1
|
Roufayel R, Kadry S. Examination of the Role of miR-23a in the Development of Thermotolerance. Curr Mol Med 2019; 20:194-201. [PMID: 31736444 DOI: 10.2174/1566524019666191021111028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thermotolerance is an acquired state of increased heat resistance that occurs following exposure to non-lethal proteotoxic stress. A large body of evidences implicates that molecular chaperon members belonging to the heat shock protein family could be acting as potential mediators of the thermotolerant state. OBJECTIVE Recent evidence has demonstrated heat shock proteins HSP90, HSP70 and HSP27 have inhibited heat-induced cell death by intervening at various steps in stressinduced apoptotic pathways. Previous studies have shown that HSP70 prevented heatinduced apoptosis by preventing the NOXA dependent decrease in MCL-1 levels leading to both BAX activation and cytochrome c release from mitochondria. We have also demonstrated that HSP70 expressing cells have enhanced levels of miR-23a prevent heat-induced increase in NOXA levels and suppress apoptosis. METHODS Stably transfected cell lines expressing either a control shRNA or a miR-23a targeting shRNA are quantified using both RT-PCR and semi-quantitative RT-PCR to determine the effect of different hyperthermic exposure treatment on miR-23a and Noxa mRNA expression levels. RESULTS This study shows that thermotolerant-induced pre-heat shock treatment is capable of increasing miR-23a levels. Furthermore, stable cell clones expressing a miR- 23a targeting shRNA having reduced miR-23a levels are incapable of developing a thermotolerance state, leading to apoptosis. CONCLUSION These results demonstrate the novel finding that miR-23a is an important factor in the development of the thermotolerant state.
Collapse
Affiliation(s)
- Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Kuwait.,Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Notario, N1G 2W1, Canada
| | - Seifedine Kadry
- Department of Mathematics and Computer Science, Faculty of Science, Beirut Arab University, Lebanon
| |
Collapse
|
2
|
Yang J, Gong Y, Liu Q, Cai J, Zhang B, Zhang Z. Thioredoxin silencing-induced cardiac supercontraction occurs through endoplasmic reticulum stress and calcium overload in chicken. Metallomics 2019; 10:1667-1677. [PMID: 30334551 DOI: 10.1039/c8mt00206a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Txn) system is the most crucial antioxidant defense mechanism in the myocardium, and hampering the Txn system may compromise cell survival. Calcium (Ca) imbalance is associated with a variety of cardiomyopathies, and dysregulation of Ca2+ homeostasis is often considered a critical starting point for heart disease. However, the roles of Txn and the Txn system in maintaining Ca2+ homeostasis in cardiomyocytes have been infrequently reported. Here, we examined the expression of genes associated with Ca2+ channels using a model of Txn suppression in cardiomyocyte cultures (siRNA and Txn inhibitor) and report that Txn knockdown can cause Ca2+ overload in the myocardial cytoplasm and release of endoplasmic reticulum (ER) Ca2+, which induces ER stress. Our results showed that Txn knockdown could lead to cytosolic Ca2+ overload through upregulated gene expression of Ca2+ channel-related genes in the cytoplasmic and ER membranes. Furthermore, we find that excessive Ca2+ concentrations in the cytoplasm may increase myocardial contraction, and heat shock proteins may play a protective role throughout the process. Our present study reveals a novel model of regulation for low Txn expression in myocardial injury.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.
| | | | | | | | | | | |
Collapse
|
3
|
Saadeldin IM, Swelum AAA, Elsafadi M, Mahmood A, Alfayez M, Alowaimer AN. Differences between the tolerance of camel oocytes and cumulus cells to acute and chronic hyperthermia. J Therm Biol 2018; 74:47-54. [DOI: 10.1016/j.jtherbio.2018.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/10/2023]
|
4
|
Frisch P, Li GC, McLeod K, Laramee CB. Induction of heat shock gene expression in RAT1 primary fibroblast cells by ELF electric fields. Bioelectromagnetics 2013; 34:405-13. [DOI: 10.1002/bem.21786] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 01/25/2013] [Indexed: 11/10/2022]
|
5
|
Tsao EI, Bohn MA, Omstead DR, Munster MJ, Numsuwan V. Effects of heat shock on the production of human erythropoietin from recombinant CHO cells. Biotechnol Bioeng 2010; 40:1190-6. [PMID: 18601070 DOI: 10.1002/bit.260401008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The production of recombinant proteins by mammalian cells demands a highly controlled environment for cell cultivation. Temperature stress represents a commonly encountered disturbance in both research and process environments. In this study, we examined the effects of heat shock on the expression of recombinant human erythropoietin (EPO) in a Chinese hamster ovary (CHO) cell line. Biosynthetic radiolabeling experiments indicated that the cells exposed to a 42 degrees C/1-hour heat shock exhibit a transient reprogramming of transcription and translation characterized by the inhibition of protein synthesis and induction of heat shock proteins. The rate of protein synthesis decreased by 50% after the heat shock, while the rate of RNA synthesis increased by 50% initially and then quickly reduced to 80% of the control level. The protein and RNA synthesis rates were fully recovered in approximately 48 hours after the heat shock. However, we found that the expression of EPO was not arrested by the heat shock. The glycosylation patterns, as examined by isoelectric focusing, of either the culture supernatant or the purified EPO were not affected by the heat shock. In contrast, a 45 degrees C/1-hour heat shock terminated RNA and protein synthesis immediately and caused culture death in 12 hours. Cellular responses to temperature stress were affected by the metabolic state of the cells; cells maintained in serum-free medium were more sensitive than cells growing exponentially in the presence of serum. We have also examined the kinetics of metabolic responses of the cells to heat shock with respect to nutrient uptake and metabolite accumulation.
Collapse
Affiliation(s)
- E I Tsao
- Department of Bioprocess Development, The R. W. Johnson Pharmaceutical Research Institute, Raritan, NJ 08869, USA
| | | | | | | | | |
Collapse
|
6
|
Laszlo A, Fleischer I. The heat-induced gamma-H2AX response does not play a role in hyperthermic cell killing. Int J Hyperthermia 2009; 25:199-209. [PMID: 19437236 DOI: 10.1080/02656730802631775] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The goal of this study was to determine whether the heat-induced formation of gamma-H2AX foci is involved in hyperthermic cell killing. MATERIALS AND METHODS The heat-induced gamma-H2AX response was determined in cells exhibiting various degrees of heat sensitivity. The panel of cells tested included cells that are transiently thermotolerant, permanently heat resistant, permanently heat sensitive, and permanently resistant to oxidative stress. Cells exposed to non-thermal environmental conditions that lead to protection from, or sensitization to, heat were also tested. The heat sensitivity of cells in which H2AX was knocked out was also ascertained. RESULTS The protein synthesis independent state of thermotolerance, but not the protein synthesis dependent state of thermotolerance, was found to be involved in the attenuation of the gamma-H2AX response in thermotolerant cells. The initial magnitude of the gamma-H2AX response was found to be the same in all cell lines with altered heat sensitivity. Furthermore, no differences in the resolution of gamma-H2AX foci were found among the cell lines tested. We also found that H2AX knock-out cells were not more heat sensitive. CONCLUSIONS We conclude that the heat-induced gamma-H2AX response does not play a role in heat-induced cell killing, thereby adding further evidence that the heat-induced gamma-H2AX foci are not due to DNA double strand breaks.
Collapse
Affiliation(s)
- Andrei Laszlo
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | | |
Collapse
|
7
|
Laszlo A, Fleischer I. Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones. Cancer Res 2009; 69:2042-9. [PMID: 19244134 DOI: 10.1158/0008-5472.can-08-1639] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat is one of the most potent radiosensitizers known. Several randomized trials have shown that hyperthermia is a good adjuvant for radiotherapy at several different cancer sites. However, the mechanism(s) involved in the interaction of heat and radiation that lead to radiosensitization remain to be elucidated. In this report, we have determined that heat induces perturbations in some of the earliest events in the cellular response to DNA damage induced by ionizing radiation. We studied the effect of heat on the formation of complexes containing gamma-H2AX/MDC1/53BP1 in heated-irradiated cells. We found that the formation of this complex was delayed in heated-irradiated cells, in a heat but not radiation dose-dependent manner. The length of the heat-induced delay of complex formation was attenuated in thermotolerant and heat radiosensitization-resistant cells. The length of the delay of gamma-H2AX/MDC1/53BP1 complex formation correlated with the magnitude of heat radiosensitization and was modulated by the molecular chaperone Hsc70. Heat radiosensitization was attenuated in 53BP1-null cells, implying that the delay of the formation of the gamma-H2AX/MDC1/53BP1 complex plays a role in heat radiosensitization. Heat also induced a delay of events in the DNA damage response that are downstream from 53BP1. Our results support the notion that heat-induced perturbations in the earliest events of the cellular response to ionizing radiation-induced DNA damage play a role in heat radiosensitization.
Collapse
Affiliation(s)
- Andrei Laszlo
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63108, USA.
| | | |
Collapse
|
8
|
Ren H, Du N, Zhang J, Yao J, Shi JS. Variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. Shijie Huaren Xiaohua Zazhi 2008; 16:314-318. [DOI: 10.11569/wcjd.v16.i3.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the variabilities of serum proteomic spectra in patients with gastric cancer before and after operation in order to detect specific protein markers that can be used in the rapid diagnosis of gastric cancer.
METHODS: Proteomic spectra of 46 serum samples from patients with gastric cancer before and after operation and 40 from normal individuals were generated by IMAC-Cu protein chip and surface-enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS).
RESULTS: Fourteen differentially expressed proteins in serum were screened by analysis of proteomic spectra in preoperative patients and normal individuals. We obtained 4 proteins (heat shock protein 27, glucose-regulated protein, prohibitin, protein disulfide isomerase A3) as markers able to classify gastric cancer patients and normal individuals. The sensitivity and specificity of these markers were 95.7% and 92.5%, respectively. The proteins over-expressed in serum of preoperative patients were obviously down-regulated.
CONCLUSION: Specific proteinic markers of gastric cancer can be detected in serum and used both in the rapid diagnosis of gastric cancer and in the judgment of prognosis. SELDI-TOF-MS is a useful tool for the detection and identification of new protein markers in serum.
Collapse
|
9
|
Ren H, Du N, Liu G, Hu HT, Tian W, Deng ZP, Shi JS. Analysis of variabilities of serum proteomic spectra in patients with gastric cancer before and after operation. World J Gastroenterol 2006; 12:2789-92. [PMID: 16718772 PMCID: PMC4130994 DOI: 10.3748/wjg.v12.i17.2789] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the variabilities of serum proteomic spectra in patients with gastric cancer before and after operation in order to detect the specific protein markers that can be used for quick diagnosis of gastric cancer.
METHODS: Proteomic spectra of 46 serum samples from patients with gastric cancer before and after operation and 40 from normal individuals were generated by IMAC-Cu protein chip and surface-enhanced laser desorption/ ionization time of flight mass spectrometry.
RESULTS: Fourteen differentially expressed proteins in serum were screened by analysis of proteomic spectra of preoperative patients and normal individuals. We obtained 4 proteins (heat shock protein 27, glucose-regulated protein, prohibitin, protein disulfide isomerase A3) making up marker pattern which was able to class the patient-team and normal-team. These marker patterns yielded 95.7% sensitivity and 92.5% specificity, respectively. The proteins over-expressed in serum of preoperative patients were obviously down-regulated.
CONCLUSION: Specific protein markers of gastric cancer can be used for the quick diagnosis of gastric cancer and judgment of prognosis. SELDI-TOF-MS is a useful tool for the detection and identification of new protein markers in serum.
Collapse
Affiliation(s)
- Hong Ren
- Department of Oncosurgery, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kampinga HH. Chaperones in preventing protein denaturation in living cells and protecting against cellular stress. Handb Exp Pharmacol 2005:1-42. [PMID: 16610353 DOI: 10.1007/3-540-29717-0_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A variety of cellular internal and external stress conditions can be classified as proteotoxic stresses. Proteotoxic stresses can be defined as stresses that increase the fraction of proteins that are in an unfolded state, thereby enhancing the probability of the formation of intracellular aggregates. These aggregates, if not disposed, can lead to cell death. In response to the appearance of damaged proteins, cells induce the expression of heat shock proteins. These can function as molecular chaperones to prevent protein aggregation and to keep proteins in a state competent for either refolding or degradation. Most knowledge of the function and regulation (by co-factors) of individual heat shock proteins comes from cell free studies on refolding of heat- or chemically denatured, purified proteins. Unlike the experimental situation in a test tube, cells contain multiple chaperones and co-factors often moving in and out different subcompartments that contain a variety of protein substrates at different folding states. Also, within cells folding competes with the degradative machinery. In this chapter, an overview will be provided on how the main cytosolic/nuclear chaperone Hsp70 is regulated, what is known about its interaction with other main cytosolic/nuclear chaperone families (Hsp27, Hsp90, and Hsp110), and how it may function as a molecular chaperone in living mammalian cells to protect against proteotoxic stresses.
Collapse
Affiliation(s)
- H H Kampinga
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands.
| |
Collapse
|
11
|
Borrelli MJ, Bernock LJ, Landry J, Spitz DR, Weber LA, Hickey E, Freeman ML, Corry PM. Stress protection by a fluorescent Hsp27 chimera that is independent of nuclear translocation or multimeric dissociation. Cell Stress Chaperones 2002; 7:281-96. [PMID: 12482204 PMCID: PMC514828 DOI: 10.1379/1466-1268(2002)007<0281:spbafh>2.0.co;2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A chimeric protein consisting of enhanced green fluorescent protein (EGFP) fused to the N-terminus of human Hsp27 conferred stress protection in human A549 lung carcinoma and murine L929 cells that were stably transfected to express the chimera constitutively. The resultant protection was comparable with that in the same cell lines when they were transfected to express corresponding levels of Hsp27. Unlike L929 cells, A549 cells exhibit endogenous Hsp27 expression, whose expression was inhibited in proportion to the amount of fluorescent chimera expressed, suggesting that the A549 cells recognized the latter as Hsp27. Upregulation of Hsp27 or chimeric Hsp27 in all transfected cell lines (stable or transient transfection) caused no measurable change in cellular glutathione levels, indicating that glutathione played no role in the stress protection associated with either protein. Chimeric Hsp27 had a monomeric molecular weight of 55 kDa (that of Hsp27 plus EGFP) in both cell types and formed a 16-mer complex twice as massive as that formed by Hsp27. Heat shock or sodium arsenite induced phosphorylation of both chimeric Hsp27 and Hsp27, which resulted in the disaggregation of Hsp27 multimers in both cell types and disaggregation of 20% of the chimeric multimers in L929 cells. But chimeric Hsp27 multimers did not disaggregate after stress in A549 cells. Epifluorescence and confocal microscopy demonstrated that chimeric Hsp27 was restricted to the cytoplasm under normal growth conditions and after heat shock in all cells. This study supports the conclusions that Hsp27 stress protection requires neither its translocation into the nucleus nor the dissociation of its multimeric complex. Furthermore, it demonstrates that fluorescent chimeras of heat shock proteins can be functional and used to observe the protein's distribution within living cells.
Collapse
Affiliation(s)
- Michael J Borrelli
- Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, MI 48073, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Poland J, Schadendorf D, Lage H, Schnölzer M, Celis JE, Sinha P. Study of therapy resistance in cancer cells with functional proteome analysis. Clin Chem Lab Med 2002; 40:221-34. [PMID: 12005211 DOI: 10.1515/cclm.2002.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Different types of cancer are naturally resistant to many anticancer drugs. Additionally, these tumours develop acquired drug resistance, which includes the classical multidrug resistance (MDR) accompanied by the synthesis of P-glycoprotein, a member of the superfamily of ATP-binding cassette (ABC) transporters. Furthermore, atypical MDR is mediated by several different, some unknown, mechanisms. To overcome chemoresistance problems, antineoplastic drugs are often combined with other modes of therapy, e.g. hyperthermia, where good response has been reported in several experimental tumour models and in advanced cancer patients. The success of this combined anticancer treatment may be limited by an increase in chemoresistance and thermoresistance. A model system to study resistance phenomena is the use of chemoresistant and thermoresistant cancer cell lines. We have established chemoresistant cancer cell lines (gastric and pancreatic carcinoma, fibrosarcoma, melanoma) and now thermoresistant cell lines derived from gastric and pancreatic carcinoma cells and their counterparts that were resistant towards daunorubicin (classical MDR) and mitoxantrone (atypical MDR). Using proteomics, in this paper we evaluate the drug resistance of chemoresistant melanoma cells (parental cell line MeWo and sublines exhibiting drug resistance towards etoposide, cisplatin, fotemustine and vindesine) as a paradigm for analysis of drug resistance phenomena. Additionally, we investigate heat resistance and the interaction of chemoresistance and thermoresistance to identify common pathways using the parental and drug resistant stomach cancer cell lines EPG85-257, EPG85-257RNOV, EPG85-257RDB and their thermoresistant counterparts. Possible implications of differential protein expression will be discussed.
Collapse
Affiliation(s)
- Julia Poland
- Institut für Laboratoriumsmedizin und Pathobiochemie, Universitätsklinikum Charité, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Chen MS, Goswami PC, Laszlo A. Differential accumulation of U14 snoRNA and hsc70 mRNA in Chinese hamster cells after exposure to various stress conditions. Cell Stress Chaperones 2002; 7:65-72. [PMID: 11892989 PMCID: PMC514804 DOI: 10.1379/1466-1268(2002)007<0065:daousa>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously characterized the unique organization of the U14 small nucleolar ribonucleic acid (snoRNA) gene in Chinese hamster HA-1 cells. The single copy of the hsc70/U14 gene is the only source for the production of both U14 snoRNA species and hsc70 messenger ribonucleic acid (mRNA) in these cells. Here we report that the accumulations of U14 snoRNA and hsc70 mRNA are different in response to various stress conditions, although both of them are transcribed in a single primary transcript. Heat shock induced an increased accumulation of both U14 snoRNA and hsc70 mRNA. On the other hand, exposure to sodium arsenite or azetidine induced an increased accumulation of hsc70 mRNA, but did not lead to a concomitant increase in the level of U14 snoRNA. Under normal growth conditions, the variations in the levels of U14 snoRNA and hsc70 mRNA, in the different phases of the cell cycle, are correlated. The increased expression of U14 snoRNA and hsc70 mRNA, and the hsc70 protein induced specifically by heat shock suggest that they participate in the repair process of heat-induced damage to macromolecular complexes involved in the synthesis and processing of ribosomal RNA.
Collapse
Affiliation(s)
- Ming-Shun Chen
- Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63108, USA
| | | | | |
Collapse
|
14
|
Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI. Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 2001; 21:7163-71. [PMID: 11585899 PMCID: PMC99891 DOI: 10.1128/mcb.21.21.7163-7171.2001] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vertebrate cells express a family of heat shock transcription factors (HSF1 to HSF4) that coordinate the inducible regulation of heat shock genes in response to diverse signals. HSF1 is potent and activated rapidly though transiently by heat shock, whereas HSF2 is a less active transcriptional regulator but can retain its DNA binding properties for extended periods. Consequently, the differential activation of HSF1 and HSF2 by various stresses may be critical for cells to survive repeated and diverse stress challenges and to provide a mechanism for more precise regulation of heat shock gene expression. Here we show, using a novel DNA binding and detection assay, that HSF1 and HSF2 are coactivated to different levels in response to a range of conditions that cause cell stress. Above a low basal activity of both HSFs, heat shock preferentially activates HSF1, whereas the amino acid analogue azetidine or the proteasome inhibitor MG132 coactivates both HSFs to different levels and hemin preferentially induces HSF2. Unexpectedly, we also found that heat shock has dramatic adverse effects on HSF2 that lead to its reversible inactivation coincident with relocalization from the nucleus. The reversible inactivation of HSF2 is specific to heat shock and does not occur with other stressors or in cells expressing high levels of heat shock proteins. These results reveal that HSF2 activity is negatively regulated by heat and suggest a role for heat shock proteins in the positive regulation of HSF2.
Collapse
Affiliation(s)
- A Mathew
- Department of Biochemistry, Molecular Biology, and Cell Biology, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
15
|
Sinha P, Poland J, Schnölzer M, Celis JE, Lage H. Characterization of the differential protein expression associated with thermoresistance in human gastric carcinoma cell lines. Electrophoresis 2001; 22:2990-3000. [PMID: 11565793 DOI: 10.1002/1522-2683(200108)22:14<2990::aid-elps2990>3.0.co;2-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resistance to chemotherapeutic agents is one of the major problems faced during palliative therapy of tumor cells. Thus, chemotherapy is frequently combined with other modes of therapy such as radiation therapy and/or hyperthermia. Tumor cells respond to heat stress with development of thermotolerance and the interactions between chemo- and thermoresistance phenomena are not clearly understood. In this paper, we analyze the differential protein expression in vitro in human stomach cancer cells, their chemoresistant and thermoresistant counterparts using proteomics. The immediate aim was to identify sets of proteins that may lead to the development of thermoresistance. Based on these results, we aim to develop functional tests and methods for the modulation of thermoresistance and chemoresistance phenomena that may assist the therapy of inoperable cancers.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Blotting, Western
- Carcinoma/metabolism
- Carcinoma/pathology
- Drug Resistance, Neoplasm/genetics
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Hot Temperature
- Humans
- Hyperthermia, Induced
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Proteome
- Silver Staining
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Tumor Cells, Cultured/chemistry
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- P Sinha
- Institut für Laboratoriumsmedizin und Pathobiochemie, Universitätsklinikum Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
16
|
Wang YJ, Ho YS, Jeng JH, Su HJ, Lee CC. Different cell death mechanisms and gene expression in human cells induced by pentachlorophenol and its major metabolite, tetrachlorohydroquinone. Chem Biol Interact 2000; 128:173-88. [PMID: 11064002 DOI: 10.1016/s0009-2797(00)00194-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pentachlorophenol (PCP) and its salt are used extensively as biocide and wood preservative. Due to improper disposal, PCP has become an environmental pollutant and is now considered to be ubiquitos. Metabolic studies carried out in rodents or human liver homogenate have indicated that PCP undergoes oxidative dechlorination to form tetrachlorohydroquinone (TCHQ). The cytotoxicity, cell death mechanisms and gene expression of PCP and TCHQ are investigated in human liver and bladder cells and show that TCHQ induces apoptosis and DNA genomic fragmentation in bladder cells but not liver cells. No apoptotic features could be induced by treatment of PCP in both cell lines. The concentrations of PCP required to cause 50% cell death in T-24 and Chang liver cells were 5-10-fold greater than the concentrations of TCHQ. Several gene products are important in controlling the apoptotic and necrotic processes. Of these, hsp 70, CAS, bcl-2 and bax were studied. The expression of the hsp70 gene increased significantly (2-3-fold) in cells treated with TCHQ. However, no significant change was found in the cells treated with PCP. The expression of CAS gene decreased significantly in T-24 cells treated with both TCHQ and PCP. Whereas, no significant change was found in Chang liver cells with the same treatment. In addition, the expression of the bcl-2/bax protein decreased significantly in these two cell lines treated with TCHQ but not PCP.
Collapse
Affiliation(s)
- Y J Wang
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, 138 Sheng-Li Road, 70428, Tainan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
17
|
Ohtsuka K, Hata M. Molecular chaperone function of mammalian Hsp70 and Hsp40--a review. Int J Hyperthermia 2000; 16:231-45. [PMID: 10830586 DOI: 10.1080/026567300285259] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Virtually all organisms respond to up-shifts in temperature (heat shock) by synthesizing a set of proteins called heat shock proteins (HSPs). The HSPs are induced not only by heat shock but also by various other environmental stresses. Induction of HSPs is regulated by the trans-acting heat shock factors (HSFs) and cis-acting heat shock element (HSE) present at the promoter region of each heat shock gene. Usually, HSPs are also expressed constitutively at normal growth temperatures and have basic and indispensable functions in the life cycle of proteins as molecular chaperones, as well as playing a role in protecting cells from the deleterious stresses. Molecular chaperones are able to inhibit the aggregation of partially denatured proteins and refold them using the energy of ATP. Recently, there are expectations for the use of molecular chaperones for the protection against and therapeutic treatment of inherited diseases caused by protein misfolding. In this review, the focus will be on the mammalian Hsp40, a homologue of bacterial DnaJ heat shock protein, and the beneficial functions of molecular chaperones.
Collapse
Affiliation(s)
- K Ohtsuka
- Laboratory of Experimental Radiology, Aichi Cancer Center Research Institute, Nagoya, Japan.
| | | |
Collapse
|
18
|
|
19
|
Wu R, Zhao YH, Plopper CG, Chang MM, Chmiel K, Cross JJ, Weir A, Last JA, Tarkington B. Differential expression of stress proteins in nonhuman primate lung and conducting airway after ozone exposure. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L511-22. [PMID: 10484458 DOI: 10.1152/ajplung.1999.277.3.l511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The presence of seven stress proteins including various heat shock proteins [27-kDa (HSP27), 60-kDa (HSP60), 70-kDa (HSP70) and its constitutive form HSC70, and 90-kDa (HSP90) HSPs] and two glucose-regulated proteins [75-kDa (GRP75) and 78-kDa (GRP78) GRPs] in ozone-exposed lungs of nonhuman primates and in cultured tracheobronchial epithelial cells was examined immunohistochemically by various monoclonal antibodies. Heat treatment (42 degrees C) resulted in increased HSP70, HSP60, and HSP27 and slightly increased HSC70 and GRP75 but no increase in GRP78 in primary cultures of monkey tracheobronchial epithelial cells. Ozone exposure did not elevate the expression of these HSPs and GRPs. All of these HSPs including HSP90, which was undetectable in vitro, were suppressed in vivo in monkey respiratory epithelial cells after ozone exposure. Both GRP75 and GRP78 were very low in control cells, and ozone exposure in vivo significantly elevated these proteins. These results suggest that the stress mechanism exerted on pulmonary epithelial cells by ozone is quite different from that induced by heat. Furthermore, differences between in vitro and in vivo with regard to activation of HSPs and GRPs suggest a secondary mechanism in vivo, perhaps related to inflammatory response after ozone exposure.
Collapse
Affiliation(s)
- R Wu
- Division of Pulmonary and Critical Care Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Phang D, Joyce EM, Heikkila JJ. Heat shock-induced acquisition of thermotolerance at the levels of cell survival and translation in Xenopus A6 kidney epithelial cells. Biochem Cell Biol 1999. [DOI: 10.1139/o99-017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this study we have investigated the acquisition of thermotolerance in a Xenopus laevis kidney A6 epithelial cell line at both the level of cell survival and translation. In cell survival studies, A6 cells were incubated at temperatures ranging from 22 to 35°C for 2 h followed by a thermal challenge at 39°C for 2 h and a recovery period at 22°C for 24 h. Optimal acquisition of thermotolerance occurred at 33°C. For example, exposure of A6 cells to 39°C for 2 h resulted in only 3.4% survival of the cells whereas prior exposure to 33°C for 2 h enhanced the survival rate to 69%. This state of thermotolerance in A6 cells was detectable after 1 h at 33°C and was maintained even after 18 h of incubation. Cycloheximide inhibited the acquisition of thermotolerance at 33°C suggesting the requirement for ongoing protein synthesis. The optimal temperature for the acquisition of translational thermotolerance also occurred at 33°C. Treatment of A6 cells at 39°C for 2 h resulted in an inhibition of labeled amino acid incorporation into protein which recovered to approximately 14% of control after 19 h at 22°C whereas cells treated at 33°C for 2 h prior to the thermal challenge recovered to 58% of control levels. These translationally thermotolerant cells displayed relatively high levels of the heat shock proteins hsp30, hsp70, and hsp90 compared to pretreatment at 22, 28, 30, or 35°C. These studies demonstrate that Xenopus A6 cells can acquire a state of thermotolerance and that it is correlated with the synthesis of heat shock proteins.Key words: Xenopus laevis, heat shock protein, hsps, A6 cells, chaperone, thermotolerance.
Collapse
|
21
|
Chen MS, Laszlo A. Unique features of Chinese hamster S13 gene relative to its human and Xenopus analogs. DNA Cell Biol 1999; 18:463-70. [PMID: 10390155 DOI: 10.1089/104454999315187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.
Collapse
Affiliation(s)
- M S Chen
- Section of Cancer Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
22
|
Mirkes PE, Cornel LM, Wilson KL, Dilmann WH. Heat shock protein 70 (Hsp70) protects postimplantation murine embryos from the embryolethal effects of hyperthermia. Dev Dyn 1999; 214:159-70. [PMID: 10030595 DOI: 10.1002/(sici)1097-0177(199902)214:2<159::aid-aja6>3.0.co;2-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Previous work has shown that there is a positive correlation between the induction of Hsp70 and its transient nuclear localization and the acquisition and loss of induced thermotolerance in postimplantation rat embryos. To determine whether Hsp70 is sufficient to induce thermotolerance in postimplantation mammalian embryos, we used a transgenic mouse in which the normally strictly inducible Hsp70 is constitutively expressed in the embryo under the control of a beta-actin promoter. Day 8.0 mouse embryos heterozygous for the Hsp70 transgene were not protected from the embryotoxic effects of hyperthermia (43 degrees C); however, homozygous embryos, expressing approximately twice as much Hsp70 as heterozygous embryos, were partially protected (increased embryo viability) from the embryolethal effects of hyperthermia. Although the viability of transgenic embryos was significantly increased compared with that of nontransgenic embryos, this protection did not extend to embryo growth and development. To determine whether the failure to achieve a more robust protection was related to the expression of insufficient Hsp70 in transgenic embryos, we undertook experiments to determine whether the level of Hsp70 correlated with the level of thermotolerance induced by various lengths of a 41 degrees C heat shock. A 41 degrees C, 5-minute heat shock failed to induce Hsp70 or thermotolerance, a 41 degrees C, 15-minute heat shock induced Hsp70 and a significant level of thermotolerance, while a 41 degrees C, 60-minute heat shock induced an even higher level of Hsp70 as well as a higher level of thermotolerance. Quantitation of Hsp70 levels indicated that thermotolerance was associated with levels of Hsp70 of 820 pg/microg embryo protein or greater. Subsequent quantitation of the amount of Hsp70 expressed in homozygous transgenic embryos indicated a level of 577 pg/microg embryo protein, that is, a level below that associated with induced thermotolerance. Overall, results presented indicate that Hsp70 does play a direct role in the induction of thermotolerance in postimplantation mouse embryos; however, the level of thermotolerance is dependent on the level of Hsp70 expressed.
Collapse
Affiliation(s)
- P E Mirkes
- Department of Pediatrics, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
23
|
Hoekstra KA, Iwama GK, Nichols CR, Godin DV, Cheng KM. Increased heat shock protein expression after stress in Japanese quail. Stress 1998; 2:265-72. [PMID: 9876257 DOI: 10.3109/10253899809167290] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock proteins (HSPs) have been shown to provide information on the biological impact of environmental stress to organisms, yet none have investigated the HSP response to stress in birds. Japanese quail were exposed to seven different stressors (mild restraint, loud noise, inescapable irritation, cold temperature, isolation in darkness, and two stressful social situations) and expression of HSP30, 60, 70, and 90 in heart, liver, lung, kidney and gonads was examined. Tonic Immobility (TI) tests were also conducted to assess whether the stressors increased fear response. Increased expression of HSP70 was found in the myocardial tissue of birds exposed to loud noise, inescapable irritation, cold temperature, and isolation in darkness. Increased expression of other HSPs was not apparent in the heart or any of the other all tissues examined. Longer TI was observed only in birds exposed to the noise stress. Evidence is presented that a fairly wide range of stressors caused increased expression of HSP70 in the Japanese quail myocardial tissue and that HSPs may provide useful biomarkers for the study of environmental stress in birds.
Collapse
Affiliation(s)
- K A Hoekstra
- Department of Animal Science, University of British Columbia, Vancouver, B.C. V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
24
|
Wang YJ, Ho YS, Pan MH, Lin JK. Mechanisms of cell death induced by nitric oxide and peroxynitrite in Calu-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1998; 6:35-44. [PMID: 21781879 DOI: 10.1016/s1382-6689(98)00016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Revised: 02/25/1998] [Accepted: 03/02/1998] [Indexed: 05/31/2023]
Abstract
S-nitrosoglutathione (GSNO) is an important physiological redox form of nitric oxide (NO) and serves as an NO-releasing compound. 3-Morpholinosydnonimine hydrochloride (SIN-1) produces NO and superoxide anion (O(2)(·-)) which results in the formation of peroxynitrite (ONOO(-)). We investigate the cytotoxicity, cell death mechanisms and gene expression of NO and ONOO(-) in human lung epithelial cells show NO induced apoptosis and DNA genomic fragmentation. Whereas, ONOO(-) induced cell death more characteristic of necrosis than apoptosis. The concentrations of GSNO and SIN-1 required to cause death in 50% of cells were greater than 1 mM. Several gene products are important in controling the apoptotic and necrotic processes. Of these, bcl-2, bax and hsp 70 were studied. The level of expression of bcl-2 was dramatically decreased in cells treated with SIN-1 or GSNO, while the expression level of bax, the heterodimer of bcl-2, did not significant change. In addition, a roughly two-fold increase of hsp 70 was found in cells treated with SIN-1. There were no significant changes in hsp 70 levels in cells treated with GSNO.
Collapse
Affiliation(s)
- Y J Wang
- Institute of Biochemistry, College of Medicine, National Taiwan University, No. 1, Section. 1, Jen-ai Road, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- A Laszlo
- Section of Cancer Biology, Mallinckrodt Institute of Radiology, Washington University, School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
26
|
Mirkes PE. Molecular/cellular biology of the heat stress response and its role in agent-induced teratogenesis. Mutat Res 1997; 396:163-73. [PMID: 9434867 DOI: 10.1016/s0027-5107(97)00182-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Available data indicate that heat shock proteins act as chaperones under non-stress conditions by assisting in: (1) the folding of newly synthesized proteins, (2) the intracellular translocation of proteins, and (3) the function of other proteins. As we gain additional information concerning cellular physiology, we may find that heat shock proteins play a key role in many additional cellular functions. When cells experience thermal or chemical stress, heat shock proteins take on a new role, conserved from bacteria to humans, of protecting cells from the detrimental effects of stress. This latter role takes on added significance for the embryo in which the developmental program must be read linearly, with little opportunity to cycle backward to complete a missed segment of the program. Although circumstantial evidence clearly implicates heat shock proteins in protecting embryos from thermal stress, definitive evidence is still lacking. The challenge for the future is to obtain such definitive data. Ideally, such information will lead to new therapeutic paradigms that will afford protection to the human embryo/fetus exposed to thermal/chemical stress.
Collapse
Affiliation(s)
- P E Mirkes
- Department of Pediatrics, University of Washington, Seattle 98195, USA.
| |
Collapse
|
27
|
Morcillo G, Gorab E, Tanguay RM, Díez JL. Specific intranucleolar distribution of Hsp70 during heat shock in polytene cells. Exp Cell Res 1997; 236:361-70. [PMID: 9367619 DOI: 10.1006/excr.1997.3726] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hsp70, the most abundant and conserved heat shock protein, has been described as strongly concentrating in the nucleolus during heat shock. The important metabolic processes that take place in the nucleolus, rDNA transcription, processing, and assembling with ribosomal proteins, and the nucleolar architecture itself are very sensitive to temperature changes. In this work, we have analyzed in detail the nucleolar changes, in structure and activity, induced by temperature in Chironomus thummi salivary gland cells and the fine subnucleolar localization of Hsp70 during heat shock. The optimum temperature chosen to induce the heat shock response was 35 degrees C. Under these conditions transcription of heat shock genes, inactivation of previously active genes and maximum synthesis of Hsps take place, while survival of larvae and recovery were ensured. After 1 h at 35 degrees C, nucleoli change from a uniform control pattern to a segregated pattern of nucleolar components that can be observed even at the light microscopic level. The dense fibrillar component (DFC) and the granular component appeared perfectly differentiated and spatially separated, the former occupying mainly the central inner region surrounded by a rim of granular component. Hsp70 was specifically localized within the DFC upon heat shock as shown by immunolocalization by both light and electron microscopy. Pulse labeling with [3H]uridine proves that rRNA transcription continues during heat shock. The pattern of Hsp70 distribution within the nucleolus correlates with that of newly produced rRNA transcripts. Hsp70 also colocalizes with RNA polymerase I, both being restricted to the DFC. These data show that the DFC seems to be the intranucleolar target for Hsp70 in heat-shocked cells. We discuss these results in relation to the possible function of Hsp70 in the first steps of preribosome synthesis.
Collapse
Affiliation(s)
- G Morcillo
- Department of Organic Chemistry and Biology, Universidad Nacional de Educación a Distancia, Madrid, Spain.
| | | | | | | |
Collapse
|
28
|
Visioli G, Maestri E, Marmiroli N. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) heynh. PLANT MOLECULAR BIOLOGY 1997; 34:517-527. [PMID: 9225862 DOI: 10.1023/a:1005824314022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plants of Arabidopsis thaliana pre-treated at 37 degrees C for 2 h can survive an otherwise lethal heat shock at 45 degrees C. Differential display reverse transcriptase-PCR (DDRT-PCR) was utilized to clone DNA fragments corresponding to mRNAs specifically expressed in conditions of induced thermotolerance or of expression of thermotolerance. One of these DDRT-PCR fragments enabled the isolation of a genomic clone pAt1.3EX, containing the sequence Athsp23.5, the gene for a low-molecular-weight (LMW) heat shock protein (HSP), AtHSP23.5. Athsp23.5 is low- or single-copy in the Arabidopsis genome and its open reading frame is interrupted by a 137 bp intron. Analysis of the sequence suggests AtHSP23.5 is targeted to the mitochondrion. The steady-state level of the AtHSP23.5 mRNA varied significantly according to the heat treatment, increasing on heat shock (transfer from 22 degrees C to 37 degrees C), with a further increase during expression of thermotolerance (transfer from 22 degrees C to 37 degrees C and then to 45 degrees C). Expression was low after an abrupt stress (from 22 degrees C to 45 degrees C). This behaviour was different from that observed for other LMW HSP mRNAs that were present at high level at 37 degrees C, but did not increase significantly in condition of expression of thermotolerance, and reached a considerable steady-state level also during the abrupt stress at 45 degrees C. The retrotranscription of AtHSP23.5 mRNA followed by amplification with two primers encompassing the intron allowed for the isolation of an almost full-length cDNA sequence. The sequence analysis of the two cDNAs obtained from condition 22 degrees C-->37 degrees C and condition 22 degrees C-->45 degrees C suggested that in both cases the intron had been correctly spliced. The importance of correct intron splicing in survival at high temperatures and the role of mitochondrial HSP in induction and expression of thermotolerance are discussed.
Collapse
Affiliation(s)
- G Visioli
- Department of Environmental Sciences, University of Parma, Italy
| | | | | |
Collapse
|
29
|
Orel L, Simon MM, Karlseder J, Bhardwaj R, Trautinger F, Schwarz T, Luger TA. alpha-Melanocyte stimulating hormone downregulates differentiation-driven heat shock protein 70 expression in keratinocytes. J Invest Dermatol 1997; 108:401-5. [PMID: 9077466 DOI: 10.1111/1523-1747.ep12289699] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heat shock proteins are versatile tools engaged in several cellular functions. In particular, the stress-inducible 70-kDa heat shock protein (hsp70) not only confers protection on cells but also is involved in the regulation of the production of cellular stress response mediators including cytokines. In addition to cytokines, neurohormones such as alpha-melanocyte stimulating hormone (alphaMSH) were recently found to be potent mediators of inflammatory and immune responses. Thus, the current study was performed to investigate the role of alphaMSH in the expression of hsp70 in a human keratinocyte cell line (HaCaT). Proliferation and differentiation of HaCaT cells are known to be regulated by changing extracellular Ca2+ concentrations. HaCaT cells induced to differentiate in high Ca2+ medium (1.5 mM) were found to express higher levels of hsp70 protein than cells grown under low Ca2+ conditions. Moreover, differentiated HaCaT cells were markedly more resistant to oxidative stress than undifferentiated control cells. alphaMSH significantly suppressed hsp70 expression in a concentration-dependent manner in differentiated HaCaT cells but had only a minor effect on undifferentiated cells. Upon treatment with alphaMSH, HaCaT cells grown in high Ca2+ medium were rendered more sensitive to oxidative stress, which significantly decreased their survival rate. These findings indicate that alphaMSH, which is released by keratinocytes in an autocrine fashion following injurious stimuli such as tumor promoters or ultraviolet light, is able to regulate the cells' cytoprotective protein equipment.
Collapse
Affiliation(s)
- L Orel
- Institut für Bodenkultur, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Oshima H, Hatayama T, Nakamura M. A possibility for new evaluating method of cytotoxicity by using heat shock protein assay. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 1997; 8:143-147. [PMID: 15348767 DOI: 10.1023/a:1018519102758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To determine whether heat shock proteins can be utilized as a biomarker for cytotoxicity of dental materials the induction of synthesis of heat shock proteins by mercuric chloride was examined. To analyse the synthesis of heat shock proteins, HeLa cells were labelled with [35S] methionine, and the labelled proteins were separated by SDS-PAGE and autoradiographed. Incubation of the cells in a medium containing 1.25 to 40 microM mercuric chloride markedly increased the synthesis of HSP70. At 20 or 40 microM mercuric chloride in medium, HeLa cells synthesized HSP70 at 2 h after exposure, maximally at 4-7 h, and gradually diminished thereafter. Examination of the cytotoxicity of mercuric chloride by the conventional neutral red uptake assay revealed a reduction of uptake of the dye in the presence of mercuric chloride at 40 microM and above. These findings suggest that the induction of synthesis of HSP70 is one of the most sensitive cellular responses caused by mercury ion, and the heat shock protein assay can be utilized for evaluation of the cytotoxicity of dental materials.
Collapse
Affiliation(s)
- H Oshima
- Department of Biomaterials, Osaka Dental University, Japan
| | | | | |
Collapse
|
31
|
Voisin PJ, Pardue S, Macouillard F, Yehia G, Labouesse J, Morrison-Bogorad M. Differential expression of heat shock 70 proteins in primary cultures from rat cerebellum. Brain Res 1996; 739:215-34. [PMID: 8955942 DOI: 10.1016/s0006-8993(96)00825-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While a number of studies have described the heat shock response in established cell lines and in primary cultures of cells derived from the nervous system, there has been no systematic analysis comparing expression and localization of the inducible heat shock 70 (hsp70) proteins and the constitutively synthesized members of the family (hsc70) in neurons and glia. In the present communication, we utilized specific probes to compare the expression of hsp70 and hsc70 mRNAs and proteins in two types of primary cultures, astroglial and neuro-astroglial, from postnatal rat cerebellum. Conditions were adjusted to maintain physiological numbers of microglia in both types of culture, and cultures were analyzed at a number of different time points following a precisely defined heat shock. The northern, in situ hybridization and immunohistochemical analyses resulted in a number of novel observations concerning the nature of the heat shock response in these neuronal and glial cells. In postnatal day 4-5 cultures, hsp70 mRNA levels were elevated for at least 10 h in both types of culture, but in situ hybridization analysis showed no evidence for hsp70 mRNAs in neurons. Microglia were the only cell type in which hsp70 was detected in non-stressed cultures and this cell type contained the highest concentrations of hsp70 proteins in stressed cultures. Hsc70 mRNA levels were also increased after heat shock, but the increase was more transient. Hsc70 mRNAs and proteins were present in all cell types, again with the highest concentrations being present in microglia. Hsc70 mRNAs and proteins were localized in the cytoplasm at all time points examined, with hsc70 protein also being localized in nucleoli. Hsp70 mRNAs and proteins were diffusely localized over nuclei of astrocytes, as well as of most microglia. Hsp70, but not hsc70, was localized on chromosomes in glia once they had resumed cell division after heat shock, suggesting a role for hsp70 either in targeting damaged chromosomal proteins or in cell division. Some cytoplasmic hsp70 was observed in astrocytes of the mixed neuro-astroglial cultures and a delayed hsp70 immunoreactivity was observed in granule neurons in these cultures, suggesting either that translation of low levels of hsp70 mRNAs was more efficient in neurons, or that glial-neuronal translocation of hsp70 proteins had taken place. These results suggest that metabolism and functions of different heat shock protein family members may not always be identical and that care must be taken in extrapolation of results from one cell type to another.
Collapse
Affiliation(s)
- P J Voisin
- UMR5536, CNRS, Université de Bordeaux II, France
| | | | | | | | | | | |
Collapse
|
32
|
Xu M, Wright WD, Higashikubo R, Roti JL. Chronic thermotolerance with continued cell proliferation. Int J Hyperthermia 1996; 12:645-60; discussion 661-2. [PMID: 8886891 DOI: 10.3109/02656739609027672] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human colon adenocarcinoma cell line, NSY42129, is capable of proliferation at 41.1 degrees C. This ability appears to be due to a type of chronic thermotolerance, as opposed to selection or adaptation, that allows these cells to traverse S phase at elevated temperatures. Four other human cell lines were studied for their ability to proliferate at 41.1 degrees C. Of those only one, also a colon adenocarcinoma, showed the ability to sustain proliferation at 41.1 degrees C. While all the cell lines examined showed increased levels of the major heat shock proteins at 41.1 degrees C, the cellular amounts of these proteins did not correlate with their ability to proliferate at 41.1 degrees C. However, the ability of the cells to proliferate at 41.1 degrees C did correlate with their ability to sustain elevated rates of synthesis of hsp70 and hsp90. These results could have implications in the clinical application of hyperthermia, particularly the use of long duration moderate hyperthermia.
Collapse
Affiliation(s)
- M Xu
- Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, Missouri 63108 USA
| | | | | | | |
Collapse
|
33
|
Hirvonen MR, Brüne B, Lapetina EG. Heat shock proteins and macrophage resistance to the toxic effects of nitric oxide. Biochem J 1996; 315 ( Pt 3):845-9. [PMID: 8645166 PMCID: PMC1217283 DOI: 10.1042/bj3150845] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO) functions as a pathophysiological mediator in mammalian tissues. Activated macrophages produce NO as a non-specific immune response directed against invading bacteria or micro-organisms. The same macrophages that initiate the production of NO also can be toxically affected by NO. Incubation of RAW 264.7 macrophages with lipopolysaccharide (LPS) and/or interferon-gamma (INF-gamma) induced the formation of NO by the activation of a cytokine-inducible NO synthase (NOS). The viability of these macrophages was inversely correlated with the formation of nitrite, a final NO-oxidation product measurable in the incubation medium. The addition of an NOS inhibitor, NG-monomethyl-L-arginine, diminished NO formation and preserved cell viability in a dose- and time-dependent fashion. Treatment of macrophages with ten cycles of non-lethal doses of LPS and INF-gamma, each followed by subculturing of the surviving cells, resulted in cell resistance to the NO toxic insult induced by LPS and INF-gamma. These resistant macrophages showed a 2-fold increase in the expression of the constitutive heat shock protein (HSC 70) which is known to be involved in protecting cells against the action of various metabolic insults. Our results establish a link between cell resistance to the toxic effects of NO, and the expression of heat shock proteins in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- M R Hirvonen
- Department of Toxicology, National Public Health Institute, Kuopio, Finland
| | | | | |
Collapse
|
34
|
Allen JW, Dix DJ, Collins BW, Merrick BA, He C, Selkirk JK, Poorman-Allen P, Dresser ME, Eddy EM. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 1996; 104:414-21. [PMID: 8601336 DOI: 10.1007/bf00352265] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mouse spermatogenic cells are known to express HSP70-2, a member of the HSP70 family of heat-shock proteins. The purpose of the present study was to characterize further the expression and localization of HSP70-2 in meiotic cells of mice and hamsters. After separating mouse spermatogenic cells into cytoplasmic and nuclear fractions, proteins were separated by two-dimensional gel electrophoresis and detected with HSP-specific antibodies. Of several HSP70 proteins identified in the cytoplasm, only HSC70 and HSP70-2 were also detected in the nucleus. Immunocytological analyses of spermatocyte prophase cells revealed that HSP70-2 was associated with the synaptonemal complex. Surface-spread synaptonemal complexes at pachytene and diplotene stages labeled distinctly with the antiserum to HSP70-2. Synaptonemal complexes from fetal mouse oocytes failed to show any evidence of HSP70-2. Reverse-transcriptase-polymerase chain reaction (RT-PCR) analyses of gene expression confirmed this sex specificity; Hsp70-2 mRNA was detected in mouse testes, but not ovaries. These findings are suggestive of a previously unsuspected sexual dimorphism in structure and/or function of the synaptonemal complex.
Collapse
Affiliation(s)
- J W Allen
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li GC, Nussenzweig A. Thermotolerance and heat shock proteins: possible involvement of Ku autoantigen in regulating Hsp70 expression. EXS 1996; 77:425-49. [PMID: 8856989 DOI: 10.1007/978-3-0348-9088-5_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we characterize and compare the phenomenon of thermotolerance and permanent heat resistance in mammalian cells. The biochemical and molecular mechanisms underlying the induction of thermotolerance, and the role that heat shock proteins play in its development and decay are discussed. Finally, we describe a novel constitutive HSE-binding factor (CHBF/Ku) that appears to be involved in the regulation of the heat shock response.
Collapse
Affiliation(s)
- G C Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Van Rijn J, Van den Berg J, Souren JE, Van Wijk R, Joenje H. Hepatoma cells adapted to proliferate under normally lethal hyperthermic stress conditions show rapid decay of thermoresistance and heat shock protein synthesis when returned to 37 degrees C. Int J Hyperthermia 1995; 11:697-708. [PMID: 7594820 DOI: 10.3109/02656739509022501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
H35 hepatoma cultures were adapted to sustained growth at 41.3 degrees C. In these variant cells the 'basic' levels of various heat shock proteins (hsps), especially those of hsp60, 70 and 100, are significantly raised. These cells exhibit a thermoresistance comparable with the induced thermotolerance in normal hepatoma cells heat shocked at 42.5 degrees C for 30 min. However, this resistance of variant cells shows a rapid, exponential decay with a half-time of 2.2 h when the temperature is lowered to 37 degrees C, with a concomitant decrease of the synthesis of hsp60 and 70. Heat shock experiments with variant cells grown at 41.3 degrees C lead to increased thermoresistance and synthesis of hsps when further incubation was performed at the original temperature but not at 37 degrees C. In the latter case, only a 3-h delay in the onset of decay of thermoresistance is observed. However, when the variant cells were incubated at 37 degrees C prior to heat stress normal induction of thermoresistance and hsp synthesis return inversely proportional to the progression of thermoresistance decay. Thermoresistant cells thus seem to be valuable tools in the study of the down-regulation of thermoresistance as well as of hsp synthesis.
Collapse
Affiliation(s)
- J Van Rijn
- Department of Radiotherapy, Free University, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Li D, Duncan RF. Transient acquired thermotolerance in Drosophila, correlated with rapid degradation of Hsp70 during recovery. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:454-65. [PMID: 7635158 DOI: 10.1111/j.1432-1033.1995.tb20719.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Acquired thermotolerance, measured either as increased cell viability following a lethal heat shock or by translational thermotolerance, appears rapidly following a 'priming' heat treatment, but also decays rapidly. 4 hours after priming heating thermotolerance is reduced by > 50% and by 9 hours it is virtually undetectable. Heat-shock protein 70 (Hsp70) turns over with a half-life of approximately 2 hours, and the decline in its intracellular abundance parallels the loss of acquired thermotolerance. Continuous heat shock extends the half-life of Hsp70 to approximately 7 hours. When Hsp70 is expressed at normal temperature using a metallothionein promoter, only partial acquired translational thermotolerance results. The results suggest that acquired thermotolerance is tightly regulated in Drosophila and partly, but not wholly, determined by post-translational regulation of Hsp70 levels.
Collapse
Affiliation(s)
- D Li
- University of Southern California School of Pharmacy, Department of Molecular Pharmacology and Toxicology, Los Angeles 90033, USA
| | | |
Collapse
|
38
|
Li GC, Mivechi NF, Weitzel G. Heat shock proteins, thermotolerance, and their relevance to clinical hyperthermia. Int J Hyperthermia 1995; 11:459-88. [PMID: 7594802 DOI: 10.3109/02656739509022483] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mammalian cells, when exposed to a non-lethal heat shock, have the ability to acquire a transient resistance to subsequent exposures at elevated temperatures, a phenomenon termed thermotolerance. The mechanism(s) for the development of thermotolerance is not well understood, but earlier experimental evidence suggests that protein synthesis may play a role in its manifestation. On the molecular level, heat shock activates a specific set of genes, so-called heat shock genes, and results in the preferential synthesis of heat shock proteins. The heat shock response, specifically the regulation, expression and functions of heat shock proteins, has been extensively studied in the past decades and has attracted the attention of a wide spectrum of investigators ranging from molecular and cell biologists to radiation and hyperthermia oncologists. There is much data supporting the hypothesis that heat shock proteins play important roles in modulating cellular responses to heat shock, and are involved in the development of thermotolerance. This review summarizes some current knowledge on thermotolerance and the functions of heat shock proteins, especially hsp70. The relationship between thermotolerance development and hsp70 synthesis in tumours and in normal tissues is examined. The possibility of using hsp70 as an indicator for thermotolerance is discussed.
Collapse
Affiliation(s)
- G C Li
- Radiation Oncology Research Laboratory, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
39
|
Qian J, Moliterno R, Donovan-Peluso MA, Liu K, Suzow J, Valdivia L, Pan F, Duquesnoy RJ. Expression of stress proteins and lymphocyte reactivity in heterotopic cardiac allografts undergoing cellular rejection. Transpl Immunol 1995; 3:114-23. [PMID: 7582902 DOI: 10.1016/0966-3274(95)80038-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This report addresses the concept that, during rejection, the allograft undergoes a stress response which leads to an increased expression of stress proteins, also called heat shock proteins (hsp), and the recruitment and activation of hsp-reactive lymphocytes. Recent studies in our laboratory have provided evidence that hsp-reactive T-cells are present in cardiac allografts undergoing rejection. In this study, an MHC incompatible heterotopic heart allograft model (ACI into LEW) was chosen to analyse the kinetics of hsp expression during the development of rejection. Allografts and syngrafts (LEW into LEW) were harvested every day during the first 5 days post-transplant. Immunoblot analysis of proteins extracted from graft stromal tissues was done with murine monoclonal antibodies (mAb) against various mammalian hsp. Proliferation studies were done to determine hsp reactivity of graft-infiltrating lymphocytes on different days post-transplant. Three types of stressful stimuli appeared to increase hsp expression in the allograft. The first was a physiological stress secondary to the trauma of the transplant procedure and ischaemia/reperfusion injury and this would occur in allogeneic and syngeneic grafts. During the first day after transplantation, both types of grafts showed higher expression of hsp72 and grp78 and to a lesser extent, hsp60 and grp75. On the second and third day, the expression of grp78 and grp96 was higher in allografts than in syngrafts and this may reflect an immunologically mediated stress response in the allograft when infiltrating hsp-reactive lymphocytes became first detectable in the allograft. The third type of stress appeared related to the inflammatory process associated with rejection. On the fourth and fifth day post-transplant, the allografts showed strong expression of at least five proteins of lower molecular mass reacting with hsp-specific mAbs; namely, approximately 40 kDa (detected by anti-hsp60), approximately 30 kDa (by anti-hsp72), approximately 45 kDa and approximately 32 kDa (by anti-hsp72 + hsc73), and approximately 50 kDa (by anti-grp78). At that time, the allograft began to show progressive inflammatory changes and tissue damage. The appearance of lower molecular mass hsp-crossreactive proteins might reflect a degradation of hsps which had increased expression earlier during the post-transplant period. This process may generate large quantities of hsp-derived peptides which may be presented by MHC molecules to graft-infiltrating T-cells. Another interpretation of the strong expression of lower molecular bands in later allografts is that they represent other stress proteins that crossreact with antibodies against hsp60 and hsp70 family members.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Qian
- Division of Transplant Pathology, University of Pittsburgh Medical Center, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Ménoret A, Otry C, Labarrière N, Breimer ME, Piller F, Meflah K, Le Pendu J. The expression of carbohydrate blood group antigens correlates with heat resistance. J Cell Sci 1995; 108 ( Pt 4):1691-701. [PMID: 7615686 DOI: 10.1242/jcs.108.4.1691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent data indicate that cells may resist heat shock via more than one route: heat shock protein synthesis and other still ill-defined mechanisms. We investigated this phenomenon using four types of cells derived from a single rat colon carcinoma: clones REGb and PROb; PRO A+, a glycosylation variant of PROb selected for its high expression of blood group A antigen; and Ph8, a thermoresistant variant of PROb selected by repeated sublethal heat treatments. Basal heat resistance was clearly associated with the level of cell surface expression of blood group H and A antigens. Biosynthesis of these carbohydrate structures requires two glycosyltransferases, H and A enzymes, whose activities are also correlated with basal heat resistance. In addition, heat sensitive REGb cells were rendered more resistant by transfection with the gene encoding for H enzyme, allowing expression of H antigen. Thus, these terminal glycosylations could play a role as cellular protectors against heat treatment. Blood group carbohydrate antigens were mainly located on O-linked carbohydrate chains of a major glycoprotein of 200 kDa and to a lesser extent on N-linked chains. Only trace amounts were present as glycolipids.
Collapse
Affiliation(s)
- A Ménoret
- INSERM U419, Institut de Biologie, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu RY, Corry PM, Lee YJ. Potential involvement of a constitutive heat shock element binding factor in the regulation of chemical stress-induced hsp70 gene expression. Mol Cell Biochem 1995; 144:27-34. [PMID: 7791742 DOI: 10.1007/bf00926737] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It was reported that chemical stresses such as arsenite, cadmium or salicylate fail to induce synthesis of the inducible form of HSP70 (HSP70i). We report here that exposure of cells to higher doses of these chemical treatments induced significant synthesis of HSP70i in CHO cells as well as other cell lines. The synthesis of HSP70i is primarily regulated at the transcriptional level. Although all tested chemical treatments induced heat shock factor (HSF) binding to the heat shock element (HSE), HSP70i synthesis appears to be regulated by an alternative factor (CHBF) which constitutively binds to the HSE at 37 degrees C. The treatments, which dissociate the HSE-CHBF complex, induced significant HSP70i synthesis. The treatments, which failed to induce HSP70i synthesis, still activated HSF binding to HSE but the HSE-CHBF complex remained as that of untreated control cells.
Collapse
Affiliation(s)
- R Y Liu
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | |
Collapse
|
42
|
Lee YC, Lai YK. Integrity of intermediate filaments is associated with the development of acquired thermotolerance in 9L rat brain tumor cells. J Cell Biochem 1995; 57:150-62. [PMID: 7721954 DOI: 10.1002/jcb.240570115] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Withangulatin A (WA), a newly discovered withanolide isolated from an antitumor Chinese herb, has been shown to be a vimentin intermediate filament-targeting drug by using immunofluorescence microscopy. Together with cytochalasin D and colchicine, these drugs were employed to investigate the importance of vimentin intermediate filaments, actin filaments, and microtubules in the development of acquired thermotolerance in 9L rat brain tumor cells treated at 45 degrees C for 15 min (priming heat-shock). Acquired thermotolerance was abrogated in cells incubated with WA before the priming heat-shock but it could be detected in cells treated with WA after the priming heat-shock. In contrast, cytochalasin D and colchicine do not interfere with the development of thermotolerance at all. The intracellular localizations of vimentin and the constitutive heat-shock protein70 (HSC70) in treated cells were examined by using immunofluorescence microscopy and detergent-extractability studies. In cells treated with WA before the priming heat-shock, vimentin IFs were tightly aggregated around the nucleus and unable to return to their normal organization after a recovery under normal growing conditions. In contrast, the IF network in cells treated with WA after the priming heat-shock was able to reorganize into filamentous form after a recovery period, a behavior similar to that of the cells treated with heat-shock only. HSC70 was found to be co-localized with vimentin during these changes. It is suggested that the integrity of intermediate filaments is important for the development of thermotolerance and that HSC70 may be involved in this process by stabilizing the intermediate filaments through direct or indirect binding.
Collapse
Affiliation(s)
- Y C Lee
- Institute of Life Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | | |
Collapse
|
43
|
Stege GJ, Li GC, Li L, Kampinga HH, Konings AW. On the role of hsp72 in heat-induced intranuclear protein aggregation. Int J Hyperthermia 1994; 10:659-74. [PMID: 7806923 DOI: 10.3109/02656739409022446] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heat treatment of cells results in an increased protein content of nuclei and nuclear matrices when isolated after the heat treatment. This increase of TX-100 insoluble protein is interpreted as being the result of protein denaturation and subsequent aggregation. After the heat treatment cells can (partly) recover from these aggregates. Recent data suggest that heat shock proteins (hsps) might be involved in the recovery (disaggregation) from these heat-induced insoluble protein complexes. In this report, the role of hsp72 in the process of aggregation and disaggregation was investigated using: non-tolerant rat-1 cells, thermotolerant rat-1 cells (rat-1 TT), and transfected rat-1 cells constitutively expressing the human inducible hsp72 gene (HR-24 cells). After heating the various cells, it was observed that the expression of the human hsp72 confers heat resistance (43-45 degrees C). Heat-induced intranuclear protein aggregation was less in HR and rat-1 TT cells as compared to nontolerant rat-1 cells. After heat treatments leading to the same initial intranuclear protein aggregation, rat-1 TT cells recovered more rapidly from these aggregates, while HR cells recovered at the same rate as nontolerant rat-1 cells. Our data suggest that increased levels of hsp72 can confer heat resistance at the level of initial (nuclear) heat damage. Elevated levels of hsp72 alone, however, do not enable cells to recover more rapidly from heat-induced intranuclear protein aggregates.
Collapse
Affiliation(s)
- G J Stege
- Department of Radiobiology, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Liu RY, Corry PM, Lee YJ. Regulation of chemical stress-induced hsp70 gene expression in murine L929 cells. J Cell Sci 1994; 107 ( Pt 8):2209-14. [PMID: 7983179 DOI: 10.1242/jcs.107.8.2209] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the regulation mechanism of chemical stress-induced hsp70 gene expression in murine L929 cells. Our data show that chemical treatments including sodium arsenite, cadmium chloride and sodium salicylate, induced significant synthesis of hsp70 and its mRNA. The induced hsp70 gene expression appears to be regulated at the transcriptional level. A factor (CHBF), which constitutively binds to the heat shock element (HSE) at 37 degrees C, functions like a negative regulator and the heat-induced heat shock factor (HSF) acts as an activator. The chemical treatments that induce significant hsp70 synthesis activate HSF binding to HSE but also dissociate the HSE-CHBF complex. Some chemical treatments, e.g. IPTG, which fail to activate hsp70 gene transcription, still activate HSF binding to HSE. However, in this case, the HSE-CHBF complex remained like that of untreated control cells.
Collapse
Affiliation(s)
- R Y Liu
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073
| | | | | |
Collapse
|
45
|
Chang GC, Liu R, Panniers R, Li GC. Rat fibroblasts transfected with the human 70-kDa heat shock gene exhibit altered translation and eukaryotic initiation factor 2 alpha phosphorylation following heat shock. Int J Hyperthermia 1994; 10:325-37. [PMID: 7930798 DOI: 10.3109/02656739409010276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heat shock inhibits translation in a wide variety of cells. After heating, eukaryotic initiation factor 2-alpha (eIF-2 alpha) becomes phosphorylated which prevents the binding of Met-tRNA to the 40s ribosomal subunit inhibiting initiation of translation. Thermotolerant cells demonstrate resistance to inhibition of translation by additional heating suggesting that heat shock proteins may help to maintain translational integrity following thermal stress. Here we have examined the effects of increased intracellular levels of hsp70 protein on translation and eIF-2 alpha phosphorylation using rat fibroblasts stably transfected with a cloned human hsp70 gene. We observed a decrease in the rate of translational inhibition following heat shock in both hsp70-transfected and thermotolerant cells. Upon recovery at 37 degrees C, both hsp70-transfected and thermotolerant cells exhibit a faster rate of translational recovery. Utilizing slab gel isoelectric focusing coupled with immunoblotting we demonstrate that 45 degrees C heat shock leads to a rapid 4-5-fold increase in eIF-2 alpha phosphorylation, with little difference seen between control cells and hsp70-transfected cells. However, dephosphorylation of eIF-2 alpha occurs faster in the hsp70-transfected cells. These results suggest that hsp70 may play a role in facilitating the dephosphorylation of eIF-2 alpha as well as reversing the inhibition of translation following heat shock.
Collapse
Affiliation(s)
- G C Chang
- Department of Radiation Oncology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
46
|
|
47
|
Anderson RL, Wang CY, van Kersen I, Lee KJ, Welch WJ, Lavagnini P, Hahn GM. An immunoassay for heat shock protein 73/72: use of the assay to correlate HSP73/72 levels in mammalian cells with heat response. Int J Hyperthermia 1993; 9:539-52. [PMID: 8366304 DOI: 10.3109/02656739309005051] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An enzyme-linked immunosorbent assay (ELISA) for measurement of levels of heat shock proteins 73 and 72 (HSP73/72) in cultured cells and tissues is described. The assay involves detection of HSP73/72 in cell homogenates in 96-well plates using a specific monoclonal antibody. The assay has been used to explore the relationship between the amount of HSP73/72 in a cell and its response to heat shock, both before and after the development of thermotolerance. Six mammalian cell lines with differing responses to heat were characterized with respect to their response to heat treatments at 44 degrees C and concentrations of HSP73/72. Contrary to the widely expressed idea that the amount of HSP73/72 dictates the degree of heat resistance, no positive correlation between levels of HSP73/72 and heat resistance was found for the six lines tested here: if one particular line, a mutant selected for heat resistance, was excluded from the analysis, there was a negative correlation between HSP73/72 levels and heat resistance. A different result was, however, obtained when thermotolerant (transiently resistant) cells were compared to control cells. Here, we found a good correlation between the extent of thermotolerance and the amount of HSP73/72, suggesting that an increase in HSP73/72 level is important for the development of thermotolerance. The validity of the ELISA technique was checked using a second method for quantifying levels of HSP73/72. This involved uniform radiolabeling of cellular proteins, separation on two-dimensional gels and radioscanning to quantify radioactivity in each protein. The second technique is more powerful in that different isoforms of HSP73/72 can be distinguished, but it is more difficult to perform, is more labour intensive and requires an expensive device for gel scanning. The results using the second technique agreed well with those from the immunoassay and indicated that the level of the highly inducible HSP72 correlated best with the extent of thermotolerance.
Collapse
Affiliation(s)
- R L Anderson
- Peter MacCallum Cancer Institute, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Laszlo A, Davidson T, Hu A, Landry J, Bedford J. Putative determinants of the cellular response to hyperthermia. Int J Radiat Biol 1993; 63:569-81. [PMID: 7684760 DOI: 10.1080/09553009314450751] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recently, it has been demonstrated that two different thermal resistant states found in Chinese hamster cells, one transient, associated with thermotolerance, and the other permanent, associated with the increased expression of the cognate member of the hsp 70 family, are characterized by faster recovery from heat-induced perturbations in several cellular processes (Laszlo 1992b). These processes include total cellular protein and RNA synthesis, the localization of hsp70, the organization of vimentin, and the protein composition of the nucleus. In the present study, the recovery from heat-induced perturbations in cellular physiology was extended further to two more types of Chinese hamster cells: permanently heat resistant cells in which thermoresistance is associated with the overexpression of hsp27 and heat-sensitive cell lines. When the heat-resistant hsp27 transfected cell lines were compared with the control wild-type cell line, the recovery of protein synthesis from heat-induced inhibition was similar in the normal and hsp27 transfected cells, while the recovery from heat-induced inhibition of total RNA synthesis and the recovery from heat-induced increased association of hsp70 with nuclei were both more rapid in the hsp27 transfected cell lines. In the permanently heat-sensitive cell lines, the kinetics of recovery from heat-induced inhibition of protein synthesis did not correlate with the heat sensitive state. However, delays in the recovery from heat-induced alterations in total cellular RNA synthesis and from heat-induced excess nuclear association of hsp70 were associated with the heat-sensitive state. Overall, these results suggest that the kinetics of recovery from heat-induced alterations in total cellular RNA synthesis and the localization of hsp 70 are putative candidates for being determinants of the cellular response to hyperthermia, and thus have the potential to form the basis of predictive assays for use in conjunction with clinical hyperthermia.
Collapse
Affiliation(s)
- A Laszlo
- Mallinckrodt Institute of Radiology, Washington University Medical Center, St. Louis, MO 63108
| | | | | | | | | |
Collapse
|
49
|
Brown CR, Martin RL, Hansen WJ, Beckmann RP, Welch WJ. The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J Cell Biol 1993; 120:1101-12. [PMID: 8436586 PMCID: PMC2119737 DOI: 10.1083/jcb.120.5.1101] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mammalian cells constitutively express a cytosolic and nuclear form of heat shock protein (hsp) 70, referred to here as hsp 73. In response to heat shock or other metabolic insults, increased expression of another cytosolic and nuclear form of hsp 70, hsp 72, is observed. The constitutively expressed hsp 73, and stress-inducible hsp 72, are highly related proteins. Still unclear, however, is exactly why most eukaryotic cells, in contrast to prokaryotic cells, express a novel form of hsp 70 (i.e., hsp 72) after experiencing stress. To address this question, we prepared antibodies specific to either hsp 72 or hsp 73 and have compared a number of biological properties of the two proteins, both in vivo and in vitro. Using metabolic pulse-chase labeling and immunoprecipitation analysis, both the hsp 72 and hsp 73 specific antibodies were found to coprecipitate a significant number of newly synthesized proteins. Such interactions appeared transient and sensitive to ATP. Consequently, we suspect that both hsp 72 and hsp 73 function as molecular chaperones, interacting transiently with nascent polypeptides. During the course of these studies, we routinely observed that antibodies specific to hsp 73 resulted in the coprecipitation of hsp 72. Similarly, antibodies specific to hsp 72 were capable of coprecipitating hsp 73. Using a number of different approaches, we show that the constitutively expressed, pre-existing hsp 73 rapidly forms a stable complex with the newly synthesized stress inducible hsp 72. As is demonstrated by double-label indirect immunofluorescence, both proteins exhibit a coincident locale within the cell. Moreover, injection of antibodies specific to hsp 73 into living cells effectively blocks the ability of both hsp 73 and hsp 72 to redistribute from the cytoplasm into the nucleus and nucleolus after heat shock. These results are discussed as they relate to the possible structure and function of the constitutive (hsp 73) and highly stress inducible (hsp 72) forms of hsp 70, both within the normal cell as well as in the cell experiencing stress.
Collapse
Affiliation(s)
- C R Brown
- Department of Medicine, University of California, San Francisco 94143-0854
| | | | | | | | | |
Collapse
|
50
|
Hattori H, Kaneda T, Lokeshwar B, Laszlo A, Ohtsuka K. A stress-inducible 40 kDa protein (hsp40): purification by modified two-dimensional gel electrophoresis and co-localization with hsc70(p73) in heat-shocked HeLa cells. J Cell Sci 1993; 104 ( Pt 3):629-38. [PMID: 8314866 DOI: 10.1242/jcs.104.3.629] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a novel 40 kDa protein is induced by heat shock and several environmental stresses in mammalian and avian cells and that the N-terminal amino acid sequence of this 40 kDa protein has homology with the bacterial DnaJ heat-shock protein. We have purified this protein (40 kDa heat-shock protein, hsp40) from HeLa cells by modified two-dimensional gel electrophoresis and generated a polyclonal antibody against hsp40. This antibody was highly specific for human hsp40 and cross-reacted weakly with rat and Chinese hamster hsp40. Indirect immunofluorescence revealed that the hsp40 in HeLa cells accumulates in the nucleus, especially in the nucleolus, during heat shock and returns to the cytoplasm during the recovery period. The kinetics of the accumulation in the nucleoli and subsequent return to the cytoplasm of hsp40 was similar to that of hsp70. In addition, hsp40 was co-localized with hsc70(p73) in heat-shocked HeLa cells as demonstrated by double immunofluorescence staining. These results suggest that hsp40 (a DnaJ homologue) and hsp70 (a DnaK homologue) may act in concert to repair (refold) denatured proteins and protein aggregates in the nuclei and nucleoli of heat-shocked HeLa cells.
Collapse
Affiliation(s)
- H Hattori
- Department of Oral Surgery, Nagoya University School of Medicine, Japan
| | | | | | | | | |
Collapse
|