1
|
Yu X, Wu H, Wu Z, Lan Y, Chen W, Wu B, Deng Y, Liu J. Nuclear pore complex protein RANBP2 and related SUMOylation in solid malignancies. Genes Dis 2025; 12:101407. [PMID: 40271196 PMCID: PMC12017851 DOI: 10.1016/j.gendis.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/21/2024] [Indexed: 04/25/2025] Open
Abstract
The growing interest in post-translational protein modification, particularly in SUMOylation, is driven by its crucial role in cell cycle regulation. SUMOylation affects various cell cycle regulators, including oncogenes, suggesting its relevance in cancer. SUMO E3 ligases are pivotal in this process, exhibiting diverse functionalities through structural domains and subcellular localizations. A less-explored SUMO E3 ligase, RANBP2, a component of the vertebrate nuclear pore complex, emerges as a central player in cellular cycle processes, as well as in tumorigenesis. The current studies illuminate the importance of RANBP2 and underscore the need for more extensive studies to validate its clinical applicability in neoplastic interventions. Our review elucidates the significance of RANBP2 across various types of malignancies. Additionally, it delves into exploring RANBP2 as a prospective therapeutic target for cancer treatment, offering insights into the avenues that scholars should pursue in their subsequent research endeavors. Thus, further investigation into RANBP2's role in solid tumorigenesis is eagerly awaited.
Collapse
Affiliation(s)
- Xinning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huatao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yangzheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenjia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
2
|
Mousa R, Shkolnik D, Alalouf Y, Brik A. Chemical approaches to explore ubiquitin-like proteins. RSC Chem Biol 2025; 6:492-509. [PMID: 39950163 PMCID: PMC11817102 DOI: 10.1039/d4cb00220b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chemical protein synthesis has emerged as a powerful approach for producing ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in both their free and conjugated forms, particularly when recombinant or enzymatic strategies are challenging. By providing precise control over the assembly of Ub and Ubls, chemical synthesis enables the generation of complex constructs with site-specific modifications that facilitate detailed functional and structural studies. Ub and Ubls are central regulators of protein homeostasis, regulating a wide range of cellular processes such as cell cycle progression, transcription, DNA repair, and apoptosis. Ubls share an evolutionary link with Ub, resembling its structure and following a parallel conjugation pathway that results in a covalent isopeptide bond with their cellular substrates. Despite their structural similarities and sequence homology, Ub and Ubls exhibit distinct functional differences. Understanding Ubl biology is essential for unraveling how cells maintain their regulatory networks and how disruptions in these pathways contribute to various diseases. In this review, we highlight the chemical methodologies and strategies available for studying Ubls and advancing our comprehensive understanding of the Ubl system in health and disease.
Collapse
Affiliation(s)
- Reem Mousa
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Dana Shkolnik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Yam Alalouf
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
3
|
Zhuo Y, Fu S, Qiu Y. Regulation of the immune microenvironment by SUMO in diabetes mellitus. Front Immunol 2025; 16:1506500. [PMID: 40078991 PMCID: PMC11896877 DOI: 10.3389/fimmu.2025.1506500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Post-translational modifications such as SUMOylation are crucial for the functionality and signal transduction of a diverse array of proteins. Analogous to ubiquitination, SUMOylation has garnered significant attention from researchers and has been implicated in the pathogenesis of various human diseases in recent years, such as cancer, neurological lesions, cardiovascular diseases, diabetes mellitus, and so on. The pathogenesis of diabetes, particularly type 1 and type 2 diabetes, has been closely associated with immune dysfunction, which constitutes the primary focus of this review. This review will elucidate the process of SUMOylation and its impact on diabetes mellitus development and associated complications, focusing on its regulatory effects on the immune microenvironment. This article summarizes various signaling pathways at both cellular and molecular levels that are implicated in these processes. Furthermore, it proposes potential new targets for drug development aimed at the prevention and treatment of diabetes mellitus based on insights gained from the SUMOylation process.
Collapse
Affiliation(s)
- Yuting Zhuo
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shangui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Qiu
- Department of Endocrinology and Metabolism, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Jiaerken B, Liu W, Zheng J, Qu W, Wu Q, Ai Z. The SUMO Family: Mechanisms and Implications in Thyroid Cancer Pathogenesis and Therapy. Biomedicines 2024; 12:2408. [PMID: 39457720 PMCID: PMC11505470 DOI: 10.3390/biomedicines12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Small ubiquitin-like modifiers (SUMOs) are pivotal in post-translational modifications, influencing various cellular processes, such as protein localization, stability, and genome integrity. (2) Methods: This review explores the SUMO family, including its isoforms and catalytic cycle, highlighting their significance in regulating key biological functions in thyroid cancer. We discuss the multifaceted roles of SUMOylation in DNA repair mechanisms, protein stability, and the modulation of receptor activities, particularly in the context of thyroid cancer. (3) Results: The aberrant SUMOylation machinery contributes to tumorigenesis through altered gene expression and immune evasion mechanisms. Furthermore, we examine the therapeutic potential of targeting SUMOylation pathways in thyroid cancer treatment, emphasizing the need for further research to develop effective SUMOylation inhibitors. (4) Conclusions: By understanding the intricate roles of SUMOylation in cancer biology, we can pave the way for innovative therapeutic strategies to improve outcomes for patients with advanced tumors.
Collapse
Affiliation(s)
- Bahejuan Jiaerken
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Liu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaojiao Zheng
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weifeng Qu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiao Wu
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhilong Ai
- Department of Surgery (Thyroid & Breast), Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Ma XN, Li MY, Qi GQ, Wei LN, Zhang DK. SUMOylation at the crossroads of gut health: insights into physiology and pathology. Cell Commun Signal 2024; 22:404. [PMID: 39160548 PMCID: PMC11331756 DOI: 10.1186/s12964-024-01786-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024] Open
Abstract
SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.
Collapse
Affiliation(s)
- Xue-Ni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Mu-Yang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Guo-Qing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Li-Na Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - De-Kui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
7
|
Huang CH, Yang TT, Lin KI. Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. J Biomed Sci 2024; 31:16. [PMID: 38280996 PMCID: PMC10821541 DOI: 10.1186/s12929-024-01003-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024] Open
Abstract
SUMOylation, which is a type of post-translational modification that involves covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to target substrates, regulates various important molecular and cellular processes, including transcription, the cell cycle, cell signaling, and DNA synthesis and repair. Newly synthesized SUMO is immature and cleaved by the SUMO-specific protease family, resulting in exposure of the C-terminal Gly-Gly motif to become the mature form. In the presence of ATP, mature SUMO is conjugated with the activating enzyme E1 through the cysteine residue of E1, followed by transfer to the cysteine residue of E2-conjugating enzyme Ubc9 in humans that recognizes and modifies the lysine residue of a substrate protein. E3 SUMO ligases promote SUMOylation. SUMOylation is a reversible modification and mediated by SUMO-specific proteases. Cumulative studies have indicated that SUMOylation affects the functions of protein substrates in various manners, including cellular localization and protein stability. Gene knockout studies in mice have revealed that several SUMO cycling machinery proteins are crucial for the development and differentiation of various cell lineages, including immune cells. Aberrant SUMOylation has been implicated in several types of diseases, including cancers, cardiovascular diseases, and autoimmune diseases. This review summarizes the biochemistry of SUMO modification and the general biological functions of proteins involved in SUMOylation. In particular, this review focuses on the molecular mechanisms by which SUMOylation regulates the development, maturation, and functions of immune cells, including T, B, dendritic, and myeloid cells. This review also discusses the underlying relevance of disruption of SUMO cycling and site-specific interruption of SUMOylation on target proteins in immune cells in diseases, including cancers and infectious diseases.
Collapse
Affiliation(s)
- Chien-Hsin Huang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Tsan-Tzu Yang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
8
|
Huang Z, Hua H, Du X, Zhen Z, Zhao W, Feng J, Li JA. A specific nanobody-based affinity chromatography resin as a platform for small ubiquitin-related modifier fusion protein purification. J Chromatogr A 2024; 1713:464508. [PMID: 38006661 DOI: 10.1016/j.chroma.2023.464508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
As an excellent fusion tag for expressing heterologous proteins, yeast SUMO (small ubiquitin-related modifier) has unique advantages such as improving solubility, promoting stability, and reducing degradation, but it lacks a simple and rapid purification method. Camelid single-domain antibodies (VHHs or nanobodies) show great promise as an efficient tool in analytical application. In this study, VHHs against SUMO protein were isolated for the first time using biopanning of an immune camelid nanobody library. Among these nanobodies, VS2 demonstrated a high expression level (1.12 g L - 1), and a high affinity for SUMO (2.26 nM). Meanwhile, VHHs were coupled to agarose resins by cysteine at the C-terminal to form affinity chromatography resins. The VS2 resin showed excellent specificity and a dynamic binding capacity for SUMO, SUMO-DsbA (disulfide oxidoreductase) and SUMO-SAM (S-adenosylmethionine synthetase) were 2.41 mg/mL resin, 7.57 mg/mL resin and 16.23 mg/mL resin, respectively. Furthermore, the VS2 resin enabled one-step purification of SUMO-fusions [SUMO-Fc (human IgG1-Fc fragment), SUMO-IGF1 (human insulin-like growth factor 1), SUMO-FGF21 (human fibroblast growth factor 21), SUMO-G-CSF (human Granulocyte colony-stimulating factor), SUMO-PDGF (human platelet-derived growth factor) and SUMO-PAS200 (conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala-and Ser)], and maintained binding capacity and selectivity over 25 purification cycles, each including 15 min of cleaning-in-place with 0.1 M NaOH. This study demonstrated that the VS2 resin was a useful tool at the laboratory scale for one-step purification of various SUMO fusions from complex mixtures.
Collapse
Affiliation(s)
- Zongqing Huang
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China
| | - Haoju Hua
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China
| | - Xiuzhen Du
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Zipeng Zhen
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Wei Zhao
- Chia Tai Tianqing Pharma, Nanjing, 210000, China
| | - Jun Feng
- Shanghai Duomirui Biotechnology Ltd, Shanghai 201203, China; China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China.
| | - Ji-An Li
- China State Institute of Pharmaceutical Industry Ltd, Shanghai, 201203, China.
| |
Collapse
|
9
|
Li H, Chen L, Li Y, Hou W. SUMO-specific protease 1 inhibitors-A literature and patent overview. Expert Opin Ther Pat 2022; 32:1207-1216. [PMID: 36631420 DOI: 10.1080/13543776.2022.2165910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Cancer is currently one of the biggest killers threatening human health. More and more studies have confirmed that SUMO-specific protease 1 (SENP1) is over-expressed in various cancer tissues. Therefore, targeting SENP1 expression may become a new strategy for tumor therapy. AREAS COVERED This review reports the latest advances in literature and patents on SENP1 inhibitor development over the past 10 years. With SENP1 as the keyword, articles and patents from PubMed, Google scholar and ScienceDirect databases were covered. EXPERT OPINION The available complex crystal structures of SENP1-SUMO1, afforded structure-based drug design opportunities, which led to the development of various isoform-selective small molecule inhibitors belonging to diverse classes (derivatives of benzamides, naphthalenesulfonic acids, pyridones, and the like). Preclinical studies have initially shown the potential advantages of these compounds, which have certain significance for the development of anticancer drugs.
Collapse
Affiliation(s)
- Hang Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Leyuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiliang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenbin Hou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
10
|
Wu Q, Jiang Y, You C. The SUMO components in rheumatoid arthritis. Rheumatology (Oxford) 2022; 61:4619-4630. [PMID: 35595244 DOI: 10.1093/rheumatology/keac297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins can reversibly attach covalently or non-covalently to lysine residues of various substrates. The processes are named SUMOylation and de-SUMOylation, which maintain a dynamic balance in the physiological state, and are regulated by SUMO components. However, the dysregulation of components disturbs the balance and alters the functions of target proteins, which causes the occurrence of diseases. To date, certain SUMO components, including SUMO-1, SUMO-2/3, SAE1/Uba2, Ubc9, PIASs (protein inhibitors of activated signal transducer and activator of transcription) and SENPs (SUMO-specific proteases), have been found to participate in the pathogenesis of RA and their potential value as therapeutic targets also have been highlighted. In addition, single nucleotide polymorphisms (SNPs) in the SUMO components have been reported to be associated with disease susceptibility. Until now, only the SNP site of SUMO-4 has been reported in RA. Here we provided a systematic overview of the general characteristics of SUMO components and highlighted a summary of their impact on RA.
Collapse
Affiliation(s)
- Qian Wu
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Yao Jiang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Zhang F, Zheng H, Xian Y, Song H, Wang S, Yun Y, Yi L, Zhang G. Profiling Substrate Specificity of the SUMO Protease Ulp1 by the YESS–PSSC System to Advance the Conserved Mechanism for Substrate Cleavage. Int J Mol Sci 2022; 23:ijms232012188. [PMID: 36293045 PMCID: PMC9603560 DOI: 10.3390/ijms232012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
SUMO modification is a vital post-translational regulation process in eukaryotes, in which the SUMO protease is responsible for the maturation of the SUMO precursor and the deconjugation of the SUMO protein from modified proteins by accurately cleaving behind the C-terminal Gly–Gly motif. To promote the understanding of the high specificity of the SUMO protease against the SUMO protein as well as to clarify whether the conserved Gly–Gly motif is strictly required for the processing of the SUMO precursor, we systematically profiled the specificity of the S. cerevisiae SUMO protease (Ulp1) on Smt3 at the P2–P1↓P1’ (Gly–Gly↓Ala) position using the YESS–PSSC system. Our results demonstrated that Ulp1 was able to cleave Gly–Gly↓ motif-mutated substrates, indicating that the diglycine motif is not strictly required for Ulp1 cleavage. A structural-modeling analysis indicated that it is the special tapered active pocket of Ulp1 conferred the selectivity of small residues at the P1–P2 position of Smt3, such as Gly, Ala, Ser and Cys, and only which can smoothly deliver the scissile bond into the active site for cleavage. Meanwhile, the P1’ position Ala of Smt3 was found to play a vital role in maintaining Ulp1’s precise cleavage after the Gly–Gly motif and replacing Ala with Gly in this position could expand Ulp1 inclusivity against the P1 and P2 position residues of Smt3. All in all, our studies advanced the traditional knowledge of the SUMO protein, which may provide potential directions for the drug discovery of abnormal SUMOylation-related diseases.
Collapse
Affiliation(s)
- Faying Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Zheng
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yufan Xian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyue Song
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengchen Wang
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Li Yi
- School of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence: (L.Y.); (G.Z.)
| | - Guimin Zhang
- School of Life Sciences, Hubei University, Wuhan 430062, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (L.Y.); (G.Z.)
| |
Collapse
|
12
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
13
|
Sumoylation in Physiology, Pathology and Therapy. Cells 2022; 11:cells11050814. [PMID: 35269436 PMCID: PMC8909597 DOI: 10.3390/cells11050814] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Sumoylation is an essential post-translational modification that has evolved to regulate intricate networks within emerging complexities of eukaryotic cells. Thousands of target substrates are modified by SUMO peptides, leading to changes in protein function, stability or localization, often by modulating interactions. At the cellular level, sumoylation functions as a key regulator of transcription, nuclear integrity, proliferation, senescence, lineage commitment and stemness. A growing number of prokaryotic and viral proteins are also emerging as prime sumoylation targets, highlighting the role of this modification during infection and in immune processes. Sumoylation also oversees epigenetic processes. Accordingly, at the physiological level, it acts as a crucial regulator of development. Yet, perhaps the most prominent function of sumoylation, from mammals to plants, is its role in orchestrating organismal responses to environmental stresses ranging from hypoxia to nutrient stress. Consequently, a growing list of pathological conditions, including cancer and neurodegeneration, have now been unambiguously associated with either aberrant sumoylation of specific proteins and/or dysregulated global cellular sumoylation. Therapeutic enforcement of sumoylation can also accomplish remarkable clinical responses in various diseases, notably acute promyelocytic leukemia (APL). In this review, we will discuss how this modification is emerging as a novel drug target, highlighting from the perspective of translational medicine, its potential and limitations.
Collapse
|
14
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
15
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
16
|
Long X, Zhao B, Lu W, Chen X, Yang X, Huang J, Zhang Y, An S, Qin Y, Xing Z, Shen Y, Wu H, Qi Y. The Critical Roles of the SUMO-Specific Protease SENP3 in Human Diseases and Clinical Implications. Front Physiol 2020; 11:558220. [PMID: 33192553 PMCID: PMC7662461 DOI: 10.3389/fphys.2020.558220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) proteins has been shown to regulate a variety of functions of proteins, including protein stability, chromatin organization, transcription, DNA repair, subcellular localization, protein–protein interactions, and protein homeostasis. SENP (sentrin/SUMO-specific protease) regulates precursor processing and deconjugation of SUMO to control cellular mechanisms. SENP3, which is one of the SENP family members, deconjugates target proteins to alter protein modification. The effect of modification via SUMO and SENP3 is crucial to maintain the balance of SUMOylation and guarantee normal protein function and cellular activities. SENP3 acts as an oxidative stress-responsive molecule under physiological conditions. Under pathological conditions, if the SUMOylation process of proteins is affected by variations in SENP3 levels, it will cause a cellular reaction and ultimately lead to abnormal cellular activities and the occurrence and development of human diseases, including cardiovascular diseases, neurological diseases, and various cancers. In this review, we summarized the most recent advances concerning the critical roles of SENP3 in normal physiological and pathological conditions as well as the potential clinical implications in various diseases. Targeting SENP3 alone or in combination with current therapies might provide powerful targeted therapeutic strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jifang Huang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
17
|
The Role of Sumoylation in the Response to Hypoxia: An Overview. Cells 2020; 9:cells9112359. [PMID: 33114748 PMCID: PMC7693722 DOI: 10.3390/cells9112359] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Sumoylation is the covalent attachment of the small ubiquitin-related modifier (SUMO) to a vast variety of proteins in order to modulate their function. Sumoylation has emerged as an important modification with a regulatory role in the cellular response to different types of stress including osmotic, hypoxic and oxidative stress. Hypoxia can occur under physiological or pathological conditions, such as ischemia and cancer, as a result of an oxygen imbalance caused by low supply and/or increased consumption. The hypoxia inducible factors (HIFs), and the proteins that regulate their fate, are critical molecular mediators of the response to hypoxia and modulate procedures such as glucose and lipid metabolism, angiogenesis, erythropoiesis and, in the case of cancer, tumor progression and metastasis. Here, we provide an overview of the sumoylation-dependent mechanisms that are activated under hypoxia and the way they influence key players of the hypoxic response pathway. As hypoxia is a hallmark of many diseases, understanding the interrelated connections between the SUMO and the hypoxic signaling pathways can open the way for future molecular therapeutic interventions.
Collapse
|
18
|
Shetty PMV, Rangrez AY, Frey N. SUMO proteins in the cardiovascular system: friend or foe? J Biomed Sci 2020; 27:98. [PMID: 33099299 PMCID: PMC7585181 DOI: 10.1186/s12929-020-00689-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Post-translational modifications (PTMs) are crucial for the adaptation of various signalling pathways to ensure cellular homeostasis and proper adaptation to stress. PTM is a covalent addition of a small chemical functional group such as a phosphate group (phosphorylation), methyl group (methylation), or acetyl group (acetylation); lipids like hydrophobic isoprene polymers (isoprenylation); sugars such as a glycosyl group (glycosylation); or even small peptides such as ubiquitin (ubiquitination), SUMO (SUMOylation), NEDD8 (neddylation), etc. SUMO modification changes the function and/or fate of the protein especially under stress conditions, and the consequences of this conjugation can be appreciated from development to diverse disease processes. The impact of SUMOylation in disease has not been monotonous, rather SUMO is found playing a role on both sides of the coin either facilitating or impeding disease progression. Several recent studies have implicated SUMO proteins as key regulators in various cardiovascular disorders. The focus of this review is thus to summarize the current knowledge on the role of the SUMO family in the pathophysiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Prithviraj Manohar Vijaya Shetty
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany
- Manipal Institute of Regenerative Medicine, MAHE-Bengaluru, Bangalore, India
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.
| | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.
| |
Collapse
|
19
|
Abstract
Sentrin/small ubiquitin-like modifier (SUMO) is protein modification pathway that regulates multiple biological processes, including cell division, DNA replication/repair, signal transduction, and cellular metabolism. In this review, we will focus on recent advances in the mechanisms of disease pathogenesis, such as cancer, diabetes, seizure, and heart failure, which have been linked to the SUMO pathway. SUMO is conjugated to lysine residues in target proteins through an isopeptide linkage catalyzed by SUMO-specific activating (E1), conjugating (E2), and ligating (E3) enzymes. In steady state, the quantity of SUMO-modified substrates is usually a small fraction of unmodified substrates due to the deconjugation activity of the family Sentrin/SUMO-specific proteases (SENPs). In contrast to the complexity of the ubiquitination/deubiquitination machinery, the biochemistry of SUMOylation and de-SUMOylation is relatively modest. Specificity of the SUMO pathway is achieved through redox regulation, acetylation, phosphorylation, or other posttranslational protein modification of the SUMOylation and de-SUMOylation enzymes. There are three major SUMOs. SUMO-1 usually modifies a substrate as a monomer; however, SUMO-2/3 can form poly-SUMO chains. The monomeric SUMO-1 or poly-SUMO chains can interact with other proteins through SUMO-interactive motif (SIM). Thus SUMO modification provides a platform to enhance protein-protein interaction. The consequence of SUMOylation includes changes in cellular localization, protein activity, or protein stability. Furthermore, SUMO may join force with ubiquitin to degrade proteins through SUMO-targeted ubiquitin ligases (STUbL). After 20 yr of research, SUMO has been shown to play critical roles in most, if not all, biological pathways. Thus the SUMO enzymes could be targets for drug development to treat human diseases.
Collapse
Affiliation(s)
- Hui-Ming Chang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Edward T H Yeh
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
20
|
Kumar V. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol 2020; 89:107087. [PMID: 33075714 PMCID: PMC7550173 DOI: 10.1016/j.intimp.2020.107087] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Sepsis infects more than 48.9 million people world-wide, with 19.7 million deaths. Cytokine storm plays a significant role in sepsis, along with severe COVID-19. TLR signaling pathways plays a crucial role in generating the cytokine storm. Endogenous negative regulators of TLR signaling are crucial to regulate cytokine storm. Cytokine storm generates during various systemic acute infections, including sepsis and current pandemic called COVID-19 (severe) causing devastating inflammatory conditions, which include multi-organ failure or multi-organ dysfunction syndrome (MODS) and death of the patient. Toll-like receptors (TLRs) are one of the major pattern recognition receptors (PRRs) expressed by immune cells as well as non-immune cells, including neurons, which play a crucial role in generating cytokine storm. They recognize microbial-associated molecular patterns (MAMPs, expressed by pathogens) and damage or death-associate molecular patterns (DAMPs; released and/expressed by damaged/killed host cells). Upon recognition of MAMPs and DAMPs, TLRs activate downstream signaling pathways releasing several pro-inflammatory mediators [cytokines, chemokines, interferons, and reactive oxygen and nitrogen species (ROS or RNS)], which cause acute inflammation meant to control the pathogen and repair the damage. Induction of an exaggerated response due to genetic makeup of the host and/or persistence of the pathogen due to its evasion mechanisms may lead to severe systemic inflammatory condition called sepsis in response to the generation of cytokine storm and organ dysfunction. The activation of TLR-induced inflammatory response is hardwired to the induction of several negative feedback mechanisms that come into play to conclude the response and maintain immune homeostasis. This state-of-the-art review describes the importance of TLR signaling in the onset of the sepsis-associated cytokine storm and discusses various host-derived endogenous negative regulators of TLR signaling pathways. The subject is very important as there is a vast array of genes and processes implicated in these negative feedback mechanisms. These molecules and mechanisms can be targeted for developing novel therapeutic drugs for cytokine storm-associated diseases, including sepsis, severe COVID-19, and other inflammatory diseases, where TLR-signaling plays a significant role.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
21
|
Celen AB, Sahin U. Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS J 2020; 287:3110-3140. [DOI: 10.1111/febs.15319] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Arda B. Celen
- Department of Molecular Biology and Genetics Center for Life Sciences and Technologies Bogazici University Istanbul Turkey
| | - Umut Sahin
- Department of Molecular Biology and Genetics Center for Life Sciences and Technologies Bogazici University Istanbul Turkey
| |
Collapse
|
22
|
Tanaka M, Osanai T, Homma Y, Hanada K, Okumura K, Tomita H. IQGAP1 activates PLC-δ1 by direct binding and moving along microtubule with DLC-1 to cell surface. FASEB Bioadv 2019; 1:465-480. [PMID: 32123844 PMCID: PMC6996382 DOI: 10.1096/fba.2019-00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Phospholipase C (PLC)-δ1, activated by p122RhoGTPase-activating protein (GAP)/deleted in liver cancer-1 (p122RhoGAP/DLC-1), contributes to the coronary spastic angina (CSA) pathogenesis. The present study aims to further investigate the p122RhoGAP/DLC-1 protein. We examined molecules assisting this protein and identified a scaffold protein-IQ motif-containing GTPase-activating protein 1 (IQGAP1). IQGAP1-C binds to the steroidogenic acute regulatory-related lipid transfer (START) domain of p122RhoGAP/DLC-1, and PLC-δ1 binds to IQGAP1-N, forming a complex. In fluorescence microscopy, small dots of PLC-δ1 created fine linear arrays like microtubules, and IQGAP1 and p122RhoGAP/DLC-1 were colocated in the cytoplasm with PLC-δ1. Ionomycin induced the raft recruitment of the PLC-δ1, IQGAP1, and p122RhoGAP/DLC-1 complex by translocation to the plasma membrane (PM), indicating the movement of this complex is along microtubules with the motor protein kinesin. Moreover, the IQGAP1 protein was elevated in skin fibroblasts obtained from patients with CSA, and it enhanced the PLC activity and peak intracellular calcium concentration in response to acetylcholine. IQGAP1, a novel stimulating protein, forms a complex with p122RhoGAP/DLC-1 and PLC-δ1 that moves along microtubules and enhances the PLC activity.
Collapse
Affiliation(s)
- Makoto Tanaka
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomohiro Osanai
- Department of Nursing ScienceHirosaki University Graduate School of Health ScienceHirosakiJapan
| | - Yoshimi Homma
- Department of Biomolecular ScienceFukushima Medical University School of MedicineFukushimaJapan
| | - Kenji Hanada
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ken Okumura
- Division of CardiologySaiseikai Kumamoto HospitalKumamotoJapan
| | - Hirofumi Tomita
- Department of Stroke and Cerebrovascular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of CardiologyHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
23
|
Chen Y, Sun XX, Sears RC, Dai MS. Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis 2019; 6:359-371. [PMID: 31832515 PMCID: PMC6889025 DOI: 10.1016/j.gendis.2019.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) controls diverse transcription programs and plays a key role in the development of many human cancers. Cells develop multiple mechanisms to ensure that MYC levels and activity are precisely controlled in normal physiological context. As a short half-lived protein, MYC protein levels are tightly regulated by the ubiquitin proteasome system. Over a dozen of ubiquitin ligases have been found to ubiquitinate MYC whereas a number of deubiquitinating enzymes counteract this process. Recent studies show that SUMOylation and deSUMOylation can also regulate MYC protein stability and activity. Interestingly, evidence suggests an intriguing crosstalk between MYC ubiquitination and SUMOylation. Deregulation of the MYC ubiquitination-SUMOylation regulatory network may contribute to tumorigenesis. This review is intended to provide the current understanding of the complex regulation of the MYC biology by dynamic ubiquitination and SUMOylation and their crosstalk.
Collapse
Affiliation(s)
- Yingxiao Chen
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C Sears
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Departments of Molecular & Medical Genetics, School of Medicine, OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
24
|
Fox BM, Janssen A, Estevez-Ordonez D, Gessler F, Vicario N, Chagoya G, Elsayed G, Sotoudeh H, Stetler W, Friedman GK, Bernstock JD. SUMOylation in Glioblastoma: A Novel Therapeutic Target. Int J Mol Sci 2019; 20:ijms20081853. [PMID: 30991648 PMCID: PMC6514907 DOI: 10.3390/ijms20081853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Protein SUMOylation is a dynamic post-translational modification which is involved in a diverse set of physiologic processes throughout the cell. Of note, SUMOylation also plays a role in the pathobiology of a myriad of cancers, one of which is glioblastoma (GBM). Accordingly, herein, we review core aspects of SUMOylation as it relates to GBM and in so doing highlight putative methods/modalities capable of therapeutically engaging the pathway for treatment of this deadly neoplasm.
Collapse
Affiliation(s)
- Brandon M Fox
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| | - Andrew Janssen
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Florian Gessler
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany.
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Via S. Sofia n. 97, Torre Biologica, 95123 Catania, Italy.
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Houman Sotoudeh
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
| | - William Stetler
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Lowder 512, 1600 7th Avenue South, Birmingham, AL 35223, USA.
| | - Joshua D Bernstock
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| |
Collapse
|
25
|
Dubourg A, Xia D, Winpenny JP, Al Naimi S, Bouzid M, Sexton DW, Wastling JM, Hunter PR, Tyler KM. Giardia secretome highlights secreted tenascins as a key component of pathogenesis. Gigascience 2018; 7:1-13. [PMID: 29385462 PMCID: PMC5887430 DOI: 10.1093/gigascience/giy003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background Giardia is a protozoan parasite of public health relevance that causes gastroenteritis in a wide range of hosts. Two genetically distinct lineages (assemblages A and B) are responsible for the human disease. Although it is clear that differences in virulence occur, the pathogenesis and virulence of Giardia remain poorly understood. Results The genome of Giardia is believed to contain open reading frames that could encode as many as 6000 proteins. By successfully applying quantitative proteomic analyses to the whole parasite and to the supernatants derived from parasite culture of assemblages A and B, we confirm expression of ∼1600 proteins from each assemblage, the vast majority of which are common to both lineages. To look for signature enrichment of secreted proteins, we considered the ratio of proteins in the supernatant compared with the pellet, which defined a small group of enriched proteins, putatively secreted at a steady state by cultured growing trophozoites of both assemblages. This secretome is enriched with proteins annotated to have N-terminal signal peptide. The most abundant secreted proteins include known virulence factors such as cathepsin B cysteine proteases and members of a Giardia superfamily of cysteine-rich proteins that comprise variant surface proteins, high-cysteine membrane proteins, and a new class of virulence factors, the Giardia tenascins. We demonstrate that physiological function of human enteric epithelial cells is disrupted by such soluble factors even in the absence of the trophozoites. Conclusions We are able to propose a straightforward model of Giardia pathogenesis incorporating key roles for the major Giardia-derived soluble mediators.
Collapse
Affiliation(s)
- Audrey Dubourg
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dong Xia
- Department of Infection Biology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, London, NW1 0TU, UK
| | - John P Winpenny
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Suha Al Naimi
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Science and Technology, Faculty of Health and Science, James Hehir Building, Neptune Quay, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - Maha Bouzid
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Darren W Sexton
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Jonathan M Wastling
- Department of Infection Biology, Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool, L3 5RF, UK.,Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Paul R Hunter
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Kevin M Tyler
- NIHR Health Protection Research Unit in Gastrointestinal Infections, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
26
|
Yang SB, Tan XY, Zhang DG, Cheng J, Luo Z. Identification of 10 SUMOylation-Related Genes From Yellow Catfish Pelteobagrus fulvidraco, and Their Transcriptional Responses to Carbohydrate Addition in vivo and in vitro. Front Physiol 2018; 9:1544. [PMID: 30467482 PMCID: PMC6235910 DOI: 10.3389/fphys.2018.01544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
SUMOylation is a kind of important post-translational modification. In the present study, we identified 10 key genes involved in SUMOylation and deSUMOylation (sumo1, sumo2, sumo3, sae1, uba2, ubc9, pias1, senp1, senp2, and senp3) in yellow catfish Pelteobagrus fulvidraco, investigated their tissue expression patterns and transcriptional responses to carbohydrate addition both in vivo and in vitro. All of these members shared similar domains to their orthologous genes of other vertebrates. Their mRNAs were widely expressed in all the tested tissues, but at variable levels. Dietary carbohydrate levels differentially influenced the mRNA levels of these genes in liver, muscle, testis, and ovary of yellow catfish. Their mRNA levels in primary hepatocytes were differentially responsive to glucose addition. Our study would contribute to our understanding into the molecular basis of SUMOylation modification and into the potential SUMOylation function in the carbohydrate utilization in fish.
Collapse
Affiliation(s)
- Shui-Bo Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Jie Cheng
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, China
| |
Collapse
|
27
|
Emadi-Baygi M, Sedighi R, Nourbakhsh N, Nikpour P. Pseudogenes in gastric cancer pathogenesis: a review article. Brief Funct Genomics 2018; 16:348-360. [PMID: 28459995 DOI: 10.1093/bfgp/elx004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer burden rises globally at an alarming pace. According to GLOBOCAN 2012, gastric cancer (GC) is regarded as the fifth most common malignancy in the world. Being twice as high in men as in women, GC is the third leading cause of cancer mortality in both sexes globally. Being labeled as 'junk DNA', pseudogenes were considered as nonfunctional 'trash', which contribute nothing to survival of the organism; therefore, a number of strategies have been developed to circumvent their accidental detection. Recent progresses have confirmed that pseudogenes can have broad and multifaceted spectrum of activities in human cancers in general and GC in particular. Furthermore, the mentioned functions are parental gene-dependent and/or -independent. Therefore, pseudogenes can be regarded as the emerging class of elaborate modulators of gene expression involved in pathogenesis of human cancers including gastric adenocarcinoma.
Collapse
|
28
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
29
|
Hochrainer K. Protein Modifications with Ubiquitin as Response to Cerebral Ischemia-Reperfusion Injury. Transl Stroke Res 2017; 9:157-173. [DOI: 10.1007/s12975-017-0567-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
|
30
|
Dustrude ET, Perez-Miller S, François-Moutal L, Moutal A, Khanna M, Khanna R. A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels (Austin) 2017; 11:316-328. [PMID: 28277940 DOI: 10.1080/19336950.2017.1299838] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7. In this paper, we illustrate the utility of combining sequence alignment within protein families with structural analysis to identify, from several putative SUMOylation sites, those that are most likely to be biologically relevant. Co-opting this principle to CRMP2, we demonstrate that, of 3 sites predicted to be SUMOylated in CRMP2, only the lysine 374 site is a SUMOylation client. A reduction in NaV1.7 currents was the corollary of the loss of CRMP2 SUMOylation at this site. A 1.78-Å-resolution crystal structure of mouse CRMP2 was solved using X-ray crystallography, revealing lysine 374 as buried within the CRMP2 tetramer interface but exposed in the monomer. Since CRMP2 SUMOylation is dependent on phosphorylation, we postulate that this state forces CRMP2 toward a monomer, exposing the SUMO site and consequently, resulting in constitutive regulation of NaV1.7.
Collapse
Affiliation(s)
- Erik Thomas Dustrude
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Samantha Perez-Miller
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Liberty François-Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Aubin Moutal
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - May Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA
| | - Rajesh Khanna
- a Department of Pharmacology, College of Medicine , University of Arizona , Tucson , AZ , USA.,b Department of Anesthesiology, College of Medicine , University of Arizona , Tucson , AZ , USA.,c Neuroscience Graduate Interdisciplinary Program, College of Medicine , University of Arizona , Tucson , AZ , USA
| |
Collapse
|
31
|
Parker AR, Welch MA, Forster LA, Tasneem SM, Dubhashi JA, Baro DJ. SUMOylation of the Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 Increases Surface Expression and the Maximal Conductance of the Hyperpolarization-Activated Current. Front Mol Neurosci 2017; 9:168. [PMID: 28127275 PMCID: PMC5226956 DOI: 10.3389/fnmol.2016.00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/26/2016] [Indexed: 11/13/2022] Open
Abstract
Small Ubiquitin-like Modifier (SUMO) is a ∼10 kDa peptide that can be post-translationally added to a lysine (K) on a target protein to facilitate protein–protein interactions. Recent studies have found that SUMOylation can be regulated in an activity-dependent manner and that ion channel SUMOylation can alter the biophysical properties and surface expression of the channel. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel surface expression can be regulated in an activity-dependent manner through unknown processes. We hypothesized that SUMOylation might influence the surface expression of HCN2 channels. In this manuscript, we show that HCN2 channels are SUMOylated in the mouse brain. Baseline levels of SUMOylation were also observed for a GFP-tagged HCN2 channel stably expressed in Human embryonic kidney (Hek) cells. Elevating GFP-HCN2 channel SUMOylation above baseline in Hek cells led to an increase in surface expression that augmented the hyperpolarization-activated current (Ih) mediated by these channels. Increased SUMOylation did not alter Ih voltage-dependence or kinetics of activation. There are five predicted intracellular SUMOylation sites on HCN2. Site-directed mutagenesis indicated that more than one K on the GFP-HCN2 channel was SUMOylated. Enhancing SUMOylation at one of the five predicted sites, K669, led to the increase in surface expression and IhGmax. The role of SUMOylation at additional sites is currently unknown. The SUMOylation site at K669 is also conserved in HCN1 channels. Aberrant SUMOylation has been linked to neurological diseases that also display alterations in HCN1 and HCN2 channel expression, such as seizures and Parkinson’s disease. This work is the first report that HCN channels can be SUMOylated and that this can regulate surface expression and Ih.
Collapse
Affiliation(s)
- Anna R Parker
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Meghyn A Welch
- Department of Biology, Georgia State University Atlanta, GA, USA
| | - Lori A Forster
- Neuroscience Institute, Georgia State University Atlanta, GA, USA
| | - Sarah M Tasneem
- Department of Biology, Georgia State University Atlanta, GA, USA
| | | | - Deborah J Baro
- Department of Biology, Georgia State UniversityAtlanta, GA, USA; Neuroscience Institute, Georgia State UniversityAtlanta, GA, USA
| |
Collapse
|
32
|
Abstract
Reversible post-translational modification is a rapid and efficient system to control the activity of pre-existing proteins. Modifiers range from small chemical moieties, such as phosphate groups, to proteins themselves as the modifier. The patriarch of the protein modifiers is ubiquitin which plays a central role in protein degradation and protein targeting. Over the last 20 years, the ubiquitin family has expanded to include a variety of ubiquitin-related small modifier proteins that are all covalently attached to a lysine residue on target proteins via series of enzymatic reactions. Of these more recently discovered ubiquitin-like proteins, the SUMO family has gained prominence as a major regulatory component that impacts numerous aspects of cell growth, differentiation, and response to stress. Unlike ubiquitinylation which often leads to proteins turn over, sumoylation performs a variety of function such as altering protein stability, modulating protein trafficking, directing protein-protein interactions, and regulating protein activity. This chapter will introduce the basic properties of SUMO proteins and the general tenets of sumoylation.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX, 77807-1359, USA.
| |
Collapse
|
33
|
Fujimura T, Inoue S, Urano T, Takayama K, Yamada Y, Ikeda K, Obinata D, Ashikari D, Takahashi S, Homma Y. Increased Expression of Tripartite Motif (TRIM) 47 Is a Negative Prognostic Predictor in Human Prostate Cancer. Clin Genitourin Cancer 2016; 14:298-303. [PMID: 26873435 DOI: 10.1016/j.clgc.2016.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Many prognostic biomarkers associated with androgen signaling have been proposed in PC. The role of tripartite motif (TRIM) proteins remains unclear in PC. We investigated TRIM protein 47 (TRIM47) expression levels in human prostate tissues. METHODS We performed immunohistochemistry using original TRIM47 antibody in prostate tissues obtained by radical prostatectomy (n = 105). Stained slides were evaluated for the proportion and staining intensity of immunoreactive cells. Total immunoreactivity (IR) scores (range, 0-8) were calculated as the sum of the proportion and intensity scores. TRIM47 expression levels were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Associations between the clinicopathologic features of the patients and their TRIM47 status were analyzed. RESULTS Western blot analysis validated the specificity of the anti-TRIM47 antibody in 293T cells. TRIM47 expression levels were found to be significantly increased in PC compared to benign tissues by both immunohistochemistry (P < .0001) and qRT-PCR (P = .003). Additionally, advanced pathologic stage (≥ T3b) was found to be associated with high TRIM47 IR scores (≥ 4; P = .04). Furthermore, high TRIM47 IR scores were also significantly correlated with worse cancer-specific survival rates in multivariate regression analyses (hazard ratio, 6.82; P = .016). CONCLUSION The results of the present study indicated differential TRIM47 expression levels in human prostate tissues compared to benign tissues. Because high levels of TRIM47 expression were found to be a strong prognostic factor in PC, TRIM47 may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama, Japan
| | - Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenich Takayama
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuta Yamada
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama, Japan
| | - Daisuke Obinata
- Department of Urology, Graduate School of Medicine, Nihon University, Tokyo, Japan
| | - Daisaku Ashikari
- Department of Urology, Graduate School of Medicine, Nihon University, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Graduate School of Medicine, Nihon University, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Wu H, Chen X, Cheng J, Qi Y. SUMOylation and Potassium Channels: Links to Epilepsy and Sudden Death. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:295-321. [PMID: 26920693 DOI: 10.1016/bs.apcsb.2015.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal potassium ion channels play an essential role in the generation of the action potential and excitability of neurons. The dysfunction of ion channel subunits can cause channelopathies, which are associated in some cases with sudden unexplained death in epilepsy SUDEP. The physiological roles of neuronal ion channels have been largely determined, but little is known about the molecular mechanisms underlying neurological channelopathies, especially the determinants of the channels' regulation. SUMO (small ubiquitin-like modifier) proteins covalently conjugate lysine residues in a large number of target proteins and modify their functions. SUMO modification (SUMOylation) has emerged as an important regulatory mechanism for protein stability, function, subcellular localization, and protein-protein interactions. Since SUMO was discovered almost 20 years ago, the biological contribution of SUMOylation has not fully understood. It is until recently that the physiological impacts of SUMOylation on the regulation of neuronal potassium ion channels have been investigated. It is well established that SUMOylation controls many aspects of nuclear function, but it is now clear that it is also a key determinant in the function of potassium channels, and SUMOylation has also been implicated in a wide range of channelopathies, including epilepsy and sudden death.
Collapse
Affiliation(s)
- Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
35
|
Evaluation of the activity and substrate specificity of the human SENP family of SUMO proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:139-47. [PMID: 26522917 DOI: 10.1016/j.bbamcr.2015.10.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/05/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
Protein modification with the small ubiquitin-like modifier (SUMO) is a reversible process regulating many central biological pathways. The reversibility of SUMOylation is ensured by SUMO proteases many of which belong to the sentrin/SUMO-specific protease (SENP) family. In recent years, many advances have been made in allocating SENPs to specific biological pathways. However, due to difficulties in obtaining recombinant full-length active SENPs for thorough enzymatic characterization, our knowledge on these proteases is still limited. In this work, we used in vitro synthesized full-length human SENPs to perform a side-by-side comparison of their activities and substrate specificities. ProSUMO1/2/3, RanGAP1-SUMO1/2/3 and polySUMO2/3 chains were used as substrates in these analyses. We found that SENP1 is by far the most versatile and active SENP whereas SENP3 stands out as the least active of these enzymes. Finally, a comparison between the activities of full-length SENPs and their catalytic domains suggests that in some cases their non-catalytic regions influence their activity.
Collapse
|
36
|
Zhu C, Chen C, Huang J, Zhang H, Zhao X, Deng R, Dou J, Jin H, Chen R, Xu M, Chen Q, Wang Y, Yu J. SUMOylation at K707 of DGCR8 controls direct function of primary microRNA. Nucleic Acids Res 2015. [PMID: 26202964 PMCID: PMC4652762 DOI: 10.1093/nar/gkv741] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DGCR8 (DiGeorge syndrome critical region gene 8) is essential for primary microRNA (pri-miRNA) processing in the cell nucleus. It specifically combines with Drosha, a nuclear RNase III enzyme, to form the Microprocessor complex (MC) that cleaves pri-miRNA to precursor miRNA (pre-miRNA), which is further processed to mature miRNA by Dicer, a cytoplasmic RNase III enzyme. Increasing evidences suggest that pri-/pre-miRNAs have direct functions in regulation of gene expression, however the underlying mechanism how it is fine-tuned remains unclear. Here we find that DGCR8 is modified by SUMO1 at the major site K707, which can be promoted by its ERK-activated phosphorylation. SUMOylation of DGCR8 enhances the protein stability by preventing the degradation via the ubiquitin proteasome pathway. More importantly, SUMOylation of DGCR8 does not alter its association with Drosha, the MC activity and miRNA biogenesis, but rather influences its affinity with pri-miRNAs. This altered affinity of DGCR8 with pri-miRNAs seems to control the direct functions of pri-miRNAs in recognition and repression of the target mRNAs, which is evidently linked to the DGCR8 function in regulation of tumorigenesis and cell migration. Collectively, our data suggest a novel mechanism that SUMOylation of DGCR8 controls direct functions of pri-miRNAs in gene silencing.
Collapse
Affiliation(s)
- Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hui Jin
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ran Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ming Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
37
|
Jiang Y, Wang J, Tian H, Li G, Zhu H, Liu L, Hu R, Dai A. Increased SUMO-1 expression in response to hypoxia: Interaction with HIF-1α in hypoxic pulmonary hypertension. Int J Mol Med 2015; 36:271-81. [PMID: 25976847 DOI: 10.3892/ijmm.2015.2209] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) develops in 30-70% of chronic obstructive pulmonary disease patients and increases morbidity and mortality. The present study aimed to investigate the regulation of small ubiquitin‑related modifier‑1 (SUMO‑1) expression in response to hypoxia. The experiments were carried out in vitro in rat pulmonary arterial smooth muscle cells (PASMCs) and in vivo using a rat hypoxic PH (HPH) model. A significant increase in SUMO‑1 mRNA and protein levels was observed following hypoxic stimulation in vivo and in vitro. SUMO‑1 is known to interact with various transcription factors, including hypoxia‑inducible factor‑1α (HIF‑1α) in vitro. Notably, the expression of HIF‑1α and its target gene, vascular endothelial growth factor, was increased by hypoxia in HPH. In addition, the present data suggest that SUMO‑1 regulated HIF‑1α in response to hypoxia (gene silencing and overexpression). Finally, the co‑immunoprecipitation assays suggest a direct and specific interaction between SUMO‑1 and HIF‑1α. In conclusion, SUMO‑1 may participate in the modulation of HIF‑1α through sumoylation in HPH. However, further studies are required to confirm this.
Collapse
Affiliation(s)
- Yongliang Jiang
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Jing Wang
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Hua Tian
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Guang Li
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Hao Zhu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Lei Liu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Ruicheng Hu
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| | - Aiguo Dai
- Institute of Respiratory Medicine, Hunan Province Geriatric Hospital, Changsha, Hunan 410016, P.R. China
| |
Collapse
|
38
|
Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 2014; 15:1181-91. [PMID: 25236368 DOI: 10.1002/pmic.201400298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation is a posttranslational protein modification whereby SUMOs are conjugated to lysine residues of target proteins. SUMO conjugation can alter the activity, stability, and function of target proteins, and thereby modulate almost all major cellular pathways. Many diseases are associated with SUMO conjugation, including heart failure, arthritis, cancer, degenerative diseases, and brain ischemia/stroke. It is, therefore, of major interest to characterize the SUMO-modified proteome regulated by these disorders. SUMO proteomics analysis is hampered by low levels of SUMOylated proteins. Several strategies have, therefore, been developed to enrich SUMOylated proteins from cell/tissue extracts. These include proteomics analysis on cells expressing epitope-tagged SUMO isoforms, use of monoclonal SUMO antibodies for immunoprecipitation and epitope-specific peptides for elution, and affinity purification with peptides containing SUMO interaction motifs to specifically enrich polySUMOylated proteins. Recently, two mouse models were generated and characterized that express tagged SUMO isoforms, and allow purification of SUMOylated proteins from complex organ extracts. Ultimately, these new analytical tools will help to decipher the SUMO-modified proteome regulated by various human diseases, and thereby, identify new targets for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Wei Yang
- Molecular Neurobiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
39
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
40
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y, Yang Y, Lee HG, Hong J, Yoon DY. Interleukin-32α modulates promyelocytic leukemia zinc finger gene activity by inhibiting protein kinase Cɛ-dependent sumoylation. Int J Biochem Cell Biol 2014; 55:136-43. [DOI: 10.1016/j.biocel.2014.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 07/17/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
41
|
Chen LZ, Li XY, Huang H, Xing W, Guo W, He J, Sun ZY, Luo AX, Liang HP, Hu J, Xu X, Xu YS, Wang ZG. SUMO-2 promotes mRNA translation by enhancing interaction between eIF4E and eIF4G. PLoS One 2014; 9:e100457. [PMID: 24971752 PMCID: PMC4074059 DOI: 10.1371/journal.pone.0100457] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/25/2014] [Indexed: 01/02/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) proteins regulate many important eukaryotic cellular processes through reversible covalent conjugation to target proteins. In addition to its many well-known biological consequences, like subcellular translocation of protein, subnuclear structure formation, and modulation of transcriptional activity, we show here that SUMO-2 also plays a role in mRNA translation. SUMO-2 promoted formation of the active eukaryotic initiation factor 4F (eIF4F) complex by enhancing interaction between Eukaryotic Initiation Factor 4E (eIF4E) and Eukaryotic Initiation Factor 4G (eIF4G), and induced translation of a subset of proteins, such as cyclinD1 and c-myc, which essential for cell proliferation and apoptosis. As expected, overexpression of SUMO-2 can partially cancel out the disrupting effect of 4EGI-1, a small molecule inhibitor of eIF4E/eIF4G interaction, on formation of the eIF4F complex, translation of the cap-dependent protein, cell proliferation and apoptosis. On the other hand, SUMO-2 knockdown via shRNA partially impaired cap-dependent translation and cell proliferation and promoted apoptosis. These results collectively suggest that SUMO-2 conjugation plays a crucial regulatory role in protein synthesis. Thus, this report might contribute to the basic understanding of mammalian protein translation and sheds some new light on the role of SUMO in this process.
Collapse
Affiliation(s)
- Li-zhao Chen
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurosurgery, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiang-yun Li
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hong Huang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Xing
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Wei Guo
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing He
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-ya Sun
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - An-xiong Luo
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-ping Liang
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Hu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xiang Xu
- First department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
- Cell-based Biotherapy Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yun-sheng Xu
- Department of Dermatology, First Affiliated Hospital of Wenzhou Medical College, Wenzhou Zhejiang, China
| | - Zheng-guo Wang
- Fourth department, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
42
|
Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci U S A 2014; 111:5574-9. [PMID: 24706897 DOI: 10.1073/pnas.1315034111] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mammalian small ubiquitin-like modifiers (SUMOs) are actively involved in regulating differentiation of different cell types. However, the functional differences between SUMO isoforms and their mechanisms of action remain largely unknown. Using the ocular lens as a model system, we demonstrate that different SUMOs display distinct functions in regulating differentiation of epithelial cells into fiber cells. During lens differentiation, SUMO1 and SUMO2/3 displayed different expression, localization, and targets, suggesting differential functions. Indeed, overexpression of SUMO2/3, but not SUMO1, inhibited basic (b) FGF-induced cell differentiation. In contrast, knockdown of SUMO1, but not SUMO2/3, also inhibited bFGF action. Mechanistically, specificity protein 1 (Sp1), a major transcription factor that controls expression of lens-specific genes such as β-crystallins, was positively regulated by SUMO1 but negatively regulated by SUMO2. SUMO2 was found to inhibit Sp1 functions through several mechanisms: sumoylating it at K683 to attenuate DNA binding, and at K16 to increase its turnover. SUMO2 also interfered with the interaction between Sp1 and the coactivator, p300, and recruited a repressor, Sp3 to β-crystallin gene promoters, to negatively regulate their expression. Thus, stable SUMO1, but diminishing SUMO2/3, during lens development is necessary for normal lens differentiation. In support of this conclusion, SUMO1 and Sp1 formed complexes during early and later stages of lens development. In contrast, an interaction between SUMO2/3 and Sp1 was detected only during the initial lens vesicle stage. Together, our results establish distinct roles of different SUMO isoforms and demonstrate for the first time, to our knowledge, that Sp1 acts as a major transcription factor target for SUMO control of cell differentiation.
Collapse
|
43
|
Bund T, Spoden GA, Koynov K, Hellmann N, Boukhallouk F, Arnold P, Hinderberger D, Florin L. An L2 SUMO interacting motif is important for PML localization and infection of human papillomavirus type 16. Cell Microbiol 2014; 16:1179-200. [PMID: 24444361 DOI: 10.1111/cmi.12271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 11/27/2022]
Abstract
Human papillomaviruses (HPV) induce warts and cancers on skin and mucosa. The HPV16 capsid is composed of the proteins L1 and L2. After cell entry and virus disassembly, the L2 protein accompanies the viral DNA to promyelocytic leukaemia nuclear bodies (PML-NBs) within the host nuclei enabling viral transcription and replication. Multiple components of PML-NBs are regulated by small ubiquitin-like modifiers (SUMOs) either based on covalent SUMO modification (SUMOylation), or based on non-covalent SUMO interaction via SUMO interacting motifs (SIMs). We show here that the HPV16 L2 comprises at least one SIM, which is crucial for the L2 interaction with SUMO2 in immunoprecipitation and colocalization with SUMO2 in PML-NBs. Biophysical analysis confirmed a direct L2 interaction with SUMO substantiated by identification of potential L2-SUMO interaction structures in molecular dynamics simulations. Mutation of the SIM resulted in absence of the L2-DNA complex at PML-NB and in a loss of infectivity of mutant HPV16 pseudoviruses. In contrast, we found that L2 SUMOylation has no effect on L2 localization in PML-NBs and SUMO interaction. Our data suggest that the L2 SIM is important for L2 interaction with SUMO and/or SUMOylated proteins, which is indispensable for the delivery of viral DNA to PML-NBs and efficient HPV infection.
Collapse
Affiliation(s)
- Timo Bund
- Max Planck Institute for Polymer Research, Mainz, Germany; Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Myc-family proteins are key controllers of the metabolic and proliferative status of the cell, and are subjected to a complex network of regulatory events that guarantee their efficient and fast modulation by extracellular stimuli. Hence, unbalances in regulatory mechanisms leading to altered Myc levels or activities are often reported in cancer cells. Here we show that c- and N-Myc are conjugated to SUMO proteins at conserved lysines in their C-terminal domain. No obvious effects of SUMOylation were detected on bulk N-Myc stability or activities, including the regulation of transcription, proliferation or apoptosis. N-Myc SUMOylation could be induced by cellular stresses, such as heat shock and proteasome inhibition, and in all instances concerned a small fraction of the N-Myc protein. We surmise that, as shown for other substrates, SUMOylation may be part of a quality-control mechanism acting on misfolded Myc proteins.
Collapse
Affiliation(s)
- Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
- * E-mail:
| |
Collapse
|
45
|
Frank S, Peters MA, Wehmeyer C, Strietholt S, Koers-Wunrau C, Bertrand J, Heitzmann M, Hillmann A, Sherwood J, Seyfert C, Gay S, Pap T. Regulation of matrixmetalloproteinase-3 and matrixmetalloproteinase-13 by SUMO-2/3 through the transcription factor NF-κB. Ann Rheum Dis 2013; 72:1874-81. [PMID: 23417988 DOI: 10.1136/annrheumdis-2012-202080] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Based on previous data that have linked the small ubiquitin-like modifier-1 (SUMO-1) to the pathogenesis of rheumatoid arthritis (RA), we have investigated the expression of the highly homologous SUMO family members SUMO-2/3 in human RA and in the human tumour necrosis factor α transgenic (hTNFtg) mouse model of RA and studied their role in regulating disease specific matrixmetalloproteinases (MMPs). METHODS Synovial tissue was obtained from RA and osteoarthritis (OA) patients and used for histological analyses as well as for the isolation of synovial fibroblasts (SFs). The expression of SUMO-2/3 in RA and OA patients as well as in hTNFtg and wild type mice was studied by PCR, western blot and immunostaining. SUMO-2/3 was knocked down using small interfering RNA in SFs, and TNF-α induced MMP production was determined by ELISA. Activation of nuclear factor-κB (NF-κB) was determined by a luciferase activity assay and a transcription factor assay in the presence of the NF-κB inhibitor BAY 11-7082. RESULTS Expression of SUMO-2 and to a lesser extent of SUMO-3 was higher in RA tissues and RASFs compared with OA controls. Similarly, there was increased expression of SUMO-2 in the synovium and in SFs of hTNFtg mice compared with wild type animals. In vitro, the expression of SUMO-2 but not of SUMO-3 was induced by TNF-α. The knockdown of SUMO-2/3 significantly increased the TNF-α and interleukin (IL)-1β induced expression of MMP-3 and MMP-13, accompanied by increased NF-κB activity. Induction of MMP-3 and MMP-13 was inhibited by blockade of the NF-κB pathway. TNF-α and IL-1β mediated MMP-1 expression was not regulated by SUMO-2/3. CONCLUSIONS Collectively, we show that despite their high homology, SUMO-2/3 are differentially regulated by TNF-α and selectively control TNF-α mediated MMP expression via the NF-κB pathway. Therefore, we hypothesise that SUMO-2 contributes to the specific activation of RASF.
Collapse
Affiliation(s)
- Svetlana Frank
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, , Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. J Biol Chem 2013; 288:36312-27. [PMID: 24174529 DOI: 10.1074/jbc.m113.486845] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems.
Collapse
Affiliation(s)
- Xavier H Mascle
- From the Département de Biochimie, Université de Montréal, C. P. 6128 Succursale Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Alontaga AY, Bobkova E, Chen Y. Biochemical analysis of protein SUMOylation. ACTA ACUST UNITED AC 2012; Chapter 10:Unit10.29. [PMID: 22870855 DOI: 10.1002/0471142727.mb1029s99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMOylation, the covalent attachment of Small Ubiquitin-like MOdifier (SUMO) polypeptides to other proteins, is among the most important post-translational modifications that regulate the functional properties of a large number of proteins. SUMOylation is broadly involved in cellular processes such as gene transcription, hormone response, signal transduction, DNA repair, and nuclear transport. SUMO modification has also been implicated in the pathogenesis of human diseases, such as cancer, neurodegenerative disorders, and viral infection. Attachment of a SUMO protein to another protein is carried out in multiple steps catalyzed by three enzymes. This unit describes and discusses the in vitro biochemical methods used for investigating each step of the SUMOylation process. In addition, a high-throughput screening protocol is included for the identification of inhibitors of SUMOylation.
Collapse
Affiliation(s)
- Aileen Y Alontaga
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | |
Collapse
|
48
|
The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One 2012; 7:e49630. [PMID: 23166733 PMCID: PMC3499415 DOI: 10.1371/journal.pone.0049630] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/11/2012] [Indexed: 12/22/2022] Open
Abstract
During the replication of human cytomegalovirus (HCMV) genome, the viral DNA polymerase subunit UL44 plays a key role, as by binding both DNA and the polymerase catalytic subunit it confers processivity to the holoenzyme. However, several lines of evidence suggest that UL44 might have additional roles during virus life cycle. To shed light on this, we searched for cellular partners of UL44 by yeast two-hybrid screenings. Intriguingly, we discovered the interaction of UL44 with Ubc9, an enzyme involved in the covalent conjugation of SUMO (Small Ubiquitin-related MOdifier) to cellular and viral proteins. We found that UL44 can be extensively sumoylated not only in a cell-free system and in transfected cells, but also in HCMV-infected cells, in which about 50% of the protein resulted to be modified at late times post-infection, when viral genome replication is accomplished. Mass spectrometry studies revealed that UL44 possesses multiple SUMO target sites, located throughout the protein. Remarkably, we observed that binding of UL44 to DNA greatly stimulates its sumoylation both in vitro and in vivo. In addition, we showed that overexpression of SUMO alters the intranuclear distribution of UL44 in HCMV-infected cells, and enhances both virus production and DNA replication, arguing for an important role for sumoylation in HCMV life cycle and UL44 function(s). These data report for the first time the sumoylation of a viral processivity factor and show that there is a functional interplay between the HCMV UL44 protein and the cellular sumoylation system.
Collapse
|
49
|
Pinto MP, Carvalho AF, Grou CP, Rodríguez-Borges JE, Sá-Miranda C, Azevedo JE. Heat shock induces a massive but differential inactivation of SUMO-specific proteases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1958-66. [DOI: 10.1016/j.bbamcr.2012.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/12/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
50
|
Chen Y, Wen D, Huang Z, Huang M, Luo Y, Liu B, Lu H, Wu Y, Peng Y, Zhang J. 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: Virtual screening, synthesis and biological evaluation. Bioorg Med Chem Lett 2012; 22:6867-70. [PMID: 23044371 DOI: 10.1016/j.bmcl.2012.09.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/24/2012] [Accepted: 09/12/2012] [Indexed: 01/29/2023]
Abstract
Prostate cancer is one of the most prevalent types of malignant cancers in men and has a high mortality rate among all male cancers. Previous studies have demonstrated that Sentrin/SUMO-specific protease 1 (SENP1) plays an important role in the occurrence and development of prostate cancer, and has been identified as a novel drug target for development of small molecule drugs against prostate cancer. In this paper, we used virtual screening and docking to identify compound J5 as a novel lead compound inhibiting SENP1, from SPECS library. We further investigated the SAR (structure-activity relationship) of the benzoate substituent of compound J5, and discovered compounds 8d and 8e as better small molecule inhibitors of SENP1. Both compounds are the high potent SENP1 small molecule inhibitors discovered up to date, and further lead optimization may lead to a series of novel anti-SENP1 agents. Further SAR studies are in process and will be reported in due course.
Collapse
Affiliation(s)
- Yingyi Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|