1
|
Liu Y, Zhu J, Jin Y, Sun Z, Wu X, Zhou H, Yang Y. Disrupting bile acid metabolism by suppressing Fxr causes hepatocellular carcinoma induced by YAP activation. Nat Commun 2025; 16:3583. [PMID: 40234449 PMCID: PMC12000370 DOI: 10.1038/s41467-025-58809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Disruption of bile acid (BA) metabolism causes various liver diseases including hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains elusive. Here, we report that BA metabolism is directly controlled by a repressor function of YAP, which induces cholestasis by altering BA levels and composition via inhibiting the transcription activity of Fxr, a key physiological BA sensor. Elevated BA levels further activate hepatic YAP, resulting in a feedforward cycle leading to HCC. Mechanistically, Teads are found to bind Fxr in a DNA-binding-independent manner and recruit YAP to epigenetically suppress Fxr. Promoting BA excretion, or alleviating YAP repressor function by pharmacologically activating Fxr and inhibiting HDAC1, or overexpressing an Fxr target gene Bsep to promote BA exportation, alleviate cholestasis and HCC caused by YAP activation. Our results identify YAP's transcriptional repressor role in BA metabolism as a key driver of HCC and suggest its potential as a therapeutic target.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Humans
- Bile Acids and Salts/metabolism
- YAP-Signaling Proteins
- Animals
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cell Line, Tumor
- Cell Cycle Proteins/metabolism
- Cholestasis/metabolism
- Cholestasis/genetics
- Gene Expression Regulation, Neoplastic
- Liver/metabolism
- Liver/pathology
- Hep G2 Cells
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
2
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Drug-induced cholestasis (DIC) predictions based on in vitro inhibition of major bile acid clearance mechanisms. Arch Toxicol 2025; 99:377-391. [PMID: 39542928 DOI: 10.1007/s00204-024-03895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
Drug-induced cholestasis (DIC) is recognized as a major safety concern in drug development, as it represents one of the three types of drug-induced liver injury (DILI). Cholestasis is characterized by the disruption of bile flow, leading to intrahepatic accumulation of toxic bile acids. Bile acid regulation is a multifarious process, orchestrated by several hepatic mechanisms, namely sinusoidal uptake and efflux, canalicular secretion and intracellular metabolism. In the present study, we developed a prediction model of DIC using in vitro inhibition data for 47 marketed drugs on nine transporters and five enzymes known to regulate bile acid homeostasis. The resulting model was able to distinguish between drugs with or without DILI concern (p-value = 0.039) and demonstrated a satisfactory predictive performance, with the area under the precision-recall curve (PR AUC) measured at 0.91. Furthermore, we simplified the model considering only two processes, namely reversible inhibition of OATP1B1 and time-dependent inhibition of CYP3A4, which provided an enhanced performance (PR AUC = 0.95). Our study supports literature findings suggesting a contribution not only from a single process inhibition, but a rather synergistic effect of the key bile acid clearance processes in the development of cholestasis. The use of a quantitative model in the preclinical investigations of DIC is expected to reduce attrition rate in advanced development programs and guide the discovery and development of safe medicines.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO and Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
3
|
Li J, Guo C, Liu Y, Han B, Lv Z, Jiang H, Li S, Zhang Z. Chronic arsenic exposure-provoked biotoxicity involved in liver-microbiota-gut axis disruption in chickens based on multi-omics technologies. J Adv Res 2025; 67:373-386. [PMID: 38237767 PMCID: PMC11725159 DOI: 10.1016/j.jare.2024.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION Arsenic has been ranked as the most hazardous substance by the U.S. Agency for Toxic Substances and Disease Registry. Environmental arsenic exposure-evoked health risks have become a vital public health concern worldwide owing to the widespread existence of arsenic. Multi-omics is a revolutionary technique to data analysis providing an integrated view of bioinformation for comprehensively and systematically understanding the elaborate mechanism of diseases. OBJECTIVES This study aimed at uncovering the potential contribution of liver-microbiota-gut axis in chronic inorganic arsenic exposure-triggered biotoxicity in chickens based on multi-omics technologies. METHODS Forty Hy-Line W-80 laying hens were chronically exposed to sodium arsenite with a dose-dependent manner (administered with drinking water containing 10, 20, or 30 mg/L arsenic, respectively) for 42 d, followed by transcriptomics, serum non-targeted metabolome, and 16S ribosomal RNA gene sequencing accordingly. RESULTS Arsenic intervention induced a serious of chicken liver dysfunction, especially severe liver fibrosis, simultaneously altered ileal microbiota populations, impaired chicken intestinal barrier, further drove enterogenous lipopolysaccharides translocation via portal vein circulation aggravating liver damage. Furtherly, the injured liver disturbed bile acids (BAs) homoeostasis through strongly up-regulating the BAs synthesis key rate-limiting enzyme CYP7A1, inducing excessive serum total BAs accumulation, accompanied by the massive synthesis of primary BA-chenodeoxycholic acid. Moreover, the concentrations of secondary BAs-ursodeoxycholic acid and lithocholic acid were markedly repressed, which might involve in the repressed dehydroxylation of Ruminococcaceae and Lachnospiraceae families. Abnormal BAs metabolism in turn promoted intestinal injury, ultimately perpetuating pernicious circle in chickens. Notably, obvious depletion in the abundance of four profitable microbiota, Christensenellaceae, Ruminococcaceae, Muribaculaceae, and Faecalibacterium, were correlated tightly with this hepato-intestinal circulation process in chickens exposed to arsenic. CONCLUSION Our study demonstrates that chronic inorganic arsenic exposure evokes liver-microbiota-gut axis disruption in chickens and establishes a scientific basis for evaluating health risk induced by environmental pollutant arsenic.
Collapse
Affiliation(s)
- Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China.
| |
Collapse
|
4
|
Angendohr C, Missing L, Ehlting C, Wolf SD, Lang KS, Vucur M, Luedde T, Bode JG. Interleukin 1 β suppresses bile acid-induced BSEP expression via a CXCR2-dependent feedback mechanism. PLoS One 2024; 19:e0315243. [PMID: 39680527 DOI: 10.1371/journal.pone.0315243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern. Thereby, the IL-1β -induced expression of in particular the CXCR2 ligands CXCL1 and 2 is further enhanced by bile acids, whereas the FXR-mediated upregulation of BSEP induced by bile acids is inhibited by IL-1β. In this context, it is interesting to note that inhibitor studies indicate that IL-1β mediates its inhibitory effects on bile acid-induced expression of BSEP indirectly via CXCR2 ligands. Consistently, inhibition of CXCR2 with the inhibitor SB225002 significantly attenuated of the inhibitory effect of IL-1β on BSEP expression. These data suggest that part of the cholestasis-inducing effect of IL-1β is mediated via a CXCR2-dependent feedback mechanism.
Collapse
Affiliation(s)
- Carolin Angendohr
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Leah Missing
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie D Wolf
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| | - Mihael Vucur
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tom Luedde
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
5
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
6
|
Kastrinou-Lampou V, Rodríguez-Pérez R, Poller B, Huth F, Gáborik Z, Mártonné-Tóth B, Temesszentandrási-Ambrus C, Schadt HS, Kullak-Ublick GA, Arand M, Camenisch G. Identification of reversible OATP1B1 and time-dependent CYP3A4 inhibition as the major risk factors for drug-induced cholestasis (DIC). Arch Toxicol 2024; 98:3409-3424. [PMID: 39023798 DOI: 10.1007/s00204-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024]
Abstract
Hepatic bile acid regulation is a multifaceted process modulated by several hepatic transporters and enzymes. Drug-induced cholestasis (DIC), a main type of drug-induced liver injury (DILI), denotes any drug-mediated condition in which hepatic bile flow is impaired. Our ability in translating preclinical toxicological findings to human DIC risk is currently very limited, mainly due to important interspecies differences. Accordingly, the anticipation of clinical DIC with available in vitro or in silico models is also challenging, due to the complexity of the bile acid homeostasis. Herein, we assessed the in vitro inhibition potential of 47 marketed drugs with various degrees of reported DILI severity towards all metabolic and transport mechanisms currently known to be involved in the hepatic regulation of bile acids. The reported DILI concern and/or cholestatic annotation correlated with the number of investigated processes being inhibited. Furthermore, we employed univariate and multivariate statistical methods to determine the important processes for DILI discrimination. We identified time-dependent inhibition (TDI) of cytochrome P450 (CYP) 3A4 and reversible inhibition of the organic anion transporting polypeptide (OATP) 1B1 as the major risk factors for DIC among the tested mechanisms related to bile acid transport and metabolism. These results were consistent across multiple statistical methods and DILI classification systems applied in our dataset. We anticipate that our assessment of the two most important processes in the development of cholestasis will enable a risk assessment for DIC to be efficiently integrated into the preclinical development process.
Collapse
Affiliation(s)
- Vlasia Kastrinou-Lampou
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Birk Poller
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Felix Huth
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland
| | - Zsuzsanna Gáborik
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | - Beáta Mártonné-Tóth
- SOLVO Biotechnology, Charles River Laboratories Hungary, 1117, Budapest, Hungary
| | | | - Heiko S Schadt
- Preclinical Safety, BioMedical Research, Novartis, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Gian Camenisch
- Pharmacokinetic Sciences, BioMedical Research, Novartis, Basel, Switzerland.
| |
Collapse
|
7
|
Alrehaili BD. Unravelling the therapeutic landscape of bile acid-based therapies in gastrointestinal disorders. Saudi J Gastroenterol 2024; 30:283-293. [PMID: 38708898 PMCID: PMC11534188 DOI: 10.4103/sjg.sjg_53_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Bile acids serve as endogenous ligands for nuclear and cell membrane receptors and play a crucial role in bile acid and lipid metabolism. These detergent-like compounds promote bile flow and aid in the absorption of dietary fats and fat-soluble vitamins in the intestine. Synthesized in the liver as end products of cholesterol catabolism, bile acids exhibit a chemical structure comprising a nucleus and a side chain featuring a carboxyl group, with diverse steric arrangements and potential polar substituents. Critical interactions occur between bile acid species and various nuclear and cell membrane receptors, including the farnesoid X receptor and G-protein-coupled bile acid receptor 1. This research aimed to review the literature on bile acids and their roles in treating different diseases. Currently, numerous investigations are concentrating on specific bile acid species that target nuclear receptors in the gastrointestinal system, aiming to improve the treatment of conditions such as nonalcoholic fatty liver disease. Given the global attention this topic has garnered from research groups, it is considered relatively new, thus anticipating some gaps or incomplete data. Bile acid species have a significant therapeutic promise, especially in their ability to activate or inhibit nuclear receptors, such as farnesoid X receptor. This research provides to offer essential information for scientists and medical practitioners interested in discovering new studies that underscore the importance of bile acids in ameliorating and impeding the progression of disorders. Furthermore, it opens avenues for previously overlooked bile acid-based therapies.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Pharmacology and Toxicology Department, Pharmacy College, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
8
|
Xiao Y, Jia YQ, Liu WJ, Niu C, Mai ZH, Dong JQ, Zhang XS, Yuan ZW, Ji P, Wei YM, Hua YL. Pulsatilla decoction alleviates DSS-induced UC by activating FXR-ASBT pathways to ameliorate disordered bile acids homeostasis. Front Pharmacol 2024; 15:1399829. [PMID: 38974033 PMCID: PMC11224520 DOI: 10.3389/fphar.2024.1399829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Ethnopharmacological relevance: Pulsatilla decoction (PD) is a classical prescription for the treatment of ulcerative colitis. Previous studies have demonstrated that the therapeutic efficacy of PD is closely associated with the activation of Farnesoid X receptor (FXR). The activity of FXR is regulated by apical sodium-dependent bile acid transporter (ASBT), and the FXR-ASBT cascade reaction, centered around bile acid receptor FXR, plays a pivotal role in maintaining bile acid metabolic homeostasis to prevent the occurrence and progression of ulcerative colitis (UC). Aim of the study: To elucidate the underlying mechanism by which PD exerts its proteactive effects against Dextran Sulfate Sodium Salt (DSS)-induced ulcerative colitis, focusing on the modulation of FXR and ASBT. Materials and methods: To establish a model of acute ulcerative colitis, BALB/C mice were administered 3.5% DSS in their drinking water for consecutive 7 days. The disease activity index (DAI) was employed to evaluate the clinical symptoms exhibited by each group of mice. Goblet cell expression in colon tissue was assessed using glycogen schiff periodic acid-Schiff (PAS) and alcian blue staining techniques. Inflammatory cytokine expression in serum and colonic tissues was examined through enzyme-linked immunosorbent assay (ELISA). A PCR Array chip was utilized to screen 88 differential genes associated with the FXR-ASBT pathway in UC treatment with PD. Western blotting (WB) analysis was performed to detect protein expression levels of differentially expressed genes in mouse colon tissue. Results: The PD treatment effectively reduced the Disease Activity Index (DAI) score and mitigated colon histopathological damage, while also restoring weight and colon length. Furthermore, it significantly alleviated the severity of ulcerative colitis (UC), regulated inflammation, modulated goblet cell numbers, and restored bile acid balance. Additionally, a PCR Array analysis identified 21 differentially expressed genes involved in the FXR-ASBT pathway. Western blot results demonstrated significant restoration of FXR, GPBAR1, CYP7A1, and FGF15 protein expression levels following PD treatment; moreover, there was an observed tendency towards increased expression levels of ABCB11 and RXRα. Conclusion: The therapeutic efficacy of PD in UC mice is notable, potentially attributed to its modulation of bile acid homeostasis, enhancement of gut barrier function, and attenuation of intestinal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yong-li Hua
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Sohail I, Hassan MU, Schmid D, Chiba P. The noncanonical nucleotide binding site 1 of the bile salt export pump is optimized for proper function of the transporter. Cell Biol Int 2024; 48:638-646. [PMID: 38328902 DOI: 10.1002/cbin.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
The bile salt export pump (ABCB11/BSEP) is a hepatocyte plasma membrane-resident protein translocating bile salts into bile canaliculi. The sequence alignment of the four full-length transporters of the ABCB subfamily (ABCB1, ABCB4, ABCB5 and ABCB11) indicates that the NBD-NBD contact interface of ABCB11 differs from that of other members in only four residues. Notably, these are all located in the noncanonical nucleotide binding site 1 (NBS1). Substitution of all four deviant residues with canonical ones (quadruple mutant) significantly decreased the transport activity of the protein. In this study, we mutated two deviant residues in the signature sequence to generate a double mutant (R1221G/E1223Q). Furthermore, a triple mutant (E502S/R1221G/E1223Q) was generated, in which the deviant residues of the signature sequence and Q-loop were mutated concurrently to canonical residues. The double and triple mutants showed 80% and 60%, respectively, of the activity of wild-type BSEP. As expected, an increasing number of mutations gradually impair transport as an intricate network of interactions within the ABC proteins ensures proper functioning.
Collapse
Affiliation(s)
- Imran Sohail
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Mahmood Ul Hassan
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
- Institute of Industrial Biotechnology, Government College University Lahore, Lahore, Pakistan
| | - Diethart Schmid
- Institute of Physiology, Medical University of Vienna, Vienna, Austria
| | - Peter Chiba
- Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Wakasa K, Tamura R, Osaka S, Takei H, Asai A, Nittono H, Kusuhara H, Hayashi H. Rapid in vivo evaluation system for cholestasis-related genes in mice with humanized bile acid profiles. Hepatol Commun 2024; 8:e0382. [PMID: 38517206 PMCID: PMC10962888 DOI: 10.1097/hc9.0000000000000382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Pediatric cholestatic liver diseases (Ped-CLD) comprise many ultrarare disorders with a genetic basis. Pharmacologic therapy for severe cases of Ped-CLD has not been established. Species differences in bile acid (BA) metabolism between humans and rodents contribute to the lack of phenocopy of patients with Ped-CLD in rodents and hinder the development of therapeutic strategies. We aimed to establish an efficient in vivo system to understand BA-related pathogenesis, such as Ped-CLD. METHODS We generated mice that express spCas9 specifically in the liver (L-Cas9Tg/Tg [liver-specific Cas9Tg/Tg] mice) and designed recombinant adeno-associated virus serotype 8 encoding small-guide RNA (AAV8 sgRNA) targeting Abcc2, Abcb11, and Cyp2c70. In humans, ABCC2 and ABCB11 deficiencies cause constitutional hyperbilirubinemia and most severe Ped-CLD, respectively. Cyp2c70 encodes an enzyme responsible for the rodent-specific BA profile. Six-week-old L-Cas9Tg/Tg mice were injected with this AAV8 sgRNA and subjected to biochemical and histological analysis. RESULTS Fourteen days after the injection with AAV8 sgRNA targeting Abcc2, L-Cas9Tg/Tg mice exhibited jaundice and phenocopied patients with ABCC2 deficiency. L-Cas9Tg/Tg mice injected with AAV8 sgRNA targeting Abcb11 showed hepatomegaly and cholestasis without histological evidence of liver injury. Compared to Abcb11 alone, simultaneous injection of AAV8 sgRNA for Abcb11 and Cyp2c70 humanized the BA profile and caused higher transaminase levels and parenchymal necrosis, resembling phenotypes with ABCB11 deficiency. CONCLUSIONS This study provides proof of concept for efficient in vivo assessment of cholestasis-related genes in humanized bile acid profiles. Our platform offers a more time- and cost-effective alternative to conventional genetically engineered mice, increasing our understanding of BA-related pathogenesis such as Ped-CLD and expanding the potential for translational research.
Collapse
Affiliation(s)
- Kihiro Wakasa
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Tamura
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Shuhei Osaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | - Akihiro Asai
- Department of Gastroenterology, and Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Laddha AP, Dzielak L, Lewis C, Xue R, Manautou JE. Impact of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) on the expression and function of hepatobiliary transporters: A comprehensive mechanistic review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167037. [PMID: 38295624 DOI: 10.1016/j.bbadis.2024.167037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/11/2024] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
The liver plays a central role in the biotransformation and disposition of endogenous molecules and xenobiotics. In addition to drug-metabolizing enzymes, transporter proteins are key determinants of drug hepatic clearance. Hepatic transporters are transmembrane proteins that facilitate the movement of chemicals between sinusoidal blood and hepatocytes. Other drug transporters translocate molecules from hepatocytes into bile canaliculi for biliary excretion. The formers are known as basolateral, while the latter are known as canalicular transporters. Also, these transporters are classified into two super-families, the solute carrier transporter (SLC) and the adenosine triphosphate (ATP)-binding cassette (ABC) transporter. The expression and function of transporters involve complex regulatory mechanisms, which are contributing factors to interindividual variability in drug pharmacokinetics and disposition. A considerable number of liver diseases are known to alter the expression and function of drug transporters. Among them, non-alcoholic fatty liver disease (NAFLD) is a chronic condition with a rapidly increasing incidence worldwide. NAFLD, recently reclassified as metabolic dysfunction-associated steatotic liver disease (MASLD), is a disease continuum that includes steatosis with or without mild inflammation (NASH), and potentially neuroinflammatory pathology. NASH is additionally characterized by the presence of hepatocellular injury. During NAFLD and NASH, drug transporters exhibit altered expression and function, leading to altered drug pharmacokinetics and pharmacodynamics, thus increasing the risk of adverse drug reactions. The purpose of the present review is to provide comprehensive mechanistic information on the expression and function of hepatic transporters under fatty liver conditions and hence, the impact on the pharmacokinetic profiles of certain drugs from the available pre-clinical and clinical literature.
Collapse
Affiliation(s)
- Ankit P Laddha
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Lindsey Dzielak
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA; Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Cedric Lewis
- Non-Clinical Drug Safety (NDS) Department, Boehringer Ingelheim Pharmaceutical Co., Ridgefield, CT, USA
| | - Raymond Xue
- Charles River Laboratories, Inc., Shrewsbury, MA, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
12
|
Kondou H, Nakano S, Mizuno T, Bessho K, Hasegawa Y, Nakazawa A, Tanikawa K, Azuma Y, Okamoto T, Inui A, Imagawa K, Kasahara M, Zen Y, Suzuki M, Hayashi H. Clinical symptoms, biochemistry, and liver histology during the native liver period of progressive familial intrahepatic cholestasis type 2. Orphanet J Rare Dis 2024; 19:57. [PMID: 38341604 PMCID: PMC10858576 DOI: 10.1186/s13023-024-03080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Progressive familial intrahepatic cholestasis type 2 (PFIC2) is an ultra-rare disease caused by mutations in the ABCB11 gene. This study aimed to understand the course of PFIC2 during the native liver period. METHODS From November 2014 to October 2015, a survey to identify PFIC2 patients was conducted in 207 hospitals registered with the Japanese Society of Pediatric Gastroenterology, Hepatology, and Nutrition. Investigators retrospectively collected clinical data at each facility in November 2018 using pre-specified forms. RESULTS Based on the biallelic pathogenic variants in ABCB11 and/or no hepatic immunohistochemical detection of BSEP, 14 Japanese PFIC2 patients were enrolled at seven facilities. The median follow-up was 63.2 [47.7-123.3] months. The median age of disease onset was 2.5 [1-4] months. Twelve patients underwent living donor liver transplantation (LDLT), with a median age at LDLT of 9 [4-57] months. Two other patients received sodium 4-phenylbutyrate (NaPB) therapy and survived over 60 months with the native liver. No patients received biliary diversion. The cases that resulted in LDLT had gradually deteriorated growth retardation, biochemical tests, and liver histology since the initial visit. In the other two patients, jaundice, growth retardation, and most of the biochemical tests improved after NaPB therapy was started, but pruritus and liver fibrosis did not. CONCLUSIONS Japanese PFIC2 patients had gradually worsening clinical findings since the initial visit, resulting in LDLT during infancy. NaPB therapy improved jaundice and growth retardation but was insufficient to treat pruritus and liver fibrosis.
Collapse
Affiliation(s)
- Hiroki Kondou
- Department of Pediatrics, Kindai University Nara Hospital, Nara, Japan
| | - Satoshi Nakano
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Bessho
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Hasegawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Ken Tanikawa
- Department of Diagnostic Pathology, Kurume University Hospital, Fukuoka, Japan
| | - Yoshihiro Azuma
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tatsuya Okamoto
- Department of Pediatric Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama City Eastern Hospital, Kanagawa, Japan
| | - Kazuo Imagawa
- Department of Pediatrics, University of Tsukuba Hospital, Ibaraki, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital and King's College London, London, UK
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hisamitsu Hayashi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Takai S, Lee H, Kim M, Torii S, Nishihara K, Oh J, Masaki T, Ikuta K, Iwamoto E, Masuda K, Uemoto Y, Terada F, Haga S, Roh S. Dynamics of blood Taurine concentration and its correlation with nutritional and physiological status during the fattening period of Japanese black cattle. J Anim Sci 2024; 102:skae347. [PMID: 39535934 PMCID: PMC11631192 DOI: 10.1093/jas/skae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024] Open
Abstract
Taurine, biosynthesized from methionine or cysteine in the liver, plays a crucial regulatory role in bile acid conjugation, antioxidant effects, and glucose and cholesterol metabolism. This may influence the metabolic changes associated with fat accumulation in beef cattle. However, the physiological role of taurine in this species has not been fully elucidated. In this study, we explored the physiological role of taurine in Japanese Black steers (Bos taurus) in different phases during the fattening period. To examine the correlation among plasma taurine concentrations, various physiological parameters, and genes related to taurine synthesis in the liver, we used biopsied liver tissues, blood samples, and rumen fluids collected from 21 steers at three different stages, i.e., early (T1; 13 mo of age), middle (T2; 20 mo of age), and late (T3; 28 mo of age) phases. Additionally, to investigate the regulatory mechanisms underlying the expression profile of taurine synthesis genes, primary bovine hepatocytes obtained from 4-wk-old Holstein calves were treated with palmitate, oleate, acetate, propionate, or β-hydroxybutyrate (BHBA). Plasma taurine and cholesterol concentrations significantly (P < 0.001) increased in the T2 phase, which is potentially attributable to increased energy intake and assimilation induced by increased intake of concentrated feed. Cysteine-sulfinic acid decarboxylase (CSAD) expression significantly increased (P < 0.01) in T2 than in other phases. The expression levels of cysteine dioxygenase type 1 (CDO1) and cholesterol 7 alpha-hydroxylase (CYP7A1) were significantly higher (P < 0.05) in T2 than in T3; moreover, the CDO1/glutamate-cysteine ligase catalytic subunit (GCLC) ratio was higher (P < 0.05) in T2 than in T1. Plasma taurine concentrations were positively correlated with plasma methionine (r = 0.51; P < 0.05) and total cholesterol (r = 0.56; P < 0.05) concentrations at T2. Relative CDO1 mRNA expression was upregulated in cultured bovine hepatocytes treated with oleate and propionate, whereas it was downregulated upon acetate treatment. These findings indicate that the increase in plasma taurine concentrations in the T2 phase is associated with changes in lipid and methionine metabolism in Japanese Black steers.
Collapse
Affiliation(s)
- Shuntaro Takai
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Minji Kim
- Department of Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Shinichiro Torii
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Joonpyo Oh
- Strategic Marketing and Technology, Cargill Animal Nutrition, Seongnam 13630, Republic of Korea
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Kota Masuda
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Fuminori Terada
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
14
|
Ravi PC, Thugu TR, Singh J, Dasireddy RR, Kumar SA, Isaac NV, Oladimeji A, DeTrolio V, Abdalla R, Mohan V, Iqbal J. Gallstone Disease and Its Correlation With Thyroid Disorders: A Narrative Review. Cureus 2023; 15:e45116. [PMID: 37842424 PMCID: PMC10568238 DOI: 10.7759/cureus.45116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Over the years, several studies have revealed an important link between thyroid disorders and gallstone disease. According to these studies, hypothyroidism and hyperthyroidism are associated with cholesterol gallstone disease. This association between thyroid hormone disorders and cholesterol gallstone disease is due to the importance of thyroid hormones on cholesterol synthesis, bile functioning and content, and gallbladder motility. Several genes and receptors have been found on the thyroid gland, liver, and gallbladder to verify this association. These genes affect thyroid hormone secretion, lipid metabolism, and bile secretion. Defects in these various gene expression and protein functions lead to bile duct diseases. Other causes that lead to cholesterol gallstone disease are supersaturation of the bile with cholesterol and impaired gallbladder motility, which leads to bile stasis. This article has discussed these factors in detail while highlighting the association between thyroid hormones and cholesterol gallstone disease.
Collapse
Affiliation(s)
| | - Thanmai Reddy Thugu
- Internal Medicine, Sri Padmavathi Medical College for Women, Sri Venkateswara Institute of Medical Sciences (SVIMS), Tirupati, IND
| | - Jugraj Singh
- Internal Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| | | | - Sharanya Anil Kumar
- Medicine and Surgery, Vydehi Institute of Medical Sciences and Research Centre, Bengaluru, IND
| | - Natasha Varghese Isaac
- Medicine, St. John's Medical College Hospital, Rajiv Gandhi University of Health Sciences (RGUHS), Bengaluru, IND
| | | | | | - Rasha Abdalla
- Medicine and Surgery, Shendi University, Shendi, SDN
| | - Vineetha Mohan
- Medicine and Surgery, Government Medical College Kottayam, Kottayam, IND
| | | |
Collapse
|
15
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
16
|
Saad A, Chauhan A, Tripathi S, Kumar M. Arthrogryposis, renal dysfunction, cholestasis syndrome in a neonate: an uncommon association of common problems. BMJ Case Rep 2023; 16:e254822. [PMID: 37202112 PMCID: PMC10201215 DOI: 10.1136/bcr-2023-254822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
A male infant born out of non-consanguineous marriage to a primigravida presented to us as his third hospitalisation with ichthyotic lesions all over the body, cholestatic jaundice, multiple joint contractures and a history of recurrent sepsis. Blood and urine investigations revealed Fanconi syndrome, hypothyroidism and direct hyperbilirubinaemia with elevated liver enzymes and normal gamma glutamyl transpeptidase levels. The combination of arthrogryposis, renal dysfunction and cholestasis led to the suspicion of arthrogryposis, renal tubular dysfunction, cholestasis (ARC) syndrome, which was then proved by genetic testing. The baby was managed conservatively with respiratory support, antibiotics, multivitamins, levothyroxine and other supportive measures but succumbed to the illness on day 15 of hospitalisation. Genetic analysis using next-generation sequencing was confirmatory of a homozygous mutation in VIPAS39 gene leading to ARC syndrome type 2 in the present case. Genetic counselling was provided and prenatal testing was advised to the parents for future pregnancies.
Collapse
Affiliation(s)
- Aamina Saad
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Avantika Chauhan
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shalini Tripathi
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mala Kumar
- Department of Pediatrics, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Lee SH, So J, Shin D. Hepatocyte-to-cholangiocyte conversion occurs through transdifferentiation independently of proliferation in zebrafish. Hepatology 2023; 77:1198-1210. [PMID: 36626626 PMCID: PMC10023500 DOI: 10.1097/hep.0000000000000016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/10/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Injury to biliary epithelial cells (BECs) lining the hepatic bile ducts leads to cholestatic liver diseases. Upon severe biliary damage, hepatocytes can convert to BECs, thereby contributing to liver recovery. Given a potential of augmenting this hepatocyte-to-BEC conversion as a therapeutic option for cholestatic liver diseases, it will be important to thoroughly understand the cellular and molecular mechanisms of the conversion process. APPROACH AND RESULTS Towards this aim, we have established a zebrafish model for hepatocyte-to-BEC conversion by employing Tg(fabp10a:CFP-NTR) zebrafish with a temporal inhibition of Notch signaling during regeneration. Cre/loxP-mediated permanent and H2B-mCherry-mediated short-term lineage tracing revealed that in the model, all BECs originate from hepatocytes. During the conversion, BEC markers are sequentially induced in the order of Sox9b, Yap/Taz, Notch activity/ epcam , and Alcama/ krt18 ; the expression of the hepatocyte marker Bhmt disappears between the Sox9b and Yap/Taz induction. Importantly, live time-lapse imaging unambiguously revealed transdifferentiation of hepatocytes into BECs: hepatocytes convert to BECs without transitioning through a proliferative intermediate state. In addition, using compounds and transgenic and mutant lines that modulate Notch and Yap signaling, we found that both Notch and Yap signaling are required for the conversion even in Notch- and Yap-overactivating settings. CONCLUSIONS Hepatocyte-to-BEC conversion occurs through transdifferentiation independently of proliferation, and Notch and Yap signaling control the process in parallel with a mutually positive interaction. The new zebrafish model will further contribute to a thorough understanding of the mechanisms of the conversion process.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
18
|
Özvegy-Laczka C, Ungvári O, Bakos É. Fluorescence-based methods for studying activity and drug-drug interactions of hepatic solute carrier and ATP binding cassette proteins involved in ADME-Tox. Biochem Pharmacol 2023; 209:115448. [PMID: 36758706 DOI: 10.1016/j.bcp.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
In humans, approximately 70% of drugs are eliminated through the liver. This process is governed by the concerted action of membrane transporters and metabolic enzymes. Transporters mediating hepatocellular uptake of drugs belong to the SLC (Solute carrier) superfamily of transporters. Drug efflux either toward the portal vein or into the bile is mainly mediated by active transporters of the ABC (ATP Binding Cassette) family. Alteration in the function and/or expression of liver transporters due to mutations, disease conditions, or co-administration of drugs or food components can result in altered pharmacokinetics. On the other hand, drugs or food components interacting with liver transporters may also interfere with liver function (e.g., bile acid homeostasis) and may even cause liver toxicity. Accordingly, certain transporters of the liver should be investigated already at an early stage of drug development. Most frequently radioactive probes are applied in these drug-transporter interaction tests. However, fluorescent probes are cost-effective and sensitive alternatives to radioligands, and are gaining wider application in drug-transporter interaction tests. In our review, we summarize our current understanding about hepatocyte ABC and SLC transporters affected by drug interactions. We provide an update of the available fluorescent and fluorogenic/activable probes applicable in in vitro or in vivo testing of these ABC and SLC transporters, including near-infrared transporter probes especially suitable for in vivo imaging. Furthermore, our review gives a comprehensive overview of the available fluorescence-based methods, not directly relying on the transport of the probe, suitable for the investigation of hepatic ABC or SLC-type drug transporters.
Collapse
Affiliation(s)
- Csilla Özvegy-Laczka
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary.
| | - Orsolya Ungvári
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary; Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bakos
- Institute of Enzymology, RCNS, Eötvös Loránd Research Network, H-1117 Budapest, Magyar tudósok krt. 2., Hungary
| |
Collapse
|
19
|
Kastrinou Lampou V, Poller B, Huth F, Fischer A, Kullak-Ublick GA, Arand M, Schadt HS, Camenisch G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol In Vitro 2023; 87:105533. [PMID: 36473578 DOI: 10.1016/j.tiv.2022.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.
Collapse
Affiliation(s)
- Vlasia Kastrinou Lampou
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birk Poller
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Fischer
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Heiko S Schadt
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gian Camenisch
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
20
|
Wang S, Feng R, Wang SS, Liu H, Shao C, Li Y, Link F, Munker S, Liebe R, Meyer C, Burgermeister E, Ebert M, Dooley S, Ding H, Weng H. FOXA2 prevents hyperbilirubinaemia in acute liver failure by maintaining apical MRP2 expression. Gut 2023; 72:549-559. [PMID: 35444014 DOI: 10.1136/gutjnl-2022-326987] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.
Collapse
Affiliation(s)
- Sai Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rilu Feng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shan Shan Wang
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Beijing Institute of Hepatology, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Chen Shao
- Department of Pathology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Yujia Li
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Link
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU, Munich, Germany
- Liver Center Munich, University Hospital, LMU, Munich, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Christoph Meyer
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing You'an Hospital, Affiliated with Capital Medical University, Beijing, China
| | - Honglei Weng
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Stindt J, Dröge C, Lainka E, Kathemann S, Pfister ED, Baumann U, Stalke A, Grabhorn E, Shagrani MA, Mozer-Glassberg Y, Hartley J, Wammers M, Klindt C, Philippski P, Liebe R, Herebian D, Mayatepek E, Berg T, Schmidt-Choudhury A, Wiek C, Hanenberg H, Luedde T, Keitel V. Cell-based BSEP trans-inhibition: A novel, non-invasive test for diagnosis of antibody-induced BSEP deficiency. JHEP Rep 2023. [DOI: 10.1016/j.jhepr.2023.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
22
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
23
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
24
|
Li H, Perino A, Huang Q, Von Alvensleben GVG, Banaei-Esfahani A, Velazquez-Villegas LA, Gariani K, Korbelius M, Bou Sleiman M, Imbach J, Sun Y, Li X, Bachmann A, Goeminne LJE, Gallart-Ayala H, Williams EG, Ivanisevic J, Auwerx J, Schoonjans K. Integrative systems analysis identifies genetic and dietary modulators of bile acid homeostasis. Cell Metab 2022; 34:1594-1610.e4. [PMID: 36099916 PMCID: PMC9534359 DOI: 10.1016/j.cmet.2022.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Bile acids (BAs) are complex and incompletely understood enterohepatic-derived hormones that control whole-body metabolism. Here, we profiled postprandial BAs in the liver, feces, and plasma of 360 chow- or high-fat-diet-fed BXD male mice and demonstrated that both genetics and diet strongly influence BA abundance, composition, and correlation with metabolic traits. Through an integrated systems approach, we mapped hundreds of quantitative trait loci that modulate BAs and identified both known and unknown regulators of BA homeostasis. In particular, we discovered carboxylesterase 1c (Ces1c) as a genetic determinant of plasma tauroursodeoxycholic acid (TUDCA), a BA species with established disease-preventing actions. The association between Ces1c and plasma TUDCA was validated using data from independent mouse cohorts and a Ces1c knockout mouse model. Collectively, our data are a unique resource to dissect the physiological importance of BAs as determinants of metabolic traits, as underscored by the identification of CES1C as a master regulator of plasma TUDCA levels.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Qingyao Huang
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Giacomo V G Von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Amir Banaei-Esfahani
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura A Velazquez-Villegas
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Karim Gariani
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Melanie Korbelius
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jéromine Imbach
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yu Sun
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexis Bachmann
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evan G Williams
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Alrehaili BD, Lee M, Takahashi S, Novak R, Rimal B, Boehme S, Trammell SAJ, Grevengoed TJ, Kumar D, Alnouti Y, Chiti K, Wang X, Patterson AD, Chiang JYL, Gonzalez FJ, Lee Y. Bile acid conjugation deficiency causes hypercholanemia, hyperphagia, islet dysfunction, and gut dysbiosis in mice. Hepatol Commun 2022; 6:2765-2780. [PMID: 35866568 PMCID: PMC9512455 DOI: 10.1002/hep4.2041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Pharmacology and ToxicologyPharmacy CollegeTaibah UniversityMedinaSaudi Arabia
| | - Mikang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shogo Takahashi
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Robert Novak
- Department of PathologyCollege of MedicineNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bipin Rimal
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Shannon Boehme
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Samuel A. J. Trammell
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trisha J. Grevengoed
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Devendra Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Yazen Alnouti
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Katya Chiti
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Andrew D. Patterson
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - John Y. L. Chiang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Frank J. Gonzalez
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Yoon‐Kwang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
| |
Collapse
|
26
|
Ghanem CI, Manautou JE. Role and Regulation of Hepatobiliary ATP-Binding Cassette Transporters during Chemical-Induced Liver Injury. Drug Metab Dispos 2022; 50:1376-1388. [PMID: 35914951 PMCID: PMC9513844 DOI: 10.1124/dmd.121.000450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Severity of drug-induced liver injury (DILI) ranges from mild, asymptomatic, and transient elevations in liver function tests to irreversible liver damage, often needing transplantation. Traditionally, DILI is classified mechanistically as high-frequency intrinsic DILI, commonly dose dependent or DILI that rarely occurs and is idiosyncratic in nature. This latter form is not dose dependent and has a pattern of histopathological manifestation that is not always uniform. Currently, a third type of DILI called indirect hepatotoxicity has been described that is associated with the pharmacological action of the drug. Historically, DILI was primarily linked to drug metabolism events; however, the impact of transporter-mediated rates of drug uptake and excretion has gained greater prominence in DILI research. This review provides a comprehensive view of the major findings from studies examining the contribution of hepatic ATP-binding cassette transporters as key contributors to DILI and how changes in their expression and function influence the development, severity, and overall toxicity outcome. SIGNIFICANCE STATEMENT: Drug-induced liver injury (DILI) continues to be a focal point in drug development research. ATP-binding cassette (ABC) transporters have emerged as important determinants of drug detoxification, disposition, and safety. This review article provides a comprehensive analysis of the literature addressing: (a) the role of hepatic ABC transporters in DILI, (b) the influence of genetic mutations in ABC transporters on DILI, and (c) new areas of research emphasis, such as the influence of the gut microbiota and epigenetic regulation, on ABC transporters.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| | - Jose E Manautou
- Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET) (C.I.G.) and Cátedra de Fisiopatología (C.I.G.), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina; and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (J.E.M.)
| |
Collapse
|
27
|
Jiao JY, Zhu XJ, Zhou C, Wang P. Research progress on the immune microenvironment of the gallbladder in patients with cholesterol gallstones. World J Gastrointest Surg 2022; 14:887-895. [PMID: 36185563 PMCID: PMC9521471 DOI: 10.4240/wjgs.v14.i9.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Cholesterol gallstones are very common in hepatobiliary surgery and have been studied to a certain extent by doctors worldwide for decades. However, the mechanism of cholesterol gallstone formation is not fully understood, so there is currently no completely effective drug for the treatment and prevention of cholesterol gallstones. The formation and development of cholesterol gallstones are caused by a variety of genetic and environmental factors, among which genetic susceptibility, intestinal microflora disorders, impaired gallbladder motility, and immune disorders are important in the pathogenesis of cholesterol gallstones. This review focuses on recent advances in these mechanisms. We also discuss some new targets that may be effective in the treatment and prevention of cholesterol gallstones, which may be hot areas in the future.
Collapse
Affiliation(s)
- Jing-Yi Jiao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Medical School, Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Jun Zhu
- Department of Hepatobiliary Surgery, Nantong First People's Hospital, Nantong 226001, Jiangsu Province, China
| | - Chun Zhou
- Department of General Practitioner, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Peng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
28
|
Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, Brouwer KLR. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep 2022; 12:14333. [PMID: 35995956 PMCID: PMC9395349 DOI: 10.1038/s41598-022-18174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Abigail Klein
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
29
|
High-content imaging of human hepatic spheroids for researching the mechanism of duloxetine-induced hepatotoxicity. Cell Death Dis 2022; 13:669. [PMID: 35915074 PMCID: PMC9343405 DOI: 10.1038/s41419-022-05042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Duloxetine (DLX) has been approved for the successful treatment of psychiatric diseases, including major depressive disorder, diabetic neuropathy, fibromyalgia and generalized anxiety disorder. However, since the usage of DLX carries a manufacturer warning of hepatotoxicity given its implication in numerous cases of drug-induced liver injuries (DILI), it is not recommended for patients with chronic liver diseases. In our previous study, we developed an enhanced human-simulated hepatic spheroid (EHS) imaging model system for performing drug hepatotoxicity evaluation using the human hepatoma cell line HepaRG and the support of a pulverized liver biomatrix scaffold, which demonstrated much improved hepatic-specific functions. In the current study, we were able to use this robust model to demonstrate that the DLX-DILI is a human CYP450 specific, metabolism-dependent, oxidative stress triggered complex hepatic injury. High-content imaging analysis (HCA) of organoids exposed to DLX showed that the potential toxicophore, naphthyl ring in DLX initiated oxidative stress which ultimately led to mitochondrial dysfunction in the hepatic organoids, and vice versa. Furthermore, DLX-induced hepatic steatosis and cholestasis was also detected in the exposed EHSs. We also discovered that a novel compound S-071031B, which replaced DLX's naphthyl ring with benzodioxole, showed dramatically lower hepatotoxicities through reducing oxidative stress. Thus, we conclusively present the human-relevant EHS model as an ideal, highly competent system for evaluating DLX induced hepatotoxicity and exploring related mechanisms in vitro. Moreover, HCA use on functional hepatic organoids has promising application prospects for guiding compound structural modifications and optimization in order to improve drug development by reducing hepatotoxicity.
Collapse
|
30
|
Bile Acid-Drug Interaction via Organic Anion-Transporting Polypeptide 4C1 Is a Potential Mechanism of Altered Pharmacokinetics of Renally Excreted Drugs. Int J Mol Sci 2022; 23:ijms23158508. [PMID: 35955643 PMCID: PMC9369231 DOI: 10.3390/ijms23158508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Patients with liver diseases not only experience the adverse effects of liver-metabolized drugs, but also the unexpected adverse effects of renally excreted drugs. Bile acids alter the expression of renal drug transporters, however, the direct effects of bile acids on drug transport remain unknown. Renal drug transporter organic anion-transporting polypeptide 4C1 (OATP4C1) was reported to be inhibited by chenodeoxycholic acid. Therefore, we predicted that the inhibition of OATP4C1-mediated transport by bile acids might be a potential mechanism for the altered pharmacokinetics of renally excreted drugs. We screened 45 types of bile acids and calculated the IC50, Ki values, and bile acid−drug interaction (BDI) indices of bile acids whose inhibitory effect on OATP4C1 was >50%. From the screening results, lithocholic acid (LCA), glycine-conjugated lithocholic acid (GLCA), and taurine-conjugated lithocholic acid (TLCA) were newly identified as inhibitors of OATP4C1. Since the BDI index of LCA was 0.278, LCA is likely to inhibit OATP4C1-mediated transport in clinical settings. Our findings suggest that dose adjustment of renally excreted drugs may be required in patients with renal failure as well as in patients with hepatic failure. We believe that our findings provide essential information for drug development and safe drug treatment in clinics.
Collapse
|
31
|
Identification of Shared Gene Signatures in Different Stages of Nonalcoholic Fatty Liver Disease Using Integrated Microarray Datasets. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-122362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common type of chronic liver disease worldwide. Left untreated, it can be a risk factor for developing cirrhosis or hepatocellular carcinoma (HCC). Although experts have made many efforts to find the underlying mechanisms of NAFLD, they remain a mystery. Objectives: This study aimed to distinguish common gene signatures and pathways in the human liver during NAFLD progression through systems biology. Methods: In this study, the researchers selected three microarray datasets, GSE48452, GSE63067, and GSE89632, from the NCBI GEO database to explore differentially expressed genes (DEGs) among healthy controls, simple steatosis, and nonalcoholic steatohepatitis (NASH) patients. Furthermore, protein-protein interaction (PPI) networks and pathway enrichment analyses were used to detect common genes and biological pathways in different stages of NAFLD. Results: The current study included 45 healthy participants, 36 simple steatosis patients, and 46 NASH patients. Common genes for NAFLD progression were Chi3L1, ICAM1, MT1A, MT1H, ABCB11, ACOT1, CYP2C9, HSP90B1, and CPB2, which are involved in inflammation and oxidative stress pathways. Conclusions: The present study investigated the shared vital genes and pathways between different stages of NAFLD, which may facilitate understanding NAFLD mechanisms and identifying potential therapeutic targets in this disease.
Collapse
|
32
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
33
|
Cariello M, Gadaleta RM, Moschetta A. The gut-liver axis in cholangiopathies: focus on bile acid based pharmacological treatment. Curr Opin Gastroenterol 2022; 38:136-143. [PMID: 35034082 PMCID: PMC10826921 DOI: 10.1097/mog.0000000000000807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review analyses the main features of primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC) and provides an overview of the currently available (bile acid) bile acid related treatments. RECENT FINDINGS In PBC, biliary injury is the consequence of a dysregulated intrahepatic and systemic immune response. Given the close association between PSC and inflammatory bowel disease (IBD), the microbiota represents an important factor in the development of PSC. Bile acid based pharmacological treatments could represent promising therapeutic strategies in the management of cholangiopathies. SUMMARY Cholangiopathies include a spectrum of diseases resulting in cholestasis, an impairment of bile flow in the biliary tree, leading to biliary obstruction and damage as well as liver inflammation and fibrosis. PSC and PBC are highly heterogeneous cholangiopathies and progressive disorders with defined pathophysiological mechanisms. Curative treatments have not been established, and although their prevalence is low, they are a frequent indication for liver transplantation in the advanced stages of cholangiopathies. These diseases still present with unmet therapeutic strategies, also taking into account that on average 30-40% of patients undergoing liver transplantation will have recurrence of the original illness.
Collapse
Affiliation(s)
- Marica Cariello
- INBB, National Institute for Biostructures and Biosystems, Rome
| | - Raffaella M. Gadaleta
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| | - Antonio Moschetta
- INBB, National Institute for Biostructures and Biosystems, Rome
- Department of Interdisciplinary Medicine, ‘Aldo Moro’ University of Bari, Bari, Italy
| |
Collapse
|
34
|
Saran C, Sundqvist L, Ho H, Niskanen J, Honkakoski P, Brouwer KLR. Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors. J Pharmacol Exp Ther 2022; 380:114-125. [PMID: 34794962 PMCID: PMC9109172 DOI: 10.1124/jpet.121.000828] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Louise Sundqvist
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Henry Ho
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Jonna Niskanen
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Paavo Honkakoski
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Kim L R Brouwer
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| |
Collapse
|
35
|
Zhu H, Wang S, Li L, Geng W, Wan X, Hua R, Wang D, Gao P. Case Report: A rare case of young adult progressive familial intrahepatic cholestasis-type 3 with a novel heterozygous pathogenic variant of ABCB4. Front Pediatr 2022; 10:1012825. [PMID: 36330364 PMCID: PMC9622764 DOI: 10.3389/fped.2022.1012825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC-3) is a rare autosomal recessive disorder with poor prognosis. It is caused by pathogenic variants of the ATP binding cassette subfamily B member 4 (ABCB4) gene and usually progresses from chronic cholestasis with or without jaundice to portal hypertension and end-stage liver disease within the first to second decade of life. Few reported PFIC-3 patients presented with atypical clinical symptoms, therefore, often misdiagnosed if without family history. Herein, we report a 16-year-old male who was admitted to our hospital due to acute episodes of jaundice and intense pruritus, subsequently progressed to end-stage liver disease. Laboratory examinations showed no evidence of liver injury caused by viral, autoimmune, drug or liver tumors. Ursodeoxycholic acid and dexamethasone did not relieve his symptoms and he underwent liver transplantation successfully. Targeted next-generation sequencing identified that the patient was a compound heterozygote for two missense mutations (c.959C > T/c.1429C > A) in the ABCB4 gene. The mutation c.1429C > A (p.Q477K) is a novel heterozygous mutation. We constructed a three-dimensional model of this novel pathogenic variant using the SWISS MODEL program and found that the patient's ABCB4 protein is an ATP hydrolysis deficient mutant. The postoperative pathological diagnosis showed intrahepatic cholestasis with progression to cirrhosis. Negative liver tissue immunohistochemistry of MDR3 was found in the explanted liver. The patient was diagnosed with PFIC-3, and his symptoms improved dramatically with liver transplantation. In conclusion, for young patients with acute cholestasis, pruritus, jaundice, growth retardation, and enlargement of the liver and spleen, the possibility of inherited metabolic liver diseases should be considered, detailed medical and family history should be collected, and metabolic screening tests as well as gene tests are necessary for correct diagnosis. Increasing the coverage of PFIC3 is meaningful and thus can improve the current understanding of this disease.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Shengnan Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Li Li
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Wenqian Geng
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqiang Wan
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, China
| | - Rui Hua
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Dong Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Li M, Yang L. Autophagy in the liver. AUTOPHAGY IN HEALTH AND DISEASE 2022:161-179. [DOI: 10.1016/b978-0-12-822003-0.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Enge AM, Kaltner F, Gottschalk C, Kin A, Kirstgen M, Geyer J, These A, Hammer H, Pötz O, Braeuning A, Hessel-Pras S. Organic Cation Transporter I and Na + /taurocholate Co-Transporting Polypeptide are Involved in Retrorsine- and Senecionine-Induced Hepatotoxicity in HepaRG cells. Mol Nutr Food Res 2021; 66:e2100800. [PMID: 34826203 DOI: 10.1002/mnfr.202100800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/03/2021] [Indexed: 01/05/2023]
Abstract
SCOPE 1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites that are found in many plant species throughout the world. They are of concern for risk assessment as consumption of contaminated foodstuff can cause severe liver damage. Of late, transporter-mediated uptake and transport has advanced as a vital determinant of PA toxicity. In this study, the authors investigate a transporter-mediated uptake of PAs and its implications in PA toxicity. METHODS AND RESULTS We show that transporter expression levels are significantly affected by treatment with the PAs senecionine (Sc) and retrorsine (Re) in the human hepatoma cell line HepaRG. Furthermore, the specific contribution to PA uptake of the two transporters Na+ /taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter I (SLC22A1), both belonging to the heterogeneous solute carrier super family, is investigated by means of a siRNA-mediated knockdown approach. Knockdown of both uptake transporters result in reduced uptake of Re and Sc in a time-dependent manner and attenuated PA-mediated cytotoxic effects in HepaRG cells. CONCLUSION Our results confirm previous findings of active transport mechanisms of PAs into hepatocytes and highlight the importance of toxicokinetic studies for the risk assessment of PAs.
Collapse
Affiliation(s)
- Anne-Margarethe Enge
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Florian Kaltner
- Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.,Institute of Food Chemistry and Food Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 17-19, 35392, Giessen, Germany
| | - Christoph Gottschalk
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.,Chair of Food Safety and Analytics, Ludwig Maximilian University of Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Angelina Kin
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Michael Kirstgen
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Joachim Geyer
- Biomedical Research Center Seltersberg (BFS), Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Schubertstr. 81, 35392, Giessen, Germany
| | - Anja These
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Helen Hammer
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Oliver Pötz
- Signatope GmbH, Markwiesenstr. 55, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
38
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
39
|
Stieger B, Boyer JL. In Memoriam: Peter J. Meier (1947-2021). J Hepatol 2021; 75:S0168-8278(21)01889-4. [PMID: 34332756 DOI: 10.1016/j.jhep.2021.06.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland.
| | - James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Impact on Bile Acid Concentrations by Alveolar Echinococcosis and Treatment with Albendazole in Mice. Metabolites 2021; 11:metabo11070442. [PMID: 34357336 PMCID: PMC8307106 DOI: 10.3390/metabo11070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis is a chronic, progressive liver disease widely distributed in the Northern Hemisphere. The main treatment options include surgical interventions and chemotherapy with benzimidazole albendazole (ABZ). To improve the current diagnosis and therapy of AE, further investigations into parasite-host interactions are needed. This study used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess serum and liver tissue bile acid profiles in the i.p. chronic E. multilocularis-infected mouse model and evaluated the effects of the anthelmintic drug ABZ. Additionally, hepatic mRNA and protein expression of enzymes and transporters regulating bile acid concentrations were analyzed. AE significantly decreased unconjugated bile acids in serum and liver tissue. Taurine-conjugated bile salts were unchanged or increased in the serum and unchanged or decreased in the liver. Ratios of unconjugated to taurine-conjugated metabolites are proposed as useful serum markers of AE. The expression of the bile acid synthesis enzymes cytochrome P450 (CYP) 7A1 and aldo-keto reductase (AKR) 1D1 tended to decrease or were decreased in mice with AE, along with decreased expression of the bile acid transporters Na+/taurocholate cotransporting polypeptide (NTCP) and bile salt efflux pump (BSEP). Importantly, treatment with ABZ partially or completely reversed the effects induced by E. multilocularis infection. ABZ itself had no effect on the bile acid profiles and the expression of relevant enzymes and transporters. Further research is needed to uncover the exact mechanism of the AE-induced changes in bile acid homeostasis and to test whether serum bile acids and ratios thereof can serve as biomarkers of AE and for monitoring therapeutic efficacy.
Collapse
|
41
|
Leuenberger M, Häusler S, Höhn V, Euler A, Stieger B, Lochner M. Characterization of Novel Fluorescent Bile Salt Derivatives for Studying Human Bile Salt and Organic Anion Transporters. J Pharmacol Exp Ther 2021; 377:346-357. [PMID: 33782042 DOI: 10.1124/jpet.120.000449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Abstract
Bile salts, such as cholate, glycocholate, taurocholate, and glycochenodeoxycholate, are taken up from the portal blood into hepatocytes via transporters, such as the Na+-taurocholate-cotransporting polypeptide (NTCP) and organic anion-transporting polypeptides (OATPs). These bile salts are later secreted into bile across the canalicular membrane, which is facilitated by the bile salt export pump (BSEP). Apart from bile salt transport, some of these proteins (e.g., OATPs) are also key transporters for drug uptake into hepatocytes. In vivo studies of transporter function in patients by using tracer compounds have emerged as an important diagnostic tool to complement classic liver parameter measurements by determining dynamic liver function both for diagnosis and monitoring progression or improvement of liver diseases. Such approaches include use of radioactively labeled bile salts (e.g., for positron emission tomography) and fluorescent bile salt derivatives or dyes (e.g., indocyanine green). To expand the list of liver function markers, we synthesized fluorescent derivatives of cholic and chenodeoxycholic acid by conjugating small organic dyes to the bile acid side chain. These novel fluorescent probes were able to block substrate transport in a concentration-dependent manner of NTCP, OATP1B1, OATP1B3, OATP2B1, BSEP, and intestinal apical sodium-dependent bile salt transporter (ASBT). Whereas the fluorescent bile acid derivatives themselves were transported across the membrane by OATP1B1, OATP1B3, and OATP2B1, they were not transport substrates for NTCP, ASBT, BSEP, and multidrug resistance-related protein 2. Accordingly, these novel fluorescent bile acid probes can potentially be used as imaging agents to monitor the function of OATPs. SIGNIFICANCE STATEMENT: Synthetic modification of common bile acids by attachment of small organic fluorescent dyes to the bile acid side chain resulted in bright, fluorescent probes that interact with hepatic and intestinal organic anion [organic anion-transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1], bile salt uptake (Na+-taurocholate-cotransporting polypeptide, apical sodium-dependent bile salt transporter), and bile salt efflux (bile salt export pump, multidrug resistance-related protein 2) transporters. Although the fluorescent bile salt derivatives are taken up into cells via the OATPs, the efflux transporters do not transport any of them but one.
Collapse
Affiliation(s)
- Michele Leuenberger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Stephanie Häusler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Vera Höhn
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Adriana Euler
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Bruno Stieger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| | - Martin Lochner
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland (M.Le., M.Lo.); Department of Clinical Pharmacology and Toxicology, University Hospital Zürich, Zürich, Switzerland (S.H., V.H., A.E., B.S.); and Swiss National Center of Competence in Research, NCCR TransCure, Bern, Switzerland (M.Le., S.H., A.E., B.S., M.Lo.)
| |
Collapse
|
42
|
Kroll T, Smits SHJ, Schmitt L. Monomeric bile acids modulate the ATPase activity of detergent-solubilized ABCB4/MDR3. J Lipid Res 2021; 62:100087. [PMID: 34022183 PMCID: PMC8233136 DOI: 10.1016/j.jlr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
ABCB4, also called multidrug-resistant protein 3 (MDR3), is an ATP binding cassette transporter located in the canalicular membrane of hepatocytes that specifically translocates phosphatidylcholine (PC) lipids from the cytoplasmic to the extracellular leaflet. Due to the harsh detergent effect of bile acids, PC lipids provided by ABCB4 are extracted into the bile. While it is well known that bile acids are the major extractor of PC lipids from the membrane into bile, it is unknown whether only PC lipid extraction is improved or whether bile acids also have a direct effect on ABCB4. Using in vitro experiments, we investigated the modulation of ATP hydrolysis of ABC by different bile acids commonly present in humans. We demonstrated that all tested bile acids stimulated ATPase activity except for taurolithocholic acid, which inhibited ATPase activity due to its hydrophobic nature. Additionally, we observed a nearly linear correlation between the critical micelle concentration and maximal stimulation by each bile acid, and that this modulation was maintained in the presence of PC lipids. This study revealed a large effect of 24-nor-ursodeoxycholic acid, suggesting a distinct mode of regulation of ATPase activity compared with other bile acids. In addition, it sheds light on the molecular cross talk of canalicular ABC transporters of the human liver.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
43
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis. AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile. METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases. RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases. CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
44
|
Active Transport of Hepatotoxic Pyrrolizidine Alkaloids in HepaRG Cells. Int J Mol Sci 2021; 22:ijms22083821. [PMID: 33917053 PMCID: PMC8067754 DOI: 10.3390/ijms22083821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022] Open
Abstract
1,2-unsaturated pyrrolizidine alkaloids (PAs) are secondary plant metabolites occurring as food contaminants that can cause severe liver damage upon metabolic activation in hepatocytes. However, it is yet unknown how these contaminants enter the cells. The role of hepatic transporters is only at the beginning of being recognized as a key determinant of PA toxicity. Therefore, this study concentrated on assessing the general mode of action of PA transport in the human hepatoma cell line HepaRG using seven structurally different PAs. Furthermore, several hepatic uptake and efflux transporters were targeted with pharmacological inhibitors to identify their role in the uptake of the PAs retrorsine and senecionine and in the disposition of their N-oxides (PANO). For this purpose, PA and PANO content was measured in the supernatant using LC-MS/MS. Also, PA-mediated cytotoxicity was analyzed after transport inhibition. It was found that PAs are taken up into HepaRG cells in a predominantly active and structure-dependent manner. This pattern correlates with other experimental endpoints such as cytotoxicity. Pharmacological inhibition of the influx transporters Na+/taurocholate co-transporting polypeptide (SLC10A1) and organic cation transporter 1 (SLC22A1) led to a reduced uptake of retrorsine and senecionine into HepaRG cells, emphasizing the relevance of these transporters for PA toxicokinetics.
Collapse
|
45
|
Abstract
Clinical disorders that impair bile flow result in retention of bile acids and cholestatic liver injury, characterized by parenchymal cell death, bile duct proliferation, liver inflammation and fibrosis. However, the pathogenic role of bile acids in the development of cholestatic liver injury remains incompletely understood. In this review, we summarize the current understanding of this process focusing on the experimental and clinical evidence for direct effects of bile acids on each major cellular component of the liver: hepatocytes, cholangiocytes, stellate cells and immune cells. During cholestasis bile acids accumulated in the liver, causing oxidative stress and mitochondrial injury in hepatocytes. The stressed hepatocytes respond by releasing inflammatory cytokines through activation of specific signaling pathways and transcription factors. The recruited neutrophils and other immune cells then cause parenchymal cell death. In addition, bile acids also stimulate the proliferation of cholangiocytes and stellate cells that are responsible for bile duct proliferation and liver fibrosis. This review explores the evidence for bile acid involvement in these phenomena. The role of bile acid receptors, TGR5, FXR and the sphingosine-1-phosphate receptor 2 and the inflammasome are also examined. We hope that better understanding of these pathologic effects will facilitate new strategies for treating cholestatic liver injury.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - James L Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
46
|
Wu SH, Chang MH, Chen YH, Wu HL, Chua HH, Chien CS, Ni YH, Chen HL, Chen HL. The ESCRT-III molecules regulate the apical targeting of bile salt export pump. J Biomed Sci 2021; 28:19. [PMID: 33750401 PMCID: PMC7941988 DOI: 10.1186/s12929-020-00706-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background The bile salt export pump (BSEP) is a pivotal apical/canalicular bile salt transporter in hepatocytes that drives the bile flow. Defects in BSEP function and canalicular expression could lead to a spectrum of cholestatic liver diseases. One prominent manifestation of BSEP-associated cholestasis is the defective canalicular localization and cytoplasmic retention of BSEP. However, the etiology of impaired BSEP targeting to the canalicular membrane is not fully understood. Our goal was to discover what molecule could interact with BSEP and affect its post-Golgi sorting. Methods The human BSEP amino acids (a.a.) 491-630 was used as bait to screen a human fetal liver cDNA library through yeast two-hybrid system. We identified a BSEP-interacting candidate and showed the interaction and colocalization in the co-immunoprecipitation in hepatoma cell lines and histological staining in human liver samples. Temperature shift assays were used to study the post-Golgi trafficking of BSEP. We further determine the functional impacts of the BSEP-interacting candidate on BSEP in vitro. A hydrodynamically injected mouse model was established for in vivo characterizing the long-term impacts on BSEP. Results We identified that charged multivesicular body protein 5 (CHMP5), a molecule of the endosomal protein complex required for transport subcomplex-III (ESCRT-III), interacted and co-localized with BSEP in the subapical compartments (SACs) in developing human livers. Cholestatic BSEP mutations in the CHMP5-interaction region have defects in canalicular targeting and aberrant retention at the SACs. Post-Golgi delivery of BSEP and bile acid secretion were impaired in ESCRT-III perturbation or CHMP5-knockdown hepatic cellular and mouse models. This ESCRT-III-mediated BSEP sorting preceded Rab11A-regulated apical cycling of BSEP. Conclusions Our results showed the first example that ESCRT-III is essential for canalicular trafficking of apical membrane proteins, and provide new targets for therapeutic approaches in BSEP associated cholestasis.
Collapse
Affiliation(s)
- Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Mei-Hwei Chang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ya-Hui Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Huey-Huey Chua
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan
| | - Chin-Sung Chien
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.,Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan.
| | - Huey-Ling Chen
- Department of Pediatrics, National Taiwan University College of Medicine and National Taiwan University Children's Hospital, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Taipei, 100, Taiwan. .,Department and Graduate Institute of Medical Education and Bioethics, National Taiwan University College of Medicine, Taipei, 100, Taiwan.
| |
Collapse
|
47
|
Berger JM, Moon YA. Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content. Mol Cells 2021; 44:116-125. [PMID: 33658436 PMCID: PMC7941001 DOI: 10.14348/molcells.2021.2147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/17/2020] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMGCoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.
Collapse
Affiliation(s)
- Jean-Mathieu Berger
- Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon 22212, Korea
| |
Collapse
|
48
|
Bile formation in long-term ex situ perfused livers. Surgery 2021; 169:894-902. [PMID: 33422346 DOI: 10.1016/j.surg.2020.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long-term ex situ liver perfusion may rescue injured grafts. Little is known about bile flow during long-term perfusion. We report the development of a bile stimulation protocol and motivate bile flow as a viability marker during long-term ex situ liver perfusion. METHODS Porcine and human livers were perfused with blood at close to physiologic conditions. Our perfusion protocol was established during phase 1 with porcine livers (n = 23). Taurocholic acid was applied to stimulate bile flow. The addition of piperacillin-tazobactam (tazobac) and methylprednisolone was modified from daily bolus to controlled continuous application. We adapted the protocol to human livers (n = 12) during phase 2. Taurocholic acid was replaced with medical grade ursodeoxycholic acid. RESULTS Phase 2: Despite administering taurocholic acid, bile flow declined from 29.3 ± 6.5 to 9.3 ± 1.4 mL/h (P < .001). Shortly after bolus of tazobac/methylprednisolone, bile flow recovered to 39.0 ± 9.7 mL/h with a decrease of solid bile components. This implied bile salt independent bile flow stimulation by tazobac/methylprednisolone. Phase 2: Ursodeoxycholic acid was shown to stimulate bile flow ex situ in human livers. Eight livers were perfused successfully for 1 week with continuous bile flow. The other 4 livers demonstrated progressive cell death, of which only 1 exhibited bile flow. CONCLUSION A lack of bile flow stimulation leads to a decline in bile flow and is not necessarily a sign of deterioration in liver function. Proper administration of stimulators can induce constant bile flow during ex situ liver perfusion for up to 1 week. Medical grade ursodeoxycholic acid is a suitable replacement for nonmedical grade taurocholic acid. The presence of bile flow alone is not sufficient to assess liver viability.
Collapse
|
49
|
Mizutani A, Sabu Y, Naoi S, Ito S, Nakano S, Minowa K, Mizuochi T, Ito K, Abukawa D, Kaji S, Sasaki M, Muroya K, Azuma Y, Watanabe S, Oya Y, Inomata Y, Fukuda A, Kasahara M, Inui A, Takikawa H, Kusuhara H, Bessho K, Suzuki M, Togawa T, Hayashi H. Assessment of Adenosine Triphosphatase Phospholipid Transporting 8B1 (ATP8B1) Function in Patients With Cholestasis With ATP8B1 Deficiency by Using Peripheral Blood Monocyte-Derived Macrophages. Hepatol Commun 2021; 5:52-62. [PMID: 33437900 PMCID: PMC7789840 DOI: 10.1002/hep4.1605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 08/20/2020] [Indexed: 11/29/2022] Open
Abstract
Adenosine triphosphatase phospholipid transporting 8B1 (ATP8B1) deficiency, an ultrarare autosomal recessive liver disease, includes severe and mild clinical forms, referred to as progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1), respectively. There is currently no practical method for determining PFIC1 or BRIC1 at an early disease course phase. Herein, we assessed the feasibility of developing a diagnostic method for PFIC1 and BRIC1. A nationwide Japanese survey conducted since 2015 identified 25 patients with cholestasis with ATP8B1 mutations, 15 of whom agreed to participate in the study. Patients were divided for analysis into PFIC1 (n = 10) or BRIC1 (n = 5) based on their disease course. An in vitro mutagenesis assay to evaluate pathogenicity of ATP8B1 mutations suggested that residual ATP8B1 function in the patients could be used to identify clinical course. To assess their ATP8B1 function more simply, human peripheral blood monocyte-derived macrophages (HMDMs) were prepared from each patient and elicited into a subset of alternatively activated macrophages (M2c) by interleukin-10 (IL-10). This was based on our previous finding that ATP8B1 contributes to polarization of HMDMs into M2c. Flow cytometric analysis showed that expression of M2c-related surface markers cluster of differentiation (CD)14 and CD163 were 2.3-fold and 2.1-fold lower (95% confidence interval, 2.0-2.5 for CD14 and 1.7-2.4 for CD163), respectively, in patients with IL-10-treated HMDMs from PFIC1 compared with BRIC1. Conclusion: CD14 and CD163 expression levels in IL-10-treated HMDMs may facilitate diagnosis of PFIC1 or BRIC1 in patients with ATP8B1 deficiency.
Collapse
Affiliation(s)
- Ayumu Mizutani
- Laboratory of Molecular PharmacokineticsGraduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
| | - Yusuke Sabu
- Laboratory of Molecular PharmacokineticsGraduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
| | - Sotaro Naoi
- Laboratory of Molecular PharmacokineticsGraduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
| | - Shogo Ito
- Department of Pediatrics and NeonatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Satoshi Nakano
- Department of PediatricsJuntendo University School of MedicineTokyoJapan
| | - Kei Minowa
- Department of PediatricsJuntendo University School of MedicineTokyoJapan
| | - Tatsuki Mizuochi
- Department of Pediatrics and Child HealthKurume University School of MedicineFukuokaJapan
| | - Koichi Ito
- Department of Pediatrics and NeonatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Daiki Abukawa
- Department of Gastroenterology and HepatologyMiyagi Children's HospitalMiyagiJapan
| | - Shunsaku Kaji
- Department of PediatricsTsuyama‐Chuo HospitalOkayamaJapan
| | - Mika Sasaki
- Department of PediatricsSchool of MedicineIwate Medical UniversityIwateJapan
| | - Koji Muroya
- Department of Endocrinology and MetabolismKanagawa Children's Medical CenterKanagawaJapan
| | - Yoshihiro Azuma
- Department of PediatricsYamaguchi University Graduate School of MedicineYamaguchiJapan
| | - Satoshi Watanabe
- Department of PediatricsNagasaki University HospitalNagasakiJapan
| | - Yuki Oya
- Department of Transplantation/Pediatric SurgeryKumamoto UniversityKumamotoJapan
- Kumamoto UniversityKumamotoJapan
| | - Yukihiro Inomata
- Department of Transplantation/Pediatric SurgeryKumamoto UniversityKumamotoJapan
- Kumamoto UniversityKumamotoJapan
| | - Akinari Fukuda
- Organ Transplantation CenterNational Center for Child Health and DevelopmentTokyoJapan
| | - Mureo Kasahara
- Organ Transplantation CenterNational Center for Child Health and DevelopmentTokyoJapan
| | - Ayano Inui
- Department of Pediatric Hepatology and GastroenterologyEastern Yokohama HospitalKanagawaJapan
| | - Hajime Takikawa
- Department of MedicineTeikyo University School of MedicineTokyoJapan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular PharmacokineticsGraduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
| | - Kazuhiko Bessho
- Department of PediatricsOsaka University Graduate School of MedicineOsakaJapan
| | - Mitsuyoshi Suzuki
- Department of PediatricsJuntendo University School of MedicineTokyoJapan
| | - Takao Togawa
- Department of Pediatrics and NeonatologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hisamitsu Hayashi
- Laboratory of Molecular PharmacokineticsGraduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
| |
Collapse
|
50
|
Bhoopathy S, Bode C, Naageshwaran V, Weiskircher-Hildebrandt E, Mukkavilli V, Hidalgo IJ. Principles and Experimental Considerations for In Vitro Transporter Interaction Assays. Methods Mol Biol 2021; 2342:339-365. [PMID: 34272701 DOI: 10.1007/978-1-0716-1554-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Drug transporters are universally acknowledged as important determinants of the absorption, distribution, metabolism, and excretion of both endogenous and exogenous compounds. Altered transporter function, whether due to genetic polymorphism, DDIs, disease, or environmental factors such as dietary constituents, can result in changes in drug efficacy and/or toxicity due to changes in circulating or tissue levels of either drugs or endogenous substrates.Prediction of whether and to what extent the biological fate of a drug is influenced by drug transporters, therefore, requires in vitro test systems that can accurately predict the risk and magnitude of clinical DDIs. While these in vitro assessments appear simple in theory, practitioners recognize that there are multiple factors that can influence experimental outcomes. A better understanding of these variables, including test compound characteristics, test systems, assay formats, and experimental design, will enable clear, actionable steps and translatable outcomes that may avoid unnecessary downstream clinical engagement. This chapter will delineate the role of these variables in improving in vitro assay outcomes.
Collapse
|