1
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
2
|
Woodson CM, Kehn-Hall K. Examining the role of EGR1 during viral infections. Front Microbiol 2022; 13:1020220. [PMID: 36338037 PMCID: PMC9634628 DOI: 10.3389/fmicb.2022.1020220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 09/06/2023] Open
Abstract
Early growth response 1 (EGR1) is a multifunctional mammalian transcription factor capable of both enhancing and/or inhibiting gene expression. EGR1 can be activated by a wide array of stimuli such as exposure to growth factors, cytokines, apoptosis, and various cellular stress states including viral infections by both DNA and RNA viruses. Following induction, EGR1 functions as a convergence point for numerous specialized signaling cascades and couples short-term extracellular signals to influence transcriptional regulation of genes required to initiate the appropriate biological response. The role of EGR1 has been extensively studied in both physiological and pathological conditions of the adult nervous system where it is readily expressed in various regions of the brain and is critical for neuronal plasticity and the formation of memories. In addition to its involvement in neuropsychiatric disorders, EGR1 has also been widely examined in the field of cancer where it plays paradoxical roles as a tumor suppressor gene or oncogene. EGR1 is also associated with multiple viral infections such as Venezuelan equine encephalitis virus (VEEV), Kaposi's sarcoma-associated herpesvirus (KSHV), herpes simplex virus 1 (HSV-1), human polyomavirus JC virus (JCV), human immunodeficiency virus (HIV), and Epstein-Barr virus (EBV). In this review, we examine EGR1 and its role(s) during viral infections. First, we provide an overview of EGR1 in terms of its structure, other family members, and a brief overview of its roles in non-viral disease states. We also review upstream regulators of EGR1 and downstream factors impacted by EGR1. Then, we extensively examine EGR1 and its roles, both direct and indirect, in regulating replication of DNA and RNA viruses.
Collapse
Affiliation(s)
- Caitlin M. Woodson
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4. Life (Basel) 2021; 11:life11050379. [PMID: 33922228 PMCID: PMC8190631 DOI: 10.3390/life11050379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third β-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.
Collapse
|
4
|
Panda S, Behera S, Alam MF, Syed GH. Endoplasmic reticulum & mitochondrial calcium homeostasis: The interplay with viruses. Mitochondrion 2021; 58:227-242. [PMID: 33775873 DOI: 10.1016/j.mito.2021.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
Calcium ions (Ca2+) act as secondary messengers in a plethora of cellular processes and play crucial role in cellular organelle function and homeostasis. The average resting concentration of Ca2+ is nearly 100 nM and in certain cells it can reach up to 1 µM. The high range of Ca2+ concentration across the plasma membrane and intracellular Ca2+ stores demands a well-coordinated maintenance of free Ca2+ via influx, efflux, buffering and storage. Endoplasmic Reticulum (ER) and Mitochondria depend on Ca2+ for their function and also serve as major players in intracellular Ca2+ homeostasis. The ER-mitochondria interplay helps in orchestrating cellular calcium homeostasis to avoid any detrimental effect resulting from Ca2+ overload or depletion. Since Ca2+ plays a central role in many biological processes it is an essential component of the virus-host interactions. The large gradient across membranes enable the viruses to easily modulate this buffered environment to meet their needs. Viruses exploit Ca2+ signaling to establish productive infection and evade the host immune defense. In this review we will detail the interplay between the viruses and cellular & ER-mitochondrial calcium signaling and the significance of these events on viral life cycle and disease pathogenesis.
Collapse
Affiliation(s)
- Swagatika Panda
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Suchismita Behera
- Institute of Life Sciences, Bhubaneswar, Clinical Proteomics Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Mohd Faraz Alam
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India
| | - Gulam Hussain Syed
- Institute of Life Sciences, Bhubaneswar, Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneswar, India.
| |
Collapse
|
5
|
Campion NJ, Ally M, Jank BJ, Ahmed J, Alusi G. The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene 2021; 40:1757-1774. [PMID: 33479496 DOI: 10.1038/s41388-020-01631-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Nasopharyngeal carcinoma (NPC) results from the aberrant and uncontrolled growth of the nasopharyngeal epithelium. It is highly associated with the Epstein-Barr virus, especially in regions where it is endemic. In the last decade, significant advances in genetic sequencing techniques have allowed the discovery of many new abnormal molecular processes that undoubtedly contribute to the establishment, growth and spread of this deadly disease. In this review, we consider NPC as EBV induced. We summarise the recent discoveries and how they add to our understanding of the pathophysiology of NPC in the context of genomics first in primary and then in recurrent disease. Overall, we find key early events lead to p16 inactivation and cyclin D1 expression, allowing latent viral infection. Host and viral factors work together to affect a variety of molecular pathways, the most fundamental being activation of NF-κB. Nonetheless, much still yearns to be discovered, especially in recurrent NPC.
Collapse
Affiliation(s)
- Nicholas J Campion
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK. .,Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Munira Ally
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jahangir Ahmed
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Ghassan Alusi
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| |
Collapse
|
6
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
7
|
Zhang F, Chen L, Zhou Y, Ding D, Hu Q, Liu Y, Li K, Wu S, He L, Lei M, Du R. Dexamethasone prevents the Epstein-Barr virus induced epithelial-mesenchymal transition in A549 cells. J Med Virol 2020; 92:3697-3708. [PMID: 32396272 DOI: 10.1002/jmv.25999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 01/16/2023]
Abstract
Clinical data have shown that pulmonary interstitial fibrosis is likely to occur in the later stages of viral pneumonia. While viral infections are thought to cause chronic pulmonary interstitial inflammation and pulmonary fibrosis, it remains unclear if they promote pulmonary fibrosis by epithelial-mesenchymal transition (EMT). In this study, human epithelial cell line A549 has been used to model the infection of the Epstein-Barr virus (EBV) and the respiratory syncytial virus (RSV). Their differences were compared and the possible infection mechanisms analyzed by randomly assigning cells to one of five treatments. Exposure of the LMP1 is thought to be the key gene during EBV-induced EMT in the A549 cells. Enzyme-linked immunosorbent assay analysis revealed that the EBV infection was associated with the induction of a number of cytokines (interleukin-8 [IL-8], IL-13, tumor necrosis factor-α, and transforming growth factor-β) and dexamethasone (DXM) could significantly prevent the phenotypic changes, and partly the mechanisms related with the IL-13 pathway. Surprisingly, different results were seen with the RSV infection as the A549 cells still displayed an epithelial morphology but the levels of E-cadherin, α-SMA, vimentin, and fibronectin did not change. This is the first study demonstrating the different reactions induced by different viruses, and the protective effects of DXM on the EBV-induced EMT in the A549 cells by partially inhibiting the IL-13 pathway. These findings suggest a novel mechanism, by which DXM or anti-IL-13 may delay the progression of pulmonary fibrosis by preventing the progress of EBV-induced EMT.
Collapse
Affiliation(s)
- Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ding
- Department of Respiratory and Critical Care Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiongjie Hu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwen Liu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyan Li
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Wu
- Department of Critical Medicine, Wuhan Central Hospital, Wuhan, China
| | - Li He
- Department of Respiratory and Critical Care Medicine, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Mei Lei
- Department of Respiratory and Critical Care Medicine, Pulmonary Hospital, Wuhan, China
| | - Ronghui Du
- Department of Respiratory and Critical Care Medicine, Pulmonary Hospital, Wuhan, China
| |
Collapse
|
8
|
Abstract
Epstein-Barr virus (EBV) infects human B cells and reprograms them to allow virus replication and persistence. One key viral factor in this process is latent membrane protein 2A (LMP2A), which has been described as a B cell receptor (BCR) mimic promoting malignant transformation. However, how LMP2A signaling contributes to tumorigenesis remains elusive. By comparing LMP2A and BCR signaling in primary human B cells using phosphoproteomics and transcriptome profiling, we identified molecular mechanisms through which LMP2A affects B cell biology. Consistent with the literature, we found that LMP2A mimics a subset of BCR signaling events, including tyrosine phosphorylation of the kinase SYK, the calcium initiation complex consisting of BLNK, BTK, and PLCγ2, and its downstream transcription factor NFAT. However, the majority of LMP2A-induced signaling events markedly differed from those induced by BCR stimulation. These included differential phosphorylation of kinases, phosphatases, adaptor proteins, transcription factors such as nuclear factor κB (NF-κB) and TCF3, as well as widespread changes in the transcriptional output of LMP2A-expressing B cells. LMP2A affected apoptosis and cell-cycle checkpoints by dysregulating the expression of apoptosis regulators such as BCl-xL and the tumor suppressor retinoblastoma-associated protein 1 (RB1). LMP2A cooperated with MYC and mutant cyclin D3, two oncogenic drivers of Burkitt lymphoma, to promote proliferation and survival of primary human B cells by counteracting MYC-induced apoptosis and by inhibiting RB1 function, thereby promoting cell-cycle progression. Our results indicate that LMP2A is not a pure BCR mimic but rather rewires intracellular signaling in EBV-infected B cells that optimizes cell survival and proliferation, setting the stage for oncogenic transformation.
Collapse
|
9
|
Niedźwiedzka-Rystwej P, Grywalska E, Hrynkiewicz R, Wołącewicz M, Becht R, Roliński J. The Double-Edged Sword Role of Viruses in Gastric Cancer. Cancers (Basel) 2020; 12:cancers12061680. [PMID: 32599870 PMCID: PMC7352989 DOI: 10.3390/cancers12061680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high morbidity and mortality, gastric cancer is a topic of a great concern throughout the world. Major ways of treatment are gastrectomy and chemotherapy, unfortunately they are not always successful. In a search for more efficient therapy strategies, viruses and their potential seem to be an important issue. On one hand, several oncogenic viruses have been noticed in the case of gastric cancer, making the positive treatment even more advantageous, but on the other, viruses exist with a potential therapeutic role in this malignancy.
Collapse
Affiliation(s)
- Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
- Correspondence:
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Mikołaj Wołącewicz
- Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland; (R.H.); (M.W.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, 70-204 Szczecin, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland; (E.G.); (J.R.)
| |
Collapse
|
10
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
11
|
Chakravorty S, Yan B, Wang C, Wang L, Quaid JT, Lin CF, Briggs SD, Majumder J, Canaria DA, Chauss D, Chopra G, Olson MR, Zhao B, Afzali B, Kazemian M. Integrated Pan-Cancer Map of EBV-Associated Neoplasms Reveals Functional Host-Virus Interactions. Cancer Res 2019; 79:6010-6023. [PMID: 31481499 DOI: 10.1158/0008-5472.can-19-0615] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Epstein-Barr virus (EBV) is a complex oncogenic symbiont. The molecular mechanisms governing EBV carcinogenesis remain elusive and the functional interactions between virus and host cells are incompletely defined. Here we present a comprehensive map of the host cell-pathogen interactome in EBV-associated cancers. We systematically analyzed RNA sequencing from >1,000 patients with 15 different cancer types, comparing virus and host factors of EBV+ to EBV- tissues. EBV preferentially integrated at highly accessible regions of the cancer genome, with significant enrichment in super-enhancer architecture. Twelve EBV transcripts, including LMP1 and LMP2, correlated inversely with EBV reactivation signature. Overexpression of these genes significantly suppressed viral reactivation, consistent with a "virostatic" function. In cancer samples, hundreds of novel frequent missense and nonsense variations in virostatic genes were identified, and variant genes failed to regulate their viral and cellular targets in cancer. For example, one-third of patients with EBV+ NK/T-cell lymphoma carried two novel nonsense variants (Q322X, G342X) of LMP1 and both variant proteins failed to restrict viral reactivation, confirming loss of virostatic function. Host cell transcriptional changes in response to EBV infection classified tumors into two molecular subtypes based on patterns of IFN signature genes and immune checkpoint markers, such as PD-L1 and IDO1. Overall, these findings uncover novel points of interaction between a common oncovirus and the human genome and identify novel regulatory nodes and druggable targets for individualized EBV and cancer-specific therapies. SIGNIFICANCE: This study provides a comprehensive map of the host cell-pathogen interactome in EBV+ malignancies.See related commentary by Mbulaiteye and Prokunina-Olsson, p. 5917.
Collapse
Affiliation(s)
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Chin Fang Lin
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Scott D Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Joydeb Majumder
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - D Alejandro Canaria
- Department of Biological Science, Purdue University, West Lafayette, Indiana
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Matthew R Olson
- Department of Biological Science, Purdue University, West Lafayette, Indiana
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, Indiana. .,Department of Computer Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
12
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
13
|
Global Proteomic Changes Induced by the Epstein-Barr Virus Oncoproteins Latent Membrane Protein 1 and 2A. mBio 2018; 9:mBio.00959-18. [PMID: 29921667 PMCID: PMC6016245 DOI: 10.1128/mbio.00959-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Epstein-Barr virus (EBV) oncoproteins latent membrane protein 1 (LMP1) and LMP2A constitutively activate multiple signaling pathways, and both have been shown to interact with cellular ubiquitin ligases and affect cellular ubiquitination. To detect the LMP1- and LMP2A-mediated effects on the global cellular proteome, epithelial cell lines expressing LMP1 or LMP2A were analyzed using label-free quantitative proteomics. To identify proteins whose ubiquitination is affected by the viral proteins, the cells were cultured in the presence and absence of deubiquitinase (DUB) and proteasome inhibitors. More than 7,700 proteins were identified with high confidence and considerably more proteins showed significant differences in expression in the presence of inhibitors. Few of the differentially expressed proteins with or without inhibitors were common between LMP1 and LMP2A, confirming that the viral proteins induce unique changes in cell expression and function. However, ingenuity pathway analysis (IPA) of the data indicated that LMP1 and LMP2A modulate many of the same cellular regulatory pathways, including cell death and survival, cell movement, and actin filament dynamics. In addition, various proteasome subunits, ubiquitin-specific peptidases and conjugating enzymes, vesicle trafficking proteins, and NF-κB and mitogen-activated protein kinase signaling proteins were affected by LMP1 or LMP2A. These findings suggest that LMP1 and LMP2A may commonly target critical cell pathways through effects on distinct genes, with many cellular proteins modified by ubiquitination and/or degradation. The Epstein-Barr virus proteins latent membrane protein 1 and 2 have potent effects on cell growth and signaling. Both proteins bind to specific ubiquitin ligases and likely modulate the cellular proteome through ubiquitin-mediated effects on stability and intracellular location. In this study, a comprehensive proteomic analysis of the effects of LMP1 and LMP2A revealed that both proteins affected proteasome subunits, ubiquitin-specific conjugases and peptidases, and vesical trafficking proteins. The data suggest that the effects of these proteins on the abundance and ubiquitination of cellular proteins are in part responsible for their effects on cell growth regulation.
Collapse
|
14
|
Gong W, Zhang L, Yu H, Yu Q, Pan WK, Wang Y, Wu XL, Liu Q. Dihydroartemisinin suppresses the proliferation of Epstein-Barr virus-associated gastric carcinoma cells via downregulation of latent membrane protein 2A. Oncol Lett 2018; 16:2613-2619. [PMID: 30013656 DOI: 10.3892/ol.2018.8950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Treatment of recurrent and metastatic Epstein-Barr virus-associated gastric carcinoma (EBVaGC) remains a challenge, particularly in developing countries, due to lack of efficient screening programs. Latent membrane protein 2A (LMP2A) has been reported to serve an important function in the development of EBVaGC. In previous years dihydroartemisinin (DHA), traditionally used as an anti-malarial agent, has been demonstrated to inhibit tumor growth with low toxicity to normal cells. In the present study, the anti-tumor effect of DHA in EBVaGC was investigated. The MTT assay was used to compare the viability of untreated and DHA-treated EBVaGC GT-38 cells. Flow cytometry was applied to determine the percentage of GT-38 cells at each stage of the cell cycle. Reverse transcription-polymerase chain reaction and western blotting were used to determine the expression of the LMP2A gene. The effect of DHA treatment in vivo was evaluated in nude mice bearing GT-38 tumors. The results of the present study revealed that DHA-treated cells exhibited a time- and dose-dependent inhibition of viability. DHA significantly increased the apoptotic rate of GT-38 cells following treatment with 20 µg/ml DHA for 48 h. DHA-treated GT-38 cells were blocked in the G0/G1 phase, resulting in an accumulation of G0/G1 phase cells and a significant decrease of G2/M phase cells. In vivo, the results of the present study revealed that DHA significantly inhibited the growth of GT-38 cell-transplanted tumors. The mRNA and protein levels of LMP2A were significantly downregulated in the DHA-treated group compared with the control group. The present data indicated that DHA inhibited cell growth and induced cell apoptosis of the EBVaGC GT-38 cell line via downregulation of LMP2A. DHA may therefore be a potential therapeutic candidate for the treatment of EBVaGC.
Collapse
Affiliation(s)
- Wei Gong
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Lei Zhang
- General Surgery Department, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Hui Yu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Qiang Yu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Wei-Kang Pan
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Yin Wang
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Xuan-Lin Wu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Qiang Liu
- Department of Imaging, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
15
|
Wu CC, Fang CY, Cheng YJ, Hsu HY, Chou SP, Huang SY, Tsai CH, Chen JY. Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J Biomed Sci 2017; 24:2. [PMID: 28056971 PMCID: PMC5217310 DOI: 10.1186/s12929-016-0313-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Lytic reactivation of EBV has been reported to play an important role in human diseases, including NPC carcinogenesis. Inhibition of EBV reactivation is considered to be of great benefit in the treatment of virus-associated diseases. For this purpose, we screened for inhibitory compounds and found that apigenin, a flavonoid, seemed to have the ability to inhibit EBV reactivation. Methods We performed western blotting, immunofluorescence and luciferase analyses to determine whether apigenin has anti-EBV activity. Results Apigenin inhibited expression of the EBV lytic proteins, Zta, Rta, EAD and DNase in epithelial and B cells. It also reduced the number of EBV-reactivating cells detectable by immunofluorescence analysis. In addition, apigenin has been found to reduce dramatically the production of EBV virions. Luciferase reporter analysis was performed to determine the mechanism by which apigenin inhibits EBV reactivation: apigenin suppressed the activity of the immediate-early (IE) gene Zta and Rta promoters, suggesting it can block initiation of the EBV lytic cycle. Conclusion Taken together, apigenin inhibits EBV reactivation by suppressing the promoter activities of two viral IE genes, suggesting apigenin is a potential dietary compound for prevention of EBV reactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0313-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.
| | - Chih-Yeu Fang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan.,Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, 116, Taiwan
| | - Yu-Jhen Cheng
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Hui-Yu Hsu
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Ping Chou
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan
| | - Ching-Hwa Tsai
- Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, No.35, Keyan Road, Zhunan Miaoli, Miaoli County, Taiwan. .,Department of Microbiology, College of Medicine National Health Research Institutes, National Taiwan University, No.35, Keyan Road, Zhunan Town, Miaoli County, Taipei, Taiwan.
| |
Collapse
|
16
|
Wei F, Zhu Q, Ding L, Liang Q, Cai Q. Manipulation of the host cell membrane by human γ-herpesviruses EBV and KSHV for pathogenesis. Virol Sin 2016; 31:395-405. [PMID: 27624182 DOI: 10.1007/s12250-016-3817-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/29/2016] [Indexed: 11/27/2022] Open
Abstract
The cell membrane regulates many physiological processes including cellular communication, homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) exploit the host cell membrane to avoid immune surveillance and promote viral replication. Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands (cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.
Collapse
Affiliation(s)
- Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Zhu
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ling Ding
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qing Liang
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (Ministries of Education and Health), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Kempkes B, Robertson ES. Epstein-Barr virus latency: current and future perspectives. Curr Opin Virol 2015; 14:138-44. [PMID: 26453799 PMCID: PMC5868753 DOI: 10.1016/j.coviro.2015.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022]
Abstract
EBV drives resting B cells to continuous proliferating latently infected cells. A restricted program of viral transcription contributes to latency and cell proliferation important for growth transformation. Recent interest in latency and transformation has provided new data about the roles of the EBV encoded latent proteins and non-coding RNAs. We broadly describe the transcription, epigenetic, signaling and super-enhancer functions of the latent nuclear antigens in regulating cellular transcription; the role of LMP2 in utilization of the autophagosome to control cell death, and the association between LMP1, the linear ubiquitin chain assembly complex and TRAF1 which are important for transformation. This review explores recent discoveries with new insights into therapeutic avenues for EBV related malignancies.
Collapse
Affiliation(s)
- Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Evasion of affinity-based selection in germinal centers by Epstein-Barr virus LMP2A. Proc Natl Acad Sci U S A 2015; 112:11612-7. [PMID: 26305967 DOI: 10.1073/pnas.1514484112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV) infects germinal center (GC) B cells and establishes persistent infection in memory B cells. EBV-infected B cells can cause B-cell malignancies in humans with T- or natural killer-cell deficiency. We now find that EBV-encoded latent membrane protein 2A (LMP2A) mimics B-cell antigen receptor (BCR) signaling in murine GC B cells, causing altered humoral immune responses and autoimmune diseases. Investigation of the impact of LMP2A on B-cell differentiation in mice that conditionally express LMP2A in GC B cells or all B-lineage cells found LMP2A expression enhanced not only BCR signals but also plasma cell differentiation in vitro and in vivo. Conditional LMP2A expression in GC B cells resulted in preferential selection of low-affinity antibody-producing B cells despite apparently normal GC formation. GC B-cell-specific LMP2A expression led to systemic lupus erythematosus-like autoimmune phenotypes in an age-dependent manner. Epigenetic profiling of LMP2A B cells found increased H3K27ac and H3K4me1 signals at the zinc finger and bric-a-brac, tramtrack domain-containing protein 20 locus. We conclude that LMP2A reduces the stringency of GC B-cell selection and may contribute to persistent EBV infection and pathogenesis by providing GC B cells with excessive prosurvival effects.
Collapse
|
19
|
Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog 2015; 11:e1004906. [PMID: 26067064 PMCID: PMC4465838 DOI: 10.1371/journal.ppat.1004906] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms. Epstein-Barr virus (EBV) is carried by most humans. It can cause several types of cancer. In healthy infected people, EBV persists for life in a "latent" state in white blood cells called B cells. For infected persons to remain healthy, it is crucial that they harbor CD8-positive "killer" T cells that recognize and destroy precancerous EBV-infected cells. However, this protection is imperfect, because the virus is not eliminated from the body, and the danger of EBV-associated cancer remains. How does the virus counteract CD8+ T cell control? Here we study the effects of latent membrane protein 2A (LMP2A), which is an important viral molecule because it is present in several types of EBV-associated cancers, and in latently infected cells in healthy people. We show that LMP2A counteracts the recognition of EBV-infected B cells by antiviral killer cells. We found a number of mechanisms that are relevant to this effect. Notably, LMP2A disturbs expression of molecules on B cells that interact with NKG2D, a molecule on the surface of CD8+ T cells that aids their activation. In this way, LMP2A weakens important immune responses against EBV. Similar mechanisms may operate in different types of LMP2A-expressing cancers caused by EBV.
Collapse
|
20
|
Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, Johannsen E. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog 2015; 11:e1004822. [PMID: 25855980 PMCID: PMC4391933 DOI: 10.1371/journal.ppat.1004822] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear proteins EBNA3A, EBNA3B, and EBNA3C interact with the cell DNA binding protein RBPJ and regulate cell and viral genes. Repression of the CDKN2A tumor suppressor gene products p16INK4A and p14ARF by EBNA3A and EBNA3C is critical for EBV mediated transformation of resting B lymphocytes into immortalized lymphoblastoid cell lines (LCLs). To define the composition of endogenous EBNA3 protein complexes, we generated lymphoblastoid cell lines (LCLs) expressing flag-HA tagged EBNA3A, EBNA3B, or EBNA3C and used tandem affinity purification to isolate each EBNA3 complex. Our results demonstrated that each EBNA3 protein forms a distinct complex with RBPJ. Mass-spectrometry revealed that the EBNA3A and EBNA3B complexes also contained the deubquitylation complex consisting of WDR48, WDR20, and USP46 (or its paralog USP12) and that EBNA3C complexes contained WDR48. Immunoprecipitation confirmed that EBNA3A, EBNA3B, and EBNA3C association with the USP46 complex. Using chromatin immunoprecipitation, we demonstrate that WDR48 and USP46 are recruited to the p14ARF promoter in an EBNA3C dependent manner. Mapping studies were consistent with WDR48 being the primary mediator of EBNA3 association with the DUB complex. By ChIP assay, WDR48 was recruited to the p14ARF promoter in an EBNA3C dependent manner. Importantly, WDR48 associated with EBNA3A and EBNA3C domains that are critical for LCL growth, suggesting a role for USP46/USP12 in EBV induced growth transformation. Epstein-Barr virus (EBV) is a gammaherpesvirus implicated in the pathogenesis of multiple malignancies, including Burkitt lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma, and gastric carcinoma. EBV infection of resting B-lymphocytes drives them to proliferate as lymphoblastoid cell lines (LCLs), an in vitro model of PTLD. LCLs express a limited EBV gene repertoire, including six nuclear proteins (EBNA1, 2, 3A, 3B, 3C, and LP), three integral membrane proteins (LMP1, 2A, and 2B), and more than 30 micro RNAs. EBNA2 and the EBNA3 proteins are transcription factors that regulate viral and cell gene expression through the cell DNA binding protein RBPJ. In this study, we established LCLs transformed by recombinant EBV genomes in which a Flag-HA epitope tag is fused in-frame to the C-terminus of EBNA3A, EBNA3B or EBNA3C. Using these LCLs, we purified endogenous EBNA3 complexes and identified the USP46 deubiquitinating enzyme (DUB) and its associated chaperones WDR48 and WDR20 as EBNA3 binding proteins. We find that EBNA3s interact primarily with the WDR48 protein and that loss of WDR48 interaction with EBNA3A or EBNA3C impairs LCL growth. This study represents the first characterization of EBNA3 complexes from LCLs and implicates the USP46 DUB complex in EBNA3 mediated gene regulation.
Collapse
Affiliation(s)
- Makoto Ohashi
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amy M. Holthaus
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael A. Calderwood
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chiou-Yan Lai
- Infectious Disease Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bryan Krastins
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - David Sarracino
- Biomarker Research Initiatives in Mass Spectrometry (BRIMS), Thermo Fisher Scientific, Cambridge, Massachusetts, United States of America
| | - Eric Johannsen
- Departments of Medicine and Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
21
|
Yoon H, Park S, Ju H, Ha SY, Sohn I, Jo J, Do IG, Min S, Kim SJ, Kim WS, Yoo HY, Ko YH. Integrated copy number and gene expression profiling analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2015; 54:383-96. [PMID: 25832818 DOI: 10.1002/gcc.22249] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Viral oncogenes and host immunosenescence have been suggested as causes of Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV + DLBCL) of the elderly. To investigate the molecular genetic basis of immune evasion and tumor outgrowth, we analyzed copy number alterations (CNAs) and gene expression profiles in EBV + DLBCL samples compared with EBV - DLBCL. There were relatively few genomic alterations in EBV + DLBCL compared with those detected in EBV-negative DLBCL. The most frequent CNAs (>30%) in EBV + DLBCLs were gains at 1q23.2-23.3, 1q23.3, 1q32.1, 5p15.3, 8q22.3, 8q24.1-24.2, and 9p24.1; losses at 6q27, 7q11.2, and 7q36.2-36.3 were also recurrent. A gene expression profile analysis identified the host immune response as a key molecular signature in EBV + DLBCL. Antiviral response genes, proinflammatory cytokines, and chemokines associated with the innate immune response were overexpressed, indicating the presence of a virusinduced inflammatory microenvironment. Genes associated with the B-cell receptor signaling pathway were downregulated. An integrated analysis indicated that SLAMF1 and PDL2 were key targets of the gains detected at 1q23.2-23.3 and 9p24.1. The chromosomal gain at 9p24.1 was associated with poor overall survival. Taken together, our results led to the identification of recurrent copy number alterations and distinct gene expression associated with the host immune response in EBV + DLBCL. We suggest that the upregulation of PDL2 on 9p24.1 promotes immune evasion and is associated with poor prognosis in EBV + DLBCL.
Collapse
Affiliation(s)
- Heejei Yoon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lee N, Moss WN, Yario TA, Steitz JA. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 2015; 160:607-618. [PMID: 25662012 DOI: 10.1016/j.cell.2015.01.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022]
Abstract
EBER2 is an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus (EBV). Probing its possible chromatin localization by CHART revealed EBER2's presence at the terminal repeats (TRs) of the latent EBV genome, overlapping previously identified binding sites for the B cell transcription factor PAX5. EBER2 interacts with PAX5 and is required for the localization of PAX5 to the TRs. EBER2 knockdown phenocopies PAX5 depletion in upregulating the expression of LMP2A/B and LMP1, genes nearest the TRs. Knockdown of EBER2 also decreases EBV lytic replication, underscoring the essential role of the TRs in viral replication. Recruitment of the EBER2-PAX5 complex is mediated by base-pairing between EBER2 and nascent transcripts from the TR locus. The interaction is evolutionarily conserved in the related primate herpesvirus CeHV15 despite great sequence divergence. Using base-pairing with nascent RNA to guide an interacting transcription factor to its DNA target site is a previously undescribed function for a trans-acting noncoding RNA.
Collapse
Affiliation(s)
- Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.
| |
Collapse
|
23
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Abstract
LMP2A is an EBV-encoded protein with three domains: (a) an N-terminal cytoplasmic domain, which has PY motifs that bind to WW domain-containing E3 ubiquitin ligases and an ITAM that binds to SH2 domain-containing proteins, (b) a transmembrane domain with 12 transmembrane segments that localizes LMP2A in cellular membranes, and (c) a 27-amino acid C-terminal domain which mediates homodimerization and heterodimerization of LMP2 protein isoforms. The most prominent two isoforms of the protein are LMP2A and LMP2B. The LMP2B isoform lacks the 19-amino acid N-terminal domain found in LMP2A, which modulates cellular signaling resulting in a baseline activation of B cells and degradation of cellular kinases leading to the downregulation of normal B cell signaling pathways. These two seemingly contradictory processes allow EBV to establish and maintain latency. LMP2 is expressed in many EBV-associated malignancies. While its antigenic properties may be useful in developing LMP2-specific immunity, the LMP2A N-terminal motifs also provide a basis to target LMP2A-modulated cellular kinases for the development of treatment strategies.
Collapse
|
25
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
26
|
Mohamed G, Vrzalikova K, Cader FZ, Vockerodt M, Nagy E, Flodr P, Yap LF, Diepstra A, Kluin PM, Rosati S, Murray P. Epstein-Barr virus, the germinal centre and the development of Hodgkin's lymphoma. J Gen Virol 2014; 95:1861-1869. [PMID: 24893782 DOI: 10.1099/vir.0.066712-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The relationship between Epstein-Barr virus (EBV) and the germinal centre (GC) of the asymptomatic host remains an enigma. The occasional appearance of EBV-positive germinal centres in some patients, particularly those with a history of immunosuppression, suggests that EBV numbers in the GC are subject to immune control. The relationship, if any, between lymphoid hyperplasia with EBV-positive germinal centres and subsequent or concurrent lymphomagenesis remains to be clarified. As far as the development of EBV-associated Hodgkin's lymphoma is concerned, the suppression of virus replication, mediated by LMP1 on the one hand, and the loss of B-cell receptor signalling on the other, appears to be an important pathogenic mechanism. A further important emerging concept is that alterations in the microenvironment of the EBV-infected B-cell may be important for lymphomagenesis.
Collapse
Affiliation(s)
- Ghada Mohamed
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Katerina Vrzalikova
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Fathima Zumla Cader
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Martina Vockerodt
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Eszter Nagy
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Patrik Flodr
- Laboratory of Molecular Pathology, Department of Pathology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
| | - Lee-Fah Yap
- Department of Oral Biology and Biomedical Sciences & Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Arjan Diepstra
- University of Groningen and University Medical Centre Groningen Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Philip M Kluin
- University of Groningen and University Medical Centre Groningen Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Stefano Rosati
- University of Groningen and University Medical Centre Groningen Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Paul Murray
- Centre for Human Virology and the School of Cancer Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
27
|
Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R, Sansonetti PJ, Phalipon A. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. ACTA ACUST UNITED AC 2014; 211:1215-29. [PMID: 24863068 PMCID: PMC4042640 DOI: 10.1084/jem.20130914] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Shigella flexneri interacts with B cells and induces apoptosis via IpaD binding to TLR2. Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)–dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response.
Collapse
Affiliation(s)
- Katharina Nothelfer
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Ellen T Arena
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Laurie Pinaud
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur UPMC, 75013 Paris, France
| | - Michel Neunlist
- INSERM U913, Institut des Maladies de l'Appareil Digestif du Centre Hospitalier Universitaire de Nantes, 44093 Nantes, France
| | - Brian Mozeleski
- Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France
| | - Ilia Belotserkovsky
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Claude Parsot
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | | | - Anke Burger-Kentischer
- Molekulare Biotechnologie, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Rubhana Raqib
- Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B), Dhaka 1000, Bangladesh
| | - Philippe J Sansonetti
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75005 Paris, France
| | - Armelle Phalipon
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| |
Collapse
|
28
|
Identification of protein kinase inhibitors with a selective negative effect on the viability of Epstein-Barr virus infected B cell lines. PLoS One 2014; 9:e95688. [PMID: 24759913 PMCID: PMC3997413 DOI: 10.1371/journal.pone.0095688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/29/2014] [Indexed: 01/21/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus, which is causally associated with the development of several B lymphocytic malignancies that include Burkitt's lymphomas, Hodgkin's disease, AIDS and posttransplant associated lymphomas. The transforming activity of EBV is orchestrated by several latent viral proteins that mimic and modulate cellular growth promoting and antiapoptotic signaling pathways, which involve among others the activity of protein kinases. In an effort to identify small molecule inhibitors of the growth of EBV-transformed B lymphocytes a library of 254 kinase inhibitors was screened. This effort identified two tyrosine kinase inhibitors and two MEK inhibitors that compromised preferentially the viability of EBV-infected human B lymphocytes. Our findings highlight the possible dependence of EBV-infected B lymphocytes on specific kinase-regulated pathways underlining the potential for the development of small molecule-based therapeutics that could target selectively EBV-associated human B lymphocyte malignancies.
Collapse
|
29
|
Met degradation by SAIT301, a Met monoclonal antibody, reduces the invasion and migration of nasopharyngeal cancer cells via inhibition of EGR-1 expression. Cell Death Dis 2014; 5:e1159. [PMID: 24722284 PMCID: PMC5424102 DOI: 10.1038/cddis.2014.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 11/09/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high invasive and metastatic potential. The hepatocyte growth factor (HGF)-Met signaling pathway has a critical role in mediating the invasive growth of many different types of cancer, including head and neck squamous cell carcinoma. HGF also stimulates NPC cell growth and invasion in the cell line model. In this study, we determined the inhibitory effect of Met, using a Met-targeting monoclonal antibody (SAIT301), on the invasive and growth potential of NPC cell lines. Met inhibition by SAIT301 resulted in highly significant inhibition of cell migration and invasion in both the HONE1 and HNE1 cell lines. In addition, we also found that co-treatment of SAIT301 and HGF decreased the anchorage-independent growth induced by HGF in HNE1 cell lines. After SAIT301 treatment, Met, together with its downstream signaling proteins, showed downregulation of p-Met and p-ERK, but not p-AKT, in both HONE1 and HNE1 cell lines. Interestingly, we found that HGF treatment of NPC cell lines induced early growth response protein (EGR-1) expression, which is involved in cell migration and invasion. In addition, co-treatment with SAIT301 and HGF inhibited the HGF-induced expression of EGR-1. Next, knockdown of EGR-1 using small-interfering RNA inhibited HGF-induced cell invasion in NPC cell lines, suggesting that the expression level of EGR-1 is important in HGF-induced cell invasion of NPC cells. Therefore, the results support that SAIT301 inhibited Met activation as well as the downstream EGR-1 expression and could have therapeutic potential in NPC. Taken together, we suggest that Met is an anticancer therapeutic target for NPC that warrants further investigation and clinical trials and SAIT301 may be a promising tool for NPC therapy.
Collapse
|
30
|
Epstein-Barr virus induces global changes in cellular mRNA isoform usage that are important for the maintenance of latency. J Virol 2013; 87:12291-301. [PMID: 24027308 DOI: 10.1128/jvi.02464-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic viruses promote cell proliferation through the dramatic reorganization of host transcriptomes. In addition to regulating mRNA abundance, changes in mRNA isoform usage can have a profound impact on the protein output of the transcriptome. Using Epstein-Barr virus (EBV) transformation of primary B cells, we have studied the ability of an oncogenic virus to alter the mRNA isoform profile of its host. Using the algorithm called SplicerEX with two complementary Affymetrix microarray platforms, we uncovered 433 mRNA isoform changes regulated by EBV during B-cell transformation. These changes were largely orthogonal with the 2,163 mRNA abundance changes observed during transformation, such that less than one-third of mRNAs changing at the level of isoform also changed in overall abundance. While we observed no preference for a mechanistic class of mRNA isoform change, we detected a significant shortening of 3' untranslated regions and exclusion of cassette exons in EBV-transformed cells relative to uninfected B cells. Gene ontology analysis of the mRNA isoform changes revealed significant enrichment in nucleic acid binding proteins. We validated several of these isoform changes and were intrigued by those in two mRNAs encoding the proteins XBP1 and TCF4, which have both been shown to bind and activate the promoter of the major EBV lytic trans-activator BZLF1. Our studies indicate that EBV latent infection promotes the usage of mRNA isoforms of XBP1 and TCF4 that restrict BZLF1 activation. Therefore, characterization of global changes in mRNA isoform usage during EBV infection identifies a new mechanism for the maintenance of latent infection.
Collapse
|
31
|
Suppression of the LMP2A target gene, EGR-1
, protects Hodgkin's lymphoma cells from entry to the EBV lytic cycle. J Pathol 2013; 230:399-409. [DOI: 10.1002/path.4198] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023]
|
32
|
Epstein-Barr virus latent membrane protein 2A contributes to anoikis resistance through ERK activation. J Virol 2013; 87:8227-34. [PMID: 23698301 DOI: 10.1128/jvi.01089-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with various malignancies, including epithelial cancers. In this study, we analyzed the effect of EBV infection on epithelial cells by using EBV-converted epithelial cells. In EBV-positive cells, the extracellular signal-regulated kinase (ERK) pathway is constitutively activated. Inhibition of ERK activity leads to reduced anoikis resistance; therefore, EBV-positive cells are more resistant to anoikis, a type of apoptosis induced by cell detachment, than are EBV-negative cells. Among the viral genes expressed in EBV-positive cells, the latent membrane protein 2A (LMP2A) is responsible for induction of ERK-mediated anoikis resistance, although the expression level of LMP2A is much lower in EBV-positive cells than in EBV-transformed B cells. Further analysis demonstrated that LMP2A downregulation of the proanoikis mediator Bim through proteasomal degradation is dependent on the immunoreceptor tyrosine-based activation motif (ITAM). These findings suggest that LMP2A-mediated ERK activation is involved in the generation of EBV-associated epithelial malignancies.
Collapse
|
33
|
The effect of Epstein-Barr virus Latent Membrane Protein 2 expression on the kinetics of early B cell infection. PLoS One 2013; 8:e54010. [PMID: 23308294 PMCID: PMC3540077 DOI: 10.1371/journal.pone.0054010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023] Open
Abstract
Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein.
Collapse
|
34
|
Hagemeier SR, Barlow EA, Meng Q, Kenney SC. The cellular ataxia telangiectasia-mutated kinase promotes epstein-barr virus lytic reactivation in response to multiple different types of lytic reactivation-inducing stimuli. J Virol 2012; 86:13360-70. [PMID: 23015717 PMCID: PMC3503132 DOI: 10.1128/jvi.01850-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022] Open
Abstract
The Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response. Using an ATM inhibitor (KU55933), we found that ATM activity is required for efficient induction of EBV lytic gene expression by a variety of different stimuli, including a histone deacetylase (HDAC) inhibitor, the transforming growth factor β (TGF-β) cytokine, a demethylating agent (5-azacytidine), B cell receptor engagement with anti-IgG antibody, hydrogen peroxide, and the proteosome inhibitor bortezomib. In EBV-infected AGS (gastric) cells, knockdown of ATM, or p53, expression inhibits EBV reactivation. Conversely, treatment of these cells with nutlin-3 (which activates p53 and ATM) robustly induces lytic reactivation in a p53- and ATM-dependent manner. The ability of the EBV R and Na proteins to induce lytic reactivation in EBV-infected AGS cells is ATM dependent. However, overexpression of Z induces lytic gene expression in the presence or absence of ATM activity. Our results suggest that ATM enhances Z promoter activity in the context of the intact EBV genome and that p53 contributes to the ATM effect. Nevertheless, since we found that ATM inhibitors also reduce lytic reactivation in Burkitt lymphoma cells that have no p53, additional ATM substrates must also contribute to the ATM effect.
Collapse
Affiliation(s)
| | | | - Qiao Meng
- McArdle Laboratory for Cancer Research, Department of Oncology
| | - Shannon C. Kenney
- McArdle Laboratory for Cancer Research, Department of Oncology
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Transcriptome changes induced by Epstein-Barr virus LMP1 and LMP2A in transgenic lymphocytes and lymphoma. mBio 2012; 3:mBio.00288-12. [PMID: 22991431 PMCID: PMC3448168 DOI: 10.1128/mbio.00288-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Latent membrane protein 1 (LMP1) and LMP2A affect cell growth in both epithelial cells and lymphocytes. In this study, the effects on cellular gene expression were determined by microarray analysis of transgenic mice expressing LMP1, LMP2A, or both using the immunoglobulin heavy chain promoter and enhancer. Large differential changes were detected, indicating that LMP1 and LMP2A can both potently affect host gene transcription, inducing distinct transcriptional profiles. Seventy percent of the changes detected in LMP1/2A doubly transgenic lymphocytes were also modulated by LMP1 or LMP2A alone. These common and unique expression changes indicate that the combined effects of LMP1 and LMP2A may be additive, synergistic, or inhibitory. Using significant pathway analysis, the expression changes detected in LMP1, LMP2A, and LMP1/2A transgenic B lymphocytes were predicted to commonly target cancer and inflammatory pathways. Additionally, using the correlation coefficient to calculate the regulation of known c-Rel and Stat3 transcriptional targets, both were found to be enhanced in LMP1 lymphocytes and lymphomas, and a selection of Stat3 targets was further evaluated and confirmed using quantitative reverse transcription-PCR (RT-PCR). Analyses of the effects on cell growth and viability revealed that LMP2A transgenic lymphocytes had the greatest enhanced viability in vitro; however, doubly transgenic lymphocytes (LMP1/2A) did not have enhanced survival in culture and these mice were similar to negative littermates. These findings indicate that the combined expression of LMP1 and LMP2A has potentially different biological outcomes than when the two proteins are expressed individually. The Epstein-Barr virus proteins latent membrane protein 1 (LMP1) and LMP2A have potent effects on cell growth. In transgenic mice that express these proteins in B lymphocytes, the cell growth and survival properties are also affected. LMP1 transgenic mice have increased development of lymphoma, and the LMP1 lymphocytes have increased viability in culture. LMP2A transgenic lymphocytes have altered B cell development and enhanced survival. In this study, analysis of the cellular gene expression changes in transgenic LMP1 and LMP2A lymphocytes and LMP1 lymphomas revealed that both transgenes individually and in combination affected pathways important for the development of cancer and inflammation. Importantly, the combined expression of the two proteins had unique effects on cellular expression and cell viability. This is the first study to look at the combined effects of LMP1 and LMP2A on global changes in host gene expression.
Collapse
|
36
|
Modulation of autophagy-like processes by tumor viruses. Cells 2012; 1:204-47. [PMID: 24710474 PMCID: PMC3901111 DOI: 10.3390/cells1030204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an intracellular degradation pathway for long-lived proteins and organelles. This process is activated above basal levels upon cell intrinsic or environmental stress and dysregulation of autophagy has been linked to various human diseases, including those caused by viral infection. Many viruses have evolved strategies to directly interfere with autophagy, presumably to facilitate their replication or to escape immune detection. However, in some cases, modulation of autophagy appears to be a consequence of the virus disturbing the cell’s metabolic signaling networks. Here, we summarize recent advances in research at the interface of autophagy and viral infection, paying special attention to strategies that human tumor viruses have evolved.
Collapse
|
37
|
An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol 2012; 86:7976-87. [PMID: 22623780 DOI: 10.1128/jvi.00770-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.
Collapse
|
38
|
Hatton O, Martinez OM, Esquivel CO. Emerging therapeutic strategies for Epstein-Barr virus+ post-transplant lymphoproliferative disorder. Pediatr Transplant 2012; 16:220-9. [PMID: 22353174 PMCID: PMC4052840 DOI: 10.1111/j.1399-3046.2012.01656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De novo malignancies represent an increasing concern in the transplant population, particularly as long-term graft and patient survival improves. EBV-associated B-cell lymphoma in the setting of PTLD is the leading malignancy in children following solid organ transplantation. Therapeutic strategies can be categorized as pharmacologic, biologic, and cell-based but the variable efficacy of these approaches and the complexity of PTLD suggest that new treatment options are warranted. Here, we review current therapeutic strategies for treatment of PTLD. We also describe the life cycle of EBV, addressing the viral mechanisms that contribute to the genesis and persistence of EBV+ B-cell lymphomas. Specifically, we focus on the oncogenic signaling pathways activated by the EBV LMP1 and LMP2a to understand the underlying mechanisms and mediators of lymphomagenesis with the goal of identifying novel, rational therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia M. Martinez
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos O. Esquivel
- Department of Surgery/Division of Abdominal Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
39
|
Engels N, Yigit G, Emmerich CH, Czesnik D, Schild D, Wienands J. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B cell antigen receptor-like activation signal. Cell Commun Signal 2012; 10:9. [PMID: 22472181 PMCID: PMC3352256 DOI: 10.1186/1478-811x-10-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/03/2012] [Indexed: 01/04/2023] Open
Abstract
Background The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is expressed during different latency stages of EBV-infected B cells in which it triggers activation of cytoplasmic protein tyrosine kinases. Early studies revealed that an immunoreceptor tyrosine-based activation motif (ITAM) in the cytoplasmic N-terminus of LMP2A can trigger a transient increase of the cytosolic Ca2+ concentration similar to that observed in antigen-activated B cells when expressed as a chimeric transmembrane receptor. Even so, LMP2A was subsequently ascribed an inhibitory rather than an activating function because its expression seemed to partially inhibit B cell antigen receptor (BCR) signaling in EBV-transformed B cell lines. However, the analysis of LMP2A signaling has been hampered by the lack of cellular model systems in which LMP2A can be studied without the influence of other EBV-encoded factors. Results We have reanalyzed LMP2A signaling using B cells in which LMP2A is expressed in an inducible manner in the absence of any other EBV signaling protein. This allowed us for the first time to monitor LMP2A signaling in statu nascendi as it occurs during the EBV life cycle in vivo. We show that mere expression of LMP2A not only stimulated protein tyrosine kinases but also induced phospholipase C-γ2-mediated Ca2+ oscillations followed by activation of the extracellular signal-regulated kinase (Erk) mitogen-activated protein kinase pathway and induction of the lytic EBV gene bzlf1. Furthermore, expression of the constitutively phosphorylated LMP2A ITAM modulated rather than inhibited BCR-induced Ca2+ mobilization. Conclusion Our data establish that LMP2A expression has a function beyond the putative inhibition of the BCR by generating a ligand-independent cellular activation signal that may provide a molecular switch for different EBV life cycle stages and most probably contributes to EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University Göttingen, Humboldtallee 34, Göttingen 37073, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Han J, Chen JN, Zhang ZG, Li HG, Ding YG, Du H, Shao CK. Sequence variations of latent membrane protein 2A in Epstein-Barr virus-associated gastric carcinomas from Guangzhou, southern China. PLoS One 2012; 7:e34276. [PMID: 22470549 PMCID: PMC3314615 DOI: 10.1371/journal.pone.0034276] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/25/2012] [Indexed: 12/29/2022] Open
Abstract
Latent membrane protein 2A (LMP2A), expressed in most Epstein-Barr virus (EBV)-associated malignancies, has been demonstrated to be responsible for the maintenance of latent infection and epithelial cell transformation. Besides, it could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence variations of LMP2A in EBV-associated gastric carcinoma (EBVaGC) and healthy EBV carriers from Guangzhou, southern China, where nasopharyngeal carcinoma (NPC) is endemic, were investigated. Widespread sequence variations in the LMP2A gene were found, with no sequence identical to the B95.8 prototype. No consistent mutation was detected in all isolates. The immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs in the amino terminus of LMP2A were strictly conserved, suggesting their important roles in virus infection; while 8 of the 17 identified CTL epitopes in the transmembrane region of LMP2A were affected by at least one point mutation, which may implicate that the effect of LMP2A polymorphisms should be considered when LMP2A-targeted immunotherapy is conducted. The polymorphisms of LMP2A in EBVaGC in gastric remnant carcinoma (GRC) were for the first time investigated in the world. The LMP2A sequence variations in EBVaGC in GRC were somewhat different from those in EBVaGC in conventional gastric carcinoma. The sequence variations of LMP2A in EBVaGC were similar to those in throat washing of healthy EBV carriers, indicating that these variations are due to geographic-associated polymorphisms rather than EBVaGC-associated mutations. This, to our best knowledge, is the first detailed investigation of LMP2A polymorphisms in EBVaGC in Guangzhou, southern China, where NPC is endemic.
Collapse
Affiliation(s)
- Jing Han
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-gang Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hai-gang Li
- Department of Pathology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun-gang Ding
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong Du
- Department of Pathology, Guangzhou First Municipal People's Hospital, Guangzhou, Guangdong Province, China
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- * E-mail:
| |
Collapse
|
41
|
Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) and LMP2A function cooperatively to promote carcinoma development in a mouse carcinogenesis model. J Virol 2012; 86:5352-65. [PMID: 22357283 DOI: 10.1128/jvi.07035-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The Epstein-Barr virus (EBV) proteins latent membrane proteins 1 and 2 (LMP1 and LMP2) are frequently expressed in EBV-associated lymphoid and epithelial cancers and have complex effects on cell signaling and growth. The effects of these proteins on epithelial cell growth were assessed in vivo using transgenic mice driven by the keratin 14 promoter (K14). The development of papillomas and carcinomas was determined in the tumor initiator and promoter model using dimethyl benzanthracene (DMBA), followed by repeated treatments of 12-O-tetradecanoyl phorbol 13-acetate (TPA). In these assays, LMP1 functioned as a weak tumor promoter and increased papilloma formation. In contrast, mice expressing LMP2A did not induce or promote papilloma formation. Transgenic LMP1 mice had slightly increased development of squamous cell carcinoma; however, the development of carcinoma was significantly increased in the doubly transgenic mice expressing both LMP1 and LMP2A. DMBA treatment induces an activating mutation in the Harvey-ras (H-ras(61)) oncogene, and this mutation was identified in most papillomas and carcinomas although several papillomas and carcinomas in K14-LMP1 and K14-LMP1/LMP2A mice lacked the mutation. Analysis of signaling pathways that are known to be activated by LMP1 and/or LMP2 indicated that all genotypes had high levels of activated extracellular signal-regulated kinase (ERK) and Stat3 in carcinomas with significantly higher activation in the doubly transgenic carcinomas. These findings suggest that, in combination, LMP1 and LMP2 contribute to carcinoma progression and that this may reflect the combined effects of the proteins on activation of multiple signaling pathways. This study is the first to characterize the effects of LMP2 on tumor initiation and promotion and to identify an effect of the combined expression of LMP1 and LMP2 on the increase of carcinoma development.
Collapse
|
42
|
Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol 2012; 22:144-53. [PMID: 22249143 DOI: 10.1016/j.semcancer.2012.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
Abstract
Although frequently expressed in EBV-positive malignancies, the contribution of the oncogenic latent membrane proteins, LMP1 and LMP2, to the pathogenesis of nasopharyngeal carcinoma (NPC) is not fully defined. As a key effector in EBV-driven B cell transformation and an established "transforming" gene, LMP1 displays oncogenic properties in rodent fibroblasts and induces profound morphological and phenotypic effects in epithelial cells. LMP1 functions as a viral mimic of the TNFR family member, CD40, engaging a number of signalling pathways that induce morphological and phenotypic alterations in epithelial cells. Although LMP2A plays an essential role in maintaining viral latency in EBV infected B cells, its role in epithelial cells is less clear. Unlike LMP1, LMP2A does not display "classical" transforming functions in rodent fibroblasts but its ability to engage a number of potentially oncogenic cell signalling pathways suggests that LMP2A can also participate in EBV-induced epithelial cell growth transformation. Here we review the effects of LMP1 and LMP2 on various aspects of epithelial cell behaviour highlighting key aspects that may contribute to the pathogenesis of NPC.
Collapse
Affiliation(s)
- Christopher W Dawson
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
43
|
Forte E, Luftig MA. The role of microRNAs in Epstein-Barr virus latency and lytic reactivation. Microbes Infect 2011; 13:1156-67. [PMID: 21835261 PMCID: PMC4911174 DOI: 10.1016/j.micinf.2011.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 01/06/2023]
Abstract
Oncogenic viruses reprogram host gene expression driving proliferation, ensuring survival, and evading the immune response. The recent appreciation of microRNAs (miRNAs) as small non-coding RNAs that broadly regulate gene expression has provided new insight into this complex scheme of host control. This review highlights the role of viral and cellular miRNAs during the latent and lytic phases of the EBV life cycle.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Conserved Sequence
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/immunology
- Epstein-Barr Virus Infections/virology
- Exosomes/immunology
- Exosomes/metabolism
- Exosomes/virology
- Gene Expression Profiling
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/metabolism
- Host-Pathogen Interactions
- Humans
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/virology
- Mice
- MicroRNAs/genetics
- MicroRNAs/immunology
- MicroRNAs/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/immunology
- RNA, Viral/metabolism
- RNA-Induced Silencing Complex/immunology
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virus Activation/physiology
- Virus Latency/physiology
Collapse
Affiliation(s)
- Eleonora Forte
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA, 27712
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA, 27712
| |
Collapse
|
44
|
Hatton O, Phillips LK, Vaysberg M, Hurwich J, Krams SM, Martinez OM. Syk activation of phosphatidylinositol 3-kinase/Akt prevents HtrA2-dependent loss of X-linked inhibitor of apoptosis protein (XIAP) to promote survival of Epstein-Barr virus+ (EBV+) B cell lymphomas. J Biol Chem 2011; 286:37368-78. [PMID: 21908615 DOI: 10.1074/jbc.m111.255125] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
B cell lymphoma survival requires tonic or ligand-independent signals through activation of Syk by the B cell receptor. The Epstein-Barr virus (EBV) protein latent membrane 2a (LMP2a), a mimic of the B cell receptor, provides constitutive survival signals for latently infected cells through Syk activation; however, the precise downstream mechanisms coordinating this survival response in EBV+ B cell lymphomas remain to be elucidated. Herein, we assess the mechanism of Syk survival signaling in EBV+ B cell lymphomas from post-transplant lymphoproliferative disorder (PTLD) to discover virally controlled therapeutic targets involved in lymphomagenesis and tumor progression. Using small molecule inhibition and siRNA strategies, we show that Syk inhibition reduces proliferation and induces apoptosis of PTLD-derived EBV+ B cell lines. Syk inhibition also reduces autocrine IL-10 production. Although Syk inhibition attenuates signaling through both the PI3K/Akt and Erk pathways, only PI3K/Akt inhibition causes apoptosis of PTLD-derived cell lines. Loss of the endogenous caspase inhibitor XIAP is observed after Syk or PI3K/Akt inhibition. The loss of XIAP and apoptosis that results from Syk or PI3K/Akt inhibition is reversed by inhibition of the mitochondrial protease HtrA2. Thus, Syk drives EBV+ B cell lymphoma survival through PI3K/Akt activation, which prevents the HtrA2-dependent loss of XIAP. Syk, Akt, and XIAP antagonists may present potential new therapeutic strategies for PTLD through targeting of EBV-driven survival signals.
Collapse
Affiliation(s)
- Olivia Hatton
- Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
45
|
Construction and Antiapoptosis Activities of Recombinant Adenoviral Expression Vector Carrying EBV Latent Membrane Protein 2A. Gastroenterol Res Pract 2011; 2011:182832. [PMID: 21860618 PMCID: PMC3157153 DOI: 10.1155/2011/182832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
To evaluate the possible effects of LMP2A (EBV latent membrane protein 2A) on human gastric cancer cell line SGC-7901, LMP2A coding gene was subcloned into shuttle plasmid pAdTrackCMV to form transfer plasmid pAdTrackCMV-2A, which was linearized with PmeI and cotransformed into E.coli BJ5183 with adenovirus genomic plasmid of pAdeasy-1. The identified recombinant adenovirus plasmid DNA was digested with PacI and transfected into 293 cells to package recombinant adenovirus particles named vAd-2A. Then the expression and antiapoptosis activities of LMP2A on SGC-7901 infected with vAd-2A were analyzed. The vAd-2A was successfully constructed and identified by PCR, restriction digestion, and sequencing. LMP2A expression in SGC was identified by strong green fluorescence expression with fluorescence microscopic photograph and Southern blotting. The growth of LMP2A expressing SGC cells was apparently improved. Both cyclin E expression and S phase ratio in LMP2A expressing SGC cells were upregulated by cell cycle analysis and confocal microscopic analysis respectively. The replication-deficient recombinant adenovirus vector can express LMP2A antigen in SGC cells and inhibit their apoptosis. The results indicate that LMP2A might play an important role in pathogenesis of EBV-associated gastric cancer (EBVaGC). This study establishes a foundation for further study on EBVaGC and its gene therapy.
Collapse
|
46
|
Piccaluga PP, Gazzola A, Agostinelli C, Bacci F, Sabattini E, Pileri SA. Pathobiology of Epstein-Barr virus-driven peripheral T-cell lymphomas. Semin Diagn Pathol 2011; 28:234-244. [PMID: 21850988 DOI: 10.1053/j.semdp.2011.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present review, the authors described the pathobiological features of Epstein-Barr virus (EBV)-driven T/natural killer cell-derived malignancies. These rare tumors appear to be quite heterogeneous with regard to both clinical and pathologic features. Nonetheless, some elements, especially regarding the possible role of EBV (ie, genomic predisposition, pathogenesis, pattern of latency), are similar, enforcing the concept of a causative role for the virus. In clinical practice, although definitely rare in Western countries, the tumors are not exceptional; thus, they should be taken into account in the differential diagnosis of T-lymphoproliferative disorders, also considering the need for extremely prompt intervention. The prognosis of such tumors is generally poor using current approaches. A better understanding of their molecular pathogenesis may lead to significant therapeutic improvements. For example, the nuclear factor-KB pathway and platelet-derived growth factor receptor inhibition may represent 2 options to be tested in clinical trials.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Molecular Pathology Laboratory, Hematopathology Section, Department of Hematology and Oncological Sciences L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
NF-κB is a pivotal transcription factor that controls cell survival and proliferation in diverse physiological processes. The activity of NF-κB is tightly controlled through its cytoplasmic sequestration by specific inhibitors, IκBs. Various cellular stimuli induce the activation of an IκB kinase, which phosphorylates IκBs and triggers their proteasomal degradation, causing nuclear translocation of activated NF-κB. Under normal conditions, the activation of NF-κB occurs transiently, thus ensuring rapid but temporary induction of target genes. Deregulated NF-κB activation contributes to the development of various diseases, including cancers and immunological disorders. Accumulated studies demonstrate that the NF-κB signaling pathway is a target of several human oncogenic viruses, including the human T cell leukemia virus type 1, the Kaposi sarcoma-associated herpesvirus, and the Epstein-Bar virus. These viruses encode specific oncoproteins that target different signaling components of the NF-κB pathway, leading to persistent activation of NF-κB. This chapter will discuss the molecular mechanisms by which NF-κB is activated by the viral oncoproteins.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065
| |
Collapse
|
48
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
49
|
|
50
|
Wang X, Liu X, Jia Y, Chao Y, Xing X, Wang Y, Luo B. Widespread sequence variation in the Epstein-Barr virus latent membrane protein 2A gene among northern Chinese isolates. J Gen Virol 2010; 91:2564-73. [PMID: 20554797 DOI: 10.1099/vir.0.021881-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Latent membrane protein 2A (LMP2A) is expressed in most Epstein-Barr virus (EBV)-associated malignancies. Besides its roles in the maintenance of latent infection and epithelial-cell transformation, LMP2A could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence polymorphisms in LMP2A from northern Chinese EBV-associated gastric carcinoma patients, nasopharyngeal carcinoma patients and healthy donors were identified and compared with the prototype B95-8 strain. Four consistent mutations were detected in all isolates. Frequent mutations in the analysed sequences distinguished two and seven types of sequence variation in exon 1 and exons 2-8, respectively, with no consistent association shown between the genotyping of the two gene fragments. The immunoreceptor tyrosine-based activation motif and PY motif in the amino terminus were strictly conserved. Nine of the 16 identified CTL epitopes were affected by at least one point mutation, which may confer complexity to proposed immunotherapeutic approaches for EBV-associated malignancies. Most changed epitopes showed higher mutation rates in tumour isolates than in throat-washing samples from healthy donors, in accordance with the idea that virus strains can evade immune surveillance by altering amino acids within LMP epitopes. This first detailed investigation of sequence variations in the LMP2A gene reveals classifiable sequence polymorphisms in exon 1 and exons 2-8, and encourages further work on the impact of viral gene variations on tumour persistence and CTL-based immunotherapy.
Collapse
Affiliation(s)
- Xingang Wang
- Department of Surgery, Affiliated Hospital of Qingdao University Medical College, Qingdao 266003, PR China
| | | | | | | | | | | | | |
Collapse
|