1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Zhang Y, Liu Q, Xie H, Zhang W, Lin X, Zhang H, Yu H, Ma Y, Zhang C, Geng H, Shi N, Cui L, Li B, Li YF. Fecal microbiota transplantation as an effective way in treating methylmercury-poisoned rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177850. [PMID: 39631325 DOI: 10.1016/j.scitotenv.2024.177850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Methylmercury (MeHg) can cause devastating neurotoxicity in animals and human beings. Gut microbiota dysbiosis has been found in MeHg-poisoned animals. Fecal microbiota transplantation (FMT) has been shown to improve clinical outcomes in a variety of diseases such as epilepsy, amyotrophic lateral sclerosis (ALS) and autism. The aim of this study was to investigate the effects of FMT on MeHg-poisoned rats. FMT treatment was applied to MeHg-poisoned rats for 14 days. The neurobehavior, weight changes, dopamine (DA), the total Hg and MeHg level were evaluated. Besides, the gut microbiota and metabolites change in feces were also checked. It was found that FMT helped weight gain, alleviated the neurological disorders, enhanced fecal mercury excretion and MeHg demethylation, reconstructed gut microbiome and promoted the production of gut-brain axis related-metabolites in MeHg-poisoned rats. This study elaborates on the therapeutic efficacy of FMT in treating of MeHg-poisoned rats, which sheds lights on the treatment of neurological diseases like Minamata Disease and even Parkinson's Disease.
Collapse
Affiliation(s)
- Yanfei Zhang
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Qingxuan Liu
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Department of Investigation, Shandong Police College, Jinan 250200, Shandong, China
| | - Xiaoying Lin
- Jilin Medical University, Jilin 132013, Jilin, China.
| | - Huifeng Zhang
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Huan Yu
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Yinghui Ma
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Chuang Zhang
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Hao Geng
- Jilin Medical University, Jilin 132013, Jilin, China
| | - Nianqiu Shi
- Jilin Medical University, Jilin 132013, Jilin, China.
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Shirani M, Shariati S, Bazdar M, Sojoudi Ghamnak F, Moradi M, Shams Khozani R, Taki E, Arabsorkhi Z, Heidary M, Eskandari DB. The immunopathogenesis of Helicobacter pylori-induced gastric cancer: a narrative review. Front Microbiol 2024; 15:1395403. [PMID: 39035439 PMCID: PMC11258019 DOI: 10.3389/fmicb.2024.1395403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori infection is a well-established risk factor for the development of gastric cancer (GC). Understanding the immunopathogenesis underlying this association is crucial for developing effective preventive and therapeutic strategies. This narrative review comprehensively explores the immunopathogenesis of H. pylori-induced GC by delving into several key aspects, emphasizing the pivotal roles played by H. pylori virulence factors, including cytotoxin-associated gene A (cagA) and vacuolating cytotoxin A (vacA), blood group antigen-binding adhesin (babA), and sialic acid binding adhesin (sabA). Moreover, the review focuses on the role of toll-like receptors (TLRs) and cytokines in the complex interplay between chronic infection and gastric carcinogenesis. Finally, the study examines the association between H. pylori evasion of the innate and adaptive immune response and development of GC. A comprehensive understanding of the immunopathogenesis of H. pylori-induced GC is essential for designing targeted interventions to prevent and manage this disease. Further research is warranted to elucidate the intricate immune responses involved and identify potential therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Arabsorkhi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | |
Collapse
|
4
|
Felipe-López A, Hansmeier N, Hensel M. Destruction of the brush border by Salmonella enterica sv. Typhimurium subverts resorption by polarized epithelial cells. Front Microbiol 2024; 15:1329798. [PMID: 38894970 PMCID: PMC11183102 DOI: 10.3389/fmicb.2024.1329798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Salmonella enterica serovar Typhimurium is an invasive, facultative intracellular gastrointestinal pathogen that destroys the brush border of polarized epithelial cells (PEC). The brush border is critical for the functions of PEC because it resorbs nutrients from the intestinal lumen and builds a physical barrier to infecting pathogens. The manipuation of PEC during infection by Salmonella was investigated by live-cell imaging and ultrastructural analysed of the brush border. We demonstrate that the destruction of the brush border by Salmonella significantly reduces the resorption surface of PEC along with the abrogation of endocytosis at the apical side of PEC. Both these changes in the physiology of PEC were associated with the translocation of type III secretion system effector protein SopE. Additionally, the F-actin polymerization rate at the apical side of PEC was highly altered by SopE, indicating that reduced endocytosis observed in infected PEC is related to the manipulation of F-actin polymerization mediated by SopE and, to a lesser extent, by effectors SopE2 or SipA. We further observed that in the absence of SopE, Salmonella effaced microvilli and induced reticular F-actin by bacterial accumulation during prolonged infection periods. In contrast to strains translocating SopE, strains lacking SopE did not alter resorption by PEC. Finally, we observed that after engulfment of Salmonella, ezrin was lost from the apical side of PEC and found later in early endosomes containing Salmonella. Our observations suggest that the destruction of the brush border by Salmonella may contribute to the pathogenesis of diarrhea.
Collapse
Affiliation(s)
| | | | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs—Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
5
|
Domínguez-Martínez DA, Fontes-Lemus JI, García-Regalado A, Juárez-Flores Á, Fuentes-Pananá EM. IL-8 Secreted by Gastric Epithelial Cells Infected with Helicobacter pylori CagA Positive Strains Is a Chemoattractant for Epstein-Barr Virus Infected B Lymphocytes. Viruses 2023; 15:651. [PMID: 36992360 PMCID: PMC10054738 DOI: 10.3390/v15030651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Helicobacter pylori and EBV are considered the main risk factors in developing gastric cancer. Both pathogens establish life-lasting infections and both are considered carcinogenic in humans. Different lines of evidence support that both pathogens cooperate to damage the gastric mucosa. Helicobacter pylori CagA positive virulent strains induce the gastric epithelial cells to secrete IL-8, which is a potent chemoattractant for neutrophils and one of the most important chemokines for the bacterium-induced chronic gastric inflammation. EBV is a lymphotropic virus that persists in memory B cells. The mechanism by which EBV reaches, infects and persists in the gastric epithelium is not presently understood. In this study, we assessed whether Helicobacter pylori infection would facilitate the chemoattraction of EBV-infected B lymphocytes. We identified IL-8 as a powerful chemoattractant for EBV-infected B lymphocytes, and CXCR2 as the main IL-8 receptor whose expression is induced by the EBV in infected B lymphocytes. The inhibition of expression and/or function of IL-8 and CXCR2 reduced the ERK1/2 and p38 MAPK signaling and the chemoattraction of EBV-infected B lymphocytes. We propose that IL-8 at least partially explains the arrival of EBV-infected B lymphocytes to the gastric mucosa, and that this illustrates a mechanism of interaction between Helicobacter pylori and EBV.
Collapse
Affiliation(s)
- Diana A. Domínguez-Martínez
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - José I. Fontes-Lemus
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Alejandro García-Regalado
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| | - Ángel Juárez-Flores
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Research Unit on Virology and Cancer, Children’s Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
6
|
Inamasu Y, Ogawa M, Saito M, Harada M, Fukuda K. Helicobacter pylori results in lysis and death after exposure to water. Helicobacter 2022; 27:e12921. [PMID: 36089840 DOI: 10.1111/hel.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori has a high infection rate, and it is possible that more than half of the world's population is infected. The route of transmission of H. pylori has not been completely elucidated yet. The coccoid form of H. pylori is generally considered to be in a VBNC (viable but nonculturable) state, and this form in the environment is thought to play an important role in infection and transmission, but its stability and survivability are still unknown. MATERIALS AND METHODS In order to promote its changing to coccoid form, the spiral form of H. pylori grown in a culture medium was exposed to sterile distilled water, and we investigated the bacterial cell number and the morphological changes by using fluorescence staining methods and electron microscopic observation. We also examined the dynamics of its growth ability by measuring the colony forming unit on an agar-plate medium. RESULTS After exposure to sterile distilled water, the H. pylori spiral form rapidly lost its growth ability at 37°C. One day after exposure, approximately 95% of the spiral form disappeared and the proportion of the coccoid form increased. The total number of bacteria also decreased to less than half and continued to decrease over time. Epi-microscopic and electron microscopic observations revealed that deformation of bacterial cells, collapse, and leaking out of cell contents were promoted in exposure to sterile distilled water. CONCLUSION Helicobacter pylori quickly begins to transform into the coccoid form after exposure to sterile distilled water, rapidly loses its growth ability, and then lyses and dies. Water-exposure is lethal for H. pylori and it is unlikely to survive in the VBNC state in water.
Collapse
Affiliation(s)
- Yoshinori Inamasu
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.,Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Midori Ogawa
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Mitsumasa Saito
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kazumasa Fukuda
- Department of Microbiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
7
|
Sukri A, Hanafiah A, Kosai NR, Mohammed Taher M, Mohamed R. New insight on the role of Helicobacter pylori cagA in the expression of cell surface antigens with important biological functions in gastric carcinogenesis. Helicobacter 2022; 27:e12913. [PMID: 35848223 DOI: 10.1111/hel.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Expression of cluster of differentiation (CD) antigens changes according to disease status and inflammation. Profiles of CD antigens expression in gastric cancer patients are different based on the status of H. pylori infection. AIMS We conducted this study to profile CD antigen markers in gastric adenocarcinoma cells (AGS cell line) infected with distinct cytotoxin-associated gene A (cagA) genotypes of H. pylori clinical isolates. METHODS The AGS cells were infected with H. pylori isolates with different cagA genotypes, and CD antigens expression was determined using DotScan™ antibody microarray. Formation of "hummingbird" phenotype was determined, and the percentage was calculated. RESULTS H. pylori strains harboring cagA upregulated the expression of CD antigen involved in cancer stem cell formation (CD55), but downregulated CD antigens involved in immune regulation (CD40 and CD186) and cell adhesion (CD44). CD54 (neutrophil adhesion) and CD71 (iron transfer) were highly downregulated in the gastric cells infected with Western cagA isolates compared with East Asian isolates. CD antigen expression was different in the cells infected with H. pylori harboring different CagA EPIYA (Glu-Pro-Ile-Tyr-Ala) numbers, in which higher repression of CD54 and CD15 (Lewis x antigen) were observed in the isolate with the highest number of EPIYA motif. Furthermore, higher downregulation of CD15 was observed in the infected gastric cells with high percentage of "hummingbird" phenotype than that of low percentage of "hummingbird" phenotype. CONCLUSION Our study demonstrated the critical roles of CD antigens in the CagA pathogenesis and should be investigated further.
Collapse
Affiliation(s)
- Asif Sukri
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mustafa Mohammed Taher
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ramelah Mohamed
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2022; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
9
|
A peptide of a type I toxin-antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids. Proc Natl Acad Sci U S A 2020; 117:31398-31409. [PMID: 33229580 DOI: 10.1073/pnas.2016195117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.
Collapse
|
10
|
Kim SH, Kim H. Transcriptome Analysis of the Inhibitory Effect of Astaxanthin on Helicobacter pylori-Induced Gastric Carcinoma Cell Motility. Mar Drugs 2020; 18:md18070365. [PMID: 32679742 PMCID: PMC7404279 DOI: 10.3390/md18070365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection promotes the metastasis of gastric carcinoma cells by modulating signal transduction pathways that regulate cell proliferation, motility, and invasion. Astaxanthin (ASTX), a xanthophyll carotenoid, is known to inhibit cancer cell migration and invasion, however the mechanism of action of ASTX in H. pylori-infected gastric epithelial cells is not well understood. To gain insight into this process, we carried out a comparative RNA sequencing (RNA-Seq) analysis of human gastric cancer AGS (adenocarcinoma gastric) cells as a function of H. pylori infection and ASTX administration. The results were used to identify genes that are differently expressed in response to H. pylori and ASTX. Gene ontology (GO) analysis identified differentially expressed genes (DEGs) to be associated with cell cytoskeleton remodeling, motility, and/or migration. Among the 20 genes identified, those encoding c-MET, PI3KC2, PLCγ1, Cdc42, and ROCK1 were selected for verification by real-time PCR analysis. The verified genes were mapped, using signaling networks contained in the KEGG database, to create a signaling pathway through which ASTX might mitigate the effects of H. pylori-infection. We propose that H. pylori-induced upregulation of the upstream regulator c-MET, and hence, its downstream targets Cdc42 and ROCK1, is suppressed by ASTX. ASTX is also suggested to counteract H. pylori-induced activation of PI3K and PLCγ. In conclusion, ASTX can suppress H. pylori-induced gastric cancer progression by inhibiting cytoskeleton reorganization and reducing cell motility through downregulation of c-MET, EGFR, PI3KC2, PLCγ1, Cdc42, and ROCK1.
Collapse
|
11
|
Sukri A, Hanafiah A, Mohamad Zin N, Kosai NR. Epidemiology and role of Helicobacter pylori virulence factors in gastric cancer carcinogenesis. APMIS 2020; 128:150-161. [PMID: 32352605 DOI: 10.1111/apm.13034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori is associated with the development of gastric cancer. Although the prevalence of gastric cancer has declined throughout years due to improvement in early screening strategy, mortality due to gastric cancer has not changed. Incidence and mortality due to gastric cancer are higher in developing countries as compared to developed countries. Diagnosis and prognosis of gastric cancer are still poor with patients usually diagnosed with cancer at an advanced stage. Eradication of H. pylori is pertinent for the prevention of gastric cancer. However, the rise in antimicrobial resistance among H. pylori isolates has complicated the prevention strategy. H. pylori express multiple virulence factors for survival in the hostile acid gastric environment. The expression of oncogenic protein cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), and outer inflammatory protein is essential for H. pylori to exert pathogenesis towards the host. Interestingly, <3% of H. pylori-infected subjects develop gastric cancer, suggesting a unique way of interaction between the host's immune response and H. pylori virulence factors. This article is aimed to review the epidemiology and role of H. pylori in gastric carcinogenesis. A better understanding of the interaction between H. pylori virulence factors and host is required for better gastric cancer prevention.
Collapse
Affiliation(s)
- Asif Sukri
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Xia X, Li F, He J, Aji R, Gao D. Organoid technology in cancer precision medicine. Cancer Lett 2019; 457:20-27. [PMID: 31078736 DOI: 10.1016/j.canlet.2019.04.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/13/2022]
Abstract
Organoid technology has been remarkably improved over the last decade. Various organoids have been derived from different types of tissues and recapitulate their organ-specific gene expression signatures, particular tissue spatial structures and functions of their original tissue. The patient-derived organoids (PDOs) have been used to elucidate crucial scientific questions, including the relationships between genetic/epigenetic alterations and drug responses, cell plasticity during disease progressions, and mechanisms of drug resistances. With the great expectations, PDOs will be widely used to facilitate the personalized medical decisions, which have the potential to profoundly improve patient outcomes. In this review, we will discuss the developmental details, current achievements, applications and challenges of organoid technology in precision cancer medicine.
Collapse
Affiliation(s)
- Xinyi Xia
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Juan He
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Key Laboratory of Systems Biology, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
14
|
Helicobacter pylori, Peptic Ulcer Disease and Gastric Cancer. GASTROINTESTINAL DISEASES AND THEIR ASSOCIATED INFECTIONS 2019. [DOI: 10.1016/b978-0-323-54843-4.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Maleki Kakelar H, Barzegari A, Dehghani J, Hanifian S, Saeedi N, Barar J, Omidi Y. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer 2019; 22:23-36. [PMID: 30145749 DOI: 10.1007/s10120-018-0867-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.
Collapse
Affiliation(s)
- Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
16
|
Ying L, Ferrero RL. Role of NOD1 and ALPK1/TIFA Signalling in Innate Immunity Against Helicobacter pylori Infection. Curr Top Microbiol Immunol 2019; 421:159-177. [PMID: 31123889 DOI: 10.1007/978-3-030-15138-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori interacts intimately with gastric epithelial cells to induce inflammatory responses that are a hallmark of the infection. This inflammation is a critical precursor to the development of peptic ulcer disease and gastric cancer. A major driver of this inflammation is a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI), present in a subpopulation of more virulent H. pylori strains. The cagPAI T4SS specifically activates signalling pathways in gastric epithelial cells that converge on the transcription factor, nuclear factor-κB (NF-κB), which in turn upregulates key immune and inflammatory genes, resulting in various host responses. It is now clear that H. pylori possesses several mechanisms to activate NF-κB in gastric epithelial cells and, moreover, that multiple signalling pathways are involved in these responses. Two of the dominant signalling pathways implicated in NF-κB-dependent responses in epithelial cells are nucleotide-binding oligomerisation domain 1 (NOD1) and a newly described pathway involving alpha-kinase 1 (ALPK1) and tumour necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA). Although the relative roles of these two pathways in regulating NF-κB-dependent responses still need to be clearly defined, it is likely that they work cooperatively and non-redundantly. This chapter will give an overview of the various mechanisms and pathways involved in H. pylori induction of NF-κB-dependent responses in gastric epithelial cells, including a 'state-of-the-art' review on the respective roles of NOD1 and ALPK1/TIFA pathways in these responses.
Collapse
Affiliation(s)
- Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.
- Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Molina-Castro S, Ramírez-Mayorga V, Alpízar-Alpízar W. Priming the seed: Helicobacter pylori alters epithelial cell invasiveness in early gastric carcinogenesis. World J Gastrointest Oncol 2018; 10:231-243. [PMID: 30254719 PMCID: PMC6147766 DOI: 10.4251/wjgo.v10.i9.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is a well-established risk factor for the development of gastric cancer (GC), one of the most common and deadliest neoplasms worldwide. H. pylori infection induces chronic inflammation in the gastric mucosa that, in the absence of treatment, may progress through a series of steps to GC. GC is only one of several clinical outcomes associated with this bacterial infection, which may be at least partially attributed to the high genetic variability of H. pylori. The biological mechanisms underlying how and under what circumstances H. pylori alters normal physiological processes remain enigmatic. A key aspect of carcinogenesis is the acquisition of traits that equip preneoplastic cells with the ability to invade. Accumulating evidence implicates H. pylori in the manipulation of cellular and molecular programs that are crucial for conferring cells with invasive capabilities. We present here an overview of the main findings about the involvement of H. pylori in the acquisition of cell invasive behavior, specifically focusing on the epithelial-to-mesenchymal transition, changes in cell polarity, and deregulation of molecules that control extracellular matrix remodeling.
Collapse
Affiliation(s)
- Silvia Molina-Castro
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Clinical Department, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| | - Vanessa Ramírez-Mayorga
- Cancer Epidemiology Research Program, Health Research Institute, University of Costa Rica, San José 2060, Costa Rica
- Public Nutrition Section, School of Nutrition, University of Costa Rica, San José 2060, Costa Rica
| | - Warner Alpízar-Alpízar
- Center for Research in Microscopic Structures, University of Costa Rica, San José 2060, Costa Rica
- Department of Biochemistry, School of Medicine, University of Costa Rica, San José 2060, Costa Rica
| |
Collapse
|
18
|
Zavros Y. Initiation and Maintenance of Gastric Cancer: A Focus on CD44 Variant Isoforms and Cancer Stem Cells. Cell Mol Gastroenterol Hepatol 2017; 4:55-63. [PMID: 28560289 PMCID: PMC5439237 DOI: 10.1016/j.jcmgh.2017.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/01/2017] [Indexed: 01/06/2023]
Abstract
Gastric cancer is the third most common cause of cancer-related death. Although the incidence of gastric cancer in the United States is relatively low, it remains significantly higher in some countries, including Japan and Korea. Interactions between cancer stem cells and the tumor microenvironment can have a substantial impact on tumor characteristics and contribute to heterogeneity. The mechanisms responsible for maintaining malignant cancer stem cells within the tumor microenvironment in human gastric cancer are largely unknown. Tumor cell and genetic heterogeneity contribute to either de novo intrinsic or the therapy-induced emergence of drug-resistant clones and eventual tumor recurrence. Although chemotherapy often is capable of inducing cell death in tumors, many cancer patients experience recurrence because of failure to effectively target the cancer stem cells, which are believed to be key tumor-initiating cells. Among the population of stem cells within the stomach that may be targeted during chronic Helicobacter pylori infection and altered into tumor-initiating cells are those cells marked by the cluster-of-differentiation (CD)44 cell surface receptor. CD44 variable isoforms (CD44v) have been implicated as key players in malignant transformation whereby their expression is highly restricted and specific, unlike the canonical CD44 standard isoform. Overall, CD44v, in particular CD44v9, are believed to mark the gastric cancer cells that contribute to increased resistance for chemotherapy- or radiation-induced cell death. This review focuses on the following: the alteration of the gastric stem cell during bacterial infection, and the role of CD44v in the initiation, maintenance, and growth of tumors associated with gastric cancer.
Collapse
Key Words
- CD, cluster-of-differentiation
- CD44v6
- CD44v9
- CD44v9, CD44 variant isoform containing exon v9
- CSC, cancer stem cell
- Cag, cytotoxin-associated gene
- Helicobacter pylori
- Inflammation
- Lgr5, leucine-rich, repeat-containing, G-protein–coupled receptor 5
- MDSC, myeloid-derived suppressor cell
- PDL1, programmed cell death 1 ligand
- PDTX, patient-derived tumor xenograft
- ROS, reactive oxygen species
- SPEM, spasmolytic polypeptide expressing metaplasia
- xCT, SLC7A11
Collapse
Affiliation(s)
- Yana Zavros
- Correspondence Address correspondence to: Yana Zavros, PhD, Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert B. Sabin Way, Room 4255 MSB, Cincinnati, Ohio 45267-0576. fax: (513) 558-5738.Department of Molecular and Cellular PhysiologyUniversity of Cincinnati College of Medicine231 Albert B. Sabin WayRoom 4255 MSBCincinnatiOhio 45267-0576
| |
Collapse
|
19
|
Muñoz-Ramírez ZY, Mendez-Tenorio A, Kato I, Bravo MM, Rizzato C, Thorell K, Torres R, Aviles-Jimenez F, Camorlinga M, Canzian F, Torres J. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway. Front Cell Infect Microbiol 2017; 7:50. [PMID: 28293542 PMCID: PMC5328995 DOI: 10.3389/fcimb.2017.00050] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk.
Collapse
Affiliation(s)
- Zilia Y Muñoz-Ramírez
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | - Ikuko Kato
- Department of Oncology and of Pathology, Wayne State University School of Medicine Detroit, MI, USA
| | - Maria M Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerologia Bogota, Colombia
| | - Cosmeri Rizzato
- Dipartmento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa Pisa, Italy
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Roberto Torres
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | | | - Margarita Camorlinga
- Unidad de Investigacion en Enfermedades Infecciosas, IMSS Ciudad de México, Mexico
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, IMSS Ciudad de México, Mexico
| |
Collapse
|
20
|
Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol 2016; 420:262-270. [PMID: 27640087 DOI: 10.1016/j.ydbio.2016.09.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut-microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes.
Collapse
|
21
|
Raei N, Latifi-Navid S, Zahri S. Helicobacter pylori cag Pathogenicity Island cagL and orf17 Genotypes Predict Risk of Peptic Ulcerations but not Gastric Cancer in Iran. Asian Pac J Cancer Prev 2016; 16:6645-50. [PMID: 26434889 DOI: 10.7314/apjcp.2015.16.15.6645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is the third most common cancer regarding mortality in the world. The cag pathogenicity island (PAI) of Helicobacter pylori which contains genes associated with a more aggressive phenotype may involve in the pathogenesis of gastrointestinal disease. We here aimed to examine the associations of cagH, cagL, orf17, and cagG genotypes of H. pylori cag PAI with severe gastrointestinal disease. MATERIALS AND METHODS A total of 242 H. pylori strains were genotyped. Histopathological examination and classification of subjects were performed. RESULTS The frequencies of the cagH, cagL, cagG, and orf17 genotypes were 40/54 (74.1%), 53/54 (98.1%), 38/54 (70.4%), and 43/54 (79.6%), respectively, in patients with peptidic ulceration (PU),while in the control group, the frequencies were 87/147 (59.6%) for cagH, 121/146 (82.9%) for cagL, 109/146 (74.7%) for cagG, and 89/146 (61.0%) for orf17. The results of simple logistic regression analysis showed that the cagL and orf17 genotypes were significantly associated with an increased risk of PU not GC; the ORs (95% CI) were 10.950 (1.446-82.935), and 2.504 (1.193-5.253), respectively. No significant association was found between the cagH and cagG genotypes and the risk of both the PU and the GC in Iran (P>0.05). Finally, multiple logistic regression analysis showed that the cagL genotype was independently and significantly associated with the age- and sex-adjusted risk for PU; the OR (95% CI) was 9.557 (1.219-17.185). CONCLUSIONS We conclude that the orf17 and especially cagL genotypes of H. pylori cag PAI could be factors for risk prediction of PU, but not GC in Iran.
Collapse
Affiliation(s)
- Negin Raei
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran E-mail :
| | | | | |
Collapse
|
22
|
Richter C, Mukherjee O, Ermert D, Singh B, Su YC, Agarwal V, Blom AM, Riesbeck K. Moonlighting of Helicobacter pylori catalase protects against complement-mediated killing by utilising the host molecule vitronectin. Sci Rep 2016; 6:24391. [PMID: 27087644 PMCID: PMC4834553 DOI: 10.1038/srep24391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is an important human pathogen and a common cause of peptic ulcers and gastric cancer. Despite H. pylori provoking strong innate and adaptive immune responses, the bacterium is able to successfully establish long-term infections. Vitronectin (Vn), a component of both the extracellular matrix and plasma, is involved in many physiological processes, including regulation of the complement system. The aim of this study was to define a receptor in H. pylori that binds Vn and determine the significance of the interaction for virulence. Surprisingly, by using proteomics, we found that the hydrogen peroxide-neutralizing enzyme catalase KatA is a major Vn-binding protein. Deletion of the katA gene in three different strains resulted in impaired binding of Vn. Recombinant KatA was generated and shown to bind with high affinity to a region between heparin-binding domain 2 and 3 of Vn that differs from previously characterised bacterial binding sites on the molecule. In terms of function, KatA protected H. pylori from complement-mediated killing in a Vn-dependent manner. Taken together, the virulence factor KatA is a Vn-binding protein that moonlights on the surface of H. pylori to promote bacterial evasion of host innate immunity.
Collapse
Affiliation(s)
- Corinna Richter
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Oindrilla Mukherjee
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - David Ermert
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Vaibhav Agarwal
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Anna M. Blom
- Medical Protein Chemistry, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, SE-205 02 Malmö, Sweden
| |
Collapse
|
23
|
Frydman GH, Davis N, Beck PL, Fox JG. Helicobacter pylori Eradication in Patients with Immune Thrombocytopenic Purpura: A Review and the Role of Biogeography. Helicobacter 2015; 20:239-51. [PMID: 25728540 PMCID: PMC4506733 DOI: 10.1111/hel.12200] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Idiopathic thrombocytopenic purpura (ITP) is typically a diagnosis of exclusion, assigned by clinicians after ruling out other identifiable etiologies. Since a report by Gasbarrini et al. in 1998, an accumulating body of evidence has proposed a pathophysiological link between ITP and chronic Helicobacter pylori (H. pylori) infection. Clinical reports have described a spontaneous resolution of ITP symptoms in about 50% of chronic ITP patients following empirical treatment of H. pylori infection, but response appears to be geography dependent. Studies have also documented that ITP patients in East Asian countries are more likely to express positive antibody titers against H. pylori-specific cytotoxic-associated gene A (CagA), a virulence factor that is associated with an increased risk for gastric diseases including carcinoma. While a definitive mechanism by which H. pylori may induce thrombocytopenia remains elusive, proposed pathways include molecular mimicry of CagA by host autoantibodies against platelet surface glycoproteins, as well as perturbations in the phagocytic activity of monocytes. Traditional treatments of ITP have been largely empirical, involving the use of immunosuppressive agents and immunoglobulin therapy. However, based on the findings of clinical reports emerging over the past 20 years, health organizations around the world increasingly suggest the detection and eradication of H. pylori as a treatment for ITP. Elucidating the exact molecular mechanisms of platelet activation in H. pylori-positive ITP patients, while considering biogeographical differences in response rates, could offer insight into how best to use clinical H. pylori eradication to treat ITP, but will require well-designed studies to confirm the suggested causative relationship between bacterial infection and an autoimmune disease state.
Collapse
Affiliation(s)
- Galit H. Frydman
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nick Davis
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul L. Beck
- The Gastrointestinal Research Group, Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | - James G. Fox
- Department of Biological Engineering, Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
24
|
Saniee P, Siavoshi F. Endocytotic uptake of FITC-labeled anti-H. pylori egg yolk immunoglobulin Y in Candida yeast for detection of intracellular H. pylori. Front Microbiol 2015; 6:113. [PMID: 25852651 PMCID: PMC4362214 DOI: 10.3389/fmicb.2015.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 01/24/2023] Open
Abstract
Intracellular life of Helicobacter pylori inside Candida yeast vacuole describes the establishment of H. pylori in yeast as a pre-adaptation to life in human epithelial cells. IgY-Hp conjugated with fluorescein isothiocyanate (FITC) has been previously used for identification and localization of H. pylori inside the yeast vacuole. Here we examined whether FITC-IgY-Hp internalization into yeast follows the endocytosis pathway in yeast. Fluorescent microscopy was used to examine the entry of FITC-IgY-Hp into Candida yeast cells at different time intervals. The effect of low temperature, H2O2 or acetic acid on the internalization of labeled antibody was also examined. FITC-IgY-Hp internalization initiated within 0-5 min in 5-10% of yeast cells, increased to 20-40% after 30 min-1 h and reached >70% before 2 h. FITC-IgY-Hp traversed the pores of Candida yeast cell wall and reached the vacuole where it bound with H. pylori antigens. Internalization of FITC-IgY-Hp was inhibited by low temperature, H2O2 or acetic acid. It was concluded that internalization of FITC-IgY-Hp into yeast cell is a vital phenomenon and follows the endocytosis pathway. Furthermore, it was proposed that FITC-IgY-Hp internalization could be recruited for localization and identification of H. pylori inside the vacuole of Candida yeast.
Collapse
Affiliation(s)
| | - Farideh Siavoshi
- Department of Microbiology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
25
|
Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek Jr RM, Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015; 11:e1004663. [PMID: 25658601 PMCID: PMC4450086 DOI: 10.1371/journal.ppat.1004663] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Michael A. Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Maxime M. Mahe
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Amy C. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jose E. Javier
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Richard M. Peek Jr
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of
America
| | - Karen Ottemann
- Department of Microbiology and Environmental Toxicology, University of
California at Santa Cruz, Santa Cruz, California, United States of
America
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics,
Hermann von Helmholtzplatz, Germany
| | - Gregory P. Boivin
- Department of Pathology Wright State University, Health Sciences, Dayton,
Ohio, United States of America
- Veterans Affairs Medical Center, Cincinnati, Ohio, United States of
America
| | - Michael A. Helmrath
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
Devi S, Ansari SA, Vadivelu J, Mégraud F, Tenguria S, Ahmed N. Helicobacter pylori antigen HP0986 (TieA) interacts with cultured gastric epithelial cells and induces IL8 secretion via NF-κB mediated pathway. Helicobacter 2014; 19:26-36. [PMID: 24205801 DOI: 10.1111/hel.12100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera. Also, we studied antigenic role of HP0986 in altering cytokine responses of human gastric epithelial (AGS) cells including its interaction with and localization within the AGS cells. MATERIALS AND METHODS For in vitro expression study of HP0986, 110 H. pylori clinical isolates were cultured from patients with functional dyspepsia. For expression analysis by qRT PCR of HP0986, 10 gastric biopsy specimens were studied. HP0986 was also used to detect antibodies in patient sera. AGS cells were incubated with recombinant HP0986 to determine cytokine response and NF-κB activation. Transient transfection with HP0986 cloned in pEGFPN1 was used to study its subcellular localization or homing in AGS cells. RESULTS Out of 110 cultured H. pylori strains, 34 (31%) were positive for HP0986 and this observation was correlated with in vitro expression profiles. HP0986 mRNA was detected in 7 of the 10 biopsy specimens. Further, HP0986 induced IL-8 secretion in gastric epithelial cells in a dose and time-dependent manner via NF-κB pathway. Serum antibodies against HP0986 were positively associated with H. pylori positive patients. Transient transfection of AGS cells revealed both cytoplasmic and nuclear localization of HP0986. CONCLUSION HP0986 was moderately prevalent in clinical isolates and its expression profile in cultures and gastric biopsies points to its being naturally expressed. Collective observations including the induction of IL-8 via TNFR1 and NF-κB, subcellular localization, and seropositivity data point to a significant role of HP0986 in gastroduodenal inflammation. We propose to name the HP0986 gene/protein as 'TNFR1 interacting endonuclease A (TieA or tieA)'.
Collapse
Affiliation(s)
- Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | | | | | |
Collapse
|
27
|
Abdou AM, Ahmed MME, Yamashita Y, Kim M. Immunoglobulin: A Natural Way to Suppress <i>Helicobacter pylori</i> in Humans. Health (London) 2014. [DOI: 10.4236/health.2014.68100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Qadri Q, Afroze D, Rasool R, Gulzar G, Naqash S, Siddiqi MA, Shah ZA. CagA subtyping in Helicobacter pylori isolates from gastric cancer patients in an ethnic Kashmiri population. Microb Pathog 2014; 66:40-3. [DOI: 10.1016/j.micpath.2013.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/14/2022]
|
29
|
Intracellular locations of replication proteins and the origin of replication during chromosome duplication in the slowly growing human pathogen Helicobacter pylori. J Bacteriol 2013; 196:999-1011. [PMID: 24363345 DOI: 10.1128/jb.01198-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We followed the position of the replication complex in the pathogenic bacterium Helicobacter pylori using antibodies raised against the single-stranded DNA binding protein (HpSSB) and the replicative helicase (HpDnaB). The position of the replication origin, oriC, was also localized in growing cells by fluorescence in situ hybridization (FISH) with fluorescence-labeled DNA sequences adjacent to the origin. The replisome assembled at oriC near one of the cell poles, and the two forks moved together toward the cell center as replication progressed in the growing cell. Termination and resolution of the forks occurred near midcell, on one side of the septal membrane. The duplicated copies of oriC did not separate until late in elongation, when the daughter chromosomes segregated into bilobed nucleoids, suggesting sister chromatid cohesion at or near the oriC region. Components of the replication machinery, viz., HpDnaB and HpDnaG (DNA primase), were found associated with the cell membrane. A model for the assembly and location of the H. pylori replication machinery during chromosomal duplication is presented.
Collapse
|
30
|
Karita M, Matsumoto S, Kamei T. The Size ofcagABased on Repeat Sequence Has the Responsibility of the Location ofHelicobacter pyloriin the Gastric Mucus and the Degree of Gastric Mucosal Inflammation. Microbiol Immunol 2013; 47:619-30. [PMID: 14584609 DOI: 10.1111/j.1348-0421.2003.tb03425.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to examine whether there is a relationship between cagA size of Japanese Helicobacter pylori strains and the location of these strains in the mucous layer, the degree of gastric inflammation and acid survival. Upper gastrointestinal endoscopies were done to 144 patients with dyspeptic symptom with informed consent, sera, biopsy specimens and H. pylori strains were obtained, and gastric histology and susceptibility to pH 3 of the strains were evaluated. To determine cagA size of Japanese strains using PCR, cagA of strain CPY3401 was sequenced. 74 H. pylori samples (72 cagA+) were obtained from the body and 56 samples (56 cagA +) obtained from the antrum. cagA size of 72 H. pylori strains from the body was mainly classified into 3 groups (short (48), middle (8), long (9), and others (7)) by PCR and all of that of 56 strains from the antrum except 2 was short. The size of cagA of isolated strains from the body is associated with enhanced gastritis, acid survival, and the location in the mucus. The long size cagA of which strain is acid sensitive, may be a strong selective pressure on strain that colonizes close to the host, which enhanced gastritis.
Collapse
Affiliation(s)
- Mikio Karita
- Internal Medicine, Hofu-Onsen Hospital, Hofu, Yamaguchi 747-1232, Japan.
| | | | | |
Collapse
|
31
|
Pakbaz Z, Shirazi MH, Ranjbar R, pourmand MR, Khalifeh Gholi M, Aliramezani A, Vaise Malekshahi Z. Frequency of sabA Gene in Helicobacter pylori Strains Isolated From Patients in Tehran, Iran. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:767-70. [PMID: 24616782 PMCID: PMC3929807 DOI: 10.5812/ircmj.5044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 01/16/2013] [Accepted: 08/04/2013] [Indexed: 01/21/2023]
Abstract
Background The importance of sialic acid binding adhesin (sabA) as a new outer membrane protein in gastroduodenal diseases has been recognized. The prevalence rate of sabA gene varies in different geographic areas. Objectives The aim of this study was to determine the frequency of sabA gene in Helicobacter pylori (H. pylori) strains isolated from different clinical outcomes in Tehran, Iran. Patients and Methods The study included 120 patients with dyspeptic symptoms admitted to the endoscopy suite of gastroenterology section of Firouzgar University Hospital, Tehran, Iran from March to August 2011. Gastric biopsy specimens were evaluated for the presence of H. pylori using standard microbiological method and polymerase chain reaction (PCR) assay. The sabA genopositive was determined by PCR in H. pylori strains. Results H. pylori isolates were recovered from 82 patients with duodenal ulcer (DU; n = 17), gastric ulcer (GU; n = 15), gastric cancer (GC; n = 13), and gastritis (G; n = 37). The frequency of sabA gene in H. pylori strains was 100% in gastric cancer, 86.7% in gastric ulcer, and 83.3% in both gastritis and duodenal ulcer. Conclusions This is a report on the prevalence of sabA gene in H. pylori isolated from different gastric patients in Iran. The results showed a high prevalence of sabA in our clinical H. pylori isolates.
Collapse
Affiliation(s)
- Zahra Pakbaz
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Hasan Shirazi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Mohammad Hasan Shirazi, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran, Tel: +98-2188953021, E-mail:
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Reza pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Mohammad Khalifeh Gholi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Amir Aliramezani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | | |
Collapse
|
32
|
Li N, Han L, Chen J, Lin X, Chen H, She F. Proliferative and apoptotic effects of gastric epithelial cells induced by coccoid Helicobacter pylori. J Basic Microbiol 2012; 53:147-55. [PMID: 22581720 DOI: 10.1002/jobm.201100370] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/27/2011] [Indexed: 12/21/2022]
Abstract
Helicobacter pylori exhibit morphology convertion in a spiral or coccoid form. This study aims to reveal the impact of coccoid H. pylori on the proliferation and apoptosis of gastric epithelial cells. The cagA and vacA genes of H. pylori were detected by semi-quantitative RT-PCR. Proliferation and apoptosis were analyzed by the CCK-8 colorimetric method and TUNEL assay, respectively. Egr-1 mRNA and PCNA expression affected by the ERK1/2-specific inhibitor were detected by RT-PCR and immunochemistry. At low density of infection (MOI < 125:1), coccoid H. pylori exerted a stronger effect on proliferation and a weaker effect on apoptosis than did spiral form. The ERK1/2-specific inhibitor significantly blocked the increased expression in Egr-1 and PCNA induced by coccoid H. pylori. Expression of vacA and cagA in coccoid H. pylori decreased compared with the spiral form, whereas vacA decreased more than cagA. The difference of proliferation and apoptosis may be related to the unequal decreased expression of vacA and cagA in coccoid H. pylori. Activation of the ERK1/2-Egr-1-PCNA signal transduction pathway may play an important role in coccoid H. pylori-induced cell proliferation. Long latency of the coccoid form of H. pylori in gastric tissue may be associated with gastric cancer caused by H. pylori.
Collapse
Affiliation(s)
- Neng Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, College for Preclinical Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
33
|
Yang ZX, Lu CY, Yang B, Xia N, Dou KF. PPK knockout attenuates evasion of immune elimination of Helicobacter pylori by macrophages. Shijie Huaren Xiaohua Zazhi 2012; 20:22-26. [DOI: 10.11569/wcjd.v20.i1.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the impact of knockout of the polyphosphate kinase gene in Helicobacter pylori (H. pylori) on bacterial evasion of immune elimination by macrophages.
METHODS: A PPK null mutant of H. pylori was constructed by gene homologous recombination. The polyphosphate was extracted from the PPK null mutant and wild type bacteria to compare the amount of polyphosphate by conversion into ATP. PPK null mutant H. pylori or wild type bacteria were co-cultured with murine macrophage cell line Raw 264.1 to compare the bacterial survival in macrophages at 24 h.
RESULTS: A PPK null mutant H. pylori strain was successfully constructed. The amount of polyphosphate in PPK null mutant bacteria was significantly lower than that in wild type bacteria (0.46 nmol Pi/mg Protein ± 0.25 nmol Pi/mg Protein vs 175.33 nmol Pi/mg Protein ± 21.22 nmol Pi/mg Protein, P < 0.01). Compared to wild type H. pylori, the survival rate of PPK null mutant bacteria in macrophages was similar at 2 h but was significantly reduced at 24 h.
CONCLUSION: PPK plays a critical role in synthesizing polyphosphate in H. pylori. PPK knockout in H. pylori significantly impaired their ability to synthesize polyphosphate and to evade immune elimination by macrophages.
Collapse
|
34
|
In vivo expression of Helicobacter pylori virulence genes in patients with gastritis, ulcer, and gastric cancer. Infect Immun 2011; 80:594-601. [PMID: 22124657 DOI: 10.1128/iai.05845-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The best-studied Helicobacter pylori virulence factor associated with development of peptic ulcer disease or gastric cancer (GC) rather than asymptomatic nonatrophic gastritis (NAG) is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into host epithelial cells. Here we used real-time reverse transcription-PCR (RT-PCR) to measure the in vivo expression of genes on the cagPAI and of other virulence genes in patients with NAG, duodenal ulcer (DU), or GC. In vivo expression of H. pylori virulence genes was greater overall in gastric biopsy specimens of patients with GC than in those of patients with NAG or DU. However, since in vitro expression of cagA was not greater in H. pylori strains from patients with GC than in those from patients with NAG or DU, increased expression in GC in vivo is likely a result of environmental conditions in the gastric mucosa, though it may in turn cause more severe pathology. Increased expression of virulence genes in GC may represent a stress response to elevated pH or other environmental conditions in the stomach of patients with GC, which may be less hospitable to H. pylori colonization than the acidic environment in patients with NAG or DU.
Collapse
|
35
|
Rippa E, La Monica G, Allocca R, Romano MF, De Palma M, Arcari P. Overexpression of gastrokine 1 in gastric cancer cells induces Fas-mediated apoptosis. J Cell Physiol 2011; 226:2571-8. [PMID: 21792914 DOI: 10.1002/jcp.22601] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrokine 1 (GKN1) is involved in the replenishment of the surface lumen epithelial cell layer, in maintaining the mucosal integrity, and could play a role in cell proliferation and differentiation. In fact, after injury of the gastric mucosa, restoration may occur very rapidly in the presence of GKN1. In contrast, if the protein is downregulated, the repair process may be hampered; however, application of GKN1 to gastrointestinal cells promoted epithelial restoration. Because GKN1 possesses some mitogenic effects on intestinal epithelial cells (IEC-6) whereas this protein was also capable of inhibiting proliferation in gastric cancer cells (MKN28), we decided to study its involvement in apoptosis to understand the role of GKN1 in the modulation of inflammatory damage or tumorigenesis in gastric mucosa. We found by cytofluorimetry, Western blot and RT-PCR that the overexpression of GKN1 in gastric cancer cell lines (AGS and MKN28) stimulated the expression of Fas receptor. Moreover, compared to control cells, a significant increase of apoptosis, evaluated by TUNEL, was observed when GKN1 transfected cells were treated with a monoclonal antibody (IgM) anti-Fas. The activation of Fas expression was also observed by the overexpression of GKN1 in other cancer cell lines. Moreover, in GKN1-overexpressing gastric cancer cells exposed to FasL, the activation of caspase-3 was also observed by Western blot and fluorescence assays. Our data represent the first report for GKN1 as modulator of apoptotic signals and suggest that GKN1 might play an important role for tissue repair during the early stages of neoplastic transformation.
Collapse
Affiliation(s)
- Emilia Rippa
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Parreira P, Magalhães A, Gonçalves IC, Gomes J, Vidal R, Reis CA, Leckband DE, Martins MCL. Effect of surface chemistry on bacterial adhesion, viability, and morphology. J Biomed Mater Res A 2011; 99:344-53. [DOI: 10.1002/jbm.a.33178] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/13/2011] [Indexed: 01/26/2023]
|
37
|
Alvi A, Ansari SA, Ehtesham NZ, Rizwan M, Devi S, Sechi LA, Qureshi IA, Hasnain SE, Ahmed N. Concurrent proinflammatory and apoptotic activity of a Helicobacter pylori protein (HP986) points to its role in chronic persistence. PLoS One 2011; 6:e22530. [PMID: 21789261 PMCID: PMC3137634 DOI: 10.1371/journal.pone.0022530] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986), which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986) revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001). Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB). Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance.
Collapse
Affiliation(s)
- Ayesha Alvi
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Suhail A. Ansari
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nasreen Z. Ehtesham
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- National Institute of Nutrition, Hyderabad, India
| | - Mohammed Rizwan
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Insaf A. Qureshi
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Seyed E. Hasnain
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Niyaz Ahmed
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Haenssler E, Isberg RR. Control of host cell phosphorylation by legionella pneumophila. Front Microbiol 2011; 2:64. [PMID: 21747787 PMCID: PMC3128975 DOI: 10.3389/fmicb.2011.00064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/24/2011] [Indexed: 11/13/2022] Open
Abstract
Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host phosphorylation system throughout the infection cycle as part of its strategy to establish an environment beneficial for replication. Key to this manipulation is the L. pneumophila Icm/Dot type IV secretion system, which translocates bacterial proteins into the host cytosol that can act directly on phosphorylation cascades. This review will focus on the different stages of L. pneumophila infection, in which host kinases and phosphatases contribute to infection of the host cell and promote intracellular survival of the pathogen. This includes the involvement of phosphatidylinositol 3-kinases during phagocytosis as well as the role of phosphoinositide metabolism during the establishment of the replication vacuole. Furthermore, L. pneumophila infection modulates the NF-κB and mitogen-activated protein kinase pathways, two signaling pathways that are central to the host innate immune response and involved in regulation of host cell survival. Therefore, L. pneumophila infection manipulates host cell signal transduction by phosphorylation at multiple levels.
Collapse
Affiliation(s)
- Eva Haenssler
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine Boston, MA, USA
| | | |
Collapse
|
39
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
40
|
Abstract
GroEL is a chaperone thought of as essential for bacterial life. However, some species of Mollicutes are missing GroEL. We use phylogenetic analysis to show that the presence of GroEL is polyphyletic among the Mollicutes, and that there is evidence for lateral gene transfer of GroEL to Mycoplasma penetrans from the Proteobacteria. Furthermore, we propose that the presence of GroEL in Mycoplasma may be required for invasion of host tissue, suggesting that GroEL may act as an adhesin-invasin.
Collapse
Affiliation(s)
- Gregory W Clark
- Ontario Cancer Institute, University Health Network and Department of Medical Biophysics, University of Toronto, 5-354 MaRS TMDT, 101 College St., Toronto, ON M5G 1L7, Canada
| | | |
Collapse
|
41
|
Can Helicobacter pylori invade human gastric mucosa?: an in vivo study using electron microscopy, immunohistochemical methods, and real-time polymerase chain reaction. J Clin Gastroenterol 2010; 44:416-22. [PMID: 19904218 DOI: 10.1097/mcg.0b013e3181c21c69] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
UNLABELLED BACKGROUND-GOALS: We used transmission electron microscopy and immunohistochemistry (IHC) to investigate how Helicobacter pylori affects the gastric mucosa of humans. STUDY Gastric biopsy specimens were obtained from 15 patients with gastric discomfort. The samples were processed using both microscopic examinations and a real-time polymerase chain reaction to detect H. pylori DNA. IHC staining was performed with an avidin-biotin complex immunoperoxidase kit for paraffin-embedded tissue sections. Polyclonal rabbit anti-H. pylori was used as a primary antibody. RESULTS IHC-applied slides with brown-stained spiral bacteria on the luminal surface and in the intercellular spaces of the gastric epithelium; electron-dense spiral H. pylori of approximately 200 to 300 nm in diameter both in the gastric lumen and between the gastric epithelial cells; coccoid or ellipsoid H. pylori attached to the epithelial cells through egg-cup-like pedestals; coccoid H. pylori within the endocytotic vesicles in the apical cytoplasmic part of the epithelial cells, thus suggesting their internalization by phagocytosis; electron-dense spiral H. pylori within the membrane-bounded vacuoles of both the gastric epithelial cells, and the lamina propria; a prominent vacuolization of gastric epithelial cells invaded by H. pylori; and swollen and lytic gastric epithelial cells that suggest a mucosal erosion and may lead to peptic ulcer. All of these microscopic findings were not present in the H. pylori DNA-negative specimens that were used as the control group. CONCLUSION This is the first histomicrobiologic study to show gastric cells invaded by H. pylori in patients with H. pylori infection confirmed by real-time polymerase chain reaction.
Collapse
|
42
|
Ben Mansour K, Fendri C, Zribi M, Masmoudi A, Labbene M, Fillali A, Ben Mami N, Najjar T, Meherzi A, Sfar T, Burucoa C. Prevalence of Helicobacter pylori vacA, cagA, iceA and oipA genotypes in Tunisian patients. Ann Clin Microbiol Antimicrob 2010; 9:10. [PMID: 20302630 PMCID: PMC2855517 DOI: 10.1186/1476-0711-9-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/19/2010] [Indexed: 01/28/2023] Open
Abstract
Background Distinct virulence factors of H. pylori have been described: the vaculating cytotoxin (vacA), the cytotoxin associated gene (cagA), the induced by contact with epithelium factor Antigen (iceA gene) and the outer membrane protein oipA. In Tunisia, there are no data regarding the pattern of H. pylori genotypes; therefore, this prospective and multicentre study was the first to be done in Tunisia and aimed to investigate the prevalence of the vacA, cagA, iceA and oipA genotypes of H. pylori isolates from Tunisian patients with peptic ulceration, gastric cancer, MALT lymphoma and gastritis. Methods H. pylori was cultured from endoscopic biopsies obtained from 281 Tunisian patients. The vacA alleles, cagA, iceA and oipA genotypes were determined by PCR. Results The vacA s1m1, s1m2 and s2m2 were respectively found in 10.7%, 12.5% and 45.6% of strains. The s2m1 genotype was not detected in our study. The cagA was found in 61.6% of isolates. The iceA1 and the iceA2 genotypes were respectively isolated in 60.2% and in 16% of strains. The oipA genotype was detected in 90.8% of strains. Considering the vacA and iceA genotypes, the presence of multiple H. pylori strains in a single biopsy specimen was found respectively in 31.4% and 23.8%. The comparison between strains isolated from antrum and fundus showed that Tunisian patients were infected with two or more strains of different cagA, vacA, iceA and oipA genotypes and the discordance was respectively in 9.6%, 4.6%, 8.9% and 8.5% of strains. Conclusion Our results showed that in 46% (131 strains among 281), the H. pylori strains were highly virulent in relation of the three or four virulent factors they could carry. These finding were described before in the literature. Tunisian patients were colonized by one or multiple strains of H. pylori in the same time in relation of presence of vacA m1/m2 and iceA1/iceA2 in the same biopsy. The discordance between strains isolated from antrum and fundus was high, and it is in favour of multicolonization.
Collapse
Affiliation(s)
- Khansa Ben Mansour
- Microbiology laboratory/UR04SP08 Rabta University Hospital, Tunis, Tunisia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Characteristics and interactions of Helicobacter pylori and H. pylori-infected human gastroduodenal epithelium in peptic ulcer: a transmission electron microscopy study. Dig Dis Sci 2010; 55:82-8. [PMID: 19160047 DOI: 10.1007/s10620-008-0697-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 12/30/2008] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori (H. pylori) has been presumed to be an initiating factor in a previously recognized chain of events, starting with active chronic gastritis and leading to atrophy of the mucosal membrane, intestinal metaplasia, dysplasia (intraepithelial neoplasia), and finally culminating in gastric carcinoma. Adherence of H. pylori to the gastroduodenal epithelium is believed to be an important step in the induction of active chronic inflammation of the mucosal layer. However, it is not clear how the pathogen chronically colonizes the gastroduodenal epithelium. In this study, 30 biopsy specimens from H. pylori-positive peptic ulcer (15 for gastric ulcer, 15 for duodenal ulcer) patients were examined by transmission electron microscopy (TEM) to observe the structural adherence of H. pylori to gastroduodenal epithelium while ten healthy postulants were served as controls. We also investigated the interaction between H. pylori and gastroduodenal epithelial cells. Morphological appearances of both the pathogen and the cells as well as features of colonization, attachment, and internalization were observed. H. pylori exhibited both spiral and coccoid forms. Cytoplasmic vacuolar degeneration played by the vacuolating toxin (VacA) was apparent in gastroduodenal epithelial cells. Specially, a number of tumor cells were found in H. pylori-positive gastric intestinal metaplasia (IM) mucosa under TEM which provided an ultrastructural evidence of IM carrying a particularly high risk for the development of gastric cancer.
Collapse
|
44
|
Miura M, Ohnishi N, Tanaka S, Yanagiya K, Hatakeyama M. Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice. Int J Cancer 2009; 125:2497-504. [PMID: 19588494 DOI: 10.1002/ijc.24740] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infection with cagA-positive Helicobacter pylori is associated with gastric carcinoma. The cagA-encoded CagA protein is delivered into gastric epithelial cells and, upon tyrosine phosphorylation at the C-terminal EPIYA segments, binds and deregulates SHP-2 oncoprotein. On the basis of the differential alignment of the EPIYA segments, CagA can be subdivided into Western CagA, which is produced by H. pylori isolated in Western countries, and East Asian CagA, which is produced by H. pylori circulating in East Asian countries. Western CagA contains EPIYA-A, EPIYA-B and variable numbers of EPIYA-C segments, whereas East Asian CagA contains EPIYA-A, EPIYA-B and variable numbers of EPIYA-D segments. Upon tyrosine phosphorylation, EPIYA-C and EPIYA-D, respectively, serve as low-affinity and high-affinity SHP-2-binding sites. We previously reported that systemic expression of East Asian CagA (CagA-ABDD) induces gastrointestinal and hematopoietic malignancies in mice. In this study, we generated transgenic mice that systemically express Western CagA (CagA-ABCCC), the levels of which are comparable to those in mice expressing East Asian CagA. The mice developed gastric epithelial hypertrophy and gastrointestinal tumors and also showed lymphoid abnormality but not myeloid abnormalities such as granulocytosis and myeloid leukemia found in mice carrying East Asian CagA. The incidence of tumors in mice expressing Western CagA was significantly lower than that in mice expressing East Asian CagA. Our results indicate that Western CagA is qualitatively less oncogenic than East Asian CagA. Differential oncogenic potential of geographically distinct CagA isoforms may contribute to the differential prevalence of gastric carcinoma between East Asian countries and Western countries.
Collapse
Affiliation(s)
- Motohiro Miura
- Division of Molecular Oncology, Institute for Genetic Medicine, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
45
|
Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One 2009; 4:e5517. [PMID: 19436735 PMCID: PMC2677459 DOI: 10.1371/journal.pone.0005517] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/16/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mucosa-associated Escherichia coli are frequently found in the colonic mucosa of patients with colorectal adenocarcinoma, but rarely in healthy controls. Chronic mucosal E. coli infection has therefore been linked to colonic tumourigenesis. E. coli strains carrying eae (encoding the bacterial adhesion protein intimin) attach intimately to the intestinal mucosa and are classed as attaching and effacing E. coli (AEEC). Enteropathogenic Escherichia coli (EPEC) are the most common form of AEEC identified in man. EPEC utilise a type III secretion system to translocate effector proteins into host cells and infection induces wide-ranging effects on the host cell proteome. We hypothesised that EPEC infection could influence molecular pathways involved in colorectal tumourigenesis. METHODOLOGY/PRINCIPAL FINDINGS When co-cultured with human colorectal cell lines, EPEC dramatically downregulated the expression of key DNA mismatch repair proteins MSH2 and MLH1 in an attachment specific manner. Cytochrome c staining and TUNEL analysis confirmed that this effect was not a consequence of apoptosis/necrosis. Ex vivo human colonic mucosa was co-cultured with EPEC and probed by immunofluorescence to locate adherent bacteria. EPEC entered 10% of colonic crypts and adhered to crypt epithelial cells, often in the proliferative compartment. Adenocarcinoma and normal colonic mucosa from colorectal cancer patients (n = 20) was probed by immunofluorescence and PCR for AEEC. Mucosa-associated E. coli were found on 10/20 (50%) adenocarcinomas and 3/20 (15%) normal mucosa samples (P<0.05). AEEC were detected on 5/20 (25%) adenocarcinomas, but not normal mucosa samples (P<0.05). SIGNIFICANCE/CONCLUSIONS The ability of EPEC to downregulate DNA mismatch repair proteins represents a novel gene-environment interaction that could increase the susceptibility of colonic epithelial cells to mutations and therefore promote colonic tumourigenesis. The potential role of AEEC in colorectal tumourigenesis warrants further investigation.
Collapse
|
46
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Roles of gastric mucin-type O-glycans in the pathogenesis of Helicobacter pylori infection. Glycobiology 2009; 19:453-61. [PMID: 19150806 DOI: 10.1093/glycob/cwp004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharides that share structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonizes gastric mucosa by utilizing adhesins that bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. After colonization, H. pylori induces acute inflammatory responses mainly by neutrophils. This acute phase is gradually replaced by a chronic inflammatory response. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by the interaction between L-selectin on lymphocytes and peripheral lymph node addressin (PNAd), which contains 6-sulfo sialyl Lewis X-capped O-glycans, on high endothelial venule (HEV)-like vessels. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. These findings show that distinct sets of carbohydrates expressed in the stomach are closely associated with pathogenesis and prevention of H. pylori-related diseases, providing therapeutic potentialities based on specific carbohydrate modulation.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
47
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Carbohydrate-dependent defense mechanisms against Helicobacter pylori infection. Curr Drug Metab 2009; 10:29-40. [PMID: 19149511 PMCID: PMC2666621 DOI: 10.2174/138920009787048428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharide, which shares structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonize gastric mucosa by utilizing adhesins, which bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by 6-sulfo sialyl Lewis X-capped O-glycans, peripheral lymph node addressin (PNAd), on high endothelial venule (HEV)-like vessels. The number of HEV-like vessels increases as chronic inflammation progresses. Furthermore, PNAd formed on HEV-like vessels disappear once H. pylori is eradicated. These results indicate that PNAd plays an important role in H. pylori-associated inflammation. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. We recently identified cholesterol alpha-glucosyltransferase (CHLalphaGcT) using an expression cloning strategy and showed that this enzyme is specifically inhibited by mucin-type O-glycans like those present in deeper portions of the gastric mucosa. These findings show that a battery of carbohydrates expressed in the stomach is closely associated with pathogenesis and also prevention of H. pylori-related diseases.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | |
Collapse
|
48
|
Recombination-based in vivo expression technology identifies Helicobacter pylori genes important for host colonization. Infect Immun 2008; 76:5632-44. [PMID: 18794279 DOI: 10.1128/iai.00627-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Here we undertook to identify colonization and gastric disease-promoting factors of the human gastric pathogen Helicobacter pylori as genes that were induced in response to the stomach environment. Using recombination-based in vivo expression technology (RIVET), we identified six promoters induced in the host compared to laboratory conditions. Three of these promoters, designated Pivi10, Pivi66, and Pivi77, regulate genes that H. pylori may use to interact with other microbes or the host. Pivi10 likely regulates the mobA, mobB, and mobD genes, which have potential roles in horizontal gene transfer through plasmid mobilization. Pivi66 occurs in the cytotoxin-associated gene pathogenicity island, a genomic region known to be associated with more severe disease outcomes, and likely regulates cagZ, virB11, and virD4. Pivi77 likely regulates HP0289, an uncharacterized paralogue of the vacA cytotoxin gene. We assessed the roles of a subset of these genes in colonization by creating deletion mutants and analyzing them in single-strain and coinfection experiments. We found that a mobABD mutant was defective for murine host colonization and that a cagZ mutant outcompeted the wild-type strain in a coinfection analysis. Our work supports the conclusion that RIVET is a valuable tool for identifying H. pylori factors with roles in host colonization.
Collapse
|
49
|
Löfling J, Diswall M, Eriksson S, Borén T, Breimer ME, Holgersson J. Studies of Lewis antigens and H. pylori adhesion in CHO cell lines engineered to express Lewis b determinants. Glycobiology 2008; 18:494-501. [PMID: 18400963 DOI: 10.1093/glycob/cwn030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many microbes bind and adhere via adhesins to host cell carbohydrates as an initial step for infection. Therefore, cell lines expressing Lewis b (Le(b)) determinants were generated as a potential model system for Helicobacter pylori colonization and infection, and their expression of blood group Lewis determinants was characterized. CHO-K1 cells were stably transfected with selected glycosyltransferase cDNAs, and two Le(b) positive clones, 1C5 and 2C2, were identified. Expression of Lewis (Le(a), Le(b), Le(x), and Le(y)) determinants was analyzed by flow cytometry of intact cells, SDS-PAGE/Western blot of solubilized glycoproteins, and thin layer chromatography immunostaining of isolated glycolipids (GL). Binding of H. pylori to cells was examined by microscopy and quantified. Flow cytometry showed that 1C5 and 2C2 were Le(a) and Le(b) positive. 1C5 expressed Le(b) on O-linked, but not N-linked, glycans and only weakly on GLs. In contrast, 2C2 expressed Le(b) on N-, O-glycans, and GLs. Furthermore, both clones expressed Le(a) on N- and O-glycans but not on GLs. 2C2, but not 1C5, stained positively for Le(y) on N-linked glycans and GLs. Both clones, as well as the parental CHO-K1 cells, expressed Le(x) on GLs. A Le(b)-binding H. pylori strain bound to the 1C5 and 2C2 cells. In summary, two glycosyltransferase transfected CHO-K1 cell clones differed regarding Lewis antigen expression on N- and O-linked glycans as well as on GLs. Both clones examined supported adhesion of a Le(b)-binding H. pylori strain and may thus be a useful in vitro model system for H. pylori colonization/infection studies.
Collapse
Affiliation(s)
- Jonas Löfling
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute, SE 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
50
|
Argent RH, Thomas RJ, Letley DP, Rittig MG, Hardie KR, Atherton JC. Functional association between the Helicobacter pylori virulence factors VacA and CagA. J Med Microbiol 2008; 57:145-150. [PMID: 18201978 DOI: 10.1099/jmm.0.47465-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Helicobacter pylori virulence factors CagA and VacA are implicated in the development of gastroduodenal diseases. Most strains possessing CagA also possess the more virulent vacuolating form of VacA. This study assessed the significance of possession of both virulence factors in terms of their effect on gastric epithelial cells, using a set of minimally passaged, isogenic VacA, CagA and CagE mutants in H. pylori strains 60190 and 84-183. The cagA and cagE mutants were found to significantly increase VacA-induced vacuolation of epithelial cells, and the vacA mutants significantly increased CagA-induced cellular elongations, compared with wild-type strains, indicating that CagA reduces vacuolation and VacA reduces hummingbird formation. Although epithelial cells incubated with the wild-type H. pylori strains may display both vacuolation and hummingbird formation, it was found that (i) hummingbird length was significantly reduced in vacuolated cells compared with those without vacuolation; (ii) the number of vacuoles was significantly reduced in vacuolated cells with hummingbird formation compared with those without hummingbirds; and (iii) cells displaying extensive vacuolation did not subsequently form hummingbirds and vice versa. VacA did not affect the phosphorylation of CagA. These data show that VacA and CagA downregulate each other's effects on epithelial cells, potentially allowing H. pylori interaction with cells whilst avoiding excessive cellular damage.
Collapse
Affiliation(s)
- Richard H Argent
- Wolfson Digestive Diseases Centre, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.,Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rachael J Thomas
- Wolfson Digestive Diseases Centre, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.,Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Darren P Letley
- Wolfson Digestive Diseases Centre, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.,Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael G Rittig
- Centre for Biochemistry and Cell Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Kim R Hardie
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - John C Atherton
- Wolfson Digestive Diseases Centre, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.,Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|