the novel ADAM17-inhibitory antibody MEDI3622 potently improves the radiotherapy response of NSCLC. Significance The tumor response to radiotherapy is influenced by several factors of the tumor microenvironment. We demonstrate that inhibition of the sheddase ADAM17 by the novel antibody MEDI3622 reduces IR-induced VEGF release from tumor cells relevant for endothelial cell migration and vasculature protection, thereby enhancing radiotherapy treatment outcome of NSCLC.
Collapse
Affiliation(s)
- Fabienne Tschanz
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabine Bender
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Verena Waller
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roberto F. Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Corresponding Author: Martin Pruschy, Department of Radiation Oncology, University Hospital Zurich, Raemistrasse 100, Zurich CH-8091, Switzerland. Phone: 0041-44-635-50-04; E-mail:
| |
Collapse
|
17
|
Lin S, Hirayama D, Maryu G, Matsuda K, Hino N, Deguchi E, Aoki K, Iwamoto R, Terai K, Matsuda M. Redundant roles of EGFR ligands in the ERK activation waves during collective cell migration. Life Sci Alliance 2021; 5:5/1/e202101206. [PMID: 34667080 PMCID: PMC8548211 DOI: 10.26508/lsa.202101206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/01/2023] Open
Abstract
By knocking out all four EGFR ligands expressed in MDCK cells, this study shows the redundant and specific roles of each EGFR ligand in the ERK activation waves during collective cell migration. Epidermal growth factor receptor (EGFR) plays a pivotal role in collective cell migration by mediating cell-to-cell propagation of extracellular signal-regulated kinase (ERK) activation. Here, we aimed to determine which EGFR ligands mediate the ERK activation waves. We found that epidermal growth factor (EGF)–deficient cells exhibited lower basal ERK activity than the cells deficient in heparin-binding EGF (HBEGF), transforming growth factor alpha (TGFα) or epiregulin (EREG), but all cell lines deficient in a single EGFR ligand retained the ERK activation waves. Surprisingly, ERK activation waves were markedly suppressed, albeit incompletely, only when all four EGFR ligands were knocked out. Re-expression of the EGFR ligands revealed that all but HBEGF could restore the ERK activation waves. Aiming at complete elimination of the ERK activation waves, we further attempted to knockout NRG1, a ligand for ErbB3 and ErbB4, and found that NRG1-deficiency induced growth arrest in the absence of all four EGFR ligand genes. Collectively, these results showed that EGFR ligands exhibit remarkable redundancy in the propagation of ERK activation waves during collective cell migration.
Collapse
Affiliation(s)
- Shuhao Lin
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daiki Hirayama
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Gembu Maryu
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Hino
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Eriko Deguchi
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ryo Iwamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan .,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Harrison N, Koo CZ, Tomlinson MG. Regulation of ADAM10 by the TspanC8 Family of Tetraspanins and Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22136707. [PMID: 34201472 PMCID: PMC8268256 DOI: 10.3390/ijms22136707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
The ubiquitously expressed transmembrane protein a disintegrin and metalloproteinase 10 (ADAM10) functions as a “molecular scissor”, by cleaving the extracellular regions from its membrane protein substrates in a process termed ectodomain shedding. ADAM10 is known to have over 100 substrates including Notch, amyloid precursor protein, cadherins, and growth factors, and is important in health and implicated in diseases such as cancer and Alzheimer’s. The tetraspanins are a superfamily of membrane proteins that interact with specific partner proteins to regulate their intracellular trafficking, lateral mobility, and clustering at the cell surface. We and others have shown that ADAM10 interacts with a subgroup of six tetraspanins, termed the TspanC8 subgroup, which are closely related by protein sequence and comprise Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33. Recent evidence suggests that different TspanC8/ADAM10 complexes have distinct substrates and that ADAM10 should not be regarded as a single scissor, but as six different TspanC8/ADAM10 scissor complexes. This review discusses the published evidence for this “six scissor” hypothesis and the therapeutic potential this offers.
Collapse
Affiliation(s)
- Neale Harrison
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
| | - Chek Ziu Koo
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Michael G. Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK; (N.H.); (C.Z.K.)
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
- Correspondence: ; Tel.: +44-(0)121-414-2507
| |
Collapse
|
19
|
Lora J, Weskamp G, Li TM, Maretzky T, Shola DTN, Monette S, Lichtenthaler SF, Lu TT, Yang C, Blobel CP. Targeted truncation of the ADAM17 cytoplasmic domain in mice results in protein destabilization and a hypomorphic phenotype. J Biol Chem 2021; 296:100733. [PMID: 33957124 PMCID: PMC8191336 DOI: 10.1016/j.jbc.2021.100733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
A disintegrin and metalloprotease 17 (ADAM17) is a cell-surface metalloprotease that serves as the principle sheddase for tumor necrosis factor α (TNFα), interleukin-6 receptor (IL-6R), and several ligands of the epidermal growth factor receptor (EGFR), regulating these crucial signaling pathways. ADAM17 activation requires its transmembrane domain, but not its cytoplasmic domain, and little is known about the role of this domain in vivo. To investigate, we used CRISPR-Cas9 to mutate the endogenous Adam17 locus in mice to produce a mutant ADAM17 lacking its cytoplasmic domain (Adam17Δcyto). Homozygous Adam17Δcyto animals were born at a Mendelian ratio and survived into adulthood with slightly wavy hair and curled whiskers, consistent with defects in ADAM17/EGFR signaling. At birth, Adam17Δcyto mice resembled Adam17−/− mice in that they had open eyes and enlarged semilunar heart valves, but they did not have bone growth plate defects. The deletion of the cytoplasmic domain resulted in strongly decreased ADAM17 protein levels in all tissues and cells examined, providing a likely cause for the hypomorphic phenotype. In functional assays, Adam17Δcyto mouse embryonic fibroblasts and bone-marrow-derived macrophages had strongly reduced ADAM17 activity, consistent with the reduced protein levels. Nevertheless, ADAM17Δcyto could be stimulated by PMA, a well-characterized posttranslational activator of ADAM17, corroborating that the cytoplasmic domain of endogenous ADAM17 is not required for its rapid response to PMA. Taken together, these results provide the first evidence that the cytoplasmic domain of ADAM17 plays a pivotal role in vivo in regulating ADAM17 levels and function.
Collapse
Affiliation(s)
- Jose Lora
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA
| | - Thorsten Maretzky
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Dorjee T N Shola
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Sloan-Kettering Institute, New York, New York, USA
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Technical University of Munich, Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Technical University of Munich, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, New York, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Chingwen Yang
- CRISPR and Genome Editing Resource Center, Rockefeller University, New York, New York, USA
| | - Carl P Blobel
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, New York, USA; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA; Institute for Advanced Study, Technical University of Munich, Garching, Germany; Department of Medicine, Weill Cornell Medicine, New York, New York, USA; Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
20
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Wei SG, Yu Y, Felder RB. TNF-α-induced sympathetic excitation requires EGFR and ERK1/2 signaling in cardiovascular regulatory regions of the forebrain. Am J Physiol Heart Circ Physiol 2021; 320:H772-H786. [PMID: 33337962 PMCID: PMC8082799 DOI: 10.1152/ajpheart.00606.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Peripherally or centrally administered TNF-α elicits a prolonged sympathetically mediated pressor response, but the underlying molecular mechanisms are unknown. Activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cardiovascular regions of the brain has recently been recognized as a key mediator of sympathetic excitation, and ERK1/2 signaling is induced by activation of epidermal growth factor receptor (EGFR) tyrosine kinase activity. The present study examined the role of EGFR and ERK1/2 signaling in the sympathetic response to TNF-α. In urethane-anesthetized rats, intracarotid artery injection of TNF-α increased phosphorylation of EGFR and ERK1/2 in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN); upregulated the gene expression of excitatory mediators in SFO and PVN; and increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA). A continuous intracerebroventricular infusion of the selective EGFR tyrosine kinase inhibitor AG1478 or the ERK1/2 inhibitor PD98059 significantly attenuated these responses. Bilateral PVN microinjections of TNF-α also increased phosphorylated ERK1/2 and the gene expression of excitatory mediators in PVN, along with increases in BP, HR, and RSNA, and these responses were substantially reduced by prior bilateral PVN microinjections of AG1478. These results identify activation of EGFR in cardiovascular regulatory regions of the forebrain as an important molecular mediator of TNF-α-driven sympatho-excitatory responses and suggest that EGFR activation of the ERK1/2 signaling pathway plays an essential role. These mechanisms likely contribute to sympathetic excitation in pathophysiological states like heart failure and hypertension, in which circulating and brain TNF-α levels are increased.NEW & NOTEWORTHY Proinflammatory cytokines contribute to the augmented sympathetic nerve activity in hypertension and heart failure, but the central mechanisms involved are largely unknown. The present study reveals that TNF-α transactivates EGFR in the subfornical organ and the hypothalamic paraventricular nucleus to initiate ERK1/2 signaling, upregulate the gene expression of excitatory mediators, and increase sympathetic nerve activity. These findings identify EGFR as a gateway to sympathetic excitation and a potential target for intervention in cardiovascular disease states.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Yang Yu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Robert B Felder
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
22
|
Fang R, Haxaire C, Otero M, Lessard S, Weskamp G, McIlwain DR, Mak TW, Lichtenthaler SF, Blobel CP. Role of iRhoms 1 and 2 in Endochondral Ossification. Int J Mol Sci 2020; 21:ijms21228732. [PMID: 33227998 PMCID: PMC7699240 DOI: 10.3390/ijms21228732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Growth of the axial and appendicular skeleton depends on endochondral ossification, which is controlled by tightly regulated cell–cell interactions in the developing growth plates. Previous studies have uncovered an important role of a disintegrin and metalloprotease 17 (ADAM17) in the normal development of the mineralized zone of hypertrophic chondrocytes during endochondral ossification. ADAM17 regulates EGF-receptor signaling by cleaving EGFR-ligands such as TGFα from their membrane-anchored precursor. The activity of ADAM17 is controlled by two regulatory binding partners, the inactive Rhomboids 1 and 2 (iRhom1, 2), raising questions about their role in endochondral ossification. To address this question, we generated mice lacking iRhom2 (iR2−/−) with floxed alleles of iRhom1 that were specifically deleted in chondrocytes by Col2a1-Cre (iR1∆Ch). The resulting iR2−/−iR1∆Ch mice had retarded bone growth compared to iR2−/− mice, caused by a significantly expanded zone of hypertrophic mineralizing chondrocytes in the growth plate. Primary iR2−/−iR1∆Ch chondrocytes had strongly reduced shedding of TGFα and other ADAM17-dependent EGFR-ligands. The enlarged zone of mineralized hypertrophic chondrocytes in iR2−/−iR1∆Ch mice closely resembled the abnormal growth plate in A17∆Ch mice and was similar to growth plates in Tgfα−/− mice or mice with EGFR mutations. These data support a model in which iRhom1 and 2 regulate bone growth by controlling the ADAM17/TGFα/EGFR signaling axis during endochondral ossification.
Collapse
Affiliation(s)
- Renpeng Fang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Coline Haxaire
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - Miguel Otero
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Samantha Lessard
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (M.O.); (S.L.)
| | - Gisela Weskamp
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
| | - David R. McIlwain
- Baxter Laboratory in Stem Cell Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Tak W. Mak
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, ON M5G 2M9, Canada;
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany;
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, NY 10021, USA; (C.H.); (G.W.)
- Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
- Department of Medicine, Department of Biophysics, Physiology and Systems Biology, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: ; Tel.: +212-606-1429; Fax: +212-774-2560
| |
Collapse
|
23
|
CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. DISEASE MARKERS 2020; 2020:8899924. [PMID: 33204367 PMCID: PMC7654213 DOI: 10.1155/2020/8899924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023]
Abstract
CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.
Collapse
|
24
|
Wang W, Wu J, Mukherjee A, He T, Wang XY, Ma Y, Fang X. Lysophosphatidic acid induces tumor necrosis factor-alpha to regulate a pro-inflammatory cytokine network in ovarian cancer. FASEB J 2020; 34:13935-13948. [PMID: 32851734 DOI: 10.1096/fj.202001136r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Epithelial ovarian carcinoma tissues express high levels of tumor necrosis factor-alpha (TNF-α) and other inflammatory cytokines. The underlying mechanism leading to the abnormal TNF-α expression in ovarian cancer remains poorly understood. In the current study, we demonstrated that lysophosphatidic acid (LPA), a lipid mediator present in ascites of ovarian cancer patients, induced expression of TNF-α mRNA and release of TNF-α protein in ovarian cancer cells. LPA also induced expression of interleukin-1β (IL-1β) mRNA but no significant increase in IL-1β protein was detected. LPA enhanced TNF-α mRNA through NF-κB-mediated transcriptional activation. Inactivation of ADAM17, a disintegrin and metalloproteinase, with a specific inhibitor TMI-1 or by shRNA knockdown prevented ovarian cancer cells from releasing TNF-α protein in response to LPA, indicating that LPA-mediated TNF-α production relies on both transcriptional upregulations of the TNF-α gene and the activity of ADAM17, the membrane-associated TNF-α-converting enzyme. Like many other biological responses to LPA, induction of TNF-α by LPA also depended on the transactivation of the epidermal growth factor receptor (EGFR). Interestingly, our results revealed that ADAM17 was also the shedding protease responsible for the transactivation of EGFR by LPA in ovarian cancer cells. To explore the biological outcomes of LPA-induced TNF-α, we examined the effects of a TNF-α neutralizing antibody and recombinant TNF-α soluble receptor on LPA-stimulated expression of pro-tumorigenic cytokines and chemokines overexpressed in ovarian cancer. Blockade of TNF-α signaling significantly reduced the production of IL-8, IL-6, and CXCL1, suggesting a hierarchy of mechanisms contributing to the robust expression of the inflammatory mediators in response to LPA in ovarian cancer cells. In contrast, TNF-α inhibition did not affect LPA-dependent cell proliferation. Taken together, our results establish that the bioactive lipid LPA drives the expression of TNF-α to regulate an inflammatory network in ovarian cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinhua Wu
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Abir Mukherjee
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Tianhai He
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Yibao Ma
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
Kelly FL, Weinberg KE, Nagler AE, Nixon AB, Star MD, Todd JL, Brass DM, Palmer SM. EGFR-Dependent IL8 Production by Airway Epithelial Cells After Exposure to the Food Flavoring Chemical 2,3-Butanedione. Toxicol Sci 2020; 169:534-542. [PMID: 30851105 DOI: 10.1093/toxsci/kfz066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
2,3-Butanedione (DA), a component of artificial butter flavoring, is associated with the development of occupational bronchiolitis obliterans (BO), a disease of progressive airway fibrosis resulting in lung function decline. Neutrophilic airway inflammation is a consistent feature of BO across a range of clinical contexts and may contribute to disease pathogenesis. Therefore, we sought to determine the importance of the neutrophil chemotactic cytokine interleukin-8 (IL-8) in DA-induced lung disease using in vivo and in vitro model systems. First, we demonstrated that levels of Cinc-1, the rat homolog of IL-8, are increased in the lung fluid and tissue compartment in a rat model of DA-induced BO. Next, we demonstrated that DA increased IL-8 production by the pulmonary epithelial cell line NCI-H292 and by primary human airway epithelial cells grown under physiologically relevant conditions at an air-liquid interface. We then tested the hypothesis that DA-induced epithelial IL-8 protein occurs in an epidermal growth factor receptor (EGFR)-dependent manner. In these in vitro experiments we demonstrated that epithelial IL-8 protein is blocked by the EGFR tyrosine kinase inhibitor AG1478 and by inhibition of tumor necrosis factor-alpha converting enzyme using the small molecule inhibitor, TAPI-1. Finally, we demonstrated that DA-induced IL-8 is dependent upon ERK1/2 and Mitogen activated protein kinase kinase activation downstream of EGFR signaling using the small molecule inhibitors AG1478 and PD98059. Together these novel in vivo and in vitro observations support that EGFR-dependent IL-8 production occurs in DA-induced BO. Further studies are warranted to determine the importance of IL-8 in BO pathogenesis.
Collapse
Affiliation(s)
- Francine L Kelly
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Kaitlyn E Weinberg
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew E Nagler
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Andrew B Nixon
- Division of Oncology, Duke University Medical Center, Durham, NC 27710
| | - Mark D Star
- Division of Oncology, Duke University Medical Center, Durham, NC 27710
| | - Jamie L Todd
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - David M Brass
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| | - Scott M Palmer
- Division of Pulmonary and Critical Care medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
26
|
A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries. Cell Death Dis 2020; 11:262. [PMID: 32321920 PMCID: PMC7176668 DOI: 10.1038/s41419-020-2453-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration.
Collapse
|
27
|
Kim JH, Hwang SW, Koh J, Chun J, Lee C, Im JP, Kim JS. Inactive Rhomboid Protein 2 Mediates Intestinal Inflammation by Releasing Tumor Necrosis Factor-α. Inflamm Bowel Dis 2020; 26:242-253. [PMID: 31586441 DOI: 10.1093/ibd/izz239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α is a major proinflammatory cytokine that plays a key role in inflammatory bowel disease (IBD). Inactive rhomboid protein 2 (iRhom2) is essential for activating TNF-α-converting enzyme (TACE) in immune cells, which regulates TNF-α release. The aim of the study was to investigate the role of iRhom2 in intestinal inflammation in IBD. METHODS The expression of iRhom2 and TACE in lipopolysaccharide (LPS)-stimulated COLO 205 and RAW 264.7 cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. The expression of iRhom2 and TACE in the colonic tissue of IBD patients and 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-treated mice was determined by RT-PCR and immunohistochemistry. To assess the role of iRhom2 in intestinal inflammation, colitis was induced in wild-type and iRhom2-/- mice by the administration of TNBS enema. RESULTS In LPS-stimulated COLO 205 and RAW 264.7 cells, the mRNA and protein levels of TACE and iRhom2 were upregulated. The expression of TACE and iRhom2 in the colon of the IBD patients and TNBS-treated mice was significantly enhanced. The inflammatory cells that expressed high levels of iRhom2 in the colon were identified as macrophages. Finally, iRhom2 deficiency ameliorated TNBS-induced colitis by inhibiting TNF-α release. CONCLUSIONS iRhom2 has an important role in intestinal inflammation through TNF-α secretion in immune cells, which suggests that iRhom2 could be a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Changhyun Lee
- Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine and Healthcare Research Institute, Healthcare System Gangnam Center, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
28
|
Veit M, Ahrens B, Seidel J, Sommer A, Bhakdi S, Reiss K. Mutagenesis of the ADAM17-phosphatidylserine-binding motif leads to embryonic lethality in mice. Life Sci Alliance 2019; 2:2/5/e201900430. [PMID: 31455669 PMCID: PMC6712283 DOI: 10.26508/lsa.201900430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/26/2022] Open
Abstract
ADAM17, prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Several of these play central roles in oncogenesis and inflammation, yet despite its importance, the mechanism by which ADAM17 is activated is not fully understood. We recently presented evidence that surface exposure of phosphatidylserine (PS) is the penultimate event required for sheddase activation, which occurs upon binding of a membrane-proximal, cationic binding motif to the anionic phospholipid headgroup. Here, we show that mutagenesis of the 3 amino acids constituting the PS-binding motif leads to embryonic lethality in mice. Heterozygotes showed no abnormalities. Primary hepatocytes and fibroblasts were analysed and found to express the mutant protease on the cell surface. However, PMA-stimulated release of ADAM17 substrates was completely abolished. The results directly support the novel concept of transiently externalised PS as essential trigger of extracellular protease function in vivo.
Collapse
Affiliation(s)
- Martin Veit
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Björn Ahrens
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Jana Seidel
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Anselm Sommer
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Sucharit Bhakdi
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Karina Reiss
- Department of Dermatology, University of Kiel, Kiel, Germany
| |
Collapse
|
29
|
Seegar TC, Blacklow SC. Domain integration of ADAM family proteins: Emerging themes from structural studies. Exp Biol Med (Maywood) 2019; 244:1510-1519. [PMID: 31333048 DOI: 10.1177/1535370219865901] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
ADAM (a disintegrin and metalloproteinase) proteins are type-1 transmembrane and secreted proteins that function in cell adhesion and signal transduction. Here we review the structural features of ADAM proteins that direct their biological functions in ectodomain shedding and cell adhesion. Impact statement Recent structural advances have provided a deeper appreciation for interdomain relationships that modulate the activity of ADAM proteins in ectodomain shedding and cellular adhesion. Our review covers these new findings, and places them into historical context. The new results make clear that the metalloproteinase domain works in combination with its ancillary domains to execute its biological function. The ADAM ectodomain is dynamic, and accesses conformations that require interdomain movements during its enzymatic “lifecycle.” Fundamental questions about ADAM activation and substrate selection, however, still remain unanswered. Elucidating the biochemical and structural basis for ADAM regulation will be an exciting avenue of future research that should greatly advance our understanding of ADAM function in biology and human pathogenesis.
Collapse
Affiliation(s)
- Tom Cm Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| |
Collapse
|
30
|
Status update on iRhom and ADAM17: It's still complicated. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1567-1583. [PMID: 31330158 DOI: 10.1016/j.bbamcr.2019.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Several membrane-bound proteins with a single transmembrane domain are subjected to limited proteolysis at the cell surface. This cleavage leads to the release of their biologically active ectodomains, which can trigger different signalling pathways. In many cases, this ectodomain shedding is mediated by members of the family of a disintegrins and metalloproteinases (ADAMs). ADAM17 in particular is responsible for the cleavage of several proinflammatory mediators, growth factors, receptors and adhesion molecules. Due to its direct involvement in the release of these signalling molecules, ADAM17 can be positively and negatively involved in various physiological processes as well as in inflammatory, fibrotic and malignant pathologies. This central role of ADAM17 in a variety of processes requires strict multi-level regulation, including phosphorylation, various conformational changes and endogenous inhibitors. Recent research has shown that an early, crucial control mechanism is interaction with certain adapter proteins identified as iRhom1 and iRhom2, which are pseudoproteases of the rhomboid superfamily. Thus, iRhoms have also a decisive influence on physiological and pathophysiological signalling processes regulated by ADAM17. Their characteristic gene expression profiles, the specific consequences of gene knockouts and finally the occurrence of disease-associated mutations suggest that iRhom1 and iRhom2 undergo different gene regulation in order to fulfil their function in different cell types and are therefore only partially redundant. Therefore, there is not only interest in ADAM17, but also in iRhoms as therapeutic targets. However, to exploit the therapeutic potential, the regulation of ADAM17 activity and in particular its interaction with iRhoms must be well understood.
Collapse
|
31
|
Geribaldi-Doldán N, Gómez-Oliva R, Domínguez-García S, Nunez-Abades P, Castro C. Protein Kinase C: Targets to Regenerate Brain Injuries? Front Cell Dev Biol 2019; 7:39. [PMID: 30949480 PMCID: PMC6435489 DOI: 10.3389/fcell.2019.00039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 12/28/2022] Open
Abstract
Acute or chronic injury to the central nervous system (CNS), causes neuronal death and irreversible cognitive deficits or sensory-motor alteration. Despite the capacity of the adult CNS to generate new neurons from neural stem cells (NSC), neuronal replacement following an injury is a restricted process, which does not naturally result in functional regeneration. Therefore, potentiating endogenous neurogenesis is one of the strategies that are currently being under study to regenerate damaged brain tissue. The insignificant neurogenesis that occurs in CNS injuries is a consequence of the gliogenic/non-neurogenic environment that inflammatory signaling molecules create within the injured area. The modification of the extracellular signals to generate a neurogenic environment would facilitate neuronal replacement. However, in order to generate this environment, it is necessary to unearth which molecules promote or impair neurogenesis to introduce the first and/or eliminate the latter. Specific isozymes of the protein kinase C (PKC) family differentially contribute to generate a gliogenic or neurogenic environment in injuries by regulating the ADAM17 mediated release of growth factor receptor ligands. Recent reports describe several non-tumorigenic diterpenes isolated from plants of the Euphorbia genus, which specifically modulate the activity of PKC isozymes promoting neurogenesis. Diterpenes with 12-deoxyphorbol or lathyrane skeleton, increase NPC proliferation in neurogenic niches in the adult mouse brain in a PKCβ dependent manner exerting their effects on transit amplifying cells, whereas PKC inhibition in injuries promotes neurogenesis. Thus, compounds that balance PKC activity in injuries might be of use in the development of new drugs and therapeutic strategies to regenerate brain injuries.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomedica de Cádiz (INIBICA), Cádiz, Spain
| |
Collapse
|
32
|
Tomic-Canic M, Wong LL, Smola H. The epithelialisation phase in wound healing: options to enhance wound closure. J Wound Care 2018; 27:646-658. [DOI: 10.12968/jowc.2018.27.10.646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Majana Tomic-Canic
- Professor and Vice Chair of Research; Director, Wound Healing and Regenerative Medicine Research Program; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Lulu L. Wong
- MD Candidate; Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Miami, Florida, US
| | - Hans Smola
- Professor of Dermatology, Medical Director, PAUL HARTMANN AG, Heidenheim and Department of Dermatology, University of Cologne, Cologne, Germany
| |
Collapse
|
33
|
Hosur V, Farley ML, Low BE, Burzenski LM, Shultz LD, Wiles MV. RHBDF2-Regulated Growth Factor Signaling in a Rare Human Disease, Tylosis With Esophageal Cancer: What Can We Learn From Murine Models? Front Genet 2018; 9:233. [PMID: 30022999 PMCID: PMC6039722 DOI: 10.3389/fgene.2018.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Tylosis with esophageal cancer syndrome (TOC) is a rare autosomal dominant proliferative skin disease caused by missense mutations in the rhomboid 5 homolog 2 (RHBDF2) gene. TOC is characterized by thickening of the skin in the palms and feet and is strongly linked with the development of esophageal squamous cell carcinoma. Murine models of human diseases have been valuable tools for investigating the underlying genetic and molecular mechanisms of a broad range of diseases. Although current mouse models do not fully recapitulate all aspects of human TOC, and the molecular mechanisms underlying TOC are still emerging, the available mouse models exhibit several key aspects of the disease, including a proliferative skin phenotype, a rapid wound healing phenotype, susceptibility to epithelial cancer, and aberrant epidermal growth factor receptor (EGFR) signaling. Furthermore, we and other investigators have used these models to generate new insights into the causes and progression of TOC, including findings suggesting a tissue-specific role of the RHBDF2-EGFR pathway, rather than a role of the immune system, in mediating TOC; and indicating that amphiregulin, an EGFR ligand, is a functional driver of the disease. This review highlights the mouse models of TOC available to researchers for use in investigating the disease mechanisms and possible therapies, and the significance of genetic modifiers of the disease identified in these models in delineating the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | | | | | | |
Collapse
|
34
|
Yoneyama T, Gorry M, Sobo-Vujanovic A, Lin Y, Vujanovic L, Gaither-Davis A, Moss ML, Miller MA, Griffith LG, Lauffenburger DA, Stabile LP, Herman J, Vujanovic NL. ADAM10 Sheddase Activity is a Potential Lung-Cancer Biomarker. J Cancer 2018; 9:2559-2570. [PMID: 30026855 PMCID: PMC6036891 DOI: 10.7150/jca.24601] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Increases in expression of ADAM10 and ADAM17 genes and proteins are inconsistently found in cancer lesions, and are not validated as clinically useful biomarkers. The enzyme-specific proteolytic activities, which are solely mediated by the active mature enzymes, directly reflect enzyme cellular functions and might be superior biomarkers than the enzyme gene or protein expressions, which comprise the inactive proenzymes and active and inactivated mature enzymes. Methods: Using a recent modification of the proteolytic activity matrix analysis (PrAMA) measuring specific enzyme activities in cell and tissue lysates, we examined the specific sheddase activities of ADAM10 (ADAM10sa) and ADAM17 (ADAM17sa) in human non-small cell lung-carcinoma (NSCLC) cell lines, patient primary tumors and blood exosomes, and the noncancerous counterparts. Results: NSCLC cell lines and patient tumors and exosomes consistently showed significant increases of ADAM10sa relative to their normal, inflammatory and/or benign-tumor controls. Additionally, stage IA-IIB NSCLC primary tumors of patients who died of the disease exhibited greater increases of ADAM10sa than those of patients who survived 5 years following diagnosis and surgery. In contrast, NSCLC cell lines and patient tumors and exosomes did not display increases of ADAM17sa. Conclusions: This study is the first to investigate enzyme-specific proteolytic activities as potential cancer biomarkers. It provides a proof-of-concept that ADAM10sa could be a biomarker for NSCLC early detection and outcome prediction. To ascertain that ADAM10sa is a useful cancer biomarker, further robust clinical validation studies are needed.
Collapse
Affiliation(s)
- Toshie Yoneyama
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Michael Gorry
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Andrea Sobo-Vujanovic
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Lazar Vujanovic
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Autumn Gaither-Davis
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | | | - Miles A Miller
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Linda G Griffith
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA.,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - James Herman
- Department of Medicine, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Nikola L Vujanovic
- Department of Pathology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,Department of Immunology, University of Pittsburgh; UPMC Hillman Cancer Center, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| |
Collapse
|
35
|
Hosur V, Farley ML, Burzenski LM, Shultz LD, Wiles MV. ADAM17 is essential for ectodomain shedding of the EGF-receptor ligand amphiregulin. FEBS Open Bio 2018; 8:702-710. [PMID: 29632822 PMCID: PMC5881543 DOI: 10.1002/2211-5463.12407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/30/2022] Open
Abstract
The epidermal growth factor (EGF)-receptor ligand amphiregulin (AREG) is a potent growth factor implicated in proliferative skin diseases and in primary and metastatic epithelial cancers. AREG, synthesized as a propeptide, requires conversion to an active peptide by metalloproteases by a process known as ectodomain shedding. Although (ADAM17) a disintegrin and metalloprotease 17 is a key sheddase of AREG, ADAM8-, ADAM15-, and batimastat (broad metalloprotease inhibitor)-sensitive metalloproteases have also been implicated in AREG shedding. In the present study, using a curly bare (Rhbdf2cub ) mouse model that shows loss-of-hair, enlarged sebaceous gland, and rapid cutaneous wound-healing phenotypes mediated by enhanced Areg mRNA and protein levels, we sought to identify the principal ectodomain sheddase of AREG. To this end, we generated Rhbdf2cub mice lacking ADAM17 specifically in the skin and examined the above phenotypes of Rhbdf2cub mice. We find that ADAM17 deficiency in the skin of Rhbdf2cub mice restores a full hair coat, prevents sebaceous gland enlargement, and impairs the rapid wound-healing phenotype observed in Rhbdf2cub mice. Furthermore, in vitro, stimulated shedding of AREG is abolished in Rhbdf2cub mouse embryonic keratinocytes lacking ADAM17. Thus, our data support previous findings demonstrating that ADAM17 is the major ectodomain sheddase of AREG.
Collapse
|
36
|
Qing X, Chinenov Y, Redecha P, Madaio M, Roelofs JJ, Farber G, Issuree PD, Donlin L, Mcllwain DR, Mak TW, Blobel CP, Salmon JE. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling. J Clin Invest 2018; 128:1397-1412. [PMID: 29369823 DOI: 10.1172/jci97650] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.
Collapse
Affiliation(s)
| | - Yurii Chinenov
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | | | - Michael Madaio
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Joris Jth Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gregory Farber
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA
| | - Priya D Issuree
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - Laura Donlin
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA
| | - David R Mcllwain
- Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Institute for Advanced Study, Technical University Munich, Munich, Germany.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Jane E Salmon
- Program in Inflammation and Autoimmunity, and.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
37
|
Sloan-Lancaster J, Raddad E, Deeg MA, Eli M, Flynt A, Tumlin J. Evaluation of the Safety, Pharmacokinetics, Pharmacodynamics, and Efficacy After Single and Multiple Dosings of LY3016859 in Healthy Subjects and Patients With Diabetic Nephropathy. Clin Pharmacol Drug Dev 2018; 7:759-772. [PMID: 29385323 DOI: 10.1002/cpdd.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/07/2017] [Indexed: 11/06/2022]
Abstract
Two phase 1 studies (TGAA and TGAB) evaluated the safety, pharmacokinetics, pharmacodynamics, and efficacy of LY3016859 (LY), a monoclonal antibody that binds epiregulin and transforming growth factor α (TGF-α), administered intravenously or subcutaneously. In TGAA, 56 healthy subjects received a single dose of LY (0.1-750 mg intravenously, 50 mg subcutaneously) or placebo. In TGAB part A, 15 patients with diabetic nephropathy (DN) received 2 doses of LY (10-750 mg intravenously) or placebo, and in TGAB part B, 45 patients with DN received 5 doses of LY (50-750 mg intravenously) or placebo. Pharmacokinetics, pharmacodynamics, anti-LY antibodies, and change in proteinuria and albuminuria were evaluated. Single and multiple doses of LY administered 3 weeks apart were well tolerated. Pharmacokinetics were nonlinear in healthy subjects and patients with DN, indicating target-mediated drug disposition. Epiregulin level increased in both studies, and TGF-α levels increased in the TGAB study, consistent with target engagement; however, LY treatment did not significantly reduce proteinuria or albuminuria in patients with DN. There was no obvious effect of LY on the disease-related biomarkers monocyte chemoattractant protein-1, synaptopodin, or transferrin. Although LY administration resulted in a high frequency of anti-LY antibodies, pharmacokinetics, target engagement, and efficacy were not impacted.
Collapse
Affiliation(s)
| | - Eyas Raddad
- Chorus, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark A Deeg
- Chorus, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michelle Eli
- Chorus, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Amy Flynt
- PharPoint Research, Inc., Durham, NC, USA
| | | |
Collapse
|
38
|
Redundancy of protein disulfide isomerases in the catalysis of the inactivating disulfide switch in A Disintegrin and Metalloprotease 17. Sci Rep 2018; 8:1103. [PMID: 29348576 PMCID: PMC5773583 DOI: 10.1038/s41598-018-19429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
A Disintegrin and Metalloprotease 17 (ADAM17) can cause the fast release of growth factors and inflammatory mediators from the cell surface. Its activity has to be turned on which occurs by various stimuli. The active form can be inactivated by a structural change in its ectodomain, related to the pattern of the formed disulphide bridges. The switch-off is executed by protein disulfide isomerases (PDIs) that catalyze an isomerization of two disulfide bridges and thereby cause a disulfide switch. We demonstrate that the integrity of the CGHC-motif within the active site of PDIs is indispensable. In particular, no major variation is apparent in the activities of the two catalytic domains of PDIA6. The affinities between PDIA1, PDIA3, PDIA6 and the targeted domain of ADAM17 are all in the nanomolar range and display no significant differences. The redundancy between PDIs and their disulfide switch activity in ectodomains of transmembrane proteins found in vitro appears to be a basic characteristic. However, different PDIs might be required in vivo for disulfide switches in different tissues and under different cellular and physiological situations.
Collapse
|
39
|
Inoue Y, Shimazawa M, Nakamura S, Takata S, Hashimoto Y, Izawa H, Masuda T, Tsuruma K, Sakaue T, Nakayama H, Higashiyama S, Hara H. Both Autocrine Signaling and Paracrine Signaling of HB-EGF Enhance Ocular Neovascularization. Arterioscler Thromb Vasc Biol 2017; 38:174-185. [PMID: 29191924 DOI: 10.1161/atvbaha.117.310337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The incidence of blindness is increasing because of the increase in abnormal ocular neovascularization. Anti-VEGF (vascular endothelial growth factor) therapies have led to good results, although they are not a cure for the blindness. The purpose of this study was to determine what role HB-EGF (heparin-binding epidermal growth factor-like growth factor) plays in ocular angiogenesis. APPROACH AND RESULTS We examined the role played by HB-EGF in ocular neovascularization in 2 animal models of neovascularization: laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy. We also studied human retinal microvascular endothelial cells in culture. Our results showed that the neovascularization was decreased in both the CNV and oxygen-induced retinopathy models in HB-EGF conditional knockout mice compared with that in wild-type mice. Moreover, the expressions of HB-EGF and VEGF were increased after laser-induced CNV and oxygen-induced retinopathy, and their expression sites were located around the neovascular areas. Exposure of human retinal microvascular endothelial cells to HB-EGF and VEGF increased their proliferation and migration, and CRM-197 (cross-reactive material-197), an HB-EGF inhibitor, decreased the HB-EGF-induced and VEGF-induced cell proliferation and migration. VEGF increased the expression of HB-EGF mRNA. VEGF-dependent activation of EGFR (epidermal growth factor receptor)/ERK1/2 (extracellular signal-regulated kinase 1/2) signaling and cell proliferation of endothelial cells required stimulation of the ADAM17 (a disintegrin and metalloprotease) and ADAM12. CRM-197 decreased the grades of the fluorescein angiograms and size of the CNV areas in marmoset monkeys. CONCLUSIONS These findings suggest that HB-EGF plays an important role in the development of CNV. Therefore, further investigations of HB-EGF are needed as a potential therapeutic target in the treatment of exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Yuki Inoue
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Masamitsu Shimazawa
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shinsuke Nakamura
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shinsuke Takata
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Yuhei Hashimoto
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hiroshi Izawa
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Tomomi Masuda
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Kazuhiro Tsuruma
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Tomohisa Sakaue
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hironao Nakayama
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shigeki Higashiyama
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hideaki Hara
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.).
| |
Collapse
|
40
|
Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017; 2017:9673537. [PMID: 29230082 PMCID: PMC5688260 DOI: 10.1155/2017/9673537] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/15/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
Since its discovery, ADAM17, also known as TNFα converting enzyme or TACE, is now known to process over 80 different substrates. Many of these substrates are mediators of cancer and inflammation. The field of ADAM metalloproteinases is at a crossroad with many of the new potential therapeutic agents for ADAM17 advancing into the clinic. Researchers have now developed potential drugs for ADAM17 that are selective and do not have the side effects which were seen in earlier chemical entities that targeted this enzyme. ADAM17 inhibitors have broad therapeutic potential, with properties ranging from tumor immunosurveillance and overcoming drug and radiation resistance in cancer, as treatments for cardiac hypertrophy and inflammatory conditions such as inflammatory bowel disease and rheumatoid arthritis. This review focuses on substrates and inhibitors identified more recently for ADAM17 and their role in cancer and inflammation.
Collapse
|
41
|
Yoneyama T, Gorry M, Miller MA, Gaither-Davis A, Lin Y, Moss ML, Griffith LG, Lauffenburger DA, Stabile LP, Herman JG, Vujanovic NL. Modification of proteolytic activity matrix analysis (PrAMA) to measure ADAM10 and ADAM17 sheddase activities in cell and tissue lysates. J Cancer 2017; 8:3916-3932. [PMID: 29187866 PMCID: PMC5705993 DOI: 10.7150/jca.20779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/06/2017] [Indexed: 01/29/2023] Open
Abstract
Increases in expression of ADAM10 and ADAM17 genes and proteins have been evaluated, but not validated as cancer biomarkers. Specific enzyme activities better reflect enzyme cellular functions, and might be better biomarkers than enzyme genes or proteins. However, no high throughput assay is available to test this possibility. Recent studies have developed the high throughput real-time proteolytic activity matrix analysis (PrAMA) that integrates the enzymatic processing of multiple enzyme substrates with mathematical-modeling computation. The original PrAMA measures with significant accuracy the activities of individual metalloproteinases expressed on live cells. To make the biomarker assay usable in clinical practice, we modified PrAMA by testing enzymatic activities in cell and tissue lysates supplemented with broad-spectrum non-MP enzyme inhibitors, and by maximizing the assay specificity using systematic mathematical-modeling analyses. The modified PrAMA accurately measured the absence and decreases of ADAM10 sheddase activity (ADAM10sa) and ADAM17sa in ADAM10-/- and ADAM17-/- mouse embryonic fibroblasts (MEFs), and ADAM10- and ADAM17-siRNA transfected human cancer cells, respectively. It also measured the restoration and inhibition of ADAM10sa in ADAM10-cDNA-transfected ADAM10-/- MEFs and GI254023X-treated human cancer cell and tissue lysates, respectively. Additionally, the modified PrAMA simultaneously quantified with significant accuracy ADAM10sa and ADAM17sa in multiple human tumor specimens, and showed the essential characteristics of a robust high throughput multiplex assay that could be broadly used in biomarker studies. Selectively measuring specific enzyme activities, this new clinically applicable assay is potentially superior to the standard protein- and gene-expression assays that do not distinguish active and inactive enzyme forms.
Collapse
Affiliation(s)
- Toshie Yoneyama
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Michael Gorry
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Autumn Gaither-Davis
- Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Yan Lin
- Department of Biostatistics, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | - Linda G Griffith
- Department of Biologic Engineering, Massachusetts Institute of Technology
| | | | - Laura P Stabile
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - James G Herman
- Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Nikola L Vujanovic
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA.,Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA.,VAPHS, Pittsburgh, PA
| |
Collapse
|
42
|
Chen R, Jin G, McIntyre TM. The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 2017; 292:10112-10122. [PMID: 28455445 DOI: 10.1074/jbc.m116.771642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets are the sole source of EGF in circulation, yet how EGF is stored or released from stimulated cells is undefined. In fact, we found platelets did not store EGF, synthesized as a single 6-kDa domain in pro-EGF, but rather expressed intact pro-EGF precursor on granular and plasma membranes. Activated platelets released high-molecular-weight (HMW)-EGF, produced by a single cleavage between the EGF and the transmembrane domains of pro-EGF. We synthesized a fluorogenic peptide encompassing residues surrounding the putative sessile arginyl residue and found stimulated platelets released soluble activity that cleaved this pro-EGF1020-1027 peptide. High throughput screening identified chymostatins, bacterial peptides with a central cyclic arginyl structure, as inhibitors of this activity. In contrast, the matrix metalloproteinase/TACE (tumor necrosis factor-α-converting enzyme) inhibitor GM6001 was ineffective. Stimulated platelets released the soluble protease ADAMDEC1, recombinant ADAMDEC1 hydrolyzed pro-EGF1020-1027, and this activity was inhibited by chymostatin and not GM6001. Biotinylating platelet surface proteins showed ADAMDEC1 hydrolyzed surface pro-EGF to HMW-EGF that stimulated HeLa EGF receptor (EGFR) reporter cells and EGFR-dependent tumor cell migration. This proteolysis was inhibited by chymostatin and not GM6001. Metabolizing pro-EGF Arg1023 to citrulline with recombinant polypeptide arginine deiminase 4 (PAD4) abolished ADAMDEC1-catalyzed pro-EGF1020-1027 peptidolysis, while pretreating intact platelets with PAD4 suppressed ADAMDEC1-, thrombin-, or collagen-induced release of HMW-EGF. We conclude that activated platelets release ADAMDEC1, which hydrolyzes pro-EGF to soluble HMW-EGF, that HMW-EGF is active, that proteolytic cleavage of pro-EGF first occurs at the C-terminal arginyl residue of the EGF domain, and that proteolysis is the regulated and rate-limiting step in generating soluble EGF bioactivity from activated platelets.
Collapse
Affiliation(s)
- Rui Chen
- From the Departments of Cellular and Molecular Medicine and
| | - Ge Jin
- the Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106
| | - Thomas M McIntyre
- From the Departments of Cellular and Molecular Medicine and .,Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland 44195 Ohio and
| |
Collapse
|
43
|
Grieve AG, Xu H, Künzel U, Bambrough P, Sieber B, Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife 2017; 6. [PMID: 28432785 PMCID: PMC5436907 DOI: 10.7554/elife.23968] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling. DOI:http://dx.doi.org/10.7554/eLife.23968.001 Injury or infection can cause tissues in the body to become inflamed. The immune system triggers this inflammation to help repair the injury or fight the infection. A signal molecule known as TNF – which is produced by immune cells called macrophages – triggers inflammation. This protein is normally attached to the surface of the macrophage, and it only activates inflammation once it has been cut free. An enzyme called TACE cuts and releases TNF from the surface of macrophages. This enzyme is made inside the cell and is then transported to the surface. On the way, TACE matures from an inactive form to a fully functional enzyme. Previous work revealed that a protein called iRhom2 controls TACE maturation, but it has been unclear whether iRhom2 affects TACE in any additional ways. Grieve et al. studied the relationship between iRhom2 and TACE in more detail. The experiments show two new roles for iRhom2: in protecting TACE from being destroyed at the cell surface, and prompting TACE to release TNF to trigger inflammation. Injury or infection causes small molecules called phosphate groups to be attached to iRhom2 in macrophages, which causes TACE to release TNF. The findings of Grieve et al. provide the first evidence that iRhom2 influences the activity of TACE throughout the enzyme’s lifetime. Excessive inflammation, often triggered by the uncontrolled release of TNF, can lead to rheumatoid arthritis, cancer and many other diseases. Therefore, iRhom2 could be a promising new target for anti-inflammatory drugs that may help to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23968.002
Collapse
Affiliation(s)
- Adam Graham Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hongmei Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ulrike Künzel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul Bambrough
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Characterization of the catalytic properties of the membrane-anchored metalloproteinase ADAM9 in cell-based assays. Biochem J 2017; 474:1467-1479. [PMID: 28264989 DOI: 10.1042/bcj20170075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
Abstract
ADAM9 (A Disintegrin And Metalloprotease 9) is a membrane-anchored metalloproteinase that has been implicated in pathological retinal neovascularization and in tumor progression. ADAM9 has constitutive catalytic activity in both biochemical and cell-based assays and can cleave several membrane proteins, including epidermal growth factor and Ephrin receptor B4; yet little is currently known about the catalytic properties of ADAM9 and its post-translational regulation and inhibitor profile in cell-based assays. To address this question, we monitored processing of the membrane-anchored Ephrin receptor B4 (EphB4) by co-expressing ADAM9, with the catalytically inactive ADAM9 E > A mutant serving as a negative control. We found that ADAM9-dependent shedding of EphB4 was not stimulated by three commonly employed activators of ADAM-dependent ectodomain shedding: phorbol esters, pervanadate or calcium ionophores. With respect to the inhibitor profile, we found that ADAM9 was inhibited by the hydroxamate-based metalloprotease inhibitors marimastat, TAPI-2, BB94, GM6001 and GW280264X, and by 10 nM of the tissue inhibitor of metalloproteinases (TIMP)-3, but not by up to 20 nM of TIMP-1 or -2. Additionally, we screened a non-hydroxamate small-molecule library for novel ADAM9 inhibitors and identified four compounds that selectively inhibited ADAM9-dependent proteolysis over ADAM10- or ADAM17-dependent processing. Taken together, the present study provides new information about the molecular fingerprint of ADAM9 in cell-based assays by showing that it is not stimulated by strong activators of ectodomain shedding and by defining a characteristic inhibitor profile. The identification of novel non-hydroxamate inhibitors of ADAM9 could provide the basis for designing more selective compounds that block the contribution of ADAM9 to pathological neovascularization and cancer.
Collapse
|
45
|
Tien WS, Chen JH, Wu KP. SheddomeDB: the ectodomain shedding database for membrane-bound shed markers. BMC Bioinformatics 2017; 18:42. [PMID: 28361715 PMCID: PMC5374707 DOI: 10.1186/s12859-017-1465-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A number of membrane-anchored proteins are known to be released from cell surface via ectodomain shedding. The cleavage and release of membrane proteins has been shown to modulate various cellular processes and disease pathologies. Numerous studies revealed that cell membrane molecules of diverse functional groups are subjected to proteolytic cleavage, and the released soluble form of proteins may modulate various signaling processes. Therefore, in addition to the secreted protein markers that undergo secretion through the secretory pathway, the shed membrane proteins may comprise an additional resource of noninvasive and accessible biomarkers. In this context, identifying the membrane-bound proteins that will be shed has become important in the discovery of clinically noninvasive biomarkers. Nevertheless, a data repository for biological and clinical researchers to review the shedding information, which is experimentally validated, for membrane-bound protein shed markers is still lacking. RESULTS In this study, the database SheddomeDB was developed to integrate publicly available data of the shed membrane proteins. A comprehensive literature survey was performed to collect the membrane proteins that were verified to be cleaved or released in the supernatant by immunological-based validation experiments. From 436 studies on shedding, 401 validated shed membrane proteins were included, among which 199 shed membrane proteins have not been annotated or validated yet by existing cleavage databases. SheddomeDB attempted to provide a comprehensive shedding report, including the regulation of shedding machinery and the related function or diseases involved in the shedding events. In addition, our published tool ShedP was embedded into SheddomeDB to support researchers for predicting the shedding event on unknown or unrecorded membrane proteins. CONCLUSIONS To the best of our knowledge, SheddomeDB is the first database for the identification of experimentally validated shed membrane proteins and currently may provide the most number of membrane proteins for reviewing the shedding information. The database included membrane-bound shed markers associated with numerous cellular processes and diseases, and some of these markers are potential novel markers because they are not annotated or validated yet in other databases. SheddomeDB may provide a useful resource for discovering membrane-bound shed markers. The interactive web of SheddomeDB is publicly available at http://bal.ym.edu.tw/SheddomeDB/ .
Collapse
Affiliation(s)
- Wei-Sheng Tien
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Hong Chen
- Department of Computer Science, National Taipei University of Education, Taipei, 106, Taiwan
| | - Kun-Pin Wu
- Institute of Biomedical Informatics, National Yang Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
46
|
Shen H, Li L, Zhou S, Yu D, Yang S, Chen X, Wang D, Zhong S, Zhao J, Tang J. The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumour Biol 2016; 37:15359–15370. [PMID: 27658778 DOI: 10.1007/s13277-016-5418-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
A disintegrin and metalloproteinase (ADAM) family members are known to process the target membrane-bound molecules through the quick induction of their protease activities under interaction with other molecules, which have diverse roles in tissue morphogenesis and pathophysiological remodeling. Among these, ADAM17 is a membrane-bound protease that sheds the extracellular domain of various receptors or its ligands from the cell membrane and subsequently activates downstream signaling transduction pathways. Importantly, breast cancer remains a mainspring of cancer-induced death in women, and numerous regulatory pathways have been implicated in the formation of breast cancer. Substantial evidence has demonstrated that an obvious increased in ADAM17 cell surface expression has been discovered in breast cancer and was shown to be associated with mammary tumorigenesis, invasiveness, and drug resistance. Over the last decades, it has received more than its share of attention that ADAM17 plays a potential role in breast cancer, including cell proliferation, invasion, angiogenesis, apoptosis, and trastuzumab resistance. In our review, we discuss the mechanisms through which ADAM17 acts on breast cancer tumorigenesis and progression. Thus, this will provide further impetus for exploiting ADAM17 as a new target for breast cancer treatment.
Collapse
Affiliation(s)
- Hongyu Shen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Liangpeng Li
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Changle Road 68, Nanjing, Jiangsu, 210006, China
| | - Siying Zhou
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Nanjing University of Traditional Chinese Medicine, Xianlin Road 138, Nanjing, Jiangsu, 210023, China
| | - Dandan Yu
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Sujin Yang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Xiu Chen
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| | - Jinhai Tang
- The Fourth Clinical School of Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Baiziting 42, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
47
|
Ge L, Vujanovic NL. Soluble TNF Regulates TACE via AP-2α Transcription Factor in Mouse Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 198:417-427. [PMID: 27852742 DOI: 10.4049/jimmunol.1600524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023]
Abstract
Dendritic cells (DCs), the essential immunoregulatory and APCs, are major producers of the central mediator of inflammation, soluble TNF-α (sTNF). sTNF is generated by TNF-α converting enzyme (TACE) proteolytic release of the transmembrane TNF (tmTNF) ectodomain. The mechanisms of TACE and sTNF regulation in DCs remain elusive. This study newly defines that sTNF regulates TACE in mouse DCs by engaging the AP-2α transcription factor. We found that the expression of AP-2α was higher, whereas the expression and activity of TACE were lower, in wild-type DCs (wtDCs) than in TNF knockout (TNFko) DCs. Exogenous sTNF rapidly and simultaneously induced increases of AP-2α expression and decreases of TACE expression and activity in wtDCs and TNFko DCs, indicating that AP-2α and TACE are inversely dependent on sTNF and are functionally associated. To define this functional association, we identified an AP-2α binding site in TACE promoter and demonstrated, using EMSAs and chromatin immunoprecipitation assays, that AP-2α could bind to TACE promoter in a TNF-dependent manner. Additionally, sTNF simultaneously enhanced AP-2α expression and decreased TACE promoter luciferase activity in DCs. Similarly, transfection of AP-2α cDNA decreased TACE promoter luciferase activity, TACE expression, and TACE enzymatic activity in wtDCs or TNFko DCs. In contrast, transfection of AP-2α small interfering RNA increased TACE promoter luciferase activity, TACE expression, and TACE enzymatic activity in wtDCs. These results show that TACE is a target of, and is downregulated by, sTNF-induced AP-2α transcription factor in DCs.
Collapse
Affiliation(s)
- Lisheng Ge
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Nikola L Vujanovic
- Department of Pathology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; .,Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232; and.,VA Pittsburgh Healthcare System, Pittsburgh, PA 15261
| |
Collapse
|
48
|
Peng L, Cook K, Xu L, Cheng L, Damschroder M, Gao C, Wu H, Dall'Acqua WF. Molecular basis for the mechanism of action of an anti-TACE antibody. MAbs 2016; 8:1598-1605. [PMID: 27610476 PMCID: PMC5098442 DOI: 10.1080/19420862.2016.1226716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Inhibitors of tumor necrosis factor-α converting enzyme (TACE) have potential as therapeutics for various diseases. Many small molecule inhibitors, however, exhibit poor specificity profiles because they target the highly conserved catalytic cleft of TACE. We report for the first time the molecular interaction of a highly specific anti-TACE antagonistic antibody (MEDI3622). We characterized the binding of MEDI3622 using mutagenesis, as well as structural modeling and docking approaches. We show that MEDI3622 recognizes a unique surface loop of sIVa-sIVb β-hairpin on TACE M-domain, but does not interact with the conserved catalytic cleft or its nearby regions. The exquisite specificity of MEDI3622 is mediated by this distinct structural feature on the TACE M-domain. These findings may aid the design of antibody therapies against TACE.
Collapse
Affiliation(s)
- Li Peng
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Kimberly Cook
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Linda Xu
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Li Cheng
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Melissa Damschroder
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Changshou Gao
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering , MedImmune , Gaithersburg , MD , USA
| |
Collapse
|
49
|
DeSantis-Rodrigues A, Chang YC, Hahn RA, Po IP, Zhou P, Lacey CJ, Pillai A, C Young S, Flowers RA, Gallo MA, Laskin JD, Gerecke DR, Svoboda KKH, Heindel ND, Gordon MK. ADAM17 Inhibitors Attenuate Corneal Epithelial Detachment Induced by Mustard Exposure. Invest Ophthalmol Vis Sci 2016; 57:1687-98. [PMID: 27058125 PMCID: PMC4829087 DOI: 10.1167/iovs.15-17269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial-stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial-stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. METHODS Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3-100 nmol in 20 μL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. RESULTS Nitrogen mustard-induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial-stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial-stromal attachment. CONCLUSIONS Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial-stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial-stromal separation.
Collapse
Affiliation(s)
- Andrea DeSantis-Rodrigues
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Yoke-Chen Chang
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Rita A Hahn
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Iris P Po
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Peihong Zhou
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - C Jeffrey Lacey
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Abhilash Pillai
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Sherri C Young
- Department of Chemistry, Muhlenberg College, Allentown, Pennsylvania, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Michael A Gallo
- Department of Environmental and Occupational Health, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, United States
| | - Donald R Gerecke
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| | - Kathy K H Svoboda
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, United States
| | - Marion K Gordon
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, United States
| |
Collapse
|
50
|
Siney EJ, Holden A, Casselden E, Bulstrode H, Thomas GJ, Willaime-Morawek S. Metalloproteinases ADAM10 and ADAM17 Mediate Migration and Differentiation in Glioblastoma Sphere-Forming Cells. Mol Neurobiol 2016; 54:3893-3905. [PMID: 27541285 PMCID: PMC5443867 DOI: 10.1007/s12035-016-0053-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/09/2016] [Indexed: 01/03/2023]
Abstract
Glioblastoma is the most common form of primary malignant brain tumour. These tumours are highly proliferative and infiltrative resulting in a median patient survival of only 14 months from diagnosis. The current treatment regimens are ineffective against the small population of cancer stem cells residing in the tumourigenic niche; however, a new therapeutic approach could involve the removal of these cells from the microenvironment that maintains the cancer stem cell phenotype. We have isolated multipotent sphere-forming cells from human high grade glioma (glioma sphere-forming cells (GSCs)) to investigate the adhesive and migratory properties of these cells in vitro. We have focused on the role of two closely related metalloproteinases ADAM10 and ADAM17 due to their high expression in glioblastoma and GSCs and their ability to activate cytokines and growth factors. Here, we report that ADAM10 and ADAM17 inhibition selectively increases GSC, but not neural stem cell, migration and that the migrated GSCs exhibit a differentiated phenotype. We also observed a correlation between nestin, a stem/progenitor marker, and fibronectin, an extracellular matrix protein, expression in high grade glioma tissues. GSCs adherence on fibronectin is mediated by α5β1 integrin, where fibronectin further promotes GSC migration and is an effective candidate for in vivo cancer stem cell migration out of the tumourigenic niche. Our results suggest that therapies against ADAM10 and ADAM17 may promote cancer stem cell migration away from the tumourigenic niche resulting in a differentiated phenotype that is more susceptible to treatment.
Collapse
Affiliation(s)
- Elodie J Siney
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK. .,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK. .,Southampton General Hospital, LF51, South Laboratory Block, Southampton, SO16 6YD, UK.
| | - Alexander Holden
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Casselden
- Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Harry Bulstrode
- Wessex Neurological Centre, University Hospital Southampton, Southampton, SO16 6YD, UK
| | - Gareth J Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | | |
Collapse
|