1
|
Hao X, Song H, Su X, Li J, Ye Y, Wang C, Xu X, Pang G, Liu W, Li Z, Luo T. Prophylactic effects of nutrition, dietary strategies, exercise, lifestyle and environment on nonalcoholic fatty liver disease. Ann Med 2025; 57:2464223. [PMID: 39943720 PMCID: PMC11827040 DOI: 10.1080/07853890.2025.2464223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease and its prevalence has risen sharply. However, whether nutrition, dietary strategies, exercise, lifestyle and environment have preventive value for NAFLD remains unclear. METHODS Through searching 4 databases (PubMed, Web of Science, Embase and the Cochrane Library) from inception to January 2025, we selected studies about nutrition, dietary strategies, exercise, lifestyle and environment in the prevention of NAFLD and conducted a narrative review on this topic. RESULTS Reasonable nutrient intake encompassing macronutrients and micronutrients have an independent protective relationship with NAFLD. Besides, proper dietary strategies including mediterranean diet, intermittent fasting diet, ketogenic diet, and dietary approaches to stop hypertension diet have their inhibitory effects on the developmental process of NAFLD. Moreover, right exercises including walking, jogging, bicycling, and swimming are recommended for the prevention of NAFLD because they could effectively reduce weight, which is an important risk factor for NAFLD, and improve liver function. In addition, embracing a healthy lifestyle including reducing sedentary behavior, not smoking, sleeping well and brushing teeth regularly is integral since it not only could reduce the risk of NAFLD but also significantly contribute to overall prevention and control. Finally, the environment, including the social and natural environments, plays a potential role in NAFLD prevention. CONCLUSION Nutrition, dietary strategies, exercise, lifestyle and environment play an important role in the prevention of NAFLD. Moreover, this review offers comprehensive prevention recommendations for people at high risk of NAFLD.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hao Song
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xin Su
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Jian Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Youbao Ye
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Cailiu Wang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Xiao Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Guanglong Pang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Wenxiu Liu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Zihan Li
- Department of clinical medicine, The First Clinical Medical College of Gansu University of Chinese Medicine (Gansu Provincial Hospital), Lanzhou, China
| | - Tian Luo
- The Institute for Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Luo Z, Huang Y, Yong K, Wu D, Zheng L, Yao X, Shen L, Yu S, Wang B, Cao S. Gut microbiota regulates hepatic ketogenesis and lipid accumulation in ketogenic diet-induced hyperketonemia by disrupting bile acid metabolism. Gut Microbes 2025; 17:2496437. [PMID: 40268803 PMCID: PMC12026136 DOI: 10.1080/19490976.2025.2496437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
The ketogenic diet (KD) induces prolonged hyperketonemia, characterized by elevated circulating level of β-hydroxybutyrate. However, the KD can negatively affect host metabolic health by altering the gut microbial community. Despite this, the regulatory effect of the gut microbiota on hepatic ketogenesis and triacylglycerol (TAG) accumulation during a KD remains poorly understood. Here, we hypothesized that the commensal bacterium regulates hepatic lipid metabolism in association with KD-induced hyperketonemia. The KD disrupts the remodeling of the gut microbiota following antibiotic-induced depletion. The capacity for ketogenesis and the severity of TAG accumulation in the liver closely correlated with changes in the gut microbial composition and the up-regulation of hepatic farnesoid X receptor (FXR), peroxisome proliferator-activated receptor alpha (PPARα), and diacylglycerol O-acyltransferase 2 (DGAT2), which were modulated by bile acid metabolism through the gut-liver axis. The commensal bacterium Clostridium perfringens type A is particularly implicated in prolonged hyperketonemia, exacerbating hepatic ketogenesis and steatosis by disrupting secondary bile acid metabolism. The increased conversion of deoxycholic acid to 12-ketolithocholic acid represents a critical microbial pathway during C. perfringens colonization. These findings illuminate the adverse effects of the gut microbiota on hepatic adaptation to a KD and highlight the regulatory role of C. perfringens in ketonic states.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Linfeng Zheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
3
|
Panganiban J, Kehar M, Ibrahim SH, Hartmann P, Sood S, Hassan S, Ramirez CM, Kohli R, Censani M, Mauney E, Cuda S, Karjoo S. Metabolic dysfunction-associated steatotic liver disease (MASLD) in children with obesity: An Obesity Medicine Association (OMA) and expert joint perspective 2025. OBESITY PILLARS 2025; 14:100164. [PMID: 40230708 PMCID: PMC11995806 DOI: 10.1016/j.obpill.2025.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 04/16/2025]
Abstract
Introduction This Obesity Medicine Association (OMA) Expert Joint Perspective examines steatotic liver disease (SLD), which is composed of metabolic dysfunction-associated steatotic liver disease (MASLD), and metabolic dysfunction-associated steatohepatitis (MASH) in children with obesity. The prevalence of obesity is increasing, rates have tripled since 1963 from 5 % to now 19 % of US children affected in 2018. MASLD, is the most common liver disease seen in children, can be a precursor to the development of Type 2 Diabetes (T2DM) and is the primary reason for liver transplant listing in young adults. We must be vigilant in prevention and treatment of MASLD in childhood to prevent further progression. Methods This joint clinical perspective is based upon scientific evidence, peer and clinical expertise. The medical literature was reviewed via PubMed search and appropriate articles were included in this review. This work was formulated from the collaboration of eight hepatologists/gastroenterologists with MASLD expertise and two physicians from the OMA. Results The authors who are experts in the field, determined sentinel questions often asked by clinicians regarding MASLD in children with obesity. They created a consensus and clinical guideline for clinicians on the screening, diagnosis, and treatment of MASLD associated with obesity in children. Conclusions Obesity and the comorbidity of MASLD is increasing in children, and this is a medical problem that needs to be addressed urgently. It is well known that children with metabolic associated chronic disease often continue to have these chronic diseases as adults, which leads to reduced life expectancy, quality of life, and increasing healthcare needs and financial burden. The authors of this paper recommend healthy weight reduction not only through lifestyle modification but through obesity pharmacotherapy and bariatric surgery. Therefore, this guidance reviews available therapies to achieve healthy weight reduction and reverse MASLD to prevent progressive liver fibrosis, and metabolic disease.
Collapse
Affiliation(s)
| | - Mohit Kehar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Samar H. Ibrahim
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Hepatology & Nutrition, Rady Children’s Hospital San Diego, San Diego, CA, USA
| | - Shilpa Sood
- Division of Pediatric Gastroenterology, Boston Children's Health Physicians, New York Medical College, Valhalla, NY, USA
| | - Sara Hassan
- University of Texas Southwestern, Dallas, TX, United States
| | | | - Rohit Kohli
- Children's Hospital Los Angeles, CA, United States
| | - Marisa Censani
- Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY, United States
| | - Erin Mauney
- Tufts Medical Center, Boston, MA, United States
| | - Suzanne Cuda
- Alamo City Healthy Kids and Families, San Antonio, TX, United States
| | - Sara Karjoo
- Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
- University of South Florida, Tampa, FL, United States
- Florida State University, Tallahassee, FL, United States
| |
Collapse
|
4
|
Geng N, Chen S, Bian Y, Shi C, Huang C, Cheng L, Luo Y, Yu Y, Gao Y, Wang L, Zhang H, Gong Y, Chen J. Uncovering Mitochondrial Defects Induced by Chemicals: A Case Study of Low-Dose Medium-Chain Chlorinated Paraffin Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8972-8983. [PMID: 40293924 DOI: 10.1021/acs.est.4c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Given the susceptibility of mitochondria to environmental pollutants, mitochondrial defects are critical end points for chemical safety evaluation. In this study, we present a comprehensive strategy for assessing mitochondrial toxicity, exemplified through a case study on medium-chain chlorinated paraffins (MCCPs, CxH2x+2-yCly with 14-17 carbon atoms), one of the most abundant organic pollutants in the human body. Our results demonstrate that MCCP exposure at levels commonly found in humans significantly reduces cellular ATP content by impairing mitochondrial respiration rather than glycolysis. Using an optimized mitochondrial metabolomics approach combined with dose-resolved proteomics, we elucidated the molecular mechanisms underlying MCCP-induced mitochondrial defects, including inhibition of the electron transport chain, mitochondrial membrane damage, accumulation of reactive oxygen species, and disruptions in nucleotide metabolism. Notably, over 80% of the MCCP-regulated mitochondrial proteins exhibited EC50 values below the human internal levels of MCCPs, highlighting a significant threat to human health. This proposed strategy for mitochondrial toxicity assessment is expected to facilitate future research in mitochondrial toxicology.
Collapse
Affiliation(s)
- Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuangshuang Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chengcheng Shi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Chenhao Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lin Cheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yun Luo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yufeng Gong
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
5
|
Gu X, Chen W, Xia HM, Du LJ, Wang YH, Gao SY, He ZY, Cai JY, Hu X, Zhang XX, Yang LJ, Pan LY, Li J, Li YQ, Gu XJ, Yang B. Inverse association of healthy diet scores with non-alcoholic fatty liver disease among Chinese patients with type 2 diabetes mellitus. Int J Food Sci Nutr 2025:1-10. [PMID: 40300836 DOI: 10.1080/09637486.2025.2499042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/20/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
We aimed to investigate the association of healthy diet scores (HDS), comprising major components (fruits and vegetables, soybean, fish, and sugar-sweetened beverages), with non-alcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). In this cross-sectional study of 2,404 T2DM individuals aged 35-70 years, individuals with higher HDS (≥3 components) had a lower odds of NAFLD (adjusted odds ratio [OR]: 0.64; 95% confidence interval [CI]: 0.48, 0.84) and lower fatty liver index (FLI) levels (β: -4.70; 95% CI: -7.61, -1.79). Each one-component increase in HDS was associated with a 14% reduction in the odds of NAFLD (OR: 0.86; 95% CI: 0.75, 0.98) and a 1.95-unit reduction in FLI levels (β: -1.95; 95% CI: -3.21, -0.70). These results suggest that adherence to a higher HDS pattern may be protective against NAFLD in T2DM.
Collapse
Affiliation(s)
- Xiao Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Insitute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hui-Min Xia
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Jia Du
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-Hua Wang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Si-Yu Gao
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Ying He
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Yao Cai
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiang Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Xing Zhang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Juan Yang
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin-Yu Pan
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Qian Li
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
- Insitute of Lipids Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Emanuele F, Biondo M, Tomasello L, Arnaldi G, Guarnotta V. Ketogenic Diet in Steatotic Liver Disease: A Metabolic Approach to Hepatic Health. Nutrients 2025; 17:1269. [PMID: 40219026 PMCID: PMC11990071 DOI: 10.3390/nu17071269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of chronic liver dysfunction worldwide, characterized by hepatic steatosis that may progress to nonalcoholic steatohepatitis and cirrhosis. Owing to its strong association with metabolic disorders, current management focuses on weight reduction via lifestyle modifications. Recently, the very-low-calorie ketogenic diet (VLCKD) has emerged as a promising intervention due to its potential for rapid weight loss and reduction in liver fat. This review aims to evaluate the clinical evidence regarding the impact of ketogenic diets on hepatic steatosis. We conducted an extensive MEDLINE literature search in databases including PubMed, Scopus, and Web of Science up to December 2024. Studies assessing the effects of ketogenic or low-carbohydrate high-fat diets on liver fat, evaluated by imaging, histology, or biochemical markers, were included. The analysis indicates that ketogenic diets significantly reduce hepatic fat content and improve metabolic parameters, including insulin sensitivity and liver enzyme levels. Evidence further suggests that substituting saturated fats with unsaturated fats or replacing carbohydrates with proteins may enhance these benefits. However, considerable variability exists among studies and long-term data remain limited. Although short-term outcomes are encouraging, potential adverse effects such as dyslipidaemia, gastrointestinal disturbances, and transient 'keto flu' symptoms require careful clinical monitoring. Future research should focus on elucidating underlying mechanisms, optimizing dietary composition, and assessing long-term safety to establish ketogenic diets as a robust strategy for managing MASLD.
Collapse
Affiliation(s)
- Fabrizio Emanuele
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (F.E.); (L.T.); (G.A.); (V.G.)
| | - Mattia Biondo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Laura Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (F.E.); (L.T.); (G.A.); (V.G.)
| | - Giorgio Arnaldi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (F.E.); (L.T.); (G.A.); (V.G.)
| | - Valentina Guarnotta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro” (PROMISE), Section of Endocrinology, University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (F.E.); (L.T.); (G.A.); (V.G.)
| |
Collapse
|
7
|
Balestra F, Luca MD, Panzetta G, Palieri R, Shahini E, Giannelli G, Pergola GD, Scavo MP. Advancing Obesity Management: the Very Low-Energy Ketogenic therapy (VLEKT) as an Evolution of the "Traditional" Ketogenic Diet. Curr Obes Rep 2025; 14:30. [PMID: 40175850 PMCID: PMC11965229 DOI: 10.1007/s13679-025-00622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE OF REVIEW This narrative review comprehensively analyzes VLEKT as an advanced nutritional strategy for obesity management. The focus is on the beneficial effects on key disease organs, such as adipose tissue and liver, as well as the modulation of intestinal permeability and its fundamental role in influencing the gut microbiota and inflammatory pathways. RECENT FINDINGS The impact of VLEKT on obesity-related comorbidities, including metabolic syndrome, cardiovascular disease, endocrine disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), neurological disorders, and kidney alterations, is also investigated. Moreover, to assess its wider application in obesity treatment, the combination of ketogenic regimes with additional strategies such as physical activity, bariatric surgery, and digital health technologies is examined. Despite promising clinical results, adherence to VLEKT and potential nutritional deficiencies require careful follow-up and individualized programming monitored by specialists. Future research should focus on elucidating the molecular mechanisms underlying the effects on physiological systems, and long-term safety. Nevertheless, VLEKT is an innovative approach to obesity treatment, offering a target-oriented and highly effective strategy for people fighting against overweight and its associated medical complications. Obesity is a multifactorial and chronic disease associated with numerous comorbidities; given its increasing prevalence, effective and personalized intervention strategies are crucial to inhibit the "obesity pandemic" according to a "food re-educational" protocol. Among dietary interventions, the ketogenic diet (KD) has attracted attention for its effectiveness in weight management and metabolic benefits. A variant, the very low-calorie ketogenic diet (VLCKD), more recently defined as very low-energy ketogenic diet (VLEKD), combines the metabolic benefits of ketosis with substantial calorie restriction, improving overall health.
Collapse
Affiliation(s)
- Francesco Balestra
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Maria De Luca
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Giorgia Panzetta
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Rita Palieri
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology IRCCS "De Bellis, " Via Turi 27, Castellana Grotte, BA, 70013, Italy
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy
| | - Maria Principia Scavo
- Laboratory of Molecular Medicine, National Institute of Gastroenterology IRCCS "S. de Bellis", Via Turi 27, Castellana Grotte, Bari, 70013, Italy.
| |
Collapse
|
8
|
Yki-Järvinen H, Luukkonen PK. Function of PNPLA3 I148M-Lessons From In Vivo Studies in Humans. Liver Int 2025; 45:e70047. [PMID: 40052746 DOI: 10.1111/liv.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND AND AIMS Steatotic liver disease (SLD) associated with insulin resistance (IR) and the metabolic syndrome ('IR-SLD') increases the risk of liver disease, type 2 diabetes and cardiovascular disease (CVD). SLD associated with the PNPLA3 I148M variant ('PNPLA3-SLD') also predisposes individuals to liver disease but protects against type 2 diabetes and CVD. Although in real life the two causes of SLD commonly co-exist, the opposite effects of 'IR-SLD' and 'PNPLA3-SLD' on CVD and liver disease suggest their pathogenesis differs. METHODS AND RESULTS This review summarises human data comparing the effects of 'IR-SLD' and 'PNPLA3-SLD' on the human liver lipidome, hepatic handling of fatty acids, pathways of intrahepatocellular triglyceride synthesis, circulating lipids and lipoproteins and adipose tissue inflammation. We also discuss how steatosis in PNPLA3 I148M carriers leads to defects in mitochondrial function.
Collapse
Affiliation(s)
- Hannele Yki-Järvinen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Panu K Luukkonen
- Department of Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Paskaleva IN, Kaleva NN, Dimcheva TD, Markova PP, Ivanov IS. Low-Carbohydrate (Ketogenic) Diet in Children with Obesity: Part 1-Diet Impact on Anthropometric Indicators and Indicators of Metabolic Syndrome and Insulin Resistance. Diseases 2025; 13:94. [PMID: 40277805 PMCID: PMC12026416 DOI: 10.3390/diseases13040094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The ketogenic diet has been successfully used in the last 100 years in the treatment of epilepsy and other neurological disorders. In recent decades, it gained wider application in the treatment of obesity, metabolic syndrome, and type 2 diabetes. However, there have been only a few studies on its use in children with obesity and associated metabolic disorders. OBJECTIVES To determine the clinical and metabolic effects of a well-formulated low-carbohydrate (ketogenic) diet in children with obesity. METHODS One hundred children with obesity and metabolic disorders underwent initial anthropometric, laboratory, and ultrasound examinations. They were placed on a well-formulated ketogenic diet and monitored for 4 months. The 58 patients who completed the study underwent follow-up examinations to assess the effects of the diet on anthropometric, clinical, and laboratory markers of metabolic syndrome and insulin resistance, cardiovascular risk factors, and certain hormone levels. Compliance with the diet, common difficulties in adhering to it, side effects, and positive changes in the patients' health were analyzed. RESULTS At the end of the study, the average weight loss for the entire group was 6.45 kg, with a reduction in BMI of 3.12 kg/m2. Significant improvements were also observed in insulin resistance indicators, including fasting insulin levels, HOMA-IR index, QUICKI (p < 0.0001), and adiponectin (p = 0.04). The cases of hepatosteatosis decreased twofold, the number of patients with arterial hypertension was significantly reduced, as well as the number of children receiving antihypertensive therapy. Additionally, the number of patients meeting the criteria for metabolic syndrome decreased threefold. CONCLUSIONS A well-formulated short-term ketogenic diet is effective in treating obesity, metabolic syndrome, and related comorbidities, and can be part of a comprehensive approach for these patients.
Collapse
Affiliation(s)
- Ivanka N. Paskaleva
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Nartsis N. Kaleva
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Teodora D. Dimcheva
- Department of Medical Informatics, Biostatistics and e-Learning, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petya P. Markova
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| | - Ivan S. Ivanov
- Department of Pediatrics “Prof. Dr. Ivan Andreev”, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.N.K.); (P.P.M.); (I.S.I.)
| |
Collapse
|
10
|
Dyńka D, Rodzeń Ł, Rodzeń M, Pacholak-Klimas A, Ede G, Sethi S, Łojko D, Bartoń K, Berry K, Deptuła A, Grzywacz Ż, Martin P, Unwin J, Unwin D. Ketogenic Diets for Body Weight Loss: A Comparison with Other Diets. Nutrients 2025; 17:965. [PMID: 40289934 PMCID: PMC11945412 DOI: 10.3390/nu17060965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025] Open
Abstract
With the prevalence of obesity and overweight increasing at an alarming rate, more and more researchers are focused on identifying effective weight loss strategies. The ketogenic diet (KD), used as a treatment in epilepsy management for over 100 years, is additionally gaining popularity as a weight loss method. Although its efficacy in weight loss is well documented, the areas where it may be beneficial to other dietary approaches need to be carefully examined. The objective of this paper is to identify the potential benefits of the KD over alternative dietary weight loss strategies based on a comprehensive literature review. It has been shown that the KD may be more bioenergetically efficient than other dietary strategies, inter alia owing to its effect on curtailing hunger, improving satiety and decreasing appetite (influence on hunger and satiety hormones and the sensation of hunger), inducing faster initial weight loss (associated with lower glycogen levels and reduced water retention), and controlling glycaemia and insulinemia (directly attributable to the low-carbohydrate nature of KD and indirectly to the other areas described). These effects are accompanied by improved insulin sensitivity, reduced inflammation (through ketone bodies and avoidance of pro-inflammatory sugars), reduced need for pharmacological obesity control (the diet's mechanisms are similar to those of medication but without the side effects), and positive impacts on psychological factors and food addiction. Based on the authors' review of the latest research, it is reasonable to conclude that, due to these many additional health benefits, the KD may be advantageous to other diet-based weight loss strategies. This important hypothesis deserves further exploration, which could be achieved by including outcome measures other than weight loss in future clinical trials, especially when comparing different diets of equal caloric value.
Collapse
Affiliation(s)
- Damian Dyńka
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | | | | | | | - Georgia Ede
- Independent Researcher, 197 Lions Mouth Road, Amesbury, MA 01913, USA
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | | | - Ken Berry
- Independent Researcher, Holladay, TN 38341, USA
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Peter Martin
- Funmed Clinics, Vastra Hamngatan 13A, 41117 Gothenburg, Sweden
| | - Jen Unwin
- The Collaborative Health Community Foundation, Oxford OX2 9HZ, UK
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
11
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
12
|
Paoli A. The Influence of Physical Exercise, Ketogenic Diet, and Time-Restricted Eating on De Novo Lipogenesis: A Narrative Review. Nutrients 2025; 17:663. [PMID: 40004991 PMCID: PMC11858292 DOI: 10.3390/nu17040663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
De novo lipogenesis (DNL) is a metabolic pathway that converts carbohydrates into fatty acids, primarily occurring in the liver and, to a lesser extent, in adipose tissue. While hepatic DNL is highly responsive to dietary carbohydrate intake and regulated by insulin via transcription factors like SREBP-1c, adipose DNL is more modest and less sensitive to dietary overfeeding. Dysregulated DNL contributes to metabolic disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). Lifestyle interventions, such as physical exercise, ketogenic diets, and time-restricted eating (TRE) offer promising strategies to regulate DNL and improve metabolic health. Physical exercise enhances glucose uptake in muscles, reduces insulin levels, and promotes lipid oxidation, thereby suppressing hepatic DNL. Endurance and resistance training also improve mitochondrial function, further mitigating hepatic triglyceride accumulation. Ketogenic diets shift energy metabolism toward fatty acid oxidation and ketogenesis, lower insulin, and directly downregulate lipogenic enzyme activity in the liver. TRE aligns feeding with circadian rhythms by optimizing AMP-activated protein kinase (AMPK) activation during fasting periods, which suppresses DNL and enhances lipid metabolism. The combined effects of these interventions demonstrate significant potential for improving lipid profiles, reducing hepatic triglycerides, and preventing lipotoxicity. By addressing the distinct roles of the liver and adipose DNL, these strategies target systemic and localized lipid metabolism dysregulation. Although further research is needed to fully understand their long-term impact, these findings highlight the transformative potential of integrating these approaches into clinical practice to manage metabolic disorders and their associated complications.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padua, 35100 Padua, Italy;
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
13
|
Pattamaprapanont P, Nava RC, Formato M, Cooney EM, Pinto AP, Alves-Wagner AB, Das A, Guan Y, Lessard SJ. A ketogenic diet enhances aerobic exercise adaptation and promotes muscle mitochondrial remodeling in hyperglycemic mice. RESEARCH SQUARE 2025:rs.3.rs-5814971. [PMID: 39975925 PMCID: PMC11838742 DOI: 10.21203/rs.3.rs-5814971/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
VO2peak is a key health benefit of aerobic exercise; however, chronic hyperglycemia is associated with persistently low VO2peak due to an impaired adaptive response to training. Here, we tested whether reducing blood glucose with a low-carbohydrate/high-fat "ketogenic" diet could restore aerobic exercise adaptation in a mouse model of hyperglycemia. Hyperglycemia was induced by streptozotocin (STZ) and mice were stratified to standard chow (STZ-CHOW), or a ketogenic diet (STZ-KETO), which rapidly normalized blood glucose. After aerobic exercise training, improvements in VO2peak were blunted in STZ-CHOW, but exercise response was restored in STZ-KETO. Improved VO2peak in STZ-KETO was associated with enhanced aerobic remodeling of skeletal muscle, including a more oxidative fiber-type and increased capillary density, along with restoration of circulating angiogenic markers. Moreover, KETO induced exercise-independent effects on muscle mitochondrial remodeling and mitochondrial dynamics, significantly increasing fatty acid oxidation. Our results identify a ketogenic diet as a potential therapy to improve aerobic exercise response in the growing population with hyperglycemia due to diabetes and other metabolic conditions.
Collapse
Affiliation(s)
- Pattarawan Pattamaprapanont
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Exercise Medicine Research; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Roberto C. Nava
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mia Formato
- Research Division; Joslin Diabetes Center, Boston, MA, USA
| | | | | | - Ana B. Alves-Wagner
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anamica Das
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yuntian Guan
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah J. Lessard
- Research Division; Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Exercise Medicine Research; Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Human Nutrition, Foods, and Exercise; Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
14
|
Pasta A, Formisano E, Calabrese F, Marabotto E, Furnari M, Bodini G, Torres MCP, Pisciotta L, Giannini EG, Zentilin P. From Dysbiosis to Hepatic Inflammation: A Narrative Review on the Diet-Microbiota-Liver Axis in Steatotic Liver Disease. Microorganisms 2025; 13:241. [PMID: 40005608 PMCID: PMC11857840 DOI: 10.3390/microorganisms13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
The gut microbiota has emerged as a critical player in metabolic and liver health, with its influence extending to the pathogenesis and progression of steatotic liver diseases. This review delves into the gut-liver axis, a dynamic communication network linking the gut microbiome and liver through metabolic, immunological, and inflammatory pathways. Dysbiosis, characterized by altered microbial composition, contributes significantly to the development of hepatic steatosis, inflammation, and fibrosis via mechanisms such as gut barrier dysfunction, microbial metabolite production, and systemic inflammation. Dietary patterns, including the Mediterranean diet, are highlighted for their role in modulating the gut microbiota, improving gut-liver axis integrity, and attenuating liver injury. Additionally, emerging microbiota-based interventions, such as fecal microbiota transplantation and bacteriophage therapy, show promise as therapeutic strategies for steatotic liver disease. However, challenges such as population heterogeneity, methodological variability, and knowledge gaps hinder the translational application of current findings. Addressing these barriers through standardized approaches and integrative research will pave the way for microbiota-targeted therapies to mitigate the global burden of steatotic liver disease.
Collapse
Affiliation(s)
- Andrea Pasta
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
| | - Elena Formisano
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Calabrese
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Elisa Marabotto
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Manuele Furnari
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giorgia Bodini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Maria Corina Plaz Torres
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Livia Pisciotta
- Dietetics and Clinical Nutrition Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (E.F.); (L.P.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Edoardo Giovanni Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Zentilin
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (A.P.); (F.C.); (E.M.); (M.F.); (G.B.); (M.C.P.T.); (E.G.G.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
15
|
Rajewski P, Cieściński J, Rajewski P, Suwała S, Rajewska A, Potasz M. Dietary Interventions and Physical Activity as Crucial Factors in the Prevention and Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Biomedicines 2025; 13:217. [PMID: 39857800 PMCID: PMC11760440 DOI: 10.3390/biomedicines13010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide and affects nearly 30% of the adult population and 10% of the pediatric population. It is estimated that this number will double by 2030. MASLD is one of the leading causes of hepatocellular carcinoma, cirrhosis, and liver transplantation, as well as a significant risk factor for cardiovascular disease and mortality. Due to the ever-increasing number of patients, the long-term asymptomatic course of the disease, serious complications, and lack of preventive programs, as well as insufficient awareness of the disease among patients and doctors themselves, MASLD is a growing interdisciplinary problem and a real challenge for modern medicine. The main cause of MASLD is an inappropriate lifestyle-inadequate nutrition and insufficient physical activity, which lead to various components of metabolic syndrome. Lifestyle changes-appropriate diet, weight reduction, and systematic physical activity-are also the basis for the prevention and treatment of MASLD. Hence, in recent years, so much importance has been attached to lifestyle medicine, to non-pharmacological treatment as prevention of lifestyle diseases. The narrative review presents possible therapeutic options for non-pharmacological management in the prevention and treatment of MASLD. The best documented and available diets used in MASLD were discussed, focusing on the benefits and drawbacks of the Mediterranean, high-protein, ketogenic, and intermittent fasting diets. In addition, the most recent recommendations regarding physical activity are summarized.
Collapse
Affiliation(s)
- Paweł Rajewski
- Department of Internal and Infectious Diseases, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland
- Faculty of Health Sciences, University of Health Sciences in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Jakub Cieściński
- Department of Radiology, Provincial Infectious Disease Hospital, 85-030 Bydgoszcz, Poland;
| | - Piotr Rajewski
- Department of Neurology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bygoszcz, Poland;
| | - Szymon Suwała
- Department of Endocrinology and Diabetology, Collegium Medicum—Faculty of Medicine, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Alicja Rajewska
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| | - Maciej Potasz
- University Clinical Hospital, 60-355 Poznań, Poland; (A.R.); (M.P.)
| |
Collapse
|
16
|
Hamamah S, Iatcu OC, Covasa M. Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2024; 17:143. [PMID: 39796579 PMCID: PMC11722922 DOI: 10.3390/nu17010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition. The development and progression of MASLD are closely associated with taxonomic shifts in gut microbial communities, a relationship well-documented in the literature. Given the importance of diet as a primary treatment for MASLD, it is important to understand how gut microbiota and their metabolic byproducts mediate favorable outcomes induced by healthy dietary patterns. Conversely, microbiota changes conferred by unhealthy dietary patterns such as the Western diet may induce dysbiosis and influence steatotic liver disease through promoting hepatic inflammation, up-regulating lipogenesis, dysregulating bile acid metabolism, increasing insulin resistance, and causing oxidative damage in hepatocytes. Although emerging evidence has identified links between diet, microbiota, and development of MASLD, significant gaps remain in understanding specific microbial roles, metabolite pathways, host interactions, and causal relationships. Therefore, this review aims to provide mechanistic insights into the role of microbiota-mediated processes through the analysis of both healthy and unhealthy dietary patterns and their contribution to MASLD pathophysiology. By better elucidating the interplay between dietary nutrients, microbiota-mediated processes, and the onset and progression of steatotic liver disease, this work aims to identify new opportunities for targeted dietary interventions to treat MASLD efficiently.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA;
| | - Oana C. Iatcu
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| | - Mihai Covasa
- Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania;
| |
Collapse
|
17
|
Mu C, Wang S, Wang Z, Tan J, Yin H, Wang Y, Dai Z, Ding D, Yang F. Mechanisms and therapeutic targets of mitochondria in the progression of metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 30:101774. [PMID: 39701281 DOI: 10.1016/j.aohep.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) includes liver disease processes from simple fatty liver to nonalcoholic steatohepatitis, which may progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). As the incidence of HCC derived from viral hepatitis decreases, MASLD has emerged as a significant health threat, driven by lifestyle changes and rising obesity rates among patients. The pathogenesis of MASLD is complex, involving factors such as insulin resistance, gut microbiota imbalance, and genetic and epigenetic factors. In recent years, the role of mitochondrial dysfunction in MASLD has gained significant attention, involving β-oxidation imbalance, oxidative stress increase, mitophagy defects, and mitochondrial DNA (mtDNA) mutations. This article reviews the pathophysiological mechanisms of mitochondrial dysfunction in MASLD, diagnostic methods, and potential therapeutic strategies. By synthesizing current research findings, the review aims to highlight the critical role of mitochondrial dysfunction as a target for future diagnostic and therapeutic interventions. This focus could pave the way for innovative clinical strategies, ultimately improving treatment options and patient prognosis in MASLD.
Collapse
Affiliation(s)
- Chenyang Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sijie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zenghan Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Dongyang Ding
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China; Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China.
| |
Collapse
|
18
|
Cortez NE, Bacha TA, Ead AS, Rodriguez Lanzi C, Lacroix C, Franceschetti A, Hong BV, Matsukuma K, Mackenzie GG. The Impact of a Ketogenic Diet on Late-Stage Pancreatic Carcinogenesis in Mice: Efficacy and Safety Studies. Nutrients 2024; 16:3919. [PMID: 39599705 PMCID: PMC11597385 DOI: 10.3390/nu16223919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND High-fat diets (HFDs) have been associated with an increased risk of pancreatic cancer. In contrast, ketogenic diets (KDs) have been shown to display anti-tumor characteristics. The objective of this work was to evaluate the efficacy of a KD on late-stage pancreatic carcinogenesis in a genetically modified mouse model of pancreatic cancer [LSL-KrasG12D/+; Ptf1-Cre (KC) mice], as well as its liver safety, and to compare it to that of an HFD. METHODS Six-month-old female and male KC mice were randomly allocated to either a control diet (CD) (%kcal: 20% fat, 15% protein, 65% carbohydrates), an HFD (%kcal: 40% fat, 15% protein, 45% carbohydrate) or a KD (%kcal: 84% fat, 15% protein, 1% carbohydrate) and fed these diets for 6 months. RESULTS HFD-fed, but not KD-fed, mice showed a 15% increase in body weight, plus elevated serum insulin (2.4-fold increase) and leptin (2.9-fold increase) levels, compared to CD-fed mice. At the pancreas level, no differences in pancreatic cancer incidence rates were observed among the diet groups. Regarding the liver safety profile, the HFD-fed mice had higher serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), when compared to the CD and KD groups. In addition, upon histologic examination, an HFD, but not a KD, showed a ~2-fold increase in both macro- and microsteatosis, as well as 35% and 32% higher levels of TLR4 and NF-κB activation, respectively, compared to CD-fed mice. CONCLUSIONS In summary, although a KD intervention alone did not prevent pancreatic carcinogenesis, our data suggests that a KD modulates insulin signaling and hepatic lipid metabolism, highlighting its beneficial effects on healthspan and liver function when compared to an HFD.
Collapse
Affiliation(s)
- Natalia E. Cortez
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
- Department of Clinical and Biological Sciences, 10125 Turin, Italy
| | - Tarek A. Bacha
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Aya Samir Ead
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Cecilia Rodriguez Lanzi
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Cassandra Lacroix
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Anais Franceschetti
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Brian V. Hong
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
| | - Karen Matsukuma
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| | - Gerardo G. Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA (T.A.B.); (A.S.E.); (C.R.L.); (C.L.); (A.F.); (B.V.H.)
- Davis Comprehensive Cancer Center, University of California, Sacramento, CA 95817, USA
| |
Collapse
|
19
|
Teasdale S, Dong X, Griffin A, Clark PJ, Nisbet J, Morton A, Phillips L, Sullivan MA, Galloway G. Glycogenic hepatopathy associated with hepatic steatosis in type 1 diabetes. J Diabetes Complications 2024; 38:108870. [PMID: 39306876 DOI: 10.1016/j.jdiacomp.2024.108870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024]
Abstract
AIMS Glycogenic hepatopathy is associated with significant psychosocial consequences and health costs. Metabolic Dysfunction-Associated Steatotic Liver Disease and glycogenic hepatopathy are frequently confused as "fatty liver" when seen on ultrasonography. We wished to examine liver fat and glycogen content in groups defined based on metabolic and liver disease phenotypes. METHODS This case-control study undertaken in a tertiary hospital used nuclear proton magnetic resonance spectroscopy (1H-MRS) to examine liver fat and glycogen content in five clinical groups, each containing five participants: 1. type 1 diabetes with glycogenic hepatopathy, 2. satisfactorily controlled type 1 diabetes with no liver disease, 3. poorly controlled type 1 diabetes without liver disease, 4. a control group of body mass index- and age-matched individuals without diabetes or liver disease, and 5. hepatic steatosis. RESULTS Fat content was highest in the hepatic steatosis (median 15.4 %, IQR 10.0-19.3) and glycogenic hepatopathy (median 6.5 %, IQR 4.5-9.1) groups and compared to both of these groups was lower in the control group (median 1.0 %, IQR 0.7-1.1, p 0.002 and 0.022), the T1DM group with satisfactory control (median 0.3 %, IQR 0.2-0.6, p < 0.001 and <0.001), and the T1DM group with poor control without liver disease (median 1.1 %, IQR 0.9-1.1, p 0.001 and 0.012). No participants from the type 1 diabetes poor control, type 1 diabetes satisfactory control or the no diabetes groups had 1H-MRS-diagnosed hepatic steatosis. 1H-MRS glycogen content could not be interpreted in the majority of those with glycogenic hepatopathy because of interference from the fat signal. CONCLUSIONS In cases diagnosed with glycogenic hepatopathy there may be significant concomitant fat accumulation, compounding the already elevated cardiovascular risk in this cohort. The technique of 1H-MRS has not been demonstrated to be useful for diagnosing glycogenic hepatopathy.
Collapse
Affiliation(s)
- Stephanie Teasdale
- Queensland Diabetes and Endocrine Centre, Mater Hospital Brisbane, Queensland, Australia.
| | - Xin Dong
- Translational Research Institute, Australia.
| | - Alison Griffin
- QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | | | - Janelle Nisbet
- Queensland Diabetes and Endocrine Centre, Mater Hospital Brisbane, Queensland, Australia.
| | - Adam Morton
- Queensland Diabetes and Endocrine Centre, Mater Hospital Brisbane, Queensland, Australia.
| | - Liza Phillips
- Queensland Diabetes and Endocrine Centre, Mater Hospital Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
20
|
Boccatonda A, D’Ardes D, Moronti V, Santilli J, Cipollone A, Lessiani G, Di Gregorio N, Serra C, Piscaglia F, Ferri C, Cipollone F. From MASLD to PAD: Looking for Cardiovascular Disease Starting from Metabolic Status. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1781. [PMID: 39596967 PMCID: PMC11596241 DOI: 10.3390/medicina60111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Background: Peripheral artery disease (PAD) is still the least studied and evaluated form in clinical practice among atherosclerotic pathologies, despite the increased mortality and comorbidities related to it. The relationship between steatotic liver disease and an increased risk of cardiovascular disease has been extensively documented. Methods: The purpose of this work is to perform a review of the evidence linking NAFLD or MASLD to PAD, and examine possible clinical scenarios that arise from this new terminology. Results: The new definition of metabolic dysfunction-associated steatotic liver disease (MASLD) includes the presence of cardiometabolic risk factors and hepatic steatosis without any other underlying causes of hepatic steatosis; this terminology, coined in the hepatological field, could generate confusion, especially in the initial stages of its diffusion and among different medical specialists. Conclusions: Some recent data in the literature have strengthened the evidence of a pathological link between hepatic metabolic alteration (NAFLD or MAFLD) and PAD.
Collapse
Affiliation(s)
- Andrea Boccatonda
- Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.B.); (C.S.)
| | - Damiano D’Ardes
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| | - Veronica Moronti
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Jessica Santilli
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Alessia Cipollone
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| | | | - Nicoletta Di Gregorio
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Carla Serra
- Diagnostic and Therapeutic Interventional Ultrasound Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.B.); (C.S.)
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Ferri
- Department of Life, Health & Environmental Sciences and Internal Medicine, ASL Avezzano-Sulmona-L’Aquila, San Salvatore Hospital, University of L’Aquila, 67100 L’Aquila, Italy (J.S.); (N.D.G.); (C.F.)
| | - Francesco Cipollone
- Department of Medicine and Aging Science, Institute of “Clinica Medica”, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (F.C.)
| |
Collapse
|
21
|
Malinowska D, Żendzian-Piotrowska M. Ketogenic Diet: A Review of Composition Diversity, Mechanism of Action and Clinical Application. J Nutr Metab 2024; 2024:6666171. [PMID: 39463845 PMCID: PMC11511599 DOI: 10.1155/2024/6666171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
The ketogenic diet (KD) is a special high-fat, very low-carbohydrate diet with the amount of protein adjusted to one's requirements. By lowering the supply of carbohydrates, this diet induces a considerable change in metabolism (of protein and fat) and increases the production of ketone bodies. The purpose of this article is to review the diversity of composition, mechanism of action, clinical application and risk associated with the KD. In the last decade, more and more results of the diet's effects on obesity, diabetes and neurological disorders, among other examples have appeared. The beneficial effects of the KD on neurological diseases are related to the reconstruction of myelin sheaths of neurons, reduction of neuron inflammation, decreased production of reactive oxygen species, support of dopamine production, repair of damaged mitochondria and formation of new ones. Minimizing the intake of carbohydrates results in the reduced absorption of simple sugars, thereby decreasing blood glucose levels and fluctuations of glycaemia in diabetes. Studies on obesity indicate an advantage of the KD over other diets in terms of weight loss. This may be due to the upregulation of the biological activity of appetite-controlling hormones, or to decreased lipogenesis, intensified lipolysis and increased metabolic costs of gluconeogenesis. However, it is important to be aware of the side effects of the KD. These include disorders of the digestive system as well as headaches, irritability, fatigue, the occurrence of vitamin and mineral deficiencies and worsened lipid profile. Further studies aimed to determine long-term effects of the KD are required.
Collapse
Affiliation(s)
- Dominika Malinowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| | - Małgorzata Żendzian-Piotrowska
- Medical University of Bialystok, Department of Hygiene, Epidemiology and Ergonomy, ul. Jana Kilińskiego 1, Białystok 15-089, Poland
| |
Collapse
|
22
|
Ahmad R, Haque M. Metformin: Beyond Type 2 Diabetes Mellitus. Cureus 2024; 16:e71730. [PMID: 39421288 PMCID: PMC11486535 DOI: 10.7759/cureus.71730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
Metformin was developed from an offshoot of Guanidine. It is known to be the first-line medication for type 2 diabetes mellitus, polycystic ovarian syndrome, and weight reduction. Metformin has also been shown to have effectiveness in the management of non-alcoholic fatty liver disease (NAFLD), liver cirrhosis, and various carcinomas like hepatocellular, colorectal, prostate, breast, urinary bladder, blood, melanoma, bone, skin, lung and so on. This narrative review focuses on the effect of metformin on non-alcoholic fatty liver disease, liver cirrhosis, and hepatocellular carcinoma. The search platforms for the topic were PubMed, Scopus, and Google search engine. Critical words for searching included 'Metformin,' AND 'Indications of Metformin,' AND 'Non-Alcoholic Fatty Liver Disease,' AND 'Metformin mechanism of action,' AND 'NAFLD management,' AND 'NAFLD and inflammation,' AND 'Metformin and insulin,' AND 'Metformin and inflammation,' AND 'Liver cirrhosis,' AND 'Hepatocellular carcinoma.' Lifestyle modification and the use of hypoglycemic agents can help improve liver conditions. Metformin has several mechanisms that enhance liver health, including reducing reactive oxygen species, nuclear factor kappa beta (NF-κB), liver enzymes, improving insulin sensitivity, and improving hepatic cell lipophagy. Long-term use of metformin may cause some adverse effects like lactic acidosis and gastrointestinal disturbance. Metformin long-term overdose may lead to a rise in hydrogen sulfide in liver cells, which calls for pharmacovigilance. Drug regulating authorities should provide approval for further research, and national and international guidelines need to be developed for liver diseases, perhaps with the inclusion of metformin as part of the management regime.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
23
|
Meng Y, Sun J, Zhang G. Take the bull by the horns and tackle the potential downsides of the ketogenic diet. Nutrition 2024; 125:112480. [PMID: 38788511 DOI: 10.1016/j.nut.2024.112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
The ketogenic diet (KD) is a distinctive dietary regimen known for its low-carbohydrate and high-fat composition. Recently, it has garnered considerable interest from the scientific community and the general population because of its claimed efficacy in facilitating weight reduction, improving the management of glucose levels, and raising overall energy levels. The core principle of the KD is the substantial decrease in carbohydrate consumption, which is subsequently substituted by ingesting nourishing fats. While the KD has promising advantages and is gaining popularity, it must be acknowledged that this dietary method may not be appropriate for all individuals. The dietary regimen may give rise to adverse effects, including constipation, halitosis, and imbalances in electrolyte levels, which may pose a potential risk if not adequately supervised. Hence, thorough and meticulous inquiry is needed to better comprehend the possible hazards and advantages linked to the KD over prolonged durations. By obtaining a more comprehensive perspective, we can enhance our ability to make well-informed judgments and suggestions as to implementation of this specific dietary regimen.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
24
|
Suarez R, Chapela S, Llobera ND, Montalván M, Vásquez CA, Martinuzzi ALN, Katsanos CS, Verde L, Frias-Toral E, Barrea L, Muscogiuri G. Very Low Calorie Ketogenic Diet: What Effects on Lipid Metabolism? Curr Nutr Rep 2024; 13:516-526. [PMID: 39008211 PMCID: PMC11327205 DOI: 10.1007/s13668-024-00556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2024] [Indexed: 07/16/2024]
Abstract
PURPOSE OF REVIEW This review aims to critically examine how VLCKD affects plasma lipoprotein, lipid and cholesterol metabolism. Cardiovascular disease is a worldwide health problem affecting millions of people and leading to high rates of mortality and morbidity. There is a well-established association between cardiovascular disease and circulating cholesterol. Various dietary recommendations are currently available for the management of dyslipidemia. RECENT FINDINGS The very low-calorie ketogenic diet (VLCKD) is becoming increasingly popular as a treatment option for several pathological conditions, including dyslipidemia. In addition to being low in calories, the VLCKD's main feature is its unique calorie distribution, emphasizing a reduction in carbohydrate consumption in favor of fat as the primary calorie source. Lowering calorie intake through a VLCKD can reduce the endogenous production of cholesterol. However, if the foods consumed are from animal sources, dietary cholesterol intake may increase due to the higher fat content of animal products. When combined, these dietary practices may have opposing effects on plasma cholesterol levels. Studies investigating the impact of VLCKD on plasma cholesterol and low-density lipoprotein cholesterol levels report contradictory findings. While some studies found an increase in low-density lipoprotein cholesterol levels, others showed a decrease in total cholesterol and low-density lipoprotein cholesterol, along with an increase in high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Rosario Suarez
- School of Medicine, Universidad Técnica Particular de Loja, Calle Paris, San Cayetano Alto, Loja 110107, Ecuador
| | - Sebastián Chapela
- Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Daniela Llobera
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martha Montalván
- Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil, 090615, Ecuador
- Facultad de Ciencias Médicas, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Celina Andrade Vásquez
- School of Medicine, Universidad Técnica Particular de Loja, Calle Paris, San Cayetano Alto, Loja 110107, Ecuador
| | | | | | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Espíritu Santo - Samborondón, 0901952 Samborondón , Ecuador
| | - Luigi Barrea
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Via Porzio, 80143 Naples, Italy
| | - Giovanna Muscogiuri
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Centro Italiano per la cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy.
- Cattedra Unesco Educazione Alla Salute E Allo Sviluppo Sostenibile, University Federico II, 80131 Naples, Italy.
| |
Collapse
|
25
|
Volek JS, Kackley ML, Buga A. Nutritional Considerations During Major Weight Loss Therapy: Focus on Optimal Protein and a Low-Carbohydrate Dietary Pattern. Curr Nutr Rep 2024; 13:422-443. [PMID: 38814519 PMCID: PMC11327213 DOI: 10.1007/s13668-024-00548-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Considering the high prevalence of obesity and related metabolic impairments in the population, the unique role nutrition has in weight loss, reversing metabolic disorders, and maintaining health cannot be overstated. Normal weight and well-being are compatible with varying dietary patterns, but for the last half century there has been a strong emphasis on low-fat, low-saturated fat, high-carbohydrate based approaches. Whereas low-fat dietary patterns can be effective for a subset of individuals, we now have a population where the vast majority of adults have excess adiposity and some degree of metabolic impairment. We are also entering a new era with greater access to bariatric surgery and approval of anti-obesity medications (glucagon-like peptide-1 analogues) that produce substantial weight loss for many people, but there are concerns about disproportionate loss of lean mass and nutritional deficiencies. RECENT FINDINGS No matter the approach used to achieve major weight loss, careful attention to nutritional considerations is necessary. Here, we examine the recent findings regarding the importance of adequate protein to maintain lean mass, the rationale and evidence supporting low-carbohydrate and ketogenic dietary patterns, and the potential benefits of including exercise training in the context of major weight loss. While losing and sustaining weight loss has proven challenging, we are optimistic that application of emerging nutrition science, particularly personalized well-formulated low-carbohydrate dietary patterns that contain adequate protein (1.2 to 2.0 g per kilogram reference weight) and achieve the beneficial metabolic state of euketonemia (circulating ketones 0.5 to 5 mM), is a promising path for many individuals with excess adiposity.
Collapse
Affiliation(s)
- Jeff S Volek
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA.
| | - Madison L Kackley
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| | - Alex Buga
- Department of Human Sciences, The Ohio State University, 305 Annie & John Glenn Ave, Columbus, OH, 43210, USA
| |
Collapse
|
26
|
Dyńka D, Rodzeń Ł, Rodzeń M, Łojko D, Kraszewski S, Ibrahim A, Hussey M, Deptuła A, Grzywacz Ż, Ternianov A, Unwin D. Beneficial Effects of the Ketogenic Diet on Nonalcoholic Fatty Liver Disease (NAFLD/MAFLD). J Clin Med 2024; 13:4857. [PMID: 39200999 PMCID: PMC11355934 DOI: 10.3390/jcm13164857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is likely to be approaching 38% of the world's population. It is predicted to become worse and is the main cause of morbidity and mortality due to hepatic pathologies. It is particularly worrying that NAFLD is increasingly diagnosed in children and is closely related, among other conditions, to insulin resistance and metabolic syndrome. Against this background is the concern that the awareness of patients with NAFLD is low; in one study, almost 96% of adult patients with NAFLD in the USA were not aware of their disease. Thus, studies on the therapeutic tools used to treat NAFLD are extremely important. One promising treatment is a well-formulated ketogenic diet (KD). The aim of this paper is to present a review of the available publications and the current state of knowledge of the effect of the KD on NAFLD. This paper includes characteristics of the key factors (from the point of view of NAFLD regression), on which ketogenic diet exerts its effects, i.e., reduction in insulin resistance and body weight, elimination of fructose and monosaccharides, limitation of the total carbohydrate intake, anti-inflammatory ketosis state, or modulation of gut microbiome and metabolome. In the context of the evidence for the effectiveness of the KD in the regression of NAFLD, this paper also suggests the important role of taking responsibility for one's own health through increasing self-monitoring and self-education.
Collapse
Affiliation(s)
- Damian Dyńka
- Rodzen Brothers Foundation, 64-234 Wieleń, Poland
| | | | | | - Dorota Łojko
- Department of Psychiatry, Poznan University of Medical Science, 60-572 Poznan, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Ali Ibrahim
- Schoen Inpatient Children’s Eating Disorders Service, 147 Chester Rd, Streetly, Sutton Coldfield B74 3NE, UK
| | - Maria Hussey
- Private General Medical Practice Maria Hussey, Ojcowa Wola 5, 14-420 Mlynary, Poland
| | - Adam Deptuła
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Żaneta Grzywacz
- Faculty of Production Engineering and Logistics, Opole University of Technology, 76 Prószkowska St., 45-758 Opole, Poland
| | - Alexandre Ternianov
- Primary Care Centre Vila Olimpica, Parc Sanitary Pere Virgili, c. Joan Miró 17, 08005 Barcelona, Spain
| | - David Unwin
- Faculty of Health Social Care and Medicine, Edge Hill University, Ormskirk L39 4QP, UK
| |
Collapse
|
27
|
Gao Q, Zhang K, Fan M, Qian H, Li Y, Wang L. Effects of short-term carbohydrate deprivation on glycolipid metabolism and hepatic lipid accumulation in mice. Food Funct 2024; 15:7400-7415. [PMID: 38288875 DOI: 10.1039/d3fo05024f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
To investigate the effect of dietary carbohydrate levels on liver glycolipid metabolism, this study used C57BL/6J male mice receiving standard diet (CON), no-carbohydrate high-fat diet (NCD), and high-carbohydrate no-fat diet (HCD). One week after intervention, mice in the NCD group showed lower blood glucose, HbA1c and LDL-C as well as liver weight and liver index compared with the CON group. Further research found that the liver fat synthesis genes of mice in the NCD group were significantly down-regulated at the gene level, and histopathological sections showed that the livers of mice in the NCD group had less lipid accumulation. Furthermore, liver metabolomic analysis showed that primary bile acid levels and acylcarnitine levels in the liver of mice in the NCD group were significantly increased, and conversely, lysophosphatidylcholine and fatty acyl metabolites were significantly decreased. KEGG metabolic pathway analysis showed that metabolic pathways such as biosynthesis of unsaturated fatty acids and starch and sucrose metabolism were significantly inhibited in mice in the NCD group, while metabolic pathways such as primary bile acid biosynthesis, linoleic acid metabolism and glycerophospholipid metabolism were enhanced. Taken together, these results indicate that short-term carbohydrate deprivation improves blood glucose and lipid metabolism levels in mice; the molecular mechanism of action may involve inhibition of de novo lipogenesis and enhancement of bile acid metabolism.
Collapse
Affiliation(s)
- Qiang Gao
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
28
|
Li Z, Liu R, Gao X, Hou D, Leng M, Zhang Y, Du M, Zhang S, Li C. The correlation between hepatic controlled attenuation parameter (CAP) value and insulin resistance (IR) was stronger than that between body mass index, visceral fat area and IR. Diabetol Metab Syndr 2024; 16:153. [PMID: 38982535 PMCID: PMC11232147 DOI: 10.1186/s13098-024-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Hepatic controlled attenuation parameter (CAP) is a novel marker for quantifying hepatic fat accumulation. Insulin resistance (IR) plays a major role in the pathogenesis and natural history of hepatic steatosis. This study aimed to investigate the possible relationship between CAP value and IR. METHODS This study included a total of 420 patients with overweight or obesity who came to the obesity clinic at Tianjin Union Medical Center. Vibration-controlled transient elastography examination was conducted to detect CAP and liver stiffness measurement (LSM) values. Body composition, including visceral fat area (VFA), and body fat mass (BFM), was evaluated by the direct segmental multi-frequency bioelectrical impedance analysis (BIA). The associations between CAP value, body mass index (BMI), VFA, BFM and homeostasis model assessment of insulin resistance (HOMA-IR) were analyzed. RESULTS CAP value was positively associated with HOMA-IR (r = 0.568, P < 0.001), the strength of which was much stronger than BMI, VFA, and BFM. In multivariate linear regression, CAP value and HOMA-IR showed a significant positive association (adjusted β = 0.015, 95% CI 0.007-0.022, P < 0.001). Subgroup analysis suggested no significant interaction between CAP value and HOMA-IR across age, BMI, LSM, hypertension, and sex groups (all P for interaction > 0.05). CONCLUSIONS Hepatic CAP value is more remarkably than other obesity markers associated with HOMA-IR in individuals with overweight or obesity, regardless of age, BMI, LSM, hypertension, and sex.
Collapse
Affiliation(s)
- Zhouhuiling Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Xinying Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dangmin Hou
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Yanju Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyang Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi Zhang
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Chunjun Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Department of Endocrinology, Health Management Center, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China.
| |
Collapse
|
29
|
Spaggiari R, Angelini S, Di Vincenzo A, Scaglione G, Morrone S, Finello V, Fagioli S, Castaldo F, Sanz JM, Sergi D, Passaro A. Ceramides as Emerging Players in Cardiovascular Disease: Focus on Their Pathogenetic Effects and Regulation by Diet. Adv Nutr 2024; 15:100252. [PMID: 38876397 PMCID: PMC11263787 DOI: 10.1016/j.advnut.2024.100252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired lipid metabolism is a pivotal driver of cardiovascular disease (CVD). In this regard, the accumulation of ceramides within the circulation as well as in metabolically active tissues and atherosclerotic plaques is a direct consequence of derailed lipid metabolism. Ceramides may be at the nexus between impaired lipid metabolism and CVD. Indeed, although on one hand ceramides have been implicated in the pathogenesis of CVD, on the other specific ceramide subspecies have also been proposed as predictors of major adverse cardiovascular events. This review will provide an updated overview of the role of ceramides in the pathogenesis of CVD, as well as their pathogenetic mechanisms of action. Furthermore, the manuscript will cover the importance of ceramides as biomarkers to predict cardiovascular events and the role of diet, both in terms of nutrients and dietary patterns, in modulating ceramide metabolism and homeostasis.
Collapse
Affiliation(s)
- Riccardo Spaggiari
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sharon Angelini
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Alessandra Di Vincenzo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Gerarda Scaglione
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sara Morrone
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Veronica Finello
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Sofia Fagioli
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Fabiola Castaldo
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Juana M Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| | - Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy.
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari, Ferrara, Italy
| |
Collapse
|
30
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Alzheimer’s Gut Microbiome Project Consortium, Craft S, Kaddurah-Daouk R, Krumsiek J. Serum and CSF metabolomics analysis shows Mediterranean Ketogenic Diet mitigates risk factors of Alzheimer's disease. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:15. [PMID: 38962750 PMCID: PMC11216994 DOI: 10.1038/s44324-024-00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
| | - Alzheimer’s Gut Microbiome Project Consortium
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
- Department of Neurology, Mayo Clinic, Rochester, MN USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| |
Collapse
|
31
|
Ahmad Y, Seo DS, Jang Y. Metabolic Effects of Ketogenic Diets: Exploring Whole-Body Metabolism in Connection with Adipose Tissue and Other Metabolic Organs. Int J Mol Sci 2024; 25:7076. [PMID: 39000187 PMCID: PMC11241756 DOI: 10.3390/ijms25137076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
The ketogenic diet (KD) is characterized by minimal carbohydrate, moderate protein, and high fat intake, leading to ketosis. It is recognized for its efficiency in weight loss, metabolic health improvement, and various therapeutic interventions. The KD enhances glucose and lipid metabolism, reducing triglycerides and total cholesterol while increasing high-density lipoprotein levels and alleviating dyslipidemia. It significantly influences adipose tissue hormones, key contributors to systemic metabolism. Brown adipose tissue, essential for thermogenesis and lipid combustion, encounters modified UCP1 levels due to dietary factors, including the KD. UCP1 generates heat by uncoupling electron transport during ATP synthesis. Browning of the white adipose tissue elevates UCP1 levels in both white and brown adipose tissues, a phenomenon encouraged by the KD. Ketone oxidation depletes intermediates in the Krebs cycle, requiring anaplerotic substances, including glucose, glycogen, or amino acids, for metabolic efficiency. Methylation is essential in adipogenesis and the body's dietary responses, with DNA methylation of several genes linked to weight loss and ketosis. The KD stimulates FGF21, influencing metabolic stability via the UCP1 pathways. The KD induces a reduction in muscle mass, potentially involving anti-lipolytic effects and attenuating proteolysis in skeletal muscles. Additionally, the KD contributes to neuroprotection, possesses anti-inflammatory properties, and alters epigenetics. This review encapsulates the metabolic effects and signaling induced by the KD in adipose tissue and major metabolic organs.
Collapse
Affiliation(s)
- Yusra Ahmad
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Dong Soo Seo
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Younghoon Jang
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
32
|
Simonsson C, Nyman E, Gennemark P, Gustafsson P, Hotz I, Ekstedt M, Lundberg P, Cedersund G. A unified framework for prediction of liver steatosis dynamics in response to different diet and drug interventions. Clin Nutr 2024; 43:1532-1543. [PMID: 38754305 DOI: 10.1016/j.clnu.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder, characterized by the accumulation of excess fat in the liver, and is a driving factor for various severe liver diseases. These multi-factorial and multi-timescale changes are observed in different clinical studies, but these studies have not been integrated into a unified framework. In this study, we aim to present such a unified framework in the form of a dynamic mathematical model. METHODS For model training and validation, we collected data for dietary or drug-induced interventions aimed at reducing or increasing liver fat. The model was formulated using ordinary differential equations (ODEs) and the mathematical analysis, model simulation, model formulation and the model parameter estimation were all performed in MATLAB. RESULTS Our mathematical model describes accumulation of fat in the liver and predicts changes in lipid fluxes induced by both dietary and drug interventions. The model is validated using data from a wide range of drug and dietary intervention studies and can predict both short-term (days) and long-term (weeks) changes in liver fat. Importantly, the model computes the contribution of each individual lipid flux to the total liver fat dynamics. Furthermore, the model can be combined with an established bodyweight model, to simulate even longer scenarios (years), also including the effects of insulin resistance and body weight. To help prepare for corresponding eHealth applications, we also present a way to visualize the simulated changes, using dynamically changing lipid droplets, seen in images of liver biopsies. CONCLUSION In conclusion, we believe that the minimal model presented herein might be a useful tool for future applications, and to further integrate and understand data regarding changes in dietary and drug induced changes in ectopic TAG in the liver. With further development and validation, the minimal model could be used as a disease progression model for steatosis.
Collapse
Affiliation(s)
- Christian Simonsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics, Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Gennemark
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gustafsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Department of Media and Information Technology, Linköping University, Norrköping, Sweden
| | - Ingrid Hotz
- Department of Media and Information Technology, Linköping University, Norrköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Radiation Physics, Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
33
|
You Y, Huang Y, Wang X, Ni H, Ma Q, Ran H, Cai J, Lin X, Luo T, Wu C, Xiao X, Ma L. Ketogenic diet time-dependently prevents NAFLD through upregulating the expression of antioxidant protein metallothionein-2. Clin Nutr 2024; 43:1475-1487. [PMID: 38723301 DOI: 10.1016/j.clnu.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND & AIMS The past few decades have witnessed a rapid growth in the prevalence of nonalcoholic fatty liver disease (NAFLD). While the ketogenic diet (KD) is considered for managing NAFLD, the safety and efficacy of the KD on NAFLD has been a controversial topic. Here, we aimed to investigate the effect of KD of different durations on metabolic endpoints in mice with NAFLD and explore the underlying mechanisms. METHODS NAFLD mice were fed with KD for 1, 2, 4 and 6 weeks, respectively. The blood biochemical indexes (blood lipids, AST, ALT and etc.) and liver fat were measured. The LC-MS/MS based proteomic analysis was performed on liver tissues. Metallothionein-2 (MT2) was knocked down with adeno-associated virus (AAV) or small interfering RNA (siRNA) in NAFLD mice and AML-12 cells, respectively. H&E, BODIPY and ROS staining were performed to examine lipid deposition and oxidative stress. Furthermore, MT2 protein levels, nucleus/cytoplasm distribution and DNA binding activity of peroxisome proliferators-activated receptors α (PPARα) were evaluated. RESULTS KD feeding for 2 weeks showed the best improvement on NAFLD phenotype. Proteomic analysis revealed that MT2 was a key candidate for different metabolic endpoints of NAFLD affected by different durations of KD feeding. MT2 knockdown in NAFLD mice blocked the effects of 2 weeks of KD feeding on HFD-induced steatosis. In mouse primary hepatocytes and AML-12 cells, MT2 protein levels were induced by β-hydroxybutyric acid (β-OHB). MT2 Knockdown blunted the effects of β-OHB on alleviating PA-induced lipid deposition. Mechanistically, 2 weeks of KD or β-OHB treatment reduced oxidative stress and upregulated the protein levels of MT2 in nucleus, which subsequently increased its DNA binding activity and PPARα protein expression. CONCLUSIONS Collectively, these findings indicated that KD feeding prevented NAFLD in a time dependent manner and MT2 is a potential target contributing to KD improvement on steatosis.
Collapse
Affiliation(s)
- Yuehua You
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Hongbin Ni
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Ma
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Nutrition and Food Hygiene, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
| | - Haiying Ran
- Biomedical Analysis Center, Army Medical University, Chongqing, 400038, China; Chongqing Key Laboratory of Cytomics, Chongqing, 400038, China
| | - Jingshu Cai
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojing Lin
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ting Luo
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xiaoqiu Xiao
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Li Ma
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Rinaldi R, De Nucci S, Donghia R, Donvito R, Cerabino N, Di Chito M, Penza A, Mongelli FP, Shahini E, Zappimbulso M, Pesole PL, Coletta S, Triggiani V, Cozzolongo R, Giannelli G, De Pergola G. Gender Differences in Liver Steatosis and Fibrosis in Overweight and Obese Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease before and after 8 Weeks of Very Low-Calorie Ketogenic Diet. Nutrients 2024; 16:1408. [PMID: 38794646 PMCID: PMC11123918 DOI: 10.3390/nu16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Obesity and metabolic syndrome are linked to steatotic liver disease (SLD), the most common form of chronic liver disease. Lifestyle modifications and dieting are strategies that can prevent metabolic dysfunction-associated steatotic liver disease (MASLD). The very low-calorie ketogenic diet (VLCKD) is a helpful treatment for MASLD and has been recommended for people affected by obesity; we evaluated the effect of gender on steatosis and fibrosis in a cohort of 112 overweight or obese patients undergoing an eight-week treatment with a VLCKD. Differences between the genders in terms of anthropometric measures, body composition, and metabolic indicators were examined before, during, and after the nutritional intervention. At baseline, there were significant differences between men and women in terms of anthropometric parameters, blood pressure, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), fasting insulin, hepatic markers, and lipid profile. Men had considerably higher levels of liver steatosis (measured by CAP) and liver stiffness (measured by E) under basal conditions than women. After the VLCKD, there were reductions in both genders of controlled attenuation parameter (CAP), body weight, body mass index (BMI), waist circumference, systolic and diastolic blood pressure, insulin resistance, fat mass (FM), free fat mass (FFM), and fasting blood glucose, insulin, glycated hemoglobin (HbA1c), triglycerides, total cholesterol, low-density lipoprotein (LDL) cholesterol, alanine transaminase (ALT), gamma-glutamyl transferase (γGT), and uric acid levels. Only in men, liver stiffness, aspartate aminotransferase (AST), creatinine, and C-reactive protein (CRP) levels significantly decreased. Moreover, men had significantly greater levels of liver steatosis: the male gender featured an increase of 23.96 points of the Fibroscan CAP. Men exhibited higher levels of steatosis and fibrosis than women, and these differences persist despite VLCKD. These gender-specific variations in steatosis and fibrosis levels could be caused by hormonal and metabolic factors, suggesting that different therapeutic strategies might be required depending on the gender.
Collapse
Affiliation(s)
- Roberta Rinaldi
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Sara De Nucci
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Rossella Donghia
- Laboratory of Epidemiology and Statistics, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Rosanna Donvito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Nicole Cerabino
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Martina Di Chito
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Alice Penza
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Francesco Pio Mongelli
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| | - Endrit Shahini
- Department of Gastroenterology, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy; (E.S.); (M.Z.); (R.C.)
| | - Marianna Zappimbulso
- Department of Gastroenterology, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy; (E.S.); (M.Z.); (R.C.)
| | - Pasqua Letizia Pesole
- Core Facility Biobank, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy; (P.L.P.); (S.C.)
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Raffaele Cozzolongo
- Department of Gastroenterology, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy; (E.S.); (M.Z.); (R.C.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “Saverio de Bellis”, IRCCS Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, Castellana Grotte, 70013 Bari, Italy; (R.R.); (S.D.N.); (R.D.); (N.C.); (M.D.C.); (A.P.); (F.P.M.)
| |
Collapse
|
35
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
36
|
Marinescu SC(N, Apetroaei MM, Nedea MI(I, Arsene AL, Velescu BȘ, Hîncu S, Stancu E, Pop AL, Drăgănescu D, Udeanu DI. Dietary Influence on Drug Efficacy: A Comprehensive Review of Ketogenic Diet-Pharmacotherapy Interactions. Nutrients 2024; 16:1213. [PMID: 38674903 PMCID: PMC11054576 DOI: 10.3390/nu16081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
It is widely acknowledged that the ketogenic diet (KD) has positive physiological effects as well as therapeutic benefits, particularly in the treatment of chronic diseases. Maintaining nutritional ketosis is of utmost importance in the KD, as it provides numerous health advantages such as an enhanced lipid profile, heightened insulin sensitivity, decreased blood glucose levels, and the modulation of diverse neurotransmitters. Nevertheless, the integration of the KD with pharmacotherapeutic regimens necessitates careful consideration. Due to changes in their absorption, distribution, metabolism, or elimination, the KD can impact the pharmacokinetics of various medications, including anti-diabetic, anti-epileptic, and cardiovascular drugs. Furthermore, the KD, which is characterised by the intake of meals rich in fats, has the potential to impact the pharmacokinetics of specific medications with high lipophilicity, hence enhancing their absorption and bioavailability. However, the pharmacodynamic aspects of the KD, in conjunction with various pharmaceutical interventions, can provide either advantageous or detrimental synergistic outcomes. Therefore, it is important to consider the pharmacokinetic and pharmacodynamic interactions that may arise between the KD and various drugs. This assessment is essential not only for ensuring patients' compliance with treatment but also for optimising the overall therapeutic outcome, particularly by mitigating adverse reactions. This highlights the significance and necessity of tailoring pharmacological and dietetic therapies in order to enhance the effectiveness and safety of this comprehensive approach to managing chronic diseases.
Collapse
Affiliation(s)
- Simona Cristina (Nicolescu) Marinescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Amethyst Radiotherapy Center, 42, Drumul Odăi, 075100 Otopeni, Romania
| | - Miruna-Maria Apetroaei
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Marina Ionela (Ilie) Nedea
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Andreea Letiția Arsene
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| | - Bruno Ștefan Velescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Sorina Hîncu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Fundeni Clinical Institute, 258, Fundeni Street, 022328 Bucharest, Romania
| | - Emilia Stancu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Anca Lucia Pop
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Doina Drăgănescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
| | - Denisa Ioana Udeanu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6, Traian Vuia Street, 020956 Bucharest, Romania (A.L.A.); (B.Ș.V.); (S.H.); (E.S.); (A.L.P.); (D.D.); (D.I.U.)
- Marius Nasta Institute of Pneumophthiology, 90, Viilor Street, 050159 Bucharest, Romania
| |
Collapse
|
37
|
Kamisah Y, Che Hassan HH. Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review. Pharmaceuticals (Basel) 2024; 17:464. [PMID: 38675424 PMCID: PMC11054808 DOI: 10.3390/ph17040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine's actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine's multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Hamat H. Che Hassan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
38
|
Jokinen MJ, Luukkonen PK. Hepatic mitochondrial reductive stress in the pathogenesis and treatment of steatotic liver disease. Trends Pharmacol Sci 2024; 45:319-334. [PMID: 38471991 DOI: 10.1016/j.tips.2024.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Steatotic liver diseases (SLDs) affect one-third of the population, but the pathogenesis underlying these diseases is not well understood, limiting the available treatments. A common factor in SLDs is increased hepatic mitochondrial reductive stress, which occurs as a result of excessive lipid and alcohol metabolism. Recent research has also shown that genetic risk factors contribute to this stress. This review aims to explore how these risk factors increase hepatic mitochondrial reductive stress and how it disrupts hepatic metabolism, leading to SLDs. Additionally, the review will discuss the latest clinical studies on pharmaceutical treatments for SLDs, specifically peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists, thyroid hormone receptor (THR) agonists, acetyl-CoA carboxylase (ACC) inhibitors, and mitochondrial uncouplers. These treatments have a common effect of decreasing hepatic mitochondrial reductive stress, which has been largely overlooked.
Collapse
Affiliation(s)
- Mari J Jokinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Panu K Luukkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Internal Medicine, University of Helsinki, Helsinki, Finland; Abdominal Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
39
|
Dobbie LJ, Burgess J, Hamid A, Nevitt SJ, Hydes TJ, Alam U, Cuthbertson DJ. Effect of a Low-Calorie Dietary Intervention on Liver Health and Body Weight in Adults with Metabolic-Dysfunction Associated Steatotic Liver Disease (MASLD) and Overweight/Obesity: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:1030. [PMID: 38613063 PMCID: PMC11013586 DOI: 10.3390/nu16071030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
INTRODUCTION Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD) is a common cause of chronic liver disease. This review assessed the efficacy of a Low-Calorie Diet (LCD) on liver health and body weight in people living with MASLD and obesity. METHODS The study was registered with PROSPERO (CRD42021296501), and a literature search was conducted using multiple databases. The key inclusion criteria were randomised controlled trials or cohort studies, obesity/overweight and MASLD. Two authors screened abstracts, reviewed full texts and performed data extraction and quality assessment. The primary outcome was the change in the serum ALT, and secondary outcomes included the changes in the serum AST, intrahepatic lipid content (IHL), quantified non-invasively via MRI/MRS, and body weight. RESULTS Fifteen studies were included. The LCD reduced body weight by 9.1 kg versus the control (95%CI: -12.4, -5.8) but not serum ALT (-5.9 IU/L, -13.9, 2.0). Total Dietary Replacement (TDR) reduced IHL by -9.1% vs. the control (-15.6%, -2.6%). The Mediterranean-LCD for ≥12 months reduced ALT (-4.1 IU/L, -7.6, -0.5) and for 24 months reduced liver stiffness versus other LCDs. The Green-Mediterranean-LCD reduced IHL, independent of body weight. Limited studies assessed those of Black or Asian ethnicity, and there was heterogeneity in the methods assessing the liver fat content and fibrosis. CONCLUSIONS In people with MASLD and obesity, an LCD intervention reduces IHL and body weight. Trials should focus on the recruitment of Black and Asian ethnicity participants.
Collapse
Affiliation(s)
- Laurence J. Dobbie
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
- Department of Diabetes & Endocrinology, Guys Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Jamie Burgess
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Azlinda Hamid
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
| | - Sarah J. Nevitt
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L3 5TR, UK;
- Centre for Reviews and Dissemination, University of York, York YO10 5DD, UK
| | - Theresa J. Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| | - Daniel J. Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L9 7AL, UK; (L.J.D.)
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool L9 7AL, UK
| |
Collapse
|
40
|
Ravaut G, Carneiro A, Mounier C. Exploring the impacts of ketogenic diet on reversible hepatic steatosis: initial analysis in male mice. Front Nutr 2024; 11:1290540. [PMID: 38577162 PMCID: PMC10991688 DOI: 10.3389/fnut.2024.1290540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Ketogenic diet (KD), a diet with very low intake in carbohydrates, gained popularity as a weight-loss approach. However, in mice models, it has been reported that an excess exposition of dietary fat induces hepatic insulin resistance and steatosis. However, data published is inconsistent. Herein, we investigated in a mouse model, the metabolic effects of KD and its contribution to the pathogenesis of NALFD. Mice were exposed to KD or CHOW diet for 12 weeks while a third group was exposed to KD for also 12 weeks and then switched to CHOW diet for 4 weeks to determine if we can rescue the phenotype. We evaluated the effects of diet treatments on fat distribution, glucose, and insulin homeostasis as well as hepatic steatosis. Mice fed with KD developed glucose intolerance but not insulin resistance accompanied by an increase of inflammation. KD-fed mice showed an increase of fat accumulation in white adipose tissue and liver. This effect could be explained by an increase in fat uptake by the liver with no changes of catabolism leading to MAFLD. Interestingly, we were able to rescue the phenotype by switching KD-fed mice for 4 weeks on a CHOW diet. Our studies demonstrate that even if mice develop hepatic steatosis and glucose intolerance after 12 weeks of KD, they do not develop insulin resistance and more importantly, the phenotype can be reversed by switching the mice from a KD to a CHOW.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- CERMO-FC Research Center, Molecular Metabolism of Lipids Laboratory, Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC, Canada
| |
Collapse
|
41
|
Dafre AL, Zahid S, Probst JJ, Currais A, Yu J, Schubert D, Maher P. CMS121: a novel approach to mitigate aging-related obesity and metabolic dysfunction. Aging (Albany NY) 2024; 16:4980-4999. [PMID: 38517358 PMCID: PMC11006478 DOI: 10.18632/aging.205673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Modulated by differences in genetic and environmental factors, laboratory mice often show progressive weight gain, eventually leading to obesity and metabolic dyshomeostasis. Since the geroneuroprotector CMS121 has a positive effect on energy metabolism in a mouse model of type 2 diabetes, we investigated the potential of CMS121 to counteract the metabolic changes observed during the ageing process of wild type mice. METHODS Control or CMS121-containing diets were supplied ad libitum for 6 months, and mice were sacrificed at the age of 7 months. Blood, adipose tissue, and liver were analyzed for glucose, lipids, and protein markers of energy metabolism. RESULTS The CMS121 diet induced a 40% decrease in body weight gain and improved both glucose and lipid indexes. Lower levels of hepatic caspase 1, caspase 3, and NOX4 were observed with CMS121 indicating a lower liver inflammatory status. Adipose tissue from CMS121-treated mice showed increased levels of the transcription factors Nrf1 and TFAM, as well as markers of mitochondrial electron transport complexes, levels of GLUT4 and a higher resting metabolic rate. Metabolomic analysis revealed elevated plasma concentrations of short chain acylcarnitines and butyrate metabolites in mice treated with CMS121. CONCLUSIONS The diminished de novo lipogenesis, which is associated with increased acetyl-CoA, acylcarnitine, and butyrate metabolite levels, could contribute to safeguarding not only the peripheral system but also the aging brain. By mimicking the effects of ketogenic diets, CMS121 holds promise for metabolic diseases such as obesity and diabetes, since these diets are hard to follow over the long term.
Collapse
Affiliation(s)
- Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jessica Jorge Probst
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Gupta AC, Bhat A, Maras JS. Early hepatic proteomic signatures reveal metabolic changes in high-fat-induced obesity in rats. Br J Nutr 2024; 131:773-785. [PMID: 37886840 DOI: 10.1017/s0007114523002453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The prevalence of diet-related obesity is increasing dramatically worldwide, making it important to understand the associated metabolic alterations in the liver. It is well known that obesity is a multifactorial condition that is the result of complex integration between many gene expressions and dietary factors. Obesity alone or in conjunction with other chronic diseases such as diabetes and insulin resistance causes many health problems and is considered a major risk factor for developing non-alcoholic steatohepatitis (NASH) and cirrhosis. In this study, we aimed to understand the molecular mechanisms underlying early hepatic changes in the pathophysiology of high-fat diet (HFD)-induced abdominal obesity in rats. Hepatic protein profiles of normal diet and HFD-induced obesity for 24 weeks were analysed using two-dimensional differential gel electrophoresis (DIGE) and protein identification by MS. Fifty-two proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), and computer-assisted DIGE image software analysis showed that eighteen major proteins were significantly differentially expressed between comparable groups, with 2·0–4·0-fold change/more (P < 0·01). These proteins are regulated in response to a HFD, and differentially expressed proteins are involved in key metabolic pathways such as lipid metabolism, energy metabolism, detoxification, urea cycle and hepatic Ca homoeostasis. In addition, Western blot and immunohistochemistry of liver-specific arginase-1 (Arg-1) showed significant increased expression in the liver of high-fat-fed rats (P < 0·01). Further, Arg-1 expression was correlated with NASH patients with obesity-related fibrosis (F0–F4). It is concluded that high-fat content may affect changes in liver pathways and may be a therapeutic target for obesity-related liver disease. Arg-1 expressions may be a potential pathological marker for assessing the progression of the disease.
Collapse
Affiliation(s)
- Abhishak C Gupta
- Department of Education and Research, Artemis Hospitals, Gurugram, Haryana, India
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Adil Bhat
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Jaswinder S Maras
- Department of Molecular and Cellular Medicine (MCM), Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
43
|
Carpentier AC. Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38113392 PMCID: PMC11283904 DOI: 10.1152/physiol.00012.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.
Collapse
Affiliation(s)
- André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
44
|
Li X, Cheng Y, Xu Z, Lin X, Xu B, Wang Z, Li P, Nian B. Interface chemistry affected the digestion fate of ketogenic diet based on medium- and long-chain triglycerides. Food Res Int 2024; 180:114059. [PMID: 38395552 DOI: 10.1016/j.foodres.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ketogenic diet, characterized by high fat and low carbohydrate content, is gradually becoming a new perspective in the human diet; however, the mechanism of digestion of ketogenic diet remains unknown. In this study, we explored the oil-water interface to elucidate the digestion of a ketogenic diet based on typical representative medium- and long-chain triglycerides. The free fatty acids (FFAs) release indicated that glycerol trioctanoate with a shorter carbon chain (FFA = 920.55 ± 10.17 μmol) was significantly more digestible than glycerol tripalmitate (851.36 ± 9.48 μmol) and glycerol tristearate (805.81 ± 10.03 μmol). Particle size analysis revealed that the length of the carbon chain increased the size of triglycerides, resulting in a decreased contact area with lipase. The interfacial phenomenon indicated that the longer the carbon chain of triglycerides, the greater the reduction in binding capacity with salt ions in the digestive solution. Fluorescence spectroscopy analysis showed that the length of the carbon chain induced the displacement of the lipase peak, suggesting that the carbon chain length could alter the structure of lipase. Molecular dynamics simulation showed that the longer the carbon chain of triglycerides, the easier it was to loosen the structure of lipase. Bond energy analysis showed that the carbon chain length of triglycerides was positively correlated with the bond energy strength of the ester bonding. In conclusion, this study emphasizes that the ketogenic diet should primarily consist of shorter carbon chain triglycerides because carbon chain length can alter the digestion of triglycerides. This provides a new perspective on the quest for more effective ketogenic diet, in line with the current view of healthy diet.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiujun Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pan Li
- Hunan Guanglu Testing Co., Ltd., Changsha 410000, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
45
|
Wang N, Yang A, Tian X, Liao J, Yang Z, Pan Y, Guo Y, He S. Label-free analysis of the β-hydroxybutyricacid drug on mitochondrial redox states repairment in type 2 diabetic mice by resonance raman scattering. Biomed Pharmacother 2024; 172:116320. [PMID: 38387134 DOI: 10.1016/j.biopha.2024.116320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Mitochondrial redox imbalance underlies the pathophysiology of type2 diabetes mellitus (T2DM), and is closely related to tissue damage and dysfunction. Studies have shown the beneficial effects of dietary strategies that elevate β-hydroxybutyrate (BHB) levels in alleviating T2DM. Nevertheless, the role of BHB has not been clearly elucidated. METHODS We performed a spectral study to visualize the preventive effects of BHB on blood and multiorgan mitochondrial redox imbalance in T2DM mice via using label-free resonance Raman spectroscopy (RRS), and further explored the impact of BHB therapy on the pathology of T2DM mice by histological and biochemical analyses. FINDINGS Our data revealed that RRS-based mitochondrial redox states assay enabled clear and reliable identification of the improvement of mitochondrial redox imbalance by BHB, evidenced by the reduction of Raman peak intensity at 750 cm-1, 1128 cm-1 and 1585 cm-1 in blood, tissue as well as purified mitochondria of db/db mice and the increase of tissue mitochondrial succinic dehydrogenase (SDH) staining after BHB treatment. Exogenous supplementation of BHB was also found to attenuate T2DM pathology related to mitochondrial redox states, involving organ injury, blood glucose control, insulin resistance and systemic inflammation. INTERPRETATION Our findings provide strong evidence for BHB as a potential therapeutic strategy targeting mitochondria for T2DM.
Collapse
Affiliation(s)
- Na Wang
- Taizhou Hospital, Zhejiang University School of Medicine, Linhai, China; Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Anqi Yang
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Xiong Tian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiaqi Liao
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Yang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yixiao Pan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Sailing He
- Taizhou Hospital, Zhejiang University School of Medicine, Linhai, China; Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China; School of Electrical Engineering, Royal Institute of Technology, Stockholm S-100 44, Sweden.
| |
Collapse
|
46
|
Wolfrum C, Challa TD. Response-to Letter-to-the-editor: "A low-carbohydrate diet induces hepatic insulin resistance and metabolic associated fatty liver disease in mice". Mol Metab 2024; 81:101897. [PMID: 38354855 PMCID: PMC10928362 DOI: 10.1016/j.molmet.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024] Open
Affiliation(s)
- Christian Wolfrum
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland.
| | - Tenagne D Challa
- Institute of Food Nutrition and Health and Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), CH-8603 Schwerzenbach, Switzerland.
| |
Collapse
|
47
|
Lee S, Bae J, Kim SU, Lee M, Lee YH, Kang ES, Cha BS, Lee BW. Intact ketogenesis predicted reduced risk of moderate-severe metabolic-associated fatty liver disease assessed by liver transient elastography in newly diagnosed type 2 diabetes. Front Endocrinol (Lausanne) 2024; 14:1306134. [PMID: 38260169 PMCID: PMC10801714 DOI: 10.3389/fendo.2023.1306134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
AIM Hepatic ketogenesis is a key metabolic pathway that regulates energy homeostasis. Some related controversies exist regarding the pathogenesis of metabolic-associated fatty liver disease (MAFLD). We aimed to investigate whether intact ketogenic capacity could reduce the risk of MAFLD based on transient electrography (TE) in patients with newly diagnosed type 2 diabetes (T2D). METHODS A total of 361 subjects with newly diagnosed T2D were recruited and classified into two groups based on the median serum β-hydroxybutyrate (βHB) level, referred to as the intact and impaired ketogenesis groups. The glucometabolic relevance of ketogenic capacity and associations of the baseline serum β-HB and MAFLD assessed with TE were investigated. RESULTS Compared to the impaired ketogenesis group, the intact ketogenesis group showed better insulin sensitivity, lower serum triglyceride levels, and higher glycated hemoglobin levels. The controlled attenuation parameter (CAP) was lower in the intact ketogenesis group without statistical significance (289.7 ± 52.1 vs. 294.5 ± 43.6; p=0.342) but the prevalence of moderate-severe steatosis defined by CAP ≥260 dB/m was significantly lower in the intact group. Moreover, intact ketogenesis was significantly associated with a lower risk of moderate-severe MAFLD after adjusting for potential confounders (adjusted odds ratio 0.55, 95% confidence interval 0.30-0.98; p=0.044). CONCLUSION In drug-naïve, newly diagnosed T2D patients, intact ketogenesis predicted a lower risk of moderate-severe MAFLD assessed by TE.
Collapse
Affiliation(s)
- Sejeong Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Jaehyun Bae
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Catholic Kwandong University College of Medicine, International St. Mary’s Hospital, Incheon, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Minyoung Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Seok Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
48
|
Li S, Ding H, Qi Z, Yang J, Huang J, Huang L, Zhang M, Tang Y, Shen N, Qian K, Guo Q, Wan J. Serum Metabolic Fingerprints Characterize Systemic Lupus Erythematosus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304610. [PMID: 37953381 PMCID: PMC10787061 DOI: 10.1002/advs.202304610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/01/2023] [Indexed: 11/14/2023]
Abstract
Metabolic fingerprints in serum characterize diverse diseases for diagnostics and biomarker discovery. The identification of systemic lupus erythematosus (SLE) by serum metabolic fingerprints (SMFs) will facilitate precision medicine in SLE in an early and designed manner. Here, a discovery cohort of 731 individuals including 357 SLE patients and 374 healthy controls (HCs), and a validation cohort of 184 individuals (SLE/HC, 91/93) are constructed. Each SMF is directly recorded by nano-assisted laser desorption/ionization mass spectrometry (LDI MS) within 1 minute using 1 µL of native serum, which contains 908 mass to charge features. Sparse learning of SMFs achieves the SLE identification with sensitivity/specificity and area-under-the-curve (AUC) up to 86.0%/92.0% and 0.950 for the discovery cohort. For the independent validation cohort, it exhibits no performance loss by affording the sensitivity/specificity and AUC of 89.0%/100.0% and 0.992. Notably, a metabolic biomarker panel is screened out from the SMFs, demonstrating the unique metabolic pattern of SLE patients different from both HCs and rheumatoid arthritis patients. In conclusion, SMFs characterize SLE by revealing its unique metabolic pattern. Different regulation of small molecule metabolites contributes to the precise diagnosis of autoimmune disease and further exploration of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Shunxiang Li
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Huihua Ding
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Ziheng Qi
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| | - Jing Yang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jingyi Huang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Shanghai Institute of Thoracic TumorsShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Mengji Zhang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Yuanjia Tang
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Nan Shen
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Kun Qian
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Qiang Guo
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
49
|
McNelly A, Langan A, Bear DE, Page A, Martin T, Seidu F, Santos F, Rooney K, Liang K, Heales SJ, Baldwin T, Alldritt I, Crossland H, Atherton PJ, Wilkinson D, Montgomery H, Prowle J, Pearse R, Eaton S, Puthucheary ZA. A pilot study of alternative substrates in the critically Ill subject using a ketogenic feed. Nat Commun 2023; 14:8345. [PMID: 38102152 PMCID: PMC10724188 DOI: 10.1038/s41467-023-42659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
Bioenergetic failure caused by impaired utilisation of glucose and fatty acids contributes to organ dysfunction across multiple tissues in critical illness. Ketone bodies may form an alternative substrate source, but the feasibility and safety of inducing a ketogenic state in physiologically unstable patients is not known. Twenty-nine mechanically ventilated adults with multi-organ failure managed on intensive care units were randomised (Ketogenic n = 14, Control n = 15) into a two-centre pilot open-label trial of ketogenic versus standard enteral feeding. The primary endpoints were assessment of feasibility and safety, recruitment and retention rates and achievement of ketosis and glucose control. Ketogenic feeding was feasible, safe, well tolerated and resulted in ketosis in all patients in the intervention group, with a refusal rate of 4.1% and 82.8% retention. Patients who received ketogenic feeding had fewer hypoglycaemic events (0.0% vs. 1.6%), required less exogenous international units of insulin (0 (Interquartile range 0-16) vs.78 (Interquartile range 0-412) but had slightly more daily episodes of diarrhoea (53.5% vs. 42.9%) over the trial period. Ketogenic feeding was feasible and may be an intervention for addressing bioenergetic failure in critically ill patients. Clinical Trials.gov registration: NCT04101071.
Collapse
Affiliation(s)
- Angela McNelly
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Anne Langan
- Department of Dietetics, Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Danielle E Bear
- Department of Nutrition and Dietetics, St Thomas' NHS Foundation Trust, London, UK
- Department of Critical Care, Guy's and St. Thomas' NHS, London, UK
| | | | - Tim Martin
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Fatima Seidu
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Filipa Santos
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Kieron Rooney
- Department of Critical Care, Bristol Royal Infirmary, Bristol, UK
| | - Kaifeng Liang
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Simon J Heales
- Genetic & Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tomas Baldwin
- Developmental Biology & Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Isabelle Alldritt
- Centre of Metabolism, Aging & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Aging Research & NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Hannah Crossland
- Centre of Metabolism, Aging & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Aging Research & NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Philip J Atherton
- Centre of Metabolism, Aging & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Aging Research & NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Daniel Wilkinson
- Centre of Metabolism, Aging & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Aging Research & NIHR Nottingham BRC, University of Nottingham, Nottingham, UK
| | - Hugh Montgomery
- University College London (UCL), London, UK
- UCL Hospitals NHS Foundation Trust (UCLH), National Institute for Health Research (NIHR) Biomedical Research Centre (BRC), London, UK
| | - John Prowle
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Rupert Pearse
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK
- Adult Critical Care Unit, Royal London Hospital, London, UK
| | - Simon Eaton
- Developmental Biology & Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Zudin A Puthucheary
- William Harvey Research Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, UK.
- Adult Critical Care Unit, Royal London Hospital, London, UK.
| |
Collapse
|
50
|
Lu JF, Zhu MQ, Xia B, Zhang NN, Liu XP, Liu H, Zhang RX, Xiao JY, Yang H, Zhang YQ, Li XM, Wu JW. GDF15 is a major determinant of ketogenic diet-induced weight loss. Cell Metab 2023; 35:2165-2182.e7. [PMID: 38056430 DOI: 10.1016/j.cmet.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/27/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
A ketogenic diet (KD) has been promoted as an obesity management diet, yet its underlying mechanism remains elusive. Here we show that KD reduces energy intake and body weight in humans, pigs, and mice, accompanied by elevated circulating growth differentiation factor 15 (GDF15). In GDF15- or its receptor GFRAL-deficient mice, these effects of KD disappeared, demonstrating an essential role of GDF15-GFRAL signaling in KD-mediated weight loss. Gdf15 mRNA level increases in hepatocytes upon KD feeding, and knockdown of Gdf15 by AAV8 abrogated the obesity management effect of KD in mice, corroborating a hepatic origin of GDF15 production. We show that KD activates hepatic PPARγ, which directly binds to the regulatory region of Gdf15, increasing its transcription and production. Hepatic Pparγ-knockout mice show low levels of plasma GDF15 and significantly diminished obesity management effects of KD, which could be restored by either hepatic Gdf15 overexpression or recombinant GDF15 administration. Collectively, our study reveals a previously unexplored GDF15-dependent mechanism underlying KD-mediated obesity management.
Collapse
Affiliation(s)
- Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meng Qing Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Na Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao Peng Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Xin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- National Health Commission (NHC) Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Ying Qi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Xiao Miao Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|